DBAI
[rdd

TECHNICAL

REPORT

Institut fur Informationssysteme
Abteilung Datenbanken und
Artificial Intelligence
Technische Universitat Wien
Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403
Fax: +43-1-58801-18492
sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

T

By oA “!:;!_ N o el i,
T |'{ DOCONCONLED

EACEICHNACEL

INSTITUT FUR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Answer-Set Programming Encodings for
Argumentation Frameworks

DBAI-TR-2008-62

Uwe Egly Sarah Alice Gaggl| Stefan Woltran

DBAI TECHNICAL REPORT
2008

TU

TECHNISCHE UNIVERSITAT WIEN

DBAI TECHNICAL REPORT
DBAI TECHNICAL REPORTDBAI-TR-2008-62, 2008

Answer-Set Programming Encodings for
Argumentation Frameworks

Uwe Egly! Sarah Alice GaggP Stefan Woltran®

Abstract. We present reductions from Dung’s argumentation framewar and gener-
alizations thereof to logic programs under the answeresagsitics. The reduction is based
on a fixed disjunctive datalog program (the interpreter) ithahput which is the only part
depending on the AF to process. We discuss the reductionshate the basis for the sys-
tem ASPARTIX in detail and show their adequacy in terms of potational complexity.

Linstitute for Information Systems 184/3, Technische Ursitat Wien, Favoritenstrasse 9-11, 1040 Vi-
enna, Austria. E-mail: uwe@kr.tuwien.ac.at

2Technische Universitat Wien, E-mail: e0026566@stutlenten.ac.at

3Institute for Information Systems 184/2, Technische Ursitat Wien, Favoritenstrasse 9-11, 1040 Vi-
enna, Austria. E-mail; woltran@dbai.tuwien.ac.at

Acknowledgements The authors would like to thank Wolfgang Faber for commemtsin earlier

draft of this paper. This work was partially supported by ghestrian Science Fund (FWF) under
grant P20704-N18.

This is an extended version of a paper published in the Pdauoge of the ICLP’08 Workshop on
Answer Set Programming and Other Computing Paradigms (ASPUB).

Copyright(C) 2008 by the authors

1 Motivation

Dealing with arguments and counter-arguments in discoss®a daily life process. We usually
employ this process to convince our opponent to our poini@fvAs everybody knows, this is
sometimes a cumbersome activity because we miss a fornsadmieg) procedure for argumenta-
tion.

This problem is not new. Leibniz (1646—-1716) was the first wiex to deal with arguments
and their processing by reasoning in a more formal way. Hegsed to use &ngua charac-
teristica (a knowledge representation (KR) language) to formaligeiiaents and aalculus ra-
tiocinator (a deduction system) to reason about them. Although Letbdizam of a complete
formalization of science was destroyed in the thirties & kst century, restricted versions of
Leibniz’'s dream survived.

In Artificial Intelligence (Al), the area of argumentatioseg [6] for an excellent summary) has
become one of the central issues within the last decadeidung\va formal treatment for reasoning
problems arising in a number of interesting applicationklgieincluding Multi-Agent Systems
and Law Research. In a nutshell, argumentation framewarksdlize statements together with a
relation denoting rebuttals between them, such that theseos gives an abstract handle to solve
the inherent conflicts between statements by selectingsasilole subsets of them. The reasoning
underlying such argumentation frameworks turned out to berg general principle capturing
many other important formalisms from the areas of Al and Kieolge Representations.

The increasing interest in argumentation led to numeroogqyals for formalizations of argu-
mentation. These approaches differ in many aspects. fiest are several ways how “admissibil-
ity” of a subset of statements can be defined; second, themotirebuttal has different meanings
(or even additional relationships between statementsakentinto account); finally, statements
are augmented with priorities, such that the semanticgyiglose admissible sets which contain
statements of higher priority.

Argumentation problems are in general intractable, thueldping dedicated algorithms for
the different reasoning problems is non-trivial. A promgsiapproach to implement such systems
is to use a reduction method, where the given problem is latetsinto another language, for
which sophisticated systems already exist. Earlier workiLq proposed reductions for basic ar-
gumentation frameworks to (quantified) propositional todin this work, we present solutions for
reasoning problems in different types of argumentatiomé&aorks by means of computing the an-
swer sets of an (extended) datalog program. To be more speb#isystem is capable to compute
the many important types of extensions (i.e., admissiblefepred, stable, semi-stable, complete,
and grounded) in Dung’s original framework [13], the prefaze-based argumentation framework
[1], the value-based argumentation framework [5], and tpellar argumentation framework [2, 9].
Hence our system can be used by researchers to comparenlifiegumentation semantics on con-
crete examples within a uniform setting. In fact, invediiggithe relationship between different
argumentation semantics has received increasing infateit [3].

The declarative programming paradigmAriswer-Set Programmin@SP) [22, 24] under the
stable-models semantics [21] (which is our target forma)is especially well suited for our pur-
pose. First, advanced solvers such as Smodels, DLV, GnTd€soClasp, or ASSAT which

are able to deal with large problem instances (see [20]) ea#able. Thus, using the proposed
reduction method delegates the burden of optimizatiornsgsd systems. Second, language exten-
sions such systems offer can be used to employ differenhgixities to AFs, which so far have not
been studied (for instance, weak constraints or aggregatad yield interesting specially tailored
problems for AFs). Finally, depending on the class of thegmm one uses for a given type of
extension, one can show that, in general, the complexityaluation within the target formal-
ism is of the same complexity as the original problem. Thus,approach is adequate from a
complexity-theoretic point of view.

With the fixed logic program (independent from the concretg@dprocess), we are more in the
tradition of a classical implementation, because we cans#én interpreter in ASP which processes
the AF given as input. This is in contrast to, e.g., the reiduastto (quantified) propositional logic
[7, 17], where one obtains a formula which completely depesrithe AF to process. Although
there is no advantage of the interpreter approach from ard¢heal point of view (as long as
the reductions are polynomial-time computable), theresaxeral practical ones. The interpreter
is easier to understand, easier to debug, and easier todexfiditionally, proving properties
like correspondence between answer sets and extensiongpieis Moreover, the input AF can
be changed easily and dynamically without translating theles formula which simplifies the
answering of questions like “What happens if | add this neyuarent?”.

Our system makes use of the prominent answer-set solver R2) All necessary programs
to run ASPARTIX and some illustrating examples are avadattl

http://ww. kr.tuw en. ac. at/resear ch/ syst ens/ argunent ati on/

2 Preliminaries

In this section, we first give a brief overview of the syntaxiaemantics of disjunctive datalog
under the answer-sets semantics [21]; for further backgtpsee [18, 22].

