
Towards Reconciling SPARQL and Certain Answers

Shqiponja Ahmetaj
TU Vienna

ahmetaj@dbai.tuwien.ac.at

Wolfgang Fischl
TU Vienna

wfischl@dbai.tuwien.ac.at

Reinhard Pichler
TU Vienna

pichler@dbai.tuwien.ac.at

Mantas Šimkus
TU Vienna

simkus@dbai.tuwien.ac.at

Sebastian Skritek
TU Vienna

skritek@dbai.tuwien.ac.at

ABSTRACT
SPARQL entailment regimes are strongly influenced by the big body
of works on ontology-based query answering, notably in the area of
Description Logics (DLs). However, the semantics of query answer-
ing under SPARQL entailment regimes is defined in a more naive
and much less expressive way than the certain answer semantics
usually adopted in DLs. The goal of this work is to introduce an
intuitive certain answer semantics also for SPARQL and to show
the feasibility of this approach. For OWL 2 QL entailment, we
present algorithms for the evaluation of an interesting fragment of
SPARQL (the so-called well-designed SPARQL). Moreover, we
show that the complexity of the most fundamental query analysis
tasks (such as query containment and equivalence testing) is not
negatively affected by the presence of OWL 2 QL entailment under
the proposed semantics.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query Languages;
H.2.5 [Database Management]: Heterogeneous Databases

General Terms
Theory, Algorithms

Keywords
SPARQL; Certain Answers; DL-Lite; Query Answering; Query
Rewriting; Complexity

1. INTRODUCTION
In the recently released recommendation [12], the W3C has de-

fined various SPARQL entailment regimes to allow users to specify
implicit knowledge about the vocabulary in an RDF graph (see [10]
for a tutorial). The theoretical underpinning to the systems for query
answering under rich entailment regimes (see e.g.[16, 6, 30]) is pro-
vided by the big body of work on ontology-based query answering,
notably in the area of Description Logics (DLs) [3]. Superficially,
query answering of basic graph patterns (BGPs) under an entail-
ment regime looks exactly like answering conjunctive queries (CQs)

This is an electronic version of an Article published in Proceedings of the
24th International Conference on World Wide Web, WWW 2015, Florence,
Italy, May 18-22, 2015 c© 2015 International World Wide Web Confer-
ences Steering Committee
WWW 2015, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741636.

under the corresponding DL. However, there is a huge difference
between the two in that SPARQL entailment regimes do not consider
non-distinguished variables:

Example 1. Consider an RDF graph G containing a single triple
(b, a,Prof) – stating that b is a professor – and an ontology O
containing a single concept inclusion stating that every professor
teaches somebody. In our notation introduced in Section 2, this
inclusion will be denoted as (Prof,rdfs:sc, ∃teaches).
Now consider the following simple SPARQL query:
SELECT ?x WHERE (?x, teaches, ?y).1

According to the SPARQL entailment regimes standard [12], this
query yields as result the empty set.

Clearly, the empty set as the result in the above example is rather
unintuitive: by the inclusion (Prof,rdfs:sc, ∃teaches), we know
for certain that b teaches somebody. However, the SPARQL entail-
ment standard requires that all values assigned to any variable in the
BGP must come from the RDF graph – thus treating distinguished
variables (which are ultimately output) and non-distinguished vari-
ables (which are eventually projected out) in the same way. In
contrast, query answering in the DL world is based on the certain
answer semantics. We thus consider the models of the database (i.e.,
the RDF graph) and the ontology and we accept all those mappings
as solutions that make the query true in every possible model. In the
above example, every such model contains a triple (b, teaches, u)
for some value u. Hence, even though there are distinct values u
in different models, the projection onto the first component always
yields the mapping µ = {?x→ b} as an answer to the query.

