
Sets of Boolean Connectives that make

Argumentation Easier∗

Nadia Creignou1, Johannes Schmidt1, Michael Thomas2, and Stefan Woltran3

1 LIF, UMR CNRS 6166, Aix-Marseille Université
163, Avenue de Luminy, 13288 Marseille Cedex 9, France

creignou@lif.univ-mrs.fr

johannes.schmidt@lif.univ-mrs.fr

2 Institut für Theoretische Informatik, Gottfried Wilhelm Leibniz Universität
Appelstr. 4, 30167 Hannover, Germany

thomas@thi.uni-hannover.de

3 Institut für Informationssysteme E184/2, Technische Universität Wien
Favoritenstr. 9–11, 1040 Wien, Austria

woltran@dbai.tuwien.ac.at

Abstract. Many proposals for logic-based formalizations of argumen-
tation consider an argument as a pair (Φ, α), where the support Φ is
understood as a minimal consistent subset of a given knowledge base
which has to entail the claim α. In most scenarios, arguments are given
in the full language of classical propositional logic which makes reason-
ing in such frameworks a computationally costly task. For instance, the
problem of deciding whether there exists a support for a given claim
has been shown to be Σp

2-complete. In order to better understand the
sources of complexity (and to identify tractable fragments), we focus
on arguments given over formulae in which the allowed connectives are
taken from certain sets of Boolean functions. We provide a complexity
classification for four different decision problems (existence of a support,
checking the validity of an argument, relevance and dispensability) with
respect to all possible sets of Boolean functions.

1 Introduction

Argumentation is nowadays a main research topic within the area of Artificial
Intelligence ([BD07, BH08, RS09]) aiming to formally analyze pros and cons
of statements within a certain scenario in order to, for instance, support deci-
sion making. There are (among others) two important lines of research: abstract
argumentation [Dun95] focuses on the relation between arguments without tak-
ing their internal structure into account; deductive (or logic-based) argumenta-
tion [CML00, PV02, BH08] starts from a concrete formal representation of an
argument and then defines on top of this concept notions such as counterargu-
ments, rebuttals and more complex structures like argument trees [BH01].

∗ Supported by ANR Algorithms and complexity 07-BLAN-0327-04, WWTF grant
ICT 08-028, and DFG grant VO 630/6-2.

creignou@lif.univ-mrs.fr
johannes.schmidt@lif.univ-mrs.fr
thomas@thi.uni-hannover.de
woltran@dbai.tuwien.ac.at

In logic-based argumentation, most proposals consider an argument as a pair
(Φ, α), where the support Φ is a consistent set (or a minimal consistent set) of
formulae from a given knowledge base that entails the claim α which is a formula
(see, for example, [BH01, AC02, GS04, DKT06]). Different logical formalisms pro-
vide different definitions for consistency and entailment and hence give different
options for defining the notion of an argument. One natural candidate for for-
malizing arguments is the full language of classical propositional logic. However,
it is computationally challenging to generate arguments from a knowledge base
∆ using classical logic; in fact, the problem of deciding whether there exists a
support Φ ⊆ ∆ for a given claim α has been shown to be Σp

2-complete [PWA03].

Computing the support for an argument underlies many reasoning problems
in logic-based argumentation, for instance, the computation of argument trees
as proposed by Besnard and Hunter [BH01]. Since the basic task of finding a
support is already computationally involved, it is indispensable to understand its
sources of complexity and to identify fragments for which that problem becomes
tractable. In this paper, we contribute to this line of research by restricting
the formulae involved (i.e., formulae in the knowledge base and thus in the
support, as well as the formula used as the claim). In fact, we restrict formulae
to connectives from a given set taken from certain sets of Boolean functions and
study the decision problems of existence, validity, relevance, and respectively,
dispensability, which are defined as follows: Arg (given ∆, α, does there exist
a support Φ ⊆ ∆ of α), Arg-Check (given a pair (Φ, α), is it an argument),
Arg-Rel (given ∆, α, ϕ, is there an argument (Φ, α) such that ϕ ∈ Φ ⊆ ∆),
and Arg-Disp (given ∆, α, ϕ, is there an argument (Φ, α) such that ϕ /∈ Φ ⊆
∆). We understand here as arguments pairs (Φ, α) with minimal support, i.e.,
(Φ, α) is an argument if Φ is consistent, entails α, and no Φ′ (Φ entails α. It
can be seen that the minimality condition is only important for the problems
Arg-Check and Arg-Rel (for instance, in case of Arg-Disp, there exists a
support Φ without ϕ for α exactly if there exists a minimal such support); we
will make this more precise in Section 3. We also mention that the problem of
Arg-Rel is of particular importance, since it allows to determine (in terms of
decision problems) the actual form of a potential support, an important core
problem in constructing argument trees.

The main contribution of this paper is a systematic complexity classification
for these four problems in terms of all possible sets of Boolean connectives. We
show that, depending on the chosen set of connectives, the problems range from
inside P up to the second level of the polynomial hierarchy, and we identify
those fragments complete for NP, coNP, and also for DP, the class of differences
of problems in NP. These fragments highlight the sources of complexity of the
problems. We also show that unless the polynomial hierarchy collapses there exist
particular sets of Boolean connectives such that: (i) deciding the existence of an
argument is easier than verifying a given one; (ii) deciding the dispensability of
a formula for some argument is easier than deciding its relevance.