We fix a countable sét of (domain) elemenislso callecconstantsand suppose a total order
< over the domain elements. Atomis an expressiop(ty, . . .,t,), wherep is apredicateof arity
n > 0 and each; is either a variable or an element frath An atom isgroundif it is free of
variables. ByB;, we denote the set of all ground atoms oder

A (disjunctive) ruler is of the form

ay V -+ Voa, - by, ... by, notbgyq, ..., notby,,

withn >0, m > k > 0,n+m > 0, and wherea,, ..., a,, by, ..., b, are atoms, androt”
stands fordefault negation The headof r is the setH (r) = {a4,...,a,} and thebodyof r is
B(r) = {by,..., b, notbgiq,..., notb,}. Furthermore,B*(r) = {by,..., by} and B~ (r) =
{bk+1,---,bm}. Arulerisnormalif n < 1 and aconstraintif n = 0. A rule r is safeif each
variable inr occurs inB*(r). A ruler is groundif no variable occurs im. A factis a disjunctive-
free ground rule with an empty body. Anput (databasejs a finite set of facts. A program is
a finite set of disjunctive rules. For a progréfand an input databade, we often writeP(D)
instead ofD U P. If each rule in a program is normal (resp. ground), we calghogram normal

3

stratified programs normal programs general case
E. P NP »P
s P coNP Iy

174

Table 1: Data Complexity for datalog (all results are cortgriess results).

(resp. ground). A prograr® is calledstratifiedif there exists an assignmedt:) of integers to
the predicates ifP, such that for each rule € P the following holds: If predicate occurs in the
head ofr and predicate occurs

(i) in the positive body of, thena(p) > a(q) holds;
(i) in the negative body of, thena(p) > a(q) holds.

For any progranP, let U» be the set of all constants appearingArfif no constant appears in
‘P, an arbitrary constant is added i), and letB» be the set of all ground atoms constructible
from the predicate symbols appearingArand the constants éf,. Moreover,GGr(P) is the set of
rulesro obtained by applying, to each rutec P, all possible substitutions from the variables
in P to elements ot/p.

An interpretation] C By, satisfiesa ground rule- iff H(r) NI # () wheneverB*(r) C I and
B~(r)n 1 = (. I satisfies a ground prograf, if eachr € P is satisfied by/. A non-ground
rule r (resp., a prograri®) is satisfied by an interpretationC B, iff I satisfies all groundings
of r (resp.,Gr(P)). I C By is ananswer sebf P iff it is a subset-minimal set satisfying the
Gelfond-Lifschitz reduct

Pl ={H(r):- B*(r) | INB~(r) =0,r € Gr(P)}.

For a progranP, we denote the set of its answer setsdy(P). We note that for eache AS(P),
I C Bp holds.

Credulous and skeptical reasoning in terms of programdiisetkas follows. Given a program
P and a set of ground atom& Then, we writeP =, A (credulous reasoning), # is contained
in some answer set @%; we writeP =, A (skeptical reasoning), ifi is contained in each answer
set of P.

We briefly recall some complexity results for disjunctivgiloprograms. In fact, since we will
deal with fixed programs, we focus on results for data coniyleRRecall that data complexity in
our context is the complexity of checking whethefD) = A when programs” are fixed, while
input database® and ground atomsl are an input of the decision problem. Depending on the
concrete definition of=, we give the complexity results in Table 1 (cf. [11] and thé&erences
therein).

Finally, we recall the concepts of splitting sets [23]. GiveeprogramP, a setl/ of predicates
is asplitting setfor P, if and only if, for every rule- € P, it holds if some predicate froii occurs
in the head of-, then each predicate inis from U as well. Any splitting seU for programP

4

divides P in two parts. Theop P/, of P contains all rules of? which have an occurrence of a
predicatenot contained in/, while thebottom P}, of P is defined ag” \ P}. Splitting sets allow
to compute the answer sets of a progr&nstep-by-step due to the following result (thglitting
theoren): Let U be a splitting set of a prograi, I C By,.. Then,I € AS(P) if and only if

I € AS(P;(J)), whereJ = I N Bpy is contained inAS(F}).

3 Encodings of Basic Argumentation Frameworks

In this section, we first introduce the most important semsarfbr basic argumentation frameworks
in some detail. In a distinguished section, we then providmdings for these semantics in terms
of datalog programs.

3.1 Basic Argumentation Frameworks

In order to relate frameworks to programs, we use the urenérsf domain elements also in the
following basic definition.

Definition 3.1 Anargumentation framework (AR$ a pair F' = (A, R) whereA C U is a set of
arguments and? C A x A. The pair(a,b) € R means that attacks (or defeatd). A setS C A
of argumentglefeats (in F), if there is ana € S, such that(a,b) € R. An argument € A is
defendedy S C A (in F)) iff, for eachb € A, it holds that, if(b, a) € R, thenS defeats (in F).

An argumentation framework can be naturally representeddaected graph.

Example 3.2 Let [’ = (A, R) be an AF withA = {a,b,¢,d,e} and R = {(a,b), (¢,b), (¢, d),
(d,c), (d,e), (e,e)}. The graph representation @f is the following.

@—»@ﬁ

Figure 1: Graph of Example 3.2.

In order to be able to reason about such frameworks, it isssacg to group arguments with
special properties textensions One of the basic properties is the absence of conflicts legtwe
arguments contained in an extension.

Definition 3.3 Let /' = (A, R) be an AF. A sef C A is said to beconflict-free (inF), if there
are noa,b € S, such that(a,b) € R. We denote the collection of sets which are conflict-free (in

F)bycf(F).

For our example framework = (A, R) from Example 3.2, we have

of (F) = {0.{a},{b}, {c}, {d}, {a, c} {a,d}, {b,d}}.

As a first concept of extension, we present stable extensionghich are based on the idea
that an extension should not only be internally consistahalso able to reject the arguments that
are outside the extension.

Definition 3.4 Let I’ = (A, R) be an AF. A sef is a stable extensioof F, if S € ¢f(F) and
eacha € A\ S is defeated by in F'. We denote the collection all of stable extensions’dfy
stable(F).

The frameworkF' from Example 3.2 has a single stable extensfand}. Indeed{a,d} is
conflict-free, and each further element, e is defeated by eitheror d. In turn,{a, ¢} for instance
is not contained instable(F), although it is conflict-free as well. The obvious reasorhit ¢ is
not defeated bya, c}.

Stable semantics in terms of argumentation are considetselquite restricted. Moreover, itis
not guaranteed that a framework possesses at least one etadahsion (consider, e.g., the simple
cyclic framework({a}, {(a,a)})). Therefore it is also reasonable to consider those argtamen
which are able to defend themselves from external attaidlestieadmissible semantiqggoposed
by Dung [13].

Definition 3.5 Let ' = (A, R) be an AF. A sef is anadmissible extensioaf F, if S € ¢f (F)
and eachu € S is defended by in F'. We denote the collection of all admissible extensions of
by adm(F).

For the framework” from Example 3.2, we obtain,

adm(F) = {0,{a},{c},{d}, {a,c},{a,d}}.

By definition, the empty set is always an admissible extensierefore reasoning over admissible
extensions is also limited. In fact, some reasoning (fotaimse, given an AR’ = (A, R), and

a € A, isa contained in any extension @) becomes trivial wrt admissible extensions. Thus,
many researchers consider maximal (wrt set-inclusion)s&lbie sets, callegreferred extensions
as more important.

Definition 3.6 Let /' = (A, R) be an AF. A sef is apreferred extensioof I, if S € adm(F)
and for eachl’ € adm(F), S ¢ T. We denote the collection of all preferred extensions’ ddy

pref (F).