Depending on the expressive power of a particular DL, query
answering under the certain answer semantics may be computation-
ally very expensive. E.g. the problem is often 2EXPTIME-complete
for the so-called very expressive DLs [21, 11]. However, there ex-
ists a family of DLs with reasonable expressive power and very
nice computational properties, namely the DL-Lite family [7]. A
member of this family is DL-LiteR, which provides the theoretical
underpinning of the OWL 2 QL entailment regime. Recall that –
even without taking any DLs into account – answering CQs as well
as basic query analysis tasks like testing containment or equiva-
lence are NP-complete [8]. Somehow surprisingly, this complexity
does not increase if we consider CQ answering and CQ contain-
ment/equivalence under DL-Lite [7]. In other words, the significant
increase of expressive power has no serious effect on the complexity.
The goal of this work is to introduce an intuitive certain answer
semantics also for SPARQL under OWL 2 QL entailment with
similarly favourable results as for CQ answering under DL-Lite.
1Following [25], we use a more algebraic style notation, denoting
triples in parentheses with comma-separated components rather than
the blank-separated turtle notation.

If we were contented with evaluating BGPs under OWL 2 QL
according to the certain answer semantics, we could literally take
over all results on CQ answering under DL-Lite. But of course, there
are more facets to SPARQL than just BGPs. A crucial extension of
BGPs is given by the OPTIONAL operator (henceforth referred to
as OPT operator, for short). It allows one to express that a mapping
should mandatorily bind some of the variables in the query and, if
possible, it should be extended to further variables. If the extension
is impossible, we simply keep the unextended mapping – but we do
not dismiss it.

The OPT operator has an enormous impact on the complex-
ity of query evaluation: indeed, even if SPARQL is restricted to
the use of conjunction and the OPT operator, query evaluation is
PSPACE-complete [29]. In [25], the authors therefore introduced
well-designed SPARQL as an interesting fragment where certain re-
strictions on the occurrence of variables are imposed. It is shown in
[25] that for well-designed SPARQL, the complexity of query eval-
uation drops from PSPACE-completeness to coNP-completeness.
Moreover, as shown in [19], well-designed SPARQL queries have
a very nice and intuitive representation by so-called pattern trees,
i.e.: rooted, unordered trees where the nodes are labelled with BGPs
and the tree structure reflects the nesting of OPTs (for details on
well-designed SPARQL and pattern trees, see Section 2).

Recall that the natural definition of certain answers to a query
is to collect all those mappings that are a solution in all possible
models of the data and the ontology. As long as we restrict ourselves
to answering conjunctive queries, this notion of certain answers is
intuitive and constitutes the generally agreed semantics. In contrast,
as soon as we extend CQs by the OPT operator, this approach turns
out to be highly unsatisfactory, as the following example illustrates.

Example 2. Consider the SPARQL query:
SELECT ?x, ?z WHERE (?x, teaches, ?y)

OPT (?y, knows, ?z)

over the graph G = {(b, teaches, c)} and empty ontology O. The
query yields as only solution the mapping µ = {?x→ b}.
Clearly, also the graph G′ = G ∪ {(c, knows, d)} is a model of
(G,O). But in G′, µ is no longer a solution since µ can be extended
to solution µ′ = {?x → b, ?z → d}. Hence, there exists no
mapping which is a solution in every possible model of (G,O).

The reason for the unintuitive behaviour in the above example is
the non-monotonicity of the OPT operator. However, as observed
in [2], even if well-designed SPARQL is non-monotone, at least it
is weakly monotone in the following sense: if a model M ′ extends
a model M by introducing additional facts, then every solution
of a well-designed SPARQL query Q in M can be extended to
a solution of Q in M ′. Hence, the key idea for an appropriate
definition of certain answers of well-designed SPARQL under OWL
2 QL entailment will be to consider those mappings as certain which
can be extended to a solution in all possible models of the RDF
graph and the ontology. Actually, yet a further modification of the
semantics definition will be required in order to arrive at a uniquely
defined, intuitive semantics without resorting to bag semantics. The
details are worked out in Section 3.

The special behaviour of the OPT operator and the modification
of the certain answer semantics require an adaptation and extension
of the CQ answering algorithms for DL-Lite. Moreover, also the
complexity of query evaluation and of containment/equivalence
testing for well-designed SPARQL requires a new analysis in the
presence of OWL 2 QL entailment. We shall show that, analogously
to CQ answering under DL-Lite, the additional expressive power
due to OWL 2 QL entailment can be obtained without paying a price
in terms of complexity.

Organization and main results. In Section 2, we recall some basic
notions and results. A conclusion and outlook to future work are
given in Section 8. Our main results are detailed in Sections 3 – 7:

• In Section 3, we discuss the difficulties with a literal adoption of
certain answer semantics in the presence of the non-monotone OPT
operator. To overcome these difficulties, we propose a modified
definition of certain answers for well-designed SPARQL queries.
By relating the resulting semantics to SPARQL evaluation without
entailment regimes we illustrate the naturalness of our definition.