The paper is structured as follows. Section 2 contains preliminaries. We de-
fine the studied framework of argumentation and relevant decision problems in

2

Section 3. The complexity of these problems is subsequently classified in the Sec-
tions 4 to 6. Section 7 concludes with a discussion of related work and provides
an overview of the achieved results as well as future research directions.

2 Preliminaries

We require standard notions of complexity theory. For the decision problems the
arising complexity degrees encompass the classes Logspace, P, NP, coNP, DP
and Σp

2 , where DP is defined as the set of languages recognizable by the difference
of two languages in NP, i.e., DP := {L1 \ L2 | L1, L2 ∈ NP} = {L1 ∩ L2 | L1 ∈
NP, L2 ∈ coNP}, and Σp

2 is the set of languages recognizable by nondeterministic
polynomial-time Turing machines with an NP oracle. A complete problem for
DP is Critical-Sat, the problem to decide whether a given formula in 3CNF is
unsatisfiable but removing any of its clauses makes it satisfiable [PW88]. For our
hardness results we employ logspace many-one reductions, defined as follows: a
language A is logspace many-one reducible to some language B (written A ≤log

m

B) if there exists a logspace-computable function f such that x ∈ A if and only
if f(x) ∈ B. For more background information on complexity theory, the reader
is referred to [Pap94].

We assume familiarity with propositional logic. The set of all propositional
formulae is denoted by L. We use α,ϕ, ψ . . . to denote formulae, and ∆,Φ,Ψ, . . .
to denote sets of formulae. A model for a formula ϕ is a truth assignment to
the set of its variables that satisfies ϕ. Further we denote by ϕ[x/u] the formula
obtained from ϕ by replacing all occurrences of x with u. For any formula ϕ ∈ L,
Vars(ϕ) denotes the set of variables occurring in ϕ (for Γ ⊆ L, we use Vars(Γ) :=
⋃

γ∈Γ Vars(γ)), and we write Φ |= ϕ if Φ entails ϕ, i.e., if every model of Φ also
satisfies ϕ.

Throughout all the paper ∆ is assumed to be a given finite set of formulae
(the knowledge base) representing a large depositary of information, from which
arguments can be constructed for arbitrary claims.

A clone is a set of Boolean functions that is closed under superposition, i.e.,
it contains all projections (the functions f(a1, . . . , an) = ak for 1 ≤ k ≤ n) and
is closed under arbitrary composition. Let B be a finite set of Boolean functions.
We denote by [B] the smallest clone containing B and call B a base for [B]. The
set of all clones was identified by Post [Pos41]. He gave a finite base for each clone
and showed that they form a lattice with respect to subset inclusion, union and
intersection; hence the name of Post’s lattice (see Figure 1). In order to define the
clones, we require the following notions, where f is an n-ary Boolean function:

– f is c-reproducing if f(c, . . . , c) = c, c ∈ {0, 1}.
– f is monotonic if a1 ≤ b1, . . . , an ≤ bn implies f(a1, . . . , an) ≤ f(b1, . . . , bn).
– f is c-separating of degree k if for all A ⊆ f−1(c) of size |A| = k there exist

i ∈ {1, . . . , n} and c ∈ {0, 1} such that (a1, . . . , an) ∈ A implies ai = c.
– f is c-separating if f is c-separating of degree |f−1(c)|.
– f is self-dual if f ≡ ¬f(¬x1, . . . ,¬xn).

3

– f is affine if f ≡ x1 ⊕ · · · ⊕ xn ⊕ c with c ∈ {0, 1}.

A list of the relevant clones with definitions and finite bases is given in Table 1
on page 13, see [BCRV03] for a complete list. A propositional formula using
only functions from B as connectives is called a B-formula. The set of all B-
formulae is denoted by L(B). Let f be an n-ary Boolean function. A B-formula
ϕ such that Vars(ϕ) = {x1, . . . , xn, y1, . . . , ym} is a B-representation of f if for
all a1, . . . , an, b1, . . . , bm ∈ {0, 1} it holds that f(a1, . . . , an) = 1 if and only if
every σ : Vars(ϕ) → {0, 1} with σ(xi) = ai and σ(yi) = bi for all relevant i,
satisfies ϕ.

3 Argumentation

Definition 3.1. [BH01] An argument is a pair (Φ, α), where Φ is a set of for-

mulae and α is a formula such that

1. Φ is consistent,

2. Φ |= α,

3. Φ is minimal with this last property, i.e., no proper subset of Φ entails α.

We say that (Φ, α) is an argument for α. If Φ ⊆ ∆ then it is said to be an

argument in ∆. We call α the consequent and Φ the support of the argument.

Let B be a finite set of Boolean functions. Then the argument existence

problem for B-formulae is defined as

Problem: Arg(B).

Instance: A = (∆, α), where ∆ ⊆ L(B) and α ∈ L(B).

Question: Does there exist Φ such that (Φ, α) is an argument in ∆?