Obviously, the preferred extensions of framewdtrom Example 3.2 aréa, ¢} and{a, d}.
We note that each stable extension is also preferred, buttineerse does not hold, as witnessed
by this example.

The next semantics we consider is tmmi-stable semanticsecently introduced by Cami-
nada [8] and investigated also in [16]. Semi-stable serosuatie located in-between stable and

6

preferred semantics, in the sense that each stable exterfsem argumentation framewotk is
also a semi-stable extension Bf and each semi-stable extensionfois a preferred extension
of F'. However, in general both inclusions do not hold in the oftpadirection. In contrast to
the stable semantics, semi-stability guarantees that #hests at least one extension. We use the
definition given in [16].

Definition 3.7 Let F' = (A, R) be an AF, and for a sef C A, let S}, be defined as' U {b | Ja €
S, such thata,b) € R}. A setS is asemi-stable extensioof F, if S € adm(F') and for each
T € adm(F), S} ¢ T;, We denote the collection of all semi-stable extensiodslof semi(F).

For our example frameworkA, R), the only semi-stable extension coincides with the stable
extension’ = {a,d}. In contrast,S = {a,c} is not semi-stable, becausg¢ = {a,b,c,d} C
{a,b,c,d, e} =Tp.

Finally, we introduce complete and grounded extensionghvBiung considered as skeptical
counterparts of admissible and preferred extensionseotisply.

Definition 3.8 Let /' = (A, R) be an AF. A sef is acomplete extensioof F, if S € adm(F)
and, for eachu € A defended bys (in F), a € S holds. The least (wrt set inclusion) complete
extension off' is called thegrounded extensioof F'. We denote the collection of all complete
(resp., grounded) extensions Bfby comp(F’) (resp.,ground(F)).

The complete extensions of framewarkfrom Example 3.2 aréa, ¢}, {a,d}, and{a}, with
the last being also the grounded extensions' of

This concludes our collection of argumentation semanties,consider in this paper. The
relations between the semantics are depicted in Figure &andn arrow frona to f indicates that
eache-extension is also @-extension.

[gromdie
ladmissiblé

Figure 2: Overview of argumentation semantics and theatiahs.

We briefly review the complexity of reasoning in AFs. To thigdewe define the following
decision problems for € {stable, adm, pref, semi, comp, ground }:

7

stable adm | pref | semi | comp | ground
Cred, NP-c | NP-c | NP-c|inX? | NP-c| inP
Skept, | cONP-c| (trivial) | [IY-c [in I | inP | inP

Table 2: Complexity for decision problems in argumentaframeworks.

e Cred.: Given AFF' = (A, R) anda € A. Isa contained in somé € e(F)?
e Skept.: Given AFF' = (A, R) anda € A. Isa contained in eacl§ € e(F)?

The complexity results are depicted in Table 2 (many of thelhow implicitly from [12], for
the remaining results and discussions see [10, 15, 16Jheltable, £-c” refers to a problem which
is complete for clas€, while “in C” is assigned to problems for which a tight lower complexity
bound is not known. A few further comments are in order. Weady mentioned that skeptical
reasoning over admissible extensions always is trivialgd. Moreover, we note that credulous
reasoning over preferred extensions is easier than sképti@soning. This is due to the fact that
the additional maximality criterion only comes into play tbe latter task. Indeed for credulous
reasoning the following simple makes clear why there is moease in complexity compared to
credulous reasoning over admissible extensiongs contained in somé& < adm(F) iff a is
contained in somé&' € pref (F'). A similar argument immediately shows why skeptical reasgpn
over complete extensions reduces to skeptical reasonigtioe grounded extension. Finally, we
recall that reasoning over the grounded extension is toecfa3]:

Proposition 3.9 The grounded extension of an AF= (A, R) is given by the least fix-point of the
operatorl'r : 24 — 24, defined ag'(S) = {a € A | a is defended by in F'}.

3.2 Encodings

We now provide a fixed encoding for each extension of typeintroduced so far, in such a way
that the AFF is given as an input databaseand the answer sets of the combined progra(#”)
are in a certain one-to-one correspondence with the ragpeottensions (with some additions,
we can of course combine the different encodings into a sipgbgram, where the user just has
to specify which type of extensions she wants to computeje @t having established the fixed
programr,, the only translation required is to provide a given Afas input databasg to .. In
fact, for an AFF', we definel” as

F = {arg(a) | a € A} U {defeat(a,b) | (a,b) € R}.

In most cases, we have to guess candidates for the seleptdftgxtensions and then check
whether a guessed candidate satisfies the correspondidiions. We use unary predicates-)
andout(-) to perform such a guess for a sei{C A, wherein(a) represents that € S. Thus the
following notion of correspondence is relevant for our pasgs.

8

Definition 3.10 Let S C 2¥ be a collection of sets of domain elements andZlef 2%« be a
collection of sets of ground atoms. We say tHaand Z correspond to each other, in symbols
S =T, iff |S| = |Z] and for eachS € S, there exists aidf € Z, such that{a | in(a) € I} = S.

Let F = (A, R) an argumentation framework. The following program fraghweresses, when
augmented by, any subset C A and then checks whether the guess is conflict-frefé:in
e ={ in(X):- notout(X),arg(X);
out(X):- notin(X), arg(X);
- in(X),in(Y), defeat(X,Y)}.

Proposition 3.11 For any AFF, ¢f (F') = AS(wcf(f)).

For our example framework from Example 3.2, we have as input

F ={ arg(a),arg(h),arg(c), arg(d), arg(e),
defeat(a, b), defeat(c, b), defeat(c, d), defeat(d, c), defeat(d,), defeat(e, e) }.

Moreover, usinga together withr, we obtain:

AS(7es(F)) = {50, Sar S Ser Sty Sacs Sads Sha}
where we denote by, the following sets:

Sy = ﬁju{out(a) out(b), out(c), out(d), out(e)},
S. = FU/{in(a),out(d),out(c), out
S, = FU{out(a),in(b),out(c),out
S, = FuU{out(a),out(d),in(c) out
Sy = FU{out(a),out(b),

S.e = FU{in(a),out(d),in(c) out(d ,out(e)
S, = FU{in(a),out(d)

Spy = ﬁu{out(a),m(b),out(), in(d), out(e)}.

We are now already well prepared to present the first encoslimch is concerned with stable
extensions. The additional rules for the stability testeséollows:

Totable = Tef U { defeated(X):- in(Y), defeat(Y, X);
:- out(X), not defeated(X)}.

The first rule computes those arguments attacked by thertugrteess, while the constraint
eliminates those guesses where some argument not contaitinedguess remains undefeated.

9

For our example, let us first consider the collectich of answer sets ofzrcf(ﬁ) U
{defeated(X) :- in(Y"), defeat(Y, X)}. Note that we can use the splitting theorem and, there-
fore, make direct use of the answer setsrgf /). In fact, using our calculations from above we
obtain

={ S
Sa U {defeated(b)},
Sk,
Se U {defeated(b), defeated(d)},
Sq U {defeated(c), defeated(e)},
Sac U {defeated(b), defeated(d)},
Saa U {defeated(b), defeated(c), defeated(e)},
Spa U {defeated(c), defeated(e)} }.
If we now apply the constraint out(X), not defeated(X') to each element if’, we observe
that any set front' exceptS,,; U {defeated(b), defeated(c), defeated(e)} is violated by that con-

straint. In fact, each other set contains at least one ataify) without the matchinglefeated(y).
In general, our encoding for stable extensions satisfiefotlmeving correspondence result.