• Several adaptations and extensions of the rewriting-based CQ
evaluation under DL-Lite [7] are needed in order to incorporate
the OPT operator. In Sections 4 and 5, we present two different
approaches to answering well-designed SPARQL queries under
OWL 2 QL entailment: the first one proceeds in a modular way
by rewriting each BGP individually. A new data structure – so-
called guides – has to be introduced to ensure the consistency of
local solutions for each BGP when combining them to a solution of
the overall SPARQL query. Our second algorithm takes a holistic
approach by rewriting the entire well-designed SPARQL query
at once. The CQ-rewriting under DL-Lite has to be significantly
extended to take the peculiarities of the OPT operator into account.
The two algorithms are discussed in Section 6.

• In Section 7, we analyse the complexity of well-designed
SPARQL evaluation under OWL 2 QL entailment as well as the
complexity of basic query analysis tasks such as query containment
and query equivalence. We show that – analogously to CQs under
DL-Lite – the complexity remains essentially the same no matter
whether we consider well-designed SPARQL with or without OWL
2 QL entailment.

Due to space limitations, we only give proof ideas of our results.
All details will be provided in the full version of the paper.

2. PRELIMINARIES
RDF graphs and OWL 2 QL. We let U denote a countably infinite
set of URIs. An RDF triple t is any tuple t ∈ U ×U ×U. An
RDF graph G is any (possibly infinite) set G ⊆ U ×U ×U of
triples. Note that we do not allow blank nodes, i.e. all RDF triples
and graphs are ground. The active domain of an RDF graph G,
denoted dom(G), is the set of all URIs that appear in G.

We next define membership and inclusion triples, which are spe-
cial triples to enrich RDF graphs with OWL 2 QL or RDFS semantic
information. Let C, A and R be countably infinite and mutu-
ally disjoint subsets of U that denote constants, atomic concepts
(a.k.a. classes) and atomic roles (a.k.a. properties), respectively. A
basic role Q is either an atomic role from R or an expression R−,
where R ∈ R. A basic concept B is either an atomic concept
A ∈ A or an expression ∃Q, where Q is a basic role.

We further assume the dedicated URIs 2

- “a” to assert membership of a constant in a concept,

- “rdfs:sc” to assert the inclusion relation between concepts,

- “rdfs:sp” to assert the inclusion relation between roles,

- “owl:disjointWith” to assert concept disjointness, and

- “owl:propertyDisjointWith” to assert role disjointness.

2For the special RDF property rdf:type we use the common ab-
breviation “a”. For the RDFS properties rdfs:subClassOf and
rdfs:subPropertyOf we use the abbreviations “rdfs:sc”
and “rdfs:sp”, resp.

A membership assertion (MA) is any triple of the form (c, a, B)
or (c,Q, c′), where c, c′ are constants from C, B is a basic concept
and Q is a basic role. For a role R, we simplify (R−)− to R. Given
an RDF graph G, we write

- G |= (c,Q, c′) if (c,Q, c′) ∈ G or (c′, Q−, c) ∈ G,

- G |= (c, a, A) if (c, a, A) ∈ G, and

- G |= (c, a, ∃Q) if G |= (c,Q, c′) for some c′.

We define the notion of inclusions. An RDFS inclu-
sion is any triple having the form (B,rdfs:sc, A) or
(Q1,rdfs:sp, Q2), where B is a basic concept, A is an
atomic concept, and Q1, Q2 are basic roles. An OWL 2
QL inclusion is any RDFS inclusion or a triple of the form
(i) (B1,rdfs:sc, B2), (ii) (B1,owl:disjointWith, B2) or
(iii) (Q1,owl:propertyDisjointWith, Q2), where B1, B2

are basic concepts and Q1, Q2 are basic roles. Given an RDF graph
G, we write

- G |= (B1,rdfs:sc, B2) if G |= (a, a, B1) implies G |=
(a, a, B2) for any URI a,

- G |= (Q1,rdfs:sp, Q2) if G |= (a,Q1, b) implies G |=
(a,Q2, b) for any pair a, b of URIs,

- G |= (B1,owl:disjointWith, B2) if G |= (a, a, B1) im-
plies G 6|= (a, a, B2) for any URI a, and

- G |= (Q1,owl:propertyDisjointWith, Q2) if G |=
(a,Q1, b) implies G 6|= (a,Q2, b) for any pair a, b of URIs.