Besides the decision problem for the existence of an argument we are inter-
ested in the decision problems for B-formulae for validity, relevance and dispens-
ability. They are defined as follows and deal with formulae in L(B) only.

Arg-Check(B): given a pair (Φ, α), is it an argument; Arg-Rel(B): given
∆, α, ϕ, is there an argument (Φ, α) such that ϕ ∈ Φ ⊆ ∆; and Arg-Disp(B):
given ∆, α, ϕ, is there an argument (Φ, α) such that ϕ /∈ Φ ⊆ ∆.

Observe that the minimality of the support is only relevant for the problems
Arg-Check and Arg-Rel. For Arg and Arg-Disp, the existence of a consis-
tent subset Φ of the knowledge base ∆ that entails the claim α (and does not
contain some formula ϕ) implies a consistent Φ′ ⊆ Φ such that Φ′ |= α and
Φ′ \ {ψ} 6|= α for all ψ ∈ Φ′. To decide the existence of an argument, it therefore
suffices to find any consistent subset of ∆ that entails α. For Arg-Rel, on the
other hand, we have to decide whether there exists an argument for α that con-
tains the formula ϕ. The existence of some consistent set Φ ⊆ ∆ with ϕ ∈ Φ and
Φ |= α does not help here, because ϕ might be excluded from the minimal subset
Φ′ ⊆ Φ yielding an argument for α. Consequently, unlike in other nonmonotonic
reasoning formalisms, the complexity of deciding relevance and dispensability of

4

a formula for some argument may differ. Indeed, we will show that there exist
sets B such that Arg-Rel(B) is harder to decide than Arg-Disp(B) unless
the polynomial hierarchy collapses. Similarly, for Arg-Check, we have to verify
that the set Φ in the given pair (Φ, α) is indeed minimal with respect to consis-
tency and entailment of α. While this is supposedly easier to decide than Arg,
we will see that owing to the verification of minimality there exist sets B such
that Arg-Check(B) is harder to decide than Arg(B) unless the polynomial
hierarchy collapses.

We conclude this section with two lemmas that make clear the role of the
constant 1 in our study. They will be of use later on to establish our complexity
classifications. Recall that the clone E2 is defined in Table 1 on page 13.

Lemma 3.2. Let Arg-P denote any of the problems Arg, Arg-Check or

Arg-Rel. Let B be a finite set of Boolean functions such that ∧ ∈ [B], i.e.,
E2 ⊆ [B]. Then Arg-P(B ∪ {1}) ≤log

m Arg-P(B).

Proof. Let I be the given instance. We map I to the instance I ′ obtained by
replacing each formula ψ occurring in I by ψ[1/t] ∧ t. ¤

In addition on this, one can also eliminate the constant 1 for the problems
Arg(B) and Arg-Rel(B) when D2 ⊆ [B].

Lemma 3.3. Let B be a finite set of Boolean functions such that D2 ⊆ [B].
Then Arg(B ∪ {1}) ≤log

m Arg(B) and Arg-Rel(B ∪ {1}) ≤log
m Arg-Rel(B).

Proof. Let g(x, y, z) := (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z). The function g is a base of
D2 and evaluates to true if and only if at least two of the variables are set to
true. Given an instance (∆, α) of Arg(B ∪ {1}), we define an instance (∆′, α′)
of Arg(B) by ∆′ := {ψ[1/t] | ψ ∈ ∆} ∪ {t} and α′ = g(α[1/t], t, q),where t and
q are fresh variables. We claim that there is an argument for α in ∆ if and only
if there is an argument for α′ in ∆′.

Let Φ be an argument for α in ∆. Consider Φ′ := {ψ[1/t] | ψ ∈ Φ} ∪ {t}.
Observe that Φ′ ≡ Φ. Thus Φ′ is satisfiable and Φ′ |= α, hence Φ′ |= α[1/t]∧t, as
t does not occur in α. Therefore, we obtain Φ′ |= g(α[1/t], t, q). Moreover, either
Φ′ or Φ′ \ {t} is minimal with this property. Indeed, suppose that there exists a
ψ′ ∈ Φ′ with ψ′ = ψ[1/t] for some ψ ∈ Φ such that Φ′ \ {ψ′} |= g(α[1/t], t, q).
Then Φ′ \ {ψ′} |= α[1/t] ∧ t as q does not occur in Φ′, and hence Φ \ {ψ} |= α,
contradictory to the minimality of Φ.

Conversely, with similar arguments it is easy to see that if Φ′ is an argument
for α′ in ∆′, then Φ := {ψ[t/1] | ψ ∈ Φ′, ψ 6= t} is an argument for α in ∆: as q
does not occur in Φ′, Φ′ |= α′ implies that Φ′ |= α[1/t] ∧ t.

This proves correctness of the reduction from Arg(B ∪ {1}) to Arg(B).
The analogous result for Arg-Rel follows from the same arguments as above,
mapping the additional component ϕ to ϕ′ := ϕ[1/t]. ¤

Remark 3.4. Observe that this reduction does not work for Arg-Check: one
would have to decide whether to map Φ to Φ′ or to Φ′ \{t} to ensure minimality,
which requires the ability to decide whether Φ′ \ {t} |= t in Logspace.