Proposition 3.12 For any AFF, stable(F') = AS(wsmble(ﬁ)).

Next, we give the additional rules for the admissibilityttes
Tadm = Ter U{ defeated(X):- in(Y), defeat(Y, X);
- in(X), defeat(Y, X), not defeated(Y)}.

The first rule is the same as in,.,... The new constraint rules out sets containing a non-
defended argument. Indeed, we can identify non-defendpdreents as those, which are defeated
by an argument, which itself is undefeated.

For our example framework, we thus can start from(ets above but now we check which
sets violate the new constraint in(X), defeat(Y, X), not defeated(Y"). This is the case for two
of the candidates. (13, containsin(b) anddefeat(a, b) but sincedefeated(a) is not contained,
the constraint applies; (2) fdf,; U {defeated(c), defeated(e)} the argumentation is analogously.
Hence, we obtain

AS(Toim(F)) = { Sy,
Sa U {defeated(b)},
S. U {defeated(b), defeated(d)},
Sq U {defeated(c), defeated(e)},
Sae U {defeated(b), defeated(d)},
Saa U {defeated(b), defeated(c), defeated(e)} } .

Again, we observe the one-to-one correspondence to thesaiihe extensions of’. The
general result is as follows.

10

Proposition 3.13 For any AFF, adm(F) 2 AS (7 agm (F)).

We proceed with the encoding for complete extensions, wisaliso quite straightforward.
We define

Teomp = Tadm J{not_defended(X):- defeat(Y, X), not defeated(Y");
:- out(X), not not_defended(X)}.

Once more, we use our running example to illustrate the fonicty of 7.,,,. Again,
we proceed in two steps and first compute the answer sets gbrdggram without the con-

straint :- out(X), not not_defended(X). Here, we can directly use the sets frofs (g (F))

~

and check which predicates)t_defended(-) can be derived. The answer setsmQf,,(F') U
{not_defended(X) :- defeat(Y, X), not defeated(Y")} are

Sp U {not_defended(b), not_defended(c), not_defended(d), not_defended(e)},

Sq U {defeated(b), not_defended(d), not_defended(c), not_defended(d), not_defended(e)},
Se U {defeated(b), defeated(d), not_defended(b), not_defended(d), not_defended(e)},
Sq U {defeated(c), defeated(e), not_defended(b), not_defended(c), not_defended(e)},
Sac U {defeated(b), defeated(d), not_defended(b), not_defended(d), not_defended(e)},
Saa U {defeated(b), defeated(c), defeated(e), not_defended(b), not_defended(c), not_defended(e)}.

Obviously, each candidate which containsit(a) is ruled out by the constraint
:- out(X), not not_defended (X), since no candidate set containst_defended(a). One can
check that all other sets do not violate the constraint, hod &re answer sets mjomp(ﬁ). Again,
these remaining three sets characterize the completestosofF', as desired.

~

Proposition 3.14 For any AFF, comp(F) = AS (T comyp (F)).

We now turn to the grounded extension. For suitably encotliegperatoi’ -, we can come
up with astratifiedprogram for this task. Note that in a stratified program itos possible to first
guess a candidate for the extension and then check whethgu#ss satisfies certain conditions.
Instead, we “fill” thein(-)-predicate according to the definition of the operdipr To compute
(without unstratified negation) the required predicatebieing defended, we now make use of the
order < over the domain elements and derive corresponding predidat infimum, supremum,
and successor.

o ={ WX,Y): arg(X),arg(Y), X <Y;
nsucc(X, Z) :- 1t(X,Y), 1t(Y, Z2);
succ(X,Y) - (X, Y), not nsuce(X,Y);
ninf (V) :- 1t(X,Y);
inf(X) :- arg(X), not ninf(X);
nsup(X):- 1t(X,Y);
sup(X) :- arg(X), not nsup(X)}.

11

We now define the desired predicatefended(X) which itself is obtained via a predicate
defended_upto(X,Y’) with the intended meaning that argumeXitis defended by the current
assignment with respect to all argumefts< Y. In other words, we let rangg starting from
the infimum and then using the defined successor predicatericediefended_upto(X,Y) for
“increasing”Y . If we arrive at the supremum element in this way, we finalljiaedefended (X).
We define

Tdefended = 1 defended_upto(X,Y):- inf(Y), arg(X), not defeat(Y, X);
defended_upto(X,Y) :- inf(Y),in(7), defeat(Z,Y), defeat(Y, X);
defended_upto(X,Y) :- succ(Z,Y), defended_upto(X, Z),

not defeat(Y, X);
defended_upto(X,Y) :- succ(Z,Y), defended_upto(X, Z),
in(V), defeat(V,Y"), defeat(Y, X);
defended (X)) :- sup(Y'), defended_upto(X,Y)}, and
Tground = T U Tdefended U {in(X) :- defended(X)}.

Note thatr .4 IS indeed stratified.

We illustrate the building blocks for .., using our example framework. Moreover, we
assume as order < b < ¢ < d < e. For this order;r. yields a single answer sé}, which
contains (among other atoms, which will not be used in laaérdations):

{inf(a), succ(a, b), succ(b, c), succ(c, d), succ(d, e), sup(e) } C Sy

We now compute the answer set fBru Te U Taefended StEP DY step. In the “first round” we
have nain(-) predicate derived so far, hence only the first and third mutesis.,q.. are of interest.
In fact, forinf(a), the first rule inmi.fenqeq Yields:

defended_upto(a, a), defended_upto(c, a), defended upto(d, a), defended_upto(e, a);

note thatdefended_upto(b, a) is missing, since we haviefeat(a, b) € F. Now we usesucc(a, b)
and obtain

defended_upto(a, b), defended_upto(c, b), defended_upto(d, b), defended_upto(e, b).
The remaining atoms we derive are
defended_upto(a, ¢), defended upto(c, ¢), defended_upto(e, c);
(sinced is attacked by:, defended_upto(d, ¢) cannot be derived) and finally,
defended_upto(a, d), defended_upto(a, €).

Hence, we obtaindefended(a) via sup(e) and defended_upto(a,e). Moreover, the rule
in(X) :- defended(X) derivesin(a). We now can use the additional faat«) for a second round

12

of evaluatingr 4.senqed, iN particular, by using the second and fourth rulerjg.,q... However, as
a does not defend any argument, it can be checked that no flathes can be derived. Thus we
obtain that in the single answer setmf.,...(F') the onlyin(-) predicate isn(a). However, this
corresponds to the grounded extensiong'of

Proposition 3.15 For any AFF, ground(F') = AS(wgmund(f)).

Obviously, we could have used tHefended(-) predicate in previous programs. Indeeg,,,,
could be defined as

Tef U Tdefended U { = In(X), not defended(X); :- out(X), defended(X)}.

