CEGARTIX: A SAT-Based Argumentation System*

Wolfgang Dvofdk!, Matti Jirvisalo?, Johannes Peter Wallner!, and Stefan Woltran®

! Institute of Information Systems, Technische Universitit Wien, Austria
2 HIIT & Department of Computer Science, University of Helsinki, Finland

Abstract. CEGARTIX is a system for solving decision problems beyond NP in
the domain of abstract argumentation. The system implements multiple counter-
example guided abstraction refinement (CEGAR) algorithms in which Boolean
satisfiability (SAT) solvers play a central role as the core NP-solvers. The per-
formance of CEGARTIX is comparable and in cases superior to previously de-
veloped state-of-the-art systems for second-level argumentation problems. We
briefly overview as an example one of the algorithms CEGARTIX implements
and present experimental results on the performance of the system using three
different modern SAT solvers as the core NP solvers.

1 Introduction

Argumentation is present in various real-world scenarios, including mediation pro-
cesses, law research, analysis of social interactions e.g. on the Internet. Computational
argumentation has been identified as an important contemporary area of research that
deals with computationally hard reasoning problems related to such scenarios. The main
formalism for presenting computational argumentation problems is provided by abstract
argumentation frameworks (AFs) [3]]. Developing decisions procedures for argumenta-
tion problems is challenging since important reasoning problems for AFs are complete
for the second level of the polynomial hierarchy (i.e., 15 - / ©¥-complete).

In this paper we describe CEGARTIX, a generic system for solving I1%'- / ¥£-
complete decision problems in the domain of abstract argumentation, namely, skeptical
and credulous reasoning under so-called preferred [4], semi-stable, and stage seman-
tics [5]) Based on counter-example guided abstraction refinement (CEGAR) [112], CE-
GARTIX implements multiple complexity-sensitive algorithms [7] that rely on Boolean
satisfiability (SAT) solvers as the core NP solvers. The algorithms CEGARTIX imple-
ments are based on our recent complexity analysis [[7]] of so-called semantical fragments
of AF reasoning problems with full second-level complexity.

Monolithic SAT-encodings of second-level argumentation problems are deemed to
be of exponential size. In contrast, our complexity-sensitive procedures provable avoid
the exponential space requirements in the following sense: if the input instances falls
into a predefined less intractable base class, it suffices to consider a small part of a
monolithic encoding to decide the actual query.

* Work has been funded by the Vienna Science and Technology Fund (WWTF) through project
ICT08-028 and by Academy of Finland (grants 132812 and 251170).

2 CEGARTIX: A SAT-Based Argumentation System

CEGARTIX outperforms current state-of-the-art systems which are based on mono-
lithic encodings of the considered second-level argumentation problems [8/6]]. First re-
sults on the applicability of a first version of CEGARTIX were presented in [7]]. In
this description, we present an extended evaluation of the current version 0.3 of CE-
GARTIX. As new features CEGARTIX 0.3 gives a choice between two state-of-the-
art conflict-driven clause learning (CDCL) SAT solvers (Minisat and Clasp) used as
libraries. Further, any complete SAT solver that adheres to the standard input-output
specification of the SAT competitions can be used externally. In addition to a compar-
ison with other state-of-the-art argumentation systems, we evaluate the effect of incre-
mental employment of a SAT solver on the performance of CEGARTIX, as well as the
effect of the choice of the SAT solver.

In addition to demonstrating that abstract argumentation is a novel and successful
application for SAT solvers, we believe that developing SAT-based complexity-sensitive
algorithms similar to the ones implemented within CEGARTIX could provide novel
algorithms for other important decision and optimization problems beyond NP.

2 Background

Due to the page limit, here we focus on describing the algorithm CEGARTIX imple-
ments for the problem of skeptical acceptance for preferred semantics. More details for
the other second-level problems CEGARTIX targets can be found in [7].