5

4 The Complexity of Verification

We commence our study of the introduced argumentation problems with the
argument verification problem. This problem is in DP. Indeed it is readily ob-
served, as there are languages A,B with A ∈ NP and B ∈ coNP such that
Arg-Check = A ∩ B, with

A = {(∆,Φ, α) | Φ is satisfiable,∀ϕ ∈ Φ : Φ \ {ϕ} 6|= α};

B = {(∆,Φ, α) | Φ |= α}.

Proposition 4.1. Let S00 ⊆ [B]. Then Arg-Check(B) is DP-complete.

Proof. To prove DP-hardness we establish a reduction from Critical-Sat. Let
ψ =

∧m

j=1 Cj be an instance of Critical-Sat, and Vars(ψ) = {x1, . . . , xn}. Let
u, x′

1, . . . , x
′
n be fresh, pairwise distinct variables. We may suppose without loss

of generality that each xi appears in ψ both as positive and as negative literal.
Let further C ′

j := Cj [¬xi/x′
i | 1 ≤ i ≤ n] for 1 ≤ j ≤ m and ψ′ :=

∧m

j=1 C ′
j . We

map ψ to (Φ, α), where we define

Φ = {C ′
j | j ∈ {1, . . . ,m}}, and α =

n
∨

i=1

u ∨ (xi ∧ x′
i).

Since x∨y and x∨(y∧z) are functions of S00, α and all C ′
j ’s are S00-formulae.

These are by definition 1-reproducing. Therefore, Φ and α are satisfiable. For
1 ≤ k ≤ m, let Φk, ψk, ψ′

k denote the respective set of clauses where we deleted
the kth clause. Note that always Φ ≡ ψ′ and Φk ≡ ψ′

k.
Suppose now that ψ ∈ Critical-Sat, i.e., ψ is unsatisfiable and ψk is satisfi-

able for all k ∈ {1, . . . ,m}. We show that Φ entails α. Since ψ ≡ ψ′∧
∧n

i=1(xi⊕x′
i)

is unsatisfiable, and ψ′ ≡ Φ is monotonic, all models of Φ have to set both xi

and x′
i to 1 for at least one i ∈ {1, . . . , n}. Since α[u/0] ≡

∨n

i=1(xi ∧ x′
i), we

therefore have Φ |= α[u/0]. Obviously Φ |= α[u/1].
It remains to prove that Φ is minimal. Since for each k ∈ {1, . . . ,m} ψk ≡

ψ′
k ∧

∧n

i=1(xi ⊕ x′
i) is satisfiable, no ψ′

k ≡ Φk entails α[u/0] ≡
∨n

i=1(xi ∧ x′
i). A

fortiori no Φk entails α.
Conversely suppose that (Φ, α) ∈ Arg-Check. Then, in particular, Φ entails

α[u/0]. Thus we have ψ′ |=
∨n

i=1(xi ∧ x′
i), which implies that ψ is unsatisfiable.

By the minimality of Φ we know that no Φk entails α. Since Φk |= α[u/1], we
conclude that Φk 6|= α[u/0], which implies that ψ′

k∧
∧n

i=1(¬xi∨¬x′
i) is satisfiable.

As ψ′
k is monotonic, we obtain that also ψ′

k ∧
∧n

i=1(xi ⊕ x′
i) and hence ψk itself

is satisfiable.
We finally transform (Φ, α) into a B-instance for all B such that S00 ⊆ [B] by

replacing every connective by its B-representation. This transformation works
in logarithmic space if we construct α as an ∨-tree of depth logarithmic in n. ¤

Proposition 4.2. Let B be a finite set of Boolean functions such that D2 ⊆ [B].
Then Arg-Check(B) is DP-complete.

6

Proof. We give a reduction from Critical-Sat similar to Proposition 4.1. For
k ∈ N, we define gk as a (k+1)-ary function satisfying gk(z1, . . . , zk, 0) ≡

∧k

i=1 zi

and gk(z1, . . . , zk, 1) ≡
∨k

i=1 zi. Note that for every k ∈ N, gk is monotonic
and self-dual, and thus contained in D2. By abuse of notation, given a clause
C = (l1 ∨ l2 ∨ l3) and a variable x, g3(C, x) stands for g3(l

1, l2, l3, x). Let ψ =
∧m

j=1 Cj be an instance of Critical-Sat with Cj = (l1j ∨ l2j ∨ l3j) and Vars(ψ) =
{x1, . . . , xn}. Let further u, v, x′

1, . . . , x
′
n be fresh, pairwise distinct variables and

C ′
j := Cj [¬xi/x′

i | 1 ≤ i ≤ n] for 1 ≤ j ≤ m. We may suppose without loss of
generality that each xi appears in ψ both as a positive and as a negative literal.

We map ψ to (Φ, α), where

Φ := {g3(C
′
j , u) | 1 ≤ j ≤ m}, and α := gn

(

(g2(xi, x
′
i, v))1≤i≤n, u

)

.

Obviously α and the formulae in Φ are D2-formulae and thus satisfiable. As
in the proof of the previous proposition a careful examination allows to prove
that ψ ∈ Critical-Sat if and only if (Φ, α) ∈ Arg-Check.