We continue with the more involved encodings for preferned semi-stable extensions. Com-
pared to the one for admissible extensions, these encoiggge an additional maximality test.
However, this is sometimes quite complicate to encode (seqH] for a thorough discussion on
this issue).

In fact, to compute the preferred extensions, we will usetaraaon technique as follows:
Having computed an admissible extensi®ificharacterized via predicatés(-) andout(-)) , we
perform a second guess using new predicatesiig&f) andoutN(+), such that they represent a
guessl’ O S. For that guess, we will use disjunction (rather than defaedation), which allows
that for eachu both inN(a) andoutN(a) are contained in a possible answer set (under certain
conditions). In fact, exactly such answer sets will coreegpto the preferred extensions. The
saturation is therefore performed in such a way that allipatelsinN(a) andoutN(a) are derived
for thoseT’, which donot characterize an admissible extension. If this saturaticoeeds for each
T D S, we want that saturated interpretation to become an an®tieTkis can be done by using
a saturation predicatgoil, which is handled via a constrairt not spoil. This ensures that only
saturated guesses survive.

Such saturation techniques always require a restrictedfusegation. The predicates defined
in 7 will serve for this purpose. Two new predicates are needeedigateeq which indicates
whether a guess represented by atonisN (-) andoutN(-) is equal to the guess féf (represented
by atomsin(-) andout(-)). The second predicate we defineiiglefeated(.X') which indicates that
X is not defeated by any element fréfh Both predicates are computed via predicatespto(-)
(resp.undefeated_upto(-, -)) in the same manner as we usédended_upto(-, -) for defended(-)
in the moduler ¢f.p4.q @bOVeE:

={ eq.upto(Y):- inf(Y),in(Y),inN(Y);
equpto(Y) :- inf(Y), out(Y), outN(Y);
eq-upto(Y') :- succ(Z Y),in(Y),inN(Y), eq_upto(Z);
(Y):

equpto(Y) :- suce(Z,Y), out(Y), outN(Y), eq_upto(Z);
eq:- sup(Y'), equpto(Y)};

13

Tundefeated = { undefeated_upto(X,Y’) - inf(Y"), outN(X), outN(Y');
undefeated_upto(X,Y) :- inf(Y), outN(X), not defeat(Y, X);
undefeated_upto(X,Y) :- succ(Z,Y), undefeated upto(X, Z),
outN(Y);

undefeated_upto(X,Y) :- succ(Z,Y), undefeated_upto(X, 7),
not defeat(Y, X);

undefeated(X) :- sup(Y'), undefeated_upto(X,Y)}.

With these predicates at hand, we next define the spoilingufeddr preferred extensions:

Topoitpref =1 IMN(X) V outN(X) :- out(X); inN(X) :- in(X); (1)
spoil :- eq; (2)
spoil :- inN (X)), inN(Y'), defeat(X,Y); (3)
spoil :- inN(X), outN(Y'), defeat(Y, X), undefeated(Y); 4)
inN(X) :- spoil, arg(X); outN(X) :- spoil, arg(X); (5)
:- not spoil}. (6)
We define

Tpref = Tadm U T< U Teq U T undefeated U T spoilpref +

When joined with for some AFF = (A, R), the rules ofr ., Work as follows: Rules
(1) guess a new sét C A (via predicatesnN(-) and outN(+)), which compares to the guess
S C A (S is characterized by predicatés-) andout(-) as used inr,q,) asS C 7. In case
T = S, we obtain predicateq and derive predicateoil (by rule (2)). The remaining guesses for
T are now handled as follows. First, rule (3) derives preéigpbil if the new guesd’ contains a
conflict. Second, rule (4) derivegoil if the new gues§’ contains an element which is attacked
by an argument outsid€ which itself is undefeated (by). Hence, we derivedpoil for those
S C T where eitherS = T or T did not correspond to an admissible extensiorF'ofWe now
finally spoil up the current guess and deriveiall(a) andoutN(a) in rules (5). Recall that due
to constraint (6) such spoiled interpretations are the oahdidates for answer sets. To turn them
into an answer set, it is however necessary that we spoilegaichT’, such thatS C T'; but by
definition this is exactly the casefis a preferred extension.

To illustrate howr,,.; applies to our example framework, note that a step-by-stejuation
as used before is no longer possible. In particular, thepgagramlIl = 7.y U Tundefeated U Tspoil
has to be treated as once, due to the cyclic dependenciegyatmatoms (in other words, we
only obtain trivial splitting sets folI). However we can still split,,.; into T adm U m. andIl. We
already know the single answer sgtof 7 (F) and the collectiondS (7 ggm (F)) of answer sets
of wadm(F) As is easily checked, we thus géIS(F U Tgam UT<) = {SoUS | S € wadm(F)}
Hence, let us illustrate the functioning bffor the two input$ S; = So U S, andS; = Sy U S,..
Indeed, we expect théef; does not lead to an answer setmf.;(F) while the second sef,

We omit the further atoms from the corresponding answensatsy gy U m<, since they play no role ifil.

14

corresponds to a preferred extensiorfofaind thus should be part of an answer setpo;‘f(ﬁ). As
discussed above, the only potential answersef I1(.S;) contains contains§; as well as atoms

inN(a), outN(a), inN(b), outN(b), inN(c), outN(c), inN(d), outN(d), inN(d), outN(e), spoil. (7)

We next check whether somig C I, satisfiedI(S;)™ = I1(5;) \ { :- not spoil}. If this is notthe
case,/; becomes an answer set. Indeed, one can check that

Sa U {inN(a), outN(b), inN(c), outN(d), outN(e) }

satisfies1(.5;)*. This can be seen as follows: this set does not contaiii, thus the bodies of
rules (2—4) must not be satisfied. For the first rule this istee sinceq is not derived (we leave
it to the reader to check this), for the second rule this iscthee as well, since the vertices for
which inN(-) holds are not adjacent. Finally, for (4), we first mentiont tha, efeq:.q iS derived
for the following instantiationsndefeated (a), undefeated(c), undefeated(e). One can now check
that the bodies of (4) are not satisfied. As well, rules (5)rarteapplied (sincepoil has not been
derived). Thus, we found a proper subgetof I;, such that/; = II(S;)". Consequently/,
cannot be an answer setldfS;) and thus not ofrpref(ﬁ).

The situation is different for sef; = Sy U S,.. As before the only potential answer detof
I1(S;) containsS, as well as atoms

inN(a), outN(a), inN(b), outN(b), inN(c), outN(c), inN(d), outN(d), inN(d), outN(e), spoil. (8)

Moreover,I1(S;)2 = TI(S,) \ {:- notspoil} as before, and we thus seek for sétsc I, such
that J, | TI(S:)2. Note that rule (1) guarantees that contains at leasinN(a), inN(c) but

furtherinN(-) predicates could be contained.in. However, if the onlyinN(-) predicates in/,

areinN(a),inN(c), predicateeq is derived and we spoil. As well, if a furthéiN(-) predicate is
contained inJ, then we already know that such a set characterizes a stihsetd which cannot
be conflict free. Indeed, rule (3) applies in this case, andbtainspoil. As soon aspoil is

derived, rules (5) “turn/; into I,”. From this observation it is clear that we cannot find,aC 1,

such that/, = TI(S2)™2. Thusl, becomes an answer setldfS;) and therefore also of . (F).