An argumentation framework (AF) [3] is a pair F' = (A, R) where A is a finite set
of arguments and R C A x A is the attack relation. An argument a € A is defended
(in F) by aset S C A if for each b € A, such that (b,a) € R, there is a ¢ € S with
(¢,b) € R. Aset S C A is conflict-free (in F), denoted S € cf (F), iff there are no
a,b € S, such that (a,b) € R.If S € ¢f(F) and each a € S is defended by S, then
S is said to be admissible in F', denoted by S € adm(F'). Semantics for AFs assign to
each AF F = (A, R) aset o(F) C 2 of extensions. The following defines complete
and respectively preferred extensions:

com(F) ={S € adm(F) | foreacha € A defended by S,a € S}
prf(F) ={S € adm(F) | thereisnoT € adm(F) withT D> S}

For example, consider the AF F' = (A, R), with A = {a,b,c,d, e} and R = {(a,b),
(¢,b), (¢,d), (d,), (d,e), (e,e)}. The graph representation of F is

(O—O—O=(D)—CD

The admissible sets of F are 0, {a}, {c}, {d}, {a,c}, {a,d}, prf(F) = {{a, c}.{a,d}}
and com(F) = {{a},{a,c},{a,d}}. In fact, prf(F) C com(F') holds for any AF F'.
One can thus use complete extensions as candidates for preferred ones.

In the next section we describe as an example the algorithm within CEGARTIX for
the TIZ -complete problem of skeptical acceptance for preferred semantics, Skeptpy:
Given an AF F = (A, R) and argument a € A, is a contained in each S € prf(F)?

CEGARTIX: A SAT-Based Argumentation System 3

3 CEGARTIX

CEGARTIX implements the CEGAR-style algorithms recently introduced in [[7] for
credulous and skeptical reasoning under preferred, semi-stable and stage semantics.
In the following we present more details on the algorithms within CEGARTIX using
as an example the algorithmically perhaps simplest case of skeptical reasoning under
preferred semantics. As regards complexity-sensitivity, the algorithm is exploits the fol-
lowing result [[7]. Let soI’;Tf the class of all AFs F' such that |prf(F)| < k. Given a fixed
k, the problem Skept,,s when restricted to AFs from the class sollzrf, can be solved in
deterministic polynomial time using a bounded number of NP-oracle calls (i.e., it is
in PNP). Indeed, given that the AF given as input belongs to soI’;Tf, the algorithm is
guaranteed to make only a polynomial number of SAT solver calls.
The main idea is to use the SAT-solver calls to check candidate AF extensions of the
input instance. Candidate AF extensions for the preferred semantics can be identified
via the simpler complete semantics. To this end, let us start with the following module

for a given AF F' = (A, R) using variables X = {x, |a € A} andY = {y, | a € A}:

Peom(F) =\ (zaV-z)A N\ (1a— \/ z)A

(a,b)ER (b,a)ER (¢,b)ER
/\(yaHxa\/ \/ xb)/\/\(/\ yb)%ya
acA (b,a)ER a€A (b,a)ER

The first line declares the conditions for admissible sets following the definition: any ad-
missible set must be (i) conflict free and (ii) each argument in the set must be defended
by the set. The second line declares that (i) the value of auxiliary atoms y,: y, is true iff
either x, is true or some x;, is true where b attacks a in F', and that (ii) each argument
a defended by the extension is contained in the extension. Models (i.e., full satisfying
assignments) of ¢ .., (F') characterize the complete extensions of F' in the sense that
X, is true in a model [(x, € I) iff argument a is in the extension characterized by 1.
In our algorithm the candidate AF extension checks will be solved (incrementally
when possible) with a SAT solver. In addition to reducing the set of remaining candi-
date solutions, we also exploit the results of the SAT-oracle calls to strengthen the base
formula ¢ ., (F') as a form of no-good learning on the level of the propositional en-
coding. The structure of the algorithm for Skept,,, testing an argument a for skeptical
acceptance, implemented within CEGARTIX is the following:
Input: AF F = (A, R), argumenta € A
Loif peom (F7) A (V (4,0)c g @) 1s satisfiable, then reject
2. ¢ @eom(F) A =za A (/\(b,a)eR).
3. while (¢ is satisfiable)
(a) find model I of ¢
(b) while (there is a model 1" of Y com (F) A N\ cinx © A (\/weX\I) A —xg)
I+7r
(©) if Yeom(F) A Npernx TN (\/IGX\I x) is unsatisfiable then reject