Finally, we transform (Φ, α) into a B-instance for all B such that D2 ⊆ [B]
in replacing all occurrences of gk by its B-representation. This transformation
works in logarithmic space, because we may assume the function gn to be a
g2-tree of depth logarithmic in n. ¤

Theorem 4.3. Let B be a finite set of Boolean functions. Then the argument

validity problem for propositional B-formulae, Arg-Check(B), is

1. DP-complete if S00 ⊆ [B] or S10 ⊆ [B] or D2 ⊆ [B],

2. in P if L2 ⊆ [B] ⊆ L,

3. in Logspace if [B] ⊆ V or [B] ⊆ E or [B] ⊆ N.

Proof. For DP-completeness, according to Propositions 4.1 and 4.2 it remains
only to deal with the case S10 ⊆ [B]. Since D2 ⊆ M1 = [S10 ∪ {1}] ⊆ [B ∪ {1}],
we obtain that Arg-Check(B∪{1}) is DP-hard by Proposition 4.2. As ∧ ∈ [B],
we may apply Lemma 3.2 and obtain the DP-hardness of Arg-Check(B).

For testing whether (Φ, α) is an argument we need to check the following
three conditions:

(1) Φ is satisfiable,

(2) Φ ∧ ¬α is unsatisfiable (i.e., Φ |= α), and

(3) for all ϕ ∈ Φ, (Φ \ {ϕ}) ∪ {¬α} is satisfiable (i.e., Φ is minimal).

In the case L2 ⊆ [B] ⊆ L the sets Φ, Φ∪{¬α}, and (Φ\{ϕ})∪{¬α} for all ϕ ∈ Φ
can be easily transformed into systems of linear equations. Thus checking the
three conditions comes down to solving a polynomial number of systems of linear
equations. This can be done in polynomial time using Gaussian elimination. For
[B] ⊆ V, for [B] ⊆ E, and for [B] ⊆ N this check can be done in logarithmic
space, as in this case the satisfiability of sets of B-formulae can be determined
in logarithmic space. ¤

7

5 The Complexity of Existence and Dispensability

Theorem 5.1. Let B be a finite set of Boolean functions. Then the argument

existence problem for propositional B-formulae, Arg(B), is

1. Σp
2-complete if D ⊆ [B] or S1 ⊆ [B],

2. coNP-complete if X ⊆ [B] ⊆ Y with X ∈ {S00,S10,D2} and Y ∈ {M,R1},
3. in NP if [B] ∈ {L, L0, L3},
4. in P if [B] ∈ {L1, L2}, and

5. in Logspace if [B] ⊆ V or [B] ⊆ E or [B] ⊆ N.

The same classification holds for Arg-Disp(B).

Proof. The general argumentation problem has been shown to be Σp
2-complete

in [PWA03] via a reduction from Qsat2,∃. Starting from formulae in 3DNF, we
can use the reduction from [PWA03] and insert parentheses to obtain formulae
of logarithmic depth only. We can now substitute the connectives ∧, ∨, ¬ with
their B-representations to obtain Σp

2-completeness for Arg(B) if [B] = BF.
As E2 ⊆ S1 and [S1∪{1}] = BF, we obtain Σp

2-completeness for the case S1 ⊆
[B] according to Lemma 3.2. For the case D ⊆ [B], we obtain Σp

2-completeness
by Lemma 3.3, since D2 ⊆ D and [D ∪ {1}] = BF.

For X ⊆ [B] ⊆ Y with X ∈ {S00,S10,D2} and Y ∈ {M,R1}, membership
in coNP follows from the facts that satisfiability is in Logspace [Lew79], while
entailment is in coNP [BMTV09]. To prove the coNP-hardness of Arg(B), we
give a reduction from the implication problem for B-formulae, which is coNP-
hard if [B] contains one of the clones S00, S10, D2. Let (ψ, α) be a pair of
B-formulae. We map this instance to ({ψ}, α) if ψ is satisfiable and to a trivial
positive instance otherwise.

For [B] ∈ {L, L0, L3}, membership in NP follows from the fact that in this
case Arg-Check is in P. Due to the trivial satisfiability of B-formulae for [B] ∈
{L1, L2}, we can improve the upper bound for Arg(B) with [B] ∈ {L1, L2} to
membership in P.

In all other cases, Logspace-membership follows from the fact that the
satisfiability and entailment problem for B-formulae are contained in Logspace

(see [BMTV09]).
Finally, observe that we have Arg-Disp(B) ≡log

m Arg(B). To prove that
Arg(B) ≤log

m Arg-Disp(B), map A = (∆, α) to D := (∆ ∪ {t}, α, t). For the
converse direction, map D = (∆, α, ϕ) to A := (∆ \ {ϕ}, α). ¤

6 The Complexity of Relevance

Proposition 6.1. Let B be a finite set of Boolean functions such that S00 ⊆ [B].
Then Arg-Rel(B) is Σp

2-complete.

Proof. To see that Arg-Rel(B) is contained in Σp
2 , observe that, given an in-

stance (∆, α, ϕ), we can guess a set Φ ⊆ ∆ such that ϕ ∈ Φ and verify conditions

8

(1)–(3) as given in the proof of Theorem 4.3 in polynomial time using an NP-
oracle.