This meets our expectation, sinég. relates to the preferred extensifm c} of F'.

Proposition 3.16 For any AFF, pref (F) = AS(wpmf(ﬁ)).

We conclude our encodings for the different types of extamswith the program for the semi-
stable semantics. The basic intuition for the forthcomimgpeling is as for the preferred semantics.
The main difference lies in the fact that, given an admissétensiort for an AF F' = (A, R),
we now have to test whether fibe adm(F) with S}, C T exists, while for preferred extensions
it was sufficient to test whether no su€hof the formS C T exists. This requires the following
changes. First, we have to guess an arbitrary/séor preferred extensions we could restrict
ourselves to supersets §). Then we spoil (as before) in ca3eis not admissible. Finally, we
explicitly get rid off the cases wherg; ¢ T, (for preferred extensions, we only had to exclude

15

the caseS = T via the predicateq). Hence, we need a new predicatglus which tests for
S} =Ty, and we spoil itqplus is derived, or in case there exists@ag S} not contained i/’ .

We can reuse the modules,,,, 7, as well asr,qrqes and define the following additional
rules

ms, ={ eqplus_upto(Y’):-
,defeat(X,Y);
, defeat(X,Y);
eqplus_upto(Y) :- defeat(X,Y), defeat(Z,Y);

(Y)
eqplus_upto(Y) :-
(Y)
(Y)
eqplus_upto(Y) :- inf(Y'), out(Y'), outN(Y'), not defeated(Y"), undefeated (Y);
(Y)
(Y)
(Y):
(Y) -

eqplus_upto(Y') :-

)
(Z,Y),in(Y),inN(Y), eqplus_upto(7);
succ(Z,Y),in(Y),inN(X), defeat(X, YY), eqplus_upto(Z);
(Z,Y),in(X),inN(Y), defeat(X,Y), eqplus_upto(Z);
succe(Z,Y),in(X),inN(U), defeat(X,Y)
eqplus_upto(Z);
eqplus_upto(Y) :- succ(Z,Y),out(Y), outN(Y'), not defeated(Y), undefeated(Y),
eqplus_upto(Z);

eqplus_upto(Y’) :-
eqplus_upto(Y) :-
eqplus_upto(Y) :-

eqplus_upto(Y ,defeat(U,Y),

eqplus :- sup(Y), eqplus_upto(Y)};

Tspoitsemi = 1 IN(X) V outN(X) :- arg(X);
spoil :- eqplus;
spoil :- inN(X),inN(Y"), defeat(X,Y);
spoil :- inN(X), outN(Y"), defeat(Y, X), undefeated(Y);
spoil :- in(X), outN(X), undefeated(X);
spoil :- in(Y"), defeat(Y, X), outN(X), undefeated (X);
inN(X) :- spoil, arg(X); outN(X) :- spoil, arg(X);
:- notspoil}.
We define
Tsemi = Tadm U T< U T ZI U Tundefeated U Tspoilsemi

and obtain the following result.
Proposition 3.17 For any AFF, semi(F) = AS(myemi(F)).
We summarize the results from this section.

Theorem 3.18 For any AF F' and e € {stable, adm, pref, semi, comp, ground}, it holds that
e(F) =2 AS(m.(F)).
16

stable adm pref semi comp ground
Crede 7Tstable(ﬁ‘\) ':c a 7'radm(ﬁ‘\) ':c a Tadm (ﬁ) ':c a 7"'semi(ﬁ‘\) ':c a 7'rcomp(ﬁ‘\) ':c a T ground (ﬁ)':a
Skept, | Tstabie (F) Fs a (trivial) Tpref (F) Es a | Toemi(F) Es a | Tground(F)Ea | Tground(F)Ea

Table 3: Overview of the encodings of the reasoning task&FoF’ = (A, R) anda € A.

We note that our encodings aadequatan the sense that the data complexity of the encodings
mirrors the complexity of the encoded task. In fact, depegadin the chosen reasoning task, the
adequate encodings are depicted in Table 3. Recall thatilowesireasoning over preferred ex-
tensions reduces to credulous reasoning over admissitdasans and skeptical reasoning over
complete extensions reduces to reasoning over the singlended extension. The only proper
disjunctive programs involved arg,.; andr,.,,;, all other encodings are disjunction-free. More-
OVer, T 0una 1S Stratified. Stratified programs have at most one answghegte there is no need
to distinguish betweep-. and|=;. If one now assigns the complexity entries from Table 1 to the
encodings as depicted in Table 3, one obtains Table 2.

However, we also can encode more involved decision probiesimg our programs. As a first
example consider the?-complete problem ofoherencd15], which decides whether for a given
AF F, pref (F') C stable(F') (recall thatpref (F') O stable(F') always holds). We can decide this
problem by extending,,.; in such a way that an answer-setmf.; survives only if it does not
correspond to a stable extension. By definition, the onlsibdgy to do so is if some undefeated
argument is not contained in the extension.

Corollary 3.19 The coherence problem for an AFholds iff the program
ﬁpref(ﬁ) U {v:- out(X), not defeated(X); :- notv}
has no answer set.

As a second example, we give a program which decides, foremgW F', whether the semi-
stable and the preferred extensionfogoincide. This problem has been shown tdBecomplete
in [16].

Again, we can decide this problem by reusing some of the nesdubm previous encodings.
In this particular case, however, we need to separate sothe atoms which are used in common
by e @Ndmy,,,;. FOr this reason, we require new atom&N(-), outNN(-), undefeatedN(-) and
undefeatedN_upto(-, -), and denote byt,,qefeatean the program resulting from,,qefeatea DY USING
the new atoms instead @fN(-), outN(-), undefeated(-) andundefeated_upto(-, -), respectively.

17

Similarly, we obtaim;N from 7 . Consider now the following program

Teoinicde — T pref U TundefeatedN U W;N U {
inNN(X) V outNN(X) :- arg(X);
:- eqplus;

- iInNN(X), inNN(Y'), defeat (X, Y);

- iInNN(X), outNN(Y), defeat (Y, X), undefeatedN(Y);
in(X), outNN(X), undefeated(X);

in(Y), defeat(Y, X), outNN(X), undefeatedN(X)}.

Corollary 3.20 Given an AFF, it holds thatsemi(F) = pref (F) iff wcomicde(ﬁ) has no answer
set.

Roughly speaking we combine here the program which compluégsreferred extensions with
a program which checks whether the inpub@ semi-stable. The latter test can be accomplished
via constraints (instead of the spoiling technique used@paince it is sufficient here to just get
rid off candidates which already have been checked to bepesf but are not semi-stable.