(d) else o <= o A (V,ex\ 1 2)
4. accept

4 CEGARTIX: A SAT-Based Argumentation System

Overall, the procedure works as follows. Step 1 exploits the fact that a cannot be
skeptically accepted in case there exists a complete extension containing an argument b
attacking a (since then, also such a preferred extension exists). In Step 2, we initialize
a formula ¢ (which will be refined in the algorithm) that provides a model I describing
a complete extension that does not contain a. Moreover, we add the information that no
argument b attacking a can be contained in such an extension. If no such I exists, we
can conclude that all preferred extensions of the given AF contain a; in this case we do
not enter the while loop and accept. Otherwise, we proceed with the loop in order to
“enlarge” I as much as possible such that it remains complete but still does not contain
a. If adding a to such a maximal set violates completeness, we have found a preferred
extension not containing a, and thus we have to reject here. Otherwise, we adapt ¢
such that it will deliver complete extensions not being subsets of (the maximized) I. As
before, if the new ¢ turns out to be unsatisfiable, we know that all possible remaining
candidates for a preferred extension have to contain a and thus we can accept. Other-
wise, we enter the loop and proceed as already outlined.

4 Performance of CEGARTIX

In the current version (v0.3) of CEGARTIX there is an option to choose from two
CDCL SAT solvers (used as libraries) as the core solvers: Minisat (v2.2.0) and Clasp
(v2.0.5). Minisat can be employed in an incremental mode, which allows us to avoid
starting search from scratch when adding new learnt information to a current satisfi-
able working formula. Furthermore, a command line option is provided for alterna-
tively using any external SAT solver that adheres to the standard input-output speci-
fication used in the SAT competitions. The input format of CEGARTIX follows the
input format of the ASPARTIX [8]] system: an argument a is declared by "arg (a) .”,
and "att (a, b) .” declares that argument « attacks argument b. The current version of
CEGARTIX is available at

http://www.dbai.tuwien.ac.at/research/project/arqgumentation/cegartix/.

The URL also gives access to the benchmark generators used in our experiments.

Experiment Setup At the moment, argumentation systems are commonly benchmarked
using instances based on different (structured) models of generating random graphs that
are interpreted as the AFs. As benchmarks, we randomly generated AFs using two pa-
rameterized methods for generating the attack relation. The first generates random AFs
and inserts for any pair of arguments (a, b) the attack from a to b with a given prob-
ability p. The other method generates AFs of an n x m grid structure . For the grid
instances, we consider two different neighborhoods: one connecting arguments verti-
cally and horizontally, and one that additionally connects the arguments diagonally.
Such a connection is (i) a mutual attack with probability p, and (ii) an attack from a to
b with probability (p — 1). In each case, the probability values p € {0.1,0.2,0.3,0.4}
were used. We generated 10 random AFs for each pair of (p,args), args being the
number of arguments. For the grid structure AFs we generated 11 AFs for each triple
of (p,args,m) and m € {5,10,15}.

http://www.dbai.tuwien.ac.at/research/project/argumentation/cegartix/

CEGARTIX: A SAT-Based Argumentation System 5

For the random instances two arguments were queried; for the grid instances three.
The number of attacks scales linearly with the number of arguments for grid instances,
and quadratically for random instances. We would like to stress that the generated AFs
are by no means tailored to the fragments our approach is based on.

The experiments were executed under OpenSUSE with Intel Xeon processors (2.33
GHz) and 49 GB memory, using a timeout of 5 minutes for each individual run.

4.1 Comparison of CEGARTIX with State-of-the-Art Argumentation Systems

We compare CEGARTIX to a recent state-of-the-art argumentation reasoning system [6]
that exploits advances in answer set programming (ASP) via the so-called metasp ap-
proach. This system is a further improvement of the ASP-based ASPARTIX system [8]],
and applies the native second-level disjunctive ASP solver claspD (v1.1.1) combined
with the grounder gringo (v3.0.3). For this comparison, we employed Minisat as the
SAT solver within CEGARTIX. The results of are shown in Figure[I] We observe that
CEGARTIX clearly dominates the current state-of-the-art system ASPARTIX that em-
ploys the metasp approach both on the random instances (results presented for instances
having up to 200 arguments) and the grid instances (results presented for up to 1000 ar-
guments). As has also been shown earlier [8]], until now metasp-based ASPARTIX has
represented the state-of-the-art, dominating the earlier version of ASPARTIX that did
not employ metasp [6]. Interestingly, the performance of CEGARTIX is especially pro-
nounced on the more structured grid instances. For a comparison of the metasp-based
approach and the earlier version of ASPARTIX on grid structure AFs see [6].