Concepts ∃Q in triples (B,rdfs:sc,∃Q) are to simplify presen-
tation; we can write (∃Q,rdfs:sc, A), (∃Q−,rdfs:sc, A) in-
stead of (Q,rdfs:domain, A), (Q,rdfs:range, A), respec-
tively. The role R− is a convenient representation of the role
r1, where (r1,owl:inverseOf, R). Similar, triples of the form
(B,rdfs:sc, ∃Q) represent the following OWL 2 triples:

(B,rdfs:sc, c1), (c1, a,owl:Restriction),

(c1,owl:onProperty, Q),

(c1,owl:someValuesFrom,owl:Thing).

An OWL 2 QL ontology (resp., RDFS ontology) O is any
set of OWL 2 QL (resp., RDFS) inclusions. W.l.o.g. we assume
(Q−1 ,rdfs:sp, Q

−
2) ∈ O for each (Q1,rdfs:sp, Q2) ∈ O.

Given a graph G and an ontology O, we write G |= O if G |= σ
for all σ ∈ O. A knowledge base (KB) is any pair G = (G,O),
where G is a graph and O is an ontology. Let G = (G,O) be a KB.
Given a graph G′, we say G′ is a model of G, denoted by G′ |= G
if G ⊆ G′ and G′ |= O. We say G is consistent if there exists a
model G′, s.t. G′ |= G. Finally, for an RDF triple t, we say G |= t
if G′ |= t for every G′ |= G. Analogously, O |= t if G′ |= t for
every G′ |= O.
SPARQL. Let V be an infinite set of variables, s.t. U∩V = ∅. We
denote variables with a leading question mark, e.g. ?x. A SPARQL
triple pattern t is a tuple in (U ∪ V) × (U ∪ V) × (U ∪ V).
Throughout this paper we will consider only triple patterns of the
form (?x, a, B) or (?x,Q, ?y), where B is a basic concept and Q a
basic role.3

The set of SPARQL graph patterns is defined recursively as
follows: (1) a triple pattern t is a graph pattern ; (2) if P1 and
P2 are graph patterns, then (P1 UNION P2), (P1 AND P2),
3Constants in place of ?x and ?y can be simulated by using fresh
variables and auxiliary triples in queries and input RDF graphs.

(P1 OPT P2) are graph patterns. Note that we follow the alge-
braic style notation from [25], where an explicit AND operator is
used. For a graph pattern P , we write vars(P), to denote the set of
variables occurring in P .

In order to define the semantics of SPARQL graph patterns, we
first introduce some additional terminology. A substitution is any
partial function σ from V to U ∪V. We use dom(σ) and rng(σ)
to denote the domain and the range of σ, respectively. Given a
triple pattern t and a substitution σ, we use σ(t) to denote the triple
obtained from t by replacing every variable ?x ∈ vars(t)∩ dom(σ)
by σ(?x). A (SPARQL) mapping is any partial function µ from
V to U. Note that mappings are substitutions. Two mappings µ1

and µ2 are compatible (written µ1 ∼ µ2) if µ1(?x) = µ2(?x) for
all ?x ∈ dom(µ1) ∩ dom(µ2). A mapping µ1 is subsumed by µ2

(written µ1 v µ2) if µ1 ∼ µ2 and dom(µ1) ⊆ dom(µ2). We write
µ1 < µ2 if µ1 v µ2 and µ2 6v µ1. For a mapping µ and sets
M,M ′ of mappings, we say µ v M if µ v µ′ for some µ′ ∈ M ,
and M ′ vM if µ vM for every µ ∈M ′.