To prove Σp
2-hardness, we provide a reduction from the problem Qsat2,∃. An

instance of this problem is a quantified formula ∃X∀Y β where β =
∨p

j=1 tj with
exactly three literals by term. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}. We
transform ∃X∀Y β to (∆, α, ϕ), where

∆ := {xi, x
′
i | 1 ≤ i ≤ n} ∪ {v ∧

∧m

i=1(yi ∨ y′
i)} ∪ {u},

α := β′ ∧ v ∧
(
∨n

i=1(xi ∧ x′
i) ∨ u

)

, and ϕ := u,

and where β′ =
∨p

j=1 t′j , t′j := tj [¬x1/x′
1, . . . ,¬xn/x′

n,¬y1/y′
1, . . . ,¬ym/y′

m] for
all 1 ≤ j ≤ p, and u, v are fresh variables.

We show that ∃X∀Y β is valid if and only if (∆, α, ϕ) ∈ Arg-Rel({∧,∨}). If
∃X∀Y β is valid, then there exists an assignment σ : X → {0, 1} such that σ |= β.
Consequently, for Φ := {xi | σ(xi) = 1}∪{x′

i | σ(xi) = 0}∪{u, v∧
∧m

i=1(yi∨y′
i)},

we obtain Φ |= β. As Φ is consistent, it thus remains to show that u is relevant,
i.e., that Φ \ {u} 6|= α. This follows from the fact that Φ \ {ϕ} is satisfied by the
assignment σ′ obtained from σ by setting σ′(u) := 0, while σ′ 6|=

∨n

i=1(xi∧x′
i)∨u

and hence σ′ 6|= α.
For the converse direction, let Φ be a support for α such that u ∈ Φ. Since

Φ |= α we conclude that v∧
∧m

i=1(yi ∨ y′
i) ∈ Φ and hence Φ = X ∪{v∧

∧m

i=1(yi ∨
y′

i)} ∪ {u}, for some X ⊆ {xi, x
′
i | 1 ≤ i ≤ n}. From Φ |= α also follows that

Φ |= β′. From the minimality of Φ we conclude that in particular Φ \ {u} 6|= α.
And therefore Φ 6|=

∨n

i=1(xi ∧ x′
i). That is Φ∧

∧n

i=1(¬xi ∨¬x′
i) is satisfiable and

since Φ is monotonic, consequently also Φ∧
∧n

i=1(xi ⊕x′
i) is satisfiable. Summed

up, we know that γ := X ∧
∧n

i=1(xi⊕x′
i)∧

∧m

i=1(yi∨y′
i) is satisfiable and γ |= β′.

Hence, a fortiori, γ′ := X ∧
∧n

i=1(xi ⊕ x′
i) ∧

∧m

i=1(yi ⊕ y′
i) is satisfiable and

γ′ |= β′. Define now σX(xi) = 1 if xi ∈ X , σX(xi) = 0 otherwise. Obviously any
extension of σX to Y satisfies β and therefore ∃X∀Y β is valid.

It remains to transform (∆, α, ϕ) into an Arg-Rel(B)-instance for all B
such that S00 ⊆ [B]. As both ∧ and ∨ are associative, we can insert parentheses
into (∆, α, ϕ) such that we can represent each formula as binary {∧,∨}-tree of
logarithmic depth. Let f be a fresh variable and let h be the boolean function
in S00 defined by h(f, x, y) ≡ f ∨ (x∧ y). We further transform our instance into
(∆′, α′ ∨ f, ϕ′), where ∆′, α′, ϕ′ are obtained by replacing each occurrence of
x∧ y by h(f, x, y). One easily verifies that (∆′, α′ ∨ f, ϕ′) is in Arg-Rel({∨, h})
if and only if (∆, α, ϕ) ∈ Arg-Rel({∧,∨}). We finally replace ∨ and h by their
B-representation. ¤

Proposition 6.2. Let B be a finite set of Boolean functions such that [B] ⊆ V

or [B] ⊆ E or [B] ⊆ N. Then Arg-Rel(B) is in Logspace.

Proof. We assume the representation of V-, E-, or N-formulae as respectively
positive clauses, positive terms, or literals. Let us first consider Arg-Rel(B) for
[B] ⊆ E. It is easy to observe that a set of positive terms ∆ entails a positive
term α if and only if Vars(α) ⊆ Vars(∆). We claim that Algorithm 1 decides
Arg-Rel(B).

9

Algorithm 1 Algorithm for Arg-Rel(B) with [B] ⊆ E.

Require: a set ∆ of positive terms and positive terms α, ϕ with ϕ ∈ ∆.
1: for all x ∈ Vars(ϕ) do

2: ∆x := {ϕ} ∪ {τ ∈ ∆ | x /∈ Vars(τ)}
3: if ∆x |= α then

4: accept
5: end if

6: end for

7: reject

Algorithm 1 can be implemented using only a logarithmic amount of space if
we do not construct ∆x entirely but rather check the condition in line 3 directly:
∆x |= α holds if and only if Vars(α) ⊆ Vars(ϕ) ∪ Vars({τ ∈ ∆ | x /∈ Vars(τ)}).