4.2 Effect of the Choice of SAT Solver within CEGARTIX

As already mentioned, the current implementation of CEGARTIX allows to choose
from two state-of-the-art solvers as the core SAT solver (Minisat and Clasp), using
the solvers as libraries. Minisat can be used either in an incremental fashion or non-
incrementally. Furthermore, there is a command line option for employing an external
SAT solver binary as the core solver.

We investigated how the choice of the core SAT solver effects the performance
of CEGARTIX. In addition to Minisat and Clasp, we used March_nh (the latest, SAT
Challenge 2012 version of March) as an external solver. The results are shown in Fig.
for both the random and grid instances. First, one can observe that March_nh is not a
competitive choice as the core SAT solver On the random instances, we observe quite
similar performance when employing Minisat (non-)incrementally; in other words, it
appears that for these instances incrementality does not improve performance. Employ-
ing Clasp appears to yield slightly better scaling than employing Minisat. However, the
situation is different on the grid instances. First, we observe that non-incremental Min-
isat clearly yields better performance than Clasp on these more structured instances.
Furthermore, employing the incremental interface of Minisat give an additional im-
provement of a similar order over the non-incremental employment of Minisat.

3 Furthermore, we excluded the following number of timeouts for March_nh on the grid in-
stances:1 instance with 600 nodes, 2 with 700, 4 with 800, 1 with 900, 11 with 1000 nodes.

6 CEGARTIX: A SAT-Based Argumentation System

References

1. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM, 50(5):752-794, 2003.

2. EM. Clarke, A. Gupta, and O. Strichman. SAT-based counterexample-guided abstraction
refinement. /[EEE T-CAD, 23(7):1113-1123, 2004.

3. PM. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell., 77(2):321-358, 1995.

4. PE. Dunne and T.J.M. Bench-Capon. Coherence in finite argument systems. Artif. Intell.,
141(1/2):187-203, 2002.

5. W. Dvorédk and S. Woltran. Complexity of semi-stable and stage semantics in argumentation
frameworks. Inf. Process. Lett., 110(11):425-430, 2010.

6. W. Dvordk, S.A. Gaggl, J.P. Wallner, and S. Woltran. Making use of advances in answer-set
programming for abstract argumentation systems. In Proc. INAP, 2011.

7. W. Dvorak, M. Jarvisalo, J.P. Wallner, and S. Woltran. Complexity-sensitive decision proce-
dures for abstract argumentation. In Proc. KR. AAAI Press, 2012. to appear.

8. U. Egly, S.A Gaggl, and S. Woltran. Answer-set programming encodings for argumentation
frameworks. Argument and Computation, 1(2):147-177, 2010.

100 1000
10 100

1

x- ASPARTIX
--- ASPARTIX metasp

cumulative running time (sec)
cumulative running time (sec)

0.1

--o-- ASPARTIX metasp
—— CEGARTIX

o —£— CEGARTIX
60 80 100 120 140 160 180 200 60 200 400 600 800 = 1000
Number of arguments Number of arguments

Fig. 1: Comparison of CEGARTIX (using Minisat) and ASPARTIX (both with the
metasp variant and on the left also the non-metasp variant): cumulative running times
over the random instances (left) and grid instances (right).

1000
|

March non-inc.
x- Clasp non-inc.
--o-- MiniSat non-inc
—£— MiniSat inc.

100 1000

100
.

March non-inc.
- MiniSat non-inc

cumulative running time (sec)
cumulative running time (sec)

—&— MiniSat inc. 8 7
- x- Clasp non-inc.
60 80 100 120 140 160 180 200 300 400 500 600 700 800 900 1000
Number of arguments Number of arguments

Fig. 2: CEGARTIX using different SAT solvers (non-incremental and incremental ap-
plications of Minisat, non-incremental application of Clasp, external application of
March_rw): cumulative running times over the random (left) and grid instances (right).