We formalize the evaluation of graph patterns over an RDF graph
G as a function J·KG that, given a graph pattern, returns a set of
mappings. For a graph pattern P , it is defined as follows [25]:

1. JtKG = {µ | dom(µ) = vars(t) and µ(t) ∈ G} for a triple
pattern t.

2. JP1 AND P2KG = {µ1 ∪ µ2 | µ1 ∈ JP1KG, µ2 ∈
JP2KG, and µ1 ∼ µ2}.

3. JP1 OPT P2KG = JP1 AND P2KG ∪ {µ1 ∈ JP1KG | ∀µ2 ∈
JP2KG : µ1 � µ2}.

4. JP1 UNION P2KG = JP1KG ∪ JP2KG.

A basic graph pattern (BGP) is a set of triple patterns P =
{t1, . . . , tn} – equivalently written as t1 AND . . . AND tn.
Hence, we have JP KG = {µ | dom(µ) = vars(P), and µ(t) ∈
G for all t ∈ P}. Note that, as in [25] and in the vast majority of
works on query answering in DLs, we assume set semantics. In this
paper we focus on well-designed SPARQL graph patterns. A graph
pattern P , built only from AND and OPT is well-designed if there
does not exist a subpattern P ′ = (P1 OPT P2) of P and a variable
?x ∈ vars(P2) that occurs in P outside of P ′, but not in P1. A
graph pattern P = P1 UNION . . . UNION Pn is well-designed
if each subpattern Pi is UNION free and well-designed.

Pattern trees. Another class of graph patterns defined in [25] are
graph patterns in OPT normal form. A pattern containing only
the operators AND and OPT is in OPT normal form if the OPT
operator never occurs in the scope of an AND operator. It was
shown that every well-designed graph pattern can be transformed
into OPT normal form in polynomial time. Moreover, such graph
patterns allow for a natural tree representation, formalized by so-
called pattern trees in [19]. A pattern tree (PT) T is a pair (T,P),
where T = (V,E, r) is a rooted, unordered, tree and P = {Pn |
n ∈ V } is a labelling of the nodes in V , s.t. Pn is a non-empty set
of triple patterns for every n ∈ V . Given T , we write V (T) to
denote the set V of vertices. The next example illustrates this idea.

Example 3. The following SPARQL graph pattern asks for all
professors ?x and, if available, their email address ?w. Indepen-
dently of the available information on the email address ?w, the
pattern also tries to retrieve all professors ?y that ?x knows.(

(?x, a,Prof) OPT (?x, email, ?w)
)

OPT
(
(?x, knows, ?y) AND (?y, a,Prof)

)
The corresponding pattern tree looks as follows:

(?x, a,Prof)

(?x, email, ?w) (?x, knows, ?y), (?y, a,Prof)

Let T = ((V,E, r),P) be a pattern tree. We call a PT T ′ =
((V ′, E′, r′), {Pn | n ∈ V ′(T ′)}) a subtree of T if (V ′, E′, r′)
is a subtree of (V,E, r). Throughout this article we only consider
subtrees containing the root (i.e. r = r′), and will thus refer to
them simply as “subtrees”, omitting the phrase “containing the
root”. For a PT T = (T,P), we denote with pat(T) the set⋃
n∈V (T) Pn of triple patterns occurring in T . We write vars(T)

(resp. vars(n) for n ∈ V (T)) as an abbreviation for vars(pat(T))
(resp. vars(pat(n))).

A well-designed pattern tree (wdPT) is a pattern tree T = (T,P)
where for every variable ?x ∈ vars(T), the nodes {n ∈ V (T) |
?x ∈ vars(n)} induce a connected subgraph of T .

Recall that wdPTs are a representation of well-designed SPARQL
graph patterns. Also, for every wdPT T , there exists a straight
forward translation into a well-designed graph pattern PT in OPT
normal form. Moreover, all well-designed graph patterns repre-
sented by T are equivalent to PT (see [19] for details). For some
RDF graph G, we thus define JT KG = JPT KG .
Projection. Projection in SPARQL is realized via the SELECT
result modifier on top of graph patterns (or equivalently of pattern
trees). For a mapping µ and a set X of variables, let µ|X denote
the projection of µ to the variables in X , that is, the mapping µ′

defined as dom(µ′) := X ∩ dom(µ) and µ′(?x) := µ(?x) for all
?x ∈ dom(µ′). We extend projection to a set M of mappings as
M |X = {µ|X | µ ∈M}. The result of projecting a graph pattern P
to X is defined as J(P,X)KG = {µ|X | µ ∈ JP KG}. Analogously,
we define J(T ,X)KG = {µ|X | µ ∈ JT KG} for a wdPT T . We
refer to the pair (T ,X) as a projected wdPT (pwdPT).