To prove correctness, notice that Algorithm 1 accepts only if there exists a
∆x ⊆ ∆ such that ∆x |= α and ∆x \ {ϕ} 6|= α. Thus ∆x contains a support Φ
such that ϕ ∈ Φ. Conversely, let Φ be a support such that ϕ ∈ Φ. Since Φ |= α
and Φ\{ϕ} 6|= α, there is at least one xi ∈ (Vars(ϕ)∩Vars(α))\Vars(Φ). For this
xi the algorithm constructs ∆xi

:= {ϕ} ∪ {τ ∈ ∆ | xi /∈ Vars(τ)}. Obviously
Φ ⊆ ∆xi

and therefore ∆xi
|= α which causes the algorithm to accept.

Next, consider Arg-Rel(B) for [B] ⊆ V. Observe that a set of positive
clauses C entails a positive clause α if and only if there is a clause c ∈ C such
that Vars(c) ⊆ Vars(α). Thus if there is a support Φ with ϕ ∈ Φ then it is the
singleton {ϕ}. Given (∆, α, ϕ) as an instance of Arg-Rel(V), it hence suffices
to check whether Vars(ϕ) ⊆ Vars(α), which can be done in Logspace.

Finally Arg-Rel(B) for [B] ⊆ N is in Logspace, since each B-formula can
be transformed into a single literal. ¤

From the two propositions above, Lemma 3.2 and Lemma 3.3 we obtain the
following complexity classification for Arg-Rel.

Theorem 6.3. Let B be a finite set of Boolean functions. Then the argument

relevance problem for propositional B-formulae, Arg-Rel(B), is

1. Σp
2-complete if S00 ⊆ [B] or D2 ⊆ [B] or S10 ⊆ [B],

2. in NP if L2 ⊆ [B] ⊆ L,

3. in Logspace if [B] ⊆ V or [B] ⊆ E or [B] ⊆ N.

7 Discussion and Conclusion

Complexity classifications along the lines of Boolean clones have already been
carried out for AI formalisms as circumscription [Tho09] and abduction [CST10].
In particular, the latter work is closely related to the contents of this paper. To
make this more precise, let us consider the positive abduction problem P-Abd(B)
which takes as an instance a triple (Γ,H,m), where Γ ⊆ L(B), m ∈ L(B),
H is a set of variables, and asks whether there exists an explanation E ⊆ H
such that Γ ∧ E is satisfiable and Γ ∧ E |= m. Hence, the main difference to

10

argumentation is the presence of the knowledge base Γ in the tests for consistency
and entailment. Nonetheless, the following relations hold: (1) if ∧ ∈ [B], i.e., if
E2 ⊆ [B], then P-Abd(B) ≤log

m Arg(B); (2) if → ∈ [B], i.e., if S0 ⊆ [B], then
Arg(B) ≤log

m P-Abd(B).
In fact, it turns out that Arg and Arg-Disp have the same complexity

classification as positive abduction. This is due to the fact that minimality of
the argument plays no role in Arg and Arg-Disp. However, for Arg-Rel the
situation is different but we expect similarly harder complexity for the relevance
problem in abduction with respect to subset-minimal explanations (see, e.g.,
[EG95] for the definitions) which has not been analyzed in [CST10]. In other
words, the results provided in the present paper can be used to obtain novel
results for certain variants of abduction, which have not been classified yet.

To summarize, we took in this paper first steps to understanding the complex-
ity of logic-based argumentation by providing a classification of the complexity
of four important tasks for all possible restrictions on the set of allowed connec-
tives. The results are collected in Figure 1. Notably are the sets B of Boolean
connectives where X ⊆ [B] ⊆ Y with X ∈ {S00,S10,D2} and Y ∈ {M,R1}
which give coNP-completeness for Arg(B), while Arg-Rel(B) remains com-
plete for Σp

2 (typically this applies to monotonic formulae in which no negation
is involved). As well, Arg(B) with L2 ⊆ [B] ⊆ L1 is in P, while for the cor-
responding problems Arg-Rel(B), we only have an NP upper-bound, so far.
In fact, the exact classification of the problems into tractable and intractable
cases remains open for affine sets of Boolean connectives in the following cases:
Arg(B) with [B] ∈ {L, L0, L3} and Arg-Rel(B) with L2 ⊆ [B] ⊆ L.4

The complexity of Arg-Rel is a computational core for evaluating more
complex argumentation problems, for instance, the warranted formula problem
(WFP) on argument trees, which has recently been shown to be PSPACE-
complete [HG10]. We expect that fragments studied here also lower the com-
plexity of WFP, but leave details for future work.

Further future work concerns studying the complexity of all these problems in
the popular Schaefer’s framework (in which formulas are in generalized conjunc-
tive normal form), as well as addressing more advanced problems of logic-based
argumentation which are defined, e.g., over argument-trees.

References

[AC02] L. Amgoud and C. Cayrol. A model of reasoning based on the production
of acceptable arguments. Ann. Math. Artif. Intell., 34:197–216, 2002.

[BCRV03] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean
blocks I: Post’s lattice with applications to complexity theory. SIGACT

News, 34(4):38–52, 2003.
[BD07] T. Bench-Capon and P. Dunne. Argumentation in artificial intelligence.