4 Encodings for Generalizations of Argumentation Frame-
works

4.1 Value-Based Argumentation Frameworks

As a first example for generalizing basic AFs, we deal witlhiwgabased argumentation frameworks
(VAFs) [5] which themselves generalize the preferenceebasrgumentation frameworks [1].
Again we give the definition wrt the univergé

Definition 4.1 A value-based argumentation framework (VA§R 5-tupleF = (A, R, &, 0, <)
whereA C U are argumentsR C A x A, ¥ C U is a non-empty set of values disjoint frofn
o : A — ¥ assigns a value to each argument frolm and < is a preference relation (irreflexive,
asymmetric) between values.

Let <« be the transitive closure of. An argument: € A defeatsan argument € A in F if
and only if(a,b) € Rand(b,a) ¢<.

Using this notion of defeat, we say in accordance to Defini8dl that a sef C A of argu-
mentsdefeats (in F), if there is ana € S which defeat$. An arguments € A is defendedy
S C A(in F) iff, for eachb € A, it holds that, ift defeats: in F’, thenS defeats in F'. Using these
notions of defeat and defense, the definitions in [5] for doiaftee sets, admissible extensions,
and preferred extensions are exactly along the lines of Diefir3.3, 3.5, and 3.6, respectively.

18

In order to compute these extensions for VAFs, we thus orgylite slightly adapt the modules
introduced in Section 3.2. In fact, we just overwriidor a VAF F' as

F = {arg(a) | a € A} U {attack(a,b) | (a,b) € R} U
{val(a,o(a)) | a € A} U {valpref(w,v) | v < w}

and we require one further module, which now obtainsitifeat(-, -) relation accordingly:
oo ={ valpref(X,Z):- valpref(X,Y), valpref(Y, Z);
pref(X,Y) :- valpref(U, V), val(X, U), val(Y, V);
defeat(X,Y) :- attack(X,Y), not pref(Y, X)}.

We obtain the following theorem using the new conceptsﬁmndwwf, as well as re-using
Tadm @Ndm,,.; from Section 3.2.

~

Theorem 4.2 For any VAFF ande € {adm, pref }, e(F) = AS(myer U me(F)).

For the other notions of extensions, we can employ our engsdrom Section 3.2 in a similar
way. The concrete composition of the modules however dependhe exact definitions, and
whether they make use of the notion of a defeat in a uniform. way4], for instance, stable
extensions for a VAH" are defined as those conflict-free subsetsf arguments, such that each
argument not irf' is attacked (rather than defeated)®yStill, we can obtain a suitable encoding
quite easily using the following redefined module:

Toable = Tep U { attacked(X):- in(Y), attack(Y, X);
:- out(X), not attacked (X)}.

~

Theorem 4.3 For any VAFF, stable(F') = AS(Tyer U Tstapie (F))-

The coherence problem for VAFs thus can be decided as fallows

Corollary 4.4 The coherence problem for a VAFholds iff the program

ﬂpref(]?\) U {attacked(X) :- in(Y"), attack(Y, X);
v:- out(X), not attacked(X); :- notv}

has no answer set.

4.2 Bipolar Argumentation Frameworks

Bipolar argumentation frameworks [9] augment basic AFs bgaond relation between arguments
which indicates supports independent from defeats.

19

Definition 4.5 A bipolar argumentation framework (BAF) is a tupte= (A, Ry, Rs) whereA C
U is a set of arguments, andl; C A x AandR; C A x A are the defeat (resp., support) relation
of F.

An argument: defeatsan argument in F if there exists a sequenag, . . ., a,, .1 of arguments
from A (for n > 1), such that; = a, anda,; = b, and either

e (a;,a;41) € R, foreachl <i <n —1and(a,,a,+1) € Ry; OF
e (a1,as) € Rgand(a;, ai11) € R, foreach2 <i < n.

As before, we say that a s8tC A defeatsan argumenb in F' if somea € S defeatsh; an
argument: € A isdefendedy S C A (in F) iff, for eachb € A, it holds that, ifb defeats: in F',
thenS defeats in F. R

Again, we just need to adapt the input databasand incorporate the new defeat-relation.
Other modules from Section 3.2 can then be reused. In factlefiae for a given BAFF =
(A7 Rd, RS)I

F = {arg(a) | a € A} U {attack(a,d) | (a,b) € Ry} U {support(a,d) | (a,b) € R,},

and for the defeat relation we first compute the transitieswate of thesupport(-, -)-predicate and
then definelefeat(-, -) accordingly.

oy =1{ support(X,Z):- support(X,Y),support(Y, Z);
defeat(X,Y) :- attack(X,Y);
defeat(X,Y) :- attack(Z,Y), support(X, Z);
defeat(X,Y):- attack(X, Z), support(Z,Y)}.

Following [9], we can use this notion of defeat to define caiviiee sets, stable extensions,
admissible extensions and preferred extengieractly along the lines of Definition 3.3, 3.4, 3.5,
and 3.6, respectively.

~

Theorem 4.6 For any BAFF ande € {stable, adm, pref }, e(F') = AS(mpr U T (F)).

More specific variants of admissible extensions from [9]@vained by replacing the notion
a conflict-free set by other concepts.

Definition 4.7 Let ' = (A, Ry, Rs) be a BAF andS C A. ThenS is calledsafein F if for each
a € A, such thatS defeats:, a ¢ S and there is no sequeneg, . . ., a, (n > 2), such that; € S,
a, = a, and(a;,a;11) € Rg, foreachl < i < n — 1. A setS is closed under?; if, for each
(a,b) € Rs, itholds thata € S if and only ifb € S.

Note that for a BAFF, each safe set (if) is conflict-free (inF"). We also remark that a st
of arguments is closed undgy, iff S is closed under the transitive closureR.

2These extensions are calléehdmissible and resg-preferred in [9].

20

Definition 4.8 Let F' = (A, Ry, Rs) be a BAF. A sef C A is called ans-admissible extensioof
Fif S'is safe (inF’) and eachu € S is defended by (in F). A setS C Ais called ac-admissible
extensiorof £ if S is closed undeRrR,, conflict-free (inF'), and eachu € S is defended by (in
F). We denote the collection of aladmissible extensions (resp. of @hdmissible extensions) of
F by sadm(F) (resp. bycadm(F)).

We define now further programs as follows

Tsadm = Taam U { supported(X):- in(Y),support(Y, X);
:- supported(X), defeated(X) }

Teadm = Taam U { - support(X,Y),in(X),out(Y);
:- support(X,Y),out(X),in(Y) }.

Finally, one defines-preferred (respc-preferred) extensions as maximal (wrt set-inclusion)
s-admissible (respz-admissible) extensions.

Definition 4.9 Let F' = (A, Ry, Rs) be a BAF. Aset C A is called ans-preferred extensioof F’
if S € sadm(F')andforeachl’ € sadm(F'), S T. Likewise, ases C A is called ac-preferred
extensiorof F'if S € cadm(F') and for eacH” € cadm(F'), S € T. By spref (F') (resp.cpref (F))
we denote the collection of allpreferred extensions (resp. of atpreferred extensions) df.

Again, we can reuse parts of the,.,-program from Section 3.2. The only additions necessary
are to spoil in case the additional requirements are vidlatée define

Topref = Tsadm U Thelpers U Tspoit U

supported (X)) :- inN(Y"), support(Y, X);
spoil :- supported(X), defeated(X) }

Tepref = Teadm Y Thelpers U Mspoil U

spoil :- support(X,Y),inN(X), outN(Y);
spoil :- support(X,Y), outN(X),inN(Y) }.