3. CERTAIN ANSWER SEMANTICS
In this section, we propose an intuitive definition of certain an-

swers for well-designed SPARQL queries or, more precisely, for
pwdPTs. Moreover, we shall establish the relationship of these
certain answers with the canonical model – an important tool in
the DL world. A natural first idea (inspired by investigations in
[2] on the relationship between the official SPARQL semantics and
the open world assumption for RDF data) was already mentioned
in Section 1, namely: rather than requesting that certain answers
must be a solution in every possible model, at least one should be
able to extend certain answers to a solution in every possible model.
However, this idea alone still does not yield a satisfactory result as
the following example shows.

Example 4. Consider the following query
SELECT ?x, ?z WHERE (?x, teaches, ?y)

OPT (?y, knows, ?z)

over the graph G = {(a, teaches, b), (b, knows, c),
(a, teaches, d)} and empty ontology O. As possible mod-
els of (G,O) we have all supergraphs of G. Hence,
µ = {?x → a, ?z → c} is a certain answer and so is
µ′ = {?x→ a} (?y is bound to d).

Now let G′ = {(a, teaches, b), (b, knows, c)}. If we take as
certain answers all mappings that can be extended to some solution
in every possible model, then µ′ is still a certain answer.

The problem in the above example is that SPARQL queries with
projection and/or the UNION operator may have “subsumed” solu-
tions, i.e., solutions such that also a proper extension is a solution.

But then – with set semantics – we cannot recognize the reason
why some subsumed solution (such as µ′ in the above example) is
possibly not a solution in some possible model: Note that in the
above example, there are models for G in which µ′ is not a solution,
e.g., in the model G′′ = G ∪ {(d, knows, c)}. In this model, µ is
the only solution – with multiplicity 2 though.

In our first step towards reconciling SPARQL and certain answers,
we decide to stick to set semantics in order to be able to build upon
the broad DL-literature. Indeed, apart from very few exceptions
(such as [18]), there hardly exist any works on query answering in
DLs under bag semantics.

A key idea in our definition of certain answers is to only allow
“maximal” solutions. For a mapping µ and some property A, we
shall say that µ is v-maximal w.r.t.A if µ satisfies A, and there is
no µ′ such that µ < µ′ and µ′ satisfies A.

Definition 1. Let G = (G,O) be a KB and (T ,X) a pwdPT. A
mapping µ is a certain answer to (T ,X) over G if it is av-maximal
mapping such that (1) µ v J(T ,X)KG′ for every model G′ of G,
and (2) vars(T ′) ∩ X = dom(µ) for some subtree T ′ of T . We
denote by cert(T ,X ,G) the set of all certain answers to (T ,X)
over G.

Hence, in Example 2, only µ is a certain answer over graph G,
while the subsumed solution µ′ is dismissed.

The above definition ensures an important property of solutions
to pwdPTs, namely: the domain of every solution must correspond
to the free variables of some subtree in the pwdPT. However, for
the design of algorithms to actually compute the certain answers
for some entailment regime, it will turn out convenient if, in the
first place, we do not need to check this condition. This leads to the
following definition of certain pre-answers for pwdPT.

Definition 2. Let G = (G,O) be a KB and (T ,X) a pwdPT. A
mapping µ is a certain pre-answer to (T ,X) over G if µ is a v-
maximal mapping such that µ v J(T ,X)KG′ for every model G′ of
G. We denote by certp(T ,X ,G) the set of all certain pre-answers
to (T ,X) over G.

We note that models of a KB G = (G,O) are invariant under
renaming of URIs that do not occur inG. Hence, certain pre-answers
and certain answers have mappings only to constants in dom(G).
The following example shows the difference between them. In
Theorem 1 below, we shall then establish their precise relationship.

Example 5. Consider the following query
SELECT ?x, ?y, ?z WHERE (?x, a,Prof)

OPT ((?x, teaches, ?y) AND (?x, knows, ?z))

and the following KB: G = {(a, a,Prof), (a, knows, c)} and
O = {(Prof,rdfs:sc,∃teaches)}. The mapping µ = {?x →
a, ?z → c} is the certain pre-answer, whereas µ′ = {?x → a} is
the certain answer.