Artif. Intell., 171(10-15):619–641, 2007.

4 We note that the complexity of the corresponding fragments remained unclassified
also for circumscription and positive abduction.

11

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S2
02 S2

01
S3

0
S2

00
S3

02 S3
01

S3
00

S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S2
1

S2
12S2

11
S3

1
S2

10
S3

12S3
11

S3
10

S1

S12S11

S10

E

E0E1

E2

∈ Logspace

∈ P

∈ NP

coNP-c.

� p
2-c.

Arg-Disp(B)

Arg(B)

∈ Logspace

∈ P

∈ P

DP-c.

DP-c.

Arg-Check(B)

∈ Logspace

∈ NP

∈ NP

� p
2-c.

� p
2-c.

Arg-Rel(B)

Fig. 1. Post’s lattice showing the complexity of the argumentation problems
studied herein.

[BH01] P. Besnard and A. Hunter. A logic-based theory of deductive arguments.
Artif. Intell., 128:203–235, 2001.

[BH08] P. Besnard and A. Hunter. Elements of Argumentation. MIT Press, 2008.
[BMTV09] O. Beyersdorff, A. Meier, M. Thomas, and H. Vollmer. The complexity of

propositional implication. Inf. Process. Lett., 109(18):1071–1077, 2009.
[CML00] C. Chesñevar, A. Maguitman, and R. Loui. Logical models of argument.

ACM Comput. Surv., 32:337–383, 2000.
[CST10] N. Creignou, J. Schmidt, and M. Thomas. Complexity of propositional

abduction for restricted sets of Boolean functions. In Proc. 12th KR, pages
8–16. AAAI, 2010.

[DKT06] P. Dung, R. Kowalski, and F. Toni. Dialectical proof procedures for
assumption-based admissible argumentation. Artif. Intell., 170:114–159,
2006.

[Dun95] P. M. Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artif.

Intell., 77(2):321–358, 1995.

12

Name Definition Base

BF All Boolean functions {x ∧ y,¬x}

R0 {f | f is 0-reproducing} {x ∧ y, x ⊕ y}

R1 {f | f is 1-reproducing} {x ∨ y, x ↔ y}

R2 R0 ∩ R1 {∨, x ∧ (y ↔ z)}

M {f | f is monotonic} {x ∨ y, x ∧ y, 0, 1}

S0 {f | f is 0-separating} {x → y}

S1 {f | f is 1-separating} {x ∧ ¬y}

S00 S0 ∩ R2 ∩ M {x ∨ (y ∧ z)}

S10 S1 ∩ R2 ∩ M {x ∧ (y ∨ z)}

D {f | f is self-dual} {(x ∧ ¬y) ∨ (x ∧ ¬z) ∨ (¬y ∧ ¬z)}

D2 D ∩ M {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}

L {f | f is affine} {x ⊕ y, 1}

L0 L ∩ R0 {x ⊕ y}

L1 L ∩ R1 {x ↔ y}

L2 L ∩ R2 {x ⊕ y ⊕ z}

L3 L ∩ D {x ⊕ y ⊕ z ⊕ 1}

V {f | f is a disjunction of variables or constant} {x ∨ y, 0, 1}

V2 V ∩ R2 {x ∨ y}

E {f | f is a conjunction of variables or constant} {x ∧ y, 0, 1}

E2 E ∩ R2 {x ∧ y}

N {f | f depends on at most one variable} {¬x, 0, 1}

I {f | f is a projection or a constant} {id, 0, 1}

I2 I ∩ R2 {id}

Table 1. List of some Boolean clones with definitions and bases.

[EG95] T. Eiter and G. Gottlob. The complexity of logic-based abduction. J.

ACM, 42(1):3–42, 1995.
[GS04] A. Garćıa and G. Simari. Defeasible logic programming: An argumentative

approach. Theory and Practice of Logic Programming, 4(1):95–138, 2004.
[HG10] R. Hirsch and N. Gorogiannis. The complexity of the warranted formula

problem in propositional argumentation. J. Log. Comput., 20:481–499,
2010.

[Lew79] H. Lewis. Satisfiability problems for propositional calculi. Mathematical

Systems Theory, 13:45–53, 1979.
[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[Pos41] E. Post. The two-valued iterative systems of mathematical logic. Ann.

Math. Stud., 5:1–122, 1941.
[PV02] H. Prakken and G. Vreeswijk. Logical systems for defeasible argumen-

tation. In D. Gabbay, editor, Handbook of Philosophical Logic. Kluwer,
2002.

[PW88] C. Papadimitriou and D. Wolfe. The complexity of facets resolved. J.

Comput. Syst. Sci., 37(1):2–13, 1988.
[PWA03] S. Parsons, M. Wooldridge, and L. Amgoud. Properties and complexity of

some formal inter-agent dialogues. J. Log. Comput., 13(3):347–376, 2003.
[RS09] I. Rahwan and G. Simari, editors. Argumentation in Artificial Intelligence.

Springer Verlag, 2009.
[Tho09] M. Thomas. The complexity of circumscriptive inference in Post’s lattice.

In Proc. 10th LPNMR, volume 5753 of Lecture Notes in Computer Science,
pages 290–302. Springer Verlag, 2009.

13