—

—

Theorem 4.10 For any BAFF ande € {sadm, cadm, spref, cpref }, we haves(F') = AS(my,s U
me(F)).

Slightly different semantics for BAFs occur in [2], wherethotion of defense is based &,
while the notion of conflict remains evaluated with respedihte more general concept of defeat
as given in Definition 4.5. However, also such variants caereoded within our system by a
suitable composition of the concepts introduced so far.

Again, we note that we can put together encodings for completl grounded extensions for
BAFs, which have not been studied in the literature.

21

5 Discussion

In this work we provided logic-program encodings for comipgtdifferent types of extensions in
Dung’s argumentation framework as well as in some recemnsxbns of it. To the best of our
knowledge, so far no system is available which supports aumoad range of different semantics,
although nowadays a number of implementations ekiskhe encoding (together with some ex-
amples) is available on the web and can be run with the ansgteselver DLV [22]. We note that
DLV also supplies the built-in predicate which we used in some of our encodings. Moreover,
DLV provides further language-extensions which might leadlternative encodings; for instance
weak constraints could be employed to select the groundems®n from the admissible, or pri-
oritization techniques could be used to compute the predegxtensions.

The work which is closest related to ours is by Nieetsal. [25] who also suggest to use
answer-set programming for computing extensions of arguatien frameworks. The most im-
portant difference is that in their work the program has tedseomputed for each new instance,
while our system relies on single fixedprogram which just requires the actual instance as an
input database. We believe that our approach thus is moablebhnd easier extendible to further
formalisms.

Future work includes a comparison of the efficiency of défgrimplementations and an ex-
tension of our system by incorporating further recent nsiof semantics, for instance, the ideal
semantics [14].

References

[1] Leila Amgoud and Claudette Cayrol. A reasoning modekdasn the production of accept-
able argumentsAnn. Math. Artif. Intell, 34(1-3):197-215, 2002.

[2] Leila Amgoud, Claudette Cayrol, Marie-Christine Lagage, and Pierre Livet. On bipolarity
in argumentation framework#nternational Journal of Intelligent Systen3:1-32, 2008.

[3] Pietro Baroni and Massimiliano Giacomin. A systematiassification of argumentation
frameworks where semantics agreePhoceedings of the 2nd Conference on Computational
Models of ArgumenfCOMMA'08), pages 37—48. 10S Press, 2008.

[4] Trevor J. M. Bench-Capon. Value-based argumentatiaméworks. InProceedings of the
9th International Workshop on Non-Monotonic Reasor{NiIR’02), pages 443—-454, 2002.

[5] Trevor J. M. Bench-Capon. Persuasion in practical arguoinusing value-based argumenta-
tion frameworks.J. Log. Comput.13(3):429-448, 2003.

[6] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentdtiartificial intelligence Artif.
Intell., 171(10-15):619-641, 2007.

3See http://www.csc.liv.ac.ukhzwyner/software.html for an overview.

22

[7] Philippe Besnard and Sylvie Doutre. Checking the acgipty of a set of arguments. In
Proceedings of the 10th International Workshop on Non-Maomic ReasoningdNMR’02),
pages 59-64, 2004.

[8] Martin Caminada. Semi-stable semanticsPhoceedings of the 1st Conference on Compu-
tational Models of ArgumefCOMMA'06), pages 121-130. IOS Press, 2006.

[9] Claudette Cayrol and Marie-Christine Lagasquie-Schien the acceptability of arguments
in bipolar argumentation frameworks. Rroceedings of the 8th European Conference on
Symbolic and Quantitative Approaches to Reasoning withettamty (ECSQARU’0}, vol-
ume 3571 oLNCS pages 378-389. Springer, 2005.

[10] Sylvie Coste-Marquis, Caroline Devred, and Pierre dlgs. Symmetric argumentation
frameworks. InProceedings of the 8th European Conference on Symbolic aiaahi@ative
Approaches to Reasoning with UncertaitBCSQARU’'0%, volume 3571 ofLNCS pages
317-328. Springer, 2005.

[11] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Antlogonkov. Complexity and ex-
pressive power of logic programmingCM Computing Survey83(3):374—-425, 2001.

[12] Yannis Dimopoulos and Alberto Torres. Graph theomdt&tructures in logic programs and
default theoriesTheor. Comput. Sgil170(1-2):209-244, 1996.

[13] Phan Minh Dung. On the acceptability of arguments aaduhdamental role in nonmono-
tonic reasoning, logic programming and n-person games. Intell., 77(2):321-358, 1995.

[14] Phan Minh Dung, Paolo Mancarella, and Francesca Tooin@lting ideal sceptical argu-
mentation.Artif. Intell., 171(10-15):642—674, 2007.

[15] Paul E. Dunne and Trevor J. M. Bench-Capon. Coherentiaite argument system@rtif.
Intell., 141(1/2):187-203, 2002.

[16] Paul E. Dunne and Martin Caminada. Computational cexipyl of semi-stable semantics
in abstract argumentation frameworks. Pnoceedings of the 11th European Conference
on Logics in Atrtificial IntelligencgJELIA 2008, volume 5293 ofLNCS pages 153-165.
Springer, 2008.

[17] Uwe Egly and Stefan Woltran. Reasoning in argumentatiameworks using quantified
boolean formulas. IProceedings of the 1st Conference on Computational Modedsgu-
ment(COMMA’06), pages 133-144. 10S Press, 2006.

[18] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disptive datalog. ACM Trans.
Database Syst22(3):364-418, 1997.

[19] Thomas Eiter and Axel Polleres. Towards automatednaton of guess and check programs
in answer set programming: a meta-interpreter and apjgitat Theory and Practice of
Logic Programming6(1-2):23—-60, 2006.

23

[20] M. Gebser, L. Liu, G. Namasivayam, A. Neumann, T. Schauo M. Truszczynski. The first
answer set programming system competitionPinceedings of the 9th International Con-
ference on Logic Programming and Nonmonotonic ReasoR§IMR’07), volume 4483 of
LNCS pages 3-17. Springer, 2007.

[21] Michael Gelfond and Vladimir Lifschitz. Classical reggon in logic programs and disjunctive
databasedNew Generation Compu®©(3/4):365-386, 1991.

[22] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thoméer=Georg Gottlob, Simona Perri,
and Francesco Scarcello. The dlv system for knowledge septation and reasoningCM
Trans. Comput. Log7(3):499-562, 2006.

[23] Vladimir Lifschitz and Hudson Turner. Splitting a lagpbrogram. InProceedings of the 11th
International Conference on Logic Programmifi§LP’94), pages 23—-37. MIT Press, 1994.

[24] llkka Niemela. Logic programming with stable modehsantics as a constraint programming
paradigm.Ann. Math. Artif. Intell, 25(3—4):241-273, 1999.

[25] Juan Carlos Nieves, Mauricio Osorio, and Ulises Cort&referred extensions as stable mod-
els. Theory and Practice of Logic Programmif®g(4):527-543, July 2008.

24