THEOREM 1. Let G be a KB and (T ,X) a pwdPT. Then µ ∈
cert(T ,X ,G) iff µ is a v-maximal mapping such that:

(1) µ v certp(T ,X ,G), and

(2) vars(T ′) ∩ X = dom(µ) for some subtree T ′ of T .

PROOF SKETCH. ‘⇒’ Let µ ∈ cert(T ,X ,G). Since, µ v
J(T ,X)KG′ for every graph G′ |= G, µ v certp(T ,X ,G). The
mapping µ is v-maximal trivially from Definition 1. ‘⇐’ Let µ be
v-maximal and satisfying (1) and (2) We prove Definition 1 con-
dition (1): Since µ v certp(T ,X ,G), µ v J(T ,X)KG′ for every
G′ |= G; condition (2): Follows from the v-maximality of µ w.r.t.
to (1) and (2).

By the above theorem, the set of certain answers of some pwdPT
can be easily computed from the set of certain pre-answers by
retaining only those mappings that bind all free variables of some
subtree. Hence, in the rest of the paper, we shall focus on certain pre-
answers. The computation of the certain answers is then a simple
post-processing step.

As a further simplification in our algorithms, we shall also ig-
nore for a while the distinction between distinguished and non-
distinguished variables. Indeed, it is easy to see that to compute the
certain pre-answers of a pwdPT (T ,X), it suffices to first compute
the certain pre-answers of T (without projection, i.e. X = vars(T))
and then to project over X as shown in the following proposition.

PROPOSITION 1. Let G be a KB and (T ,X) a pwdPT. Then
µ ∈ certp(T ,X ,G) iff µ is a v-maximal mapping s.t. (1) µ v
certp(T ,G), and (2) dom(µ) ⊆ X .

Thus, from now on, we consider only certain pre-answers for well-
designed pattern trees without projection.

In many Description Logics, the canonical model provides the
basis for actually computing the certain answers for CQs or unions
of CQs. Since our ontology is a variant of the DL DL-LiteR, we
will also employ canonical models, which we define similarly to
[5]. The canonical model of a consistent KB G = (G,O) is a graph
G′ that can be homomorphically mapped (preserving the constants
occurring G) into any other model G′′ of G. From now on, we
assume G is consistent.

In addition to the URIs in C, we introduce a new set of URIs
AG ⊆ U with AG ∩C = ∅. The URIs in AG have the following
form: aQ1Q2 . . . Qn, where n ≥ 1, a ∈ dom(G) and Q1,. . . ,Qn
are basic roles. The set AG consists of those URIs which satisfy
(1) G |= (a, a, ∃Q1); (2) for every i ∈ {1, . . . , n − 1}, O |=
(∃Q−i ,rdfs:sc, ∃Qi+1) and Q−i 6= Qi+1. We denote by tail(u)
the last role in a URI u ∈ AG , and define canO(G) for basic roles
Q, Q′ and a basic concept B:

G ∪ (1)
{(a, a, B) | G |= (a, a, B)} ∪ (2)
{(a,Q, b) | G |= (a,Q, b)} ∪ (3)

{(u, a, B) | u ∈ AG ,O |= (∃tail(u)−,rdfs:sc, B)} ∪ (4)

{(u1, Q, u2) | u2 ∈ AG , u2 = u1Q
′,

O |= (Q′,rdfs:sp, Q)} ∪ (5)

{(u2, Q, u1) | u2 ∈ AG , u2 = u1Q
′,

O |= (Q′,rdfs:sp, Q−)} (6)

We denote by compO(G) the triples obtained from the union
of Equations (1)-(3). Notice that compO(G) = canORDFS (G),
where ORDFS is the set of all RDFS inclusions σ, s.t. O |= σ
(for a similar result see [9] or [27]). We will write can(G) (resp.,
comp(G)) instead of canO(G) (resp., compO(G)) if O is clear
from the context. Note that can(G) can be infinite in size. The
following well-known result from databases and DLs can be shown
for can(G) (see e.g. the proof of Theorem 2 in [24]).

PROPOSITION 2. Let G = (G,O) be a KB. Then

(a) can(G) |= G, and

(b) for any G′, s.t. G′ |= G, there is a homomorphism h from
can(G) to G′ s.t. for every a ∈ dom(G), h(a) = a.

In Theorem 2, we shall establish the relationship between certain
pre-answers to wdPTs and the canonical model. To this end, we first
introduce the following useful definition.

Definition 3. For a mapping µ, we let µ ↓= µ|{?x|µ(?x)∈C},
i.e.µ↓ is the restriction of µ to mappings into constants. Assume a
set M of mappings. Then M ↓= {µ↓| µ ∈M}.

Moreover, MAX(M) = {µ ∈ M | @µ′ ∈ M s.t.µ < µ′}, i.e.
MAX(M) is the set of v-maximal mappings in M .

THEOREM 2. Let G = (G,O) be a KB and T a wdPT. Then,
certp(T ,G) = MAX(JT Kcan(G)↓).

PROOF SKETCH. It suffices to prove certp(T ,G) v
JT Kcan(G) ↓, and certp(T ,G) w JT Kcan(G) ↓. For ‘v’ let µ
be a mapping in certp(T ,G). Then, µ is subsumed by an answer of
T in every model. Hence, also by an answer µ′ in can(G). Since, µ
only maps variables to constants in dom(G), µ is still subsumed by
µ′↓. For ‘w’ let µ be a mapping in JT Kcan(G) ↓. By Proposition 2,
µ can be homomorphically mapped into every model of G, hence µ
is part of a solution in every model, i.e. also maximal solutions.

4. MODULAR QUERY REWRITING
In this section we provide our first method to compute certain

answers to well-designed pattern trees under OWL 2 QL entailment.
In particular, we present a query rewriting procedure to compute
certp(T ,G) for a given wdPT T and a KB G = (G,O). To this
end, we extend the well-known query reformulation algorithm of
Calvanese et al. for answering conjunctive queries (CQs) over DL
knowledge bases K = (T,A), where T is a DL-Lite TBox and
A is an ABox [7]. The algorithm of Calvanese et al. transforms a
CQ q and a TBox T into a union Q of CQs such that, given any
ABox A, computing the certain answers to q over K = (T,A)
is equivalent to evaluating Q over A, where A is seen as a plain
relational database.

In the presented approach, given a wdPT T and an ontology O
we apply a rewriting at each node of T , obtaining a tree T ′ of sets
of BGPs. Roughly speaking, given any RDF graph G, computing
certp(T ,G) then corresponds to evaluating T ′ in a bottom-up fash-
ion over G. Since nodes of T are rewritten in isolation but may
share variables, the rewriting involves some bookkeeping, which
we describe next. In particular, T ′ will be expressed as an enriched
query.

Definition 4. Let Paths be the set of all words of the form
?xQ1 . . . Qn, whereQ1, . . . , Qn are basic roles with n ≥ 0. Given
a set of variables L ⊆ V, an L-guide is a partial function γ from
variables to words in Paths such that (a) dom(γ) ∩ L = ∅, and
(b) for any ?x ∈ dom(γ) with γ(?x) =?zQ1 . . . Qn we have that
?z ∈ L. An enriched BGP is any tuple 〈P, γ〉, where P is a BGP
and γ is a vars(P)-guide. Expressions constructed from enriched
BGPs by applying the AND, OPT and UNION connectives are
called enriched queries. We use E,E1, E2, . . . to denote enriched
queries.

We are ready to define the standard semantics of enriched queries.
Intuitively, the answer to an enriched BGP 〈P, γ〉 over a graph G
is obtained by first evaluating P using the standard semantics and
then extending the obtained mappings with additional assignments
prescribed by γ, potentially introducing assignments to elements
from AG . The semantics is then generalized to full enriched queries
using the standard operations on mappings.

Definition 5. Assume a mapping µ and a dom(µ)-guide γ. We
let expand(µ, γ) = µ ∪ {?x → µ(?y)Q1 . . . Qn | γ(?x) =
?yQ1 . . . Qn}. Assume an RDF graph G. Then the evaluation
of enriched queries is defined inductively as follows:

no Triple t Inclusion α gr(t, α)

r1 (?x, a, A) (A1, rdfs:sc, A) 〈(?x, a, A1), ∅〉
r2 (?x, a, A) (∃Q, rdfs:sc, A)

〈
(?x,Q, ?x′), ∅

〉
r3 (?x,Q, ?y) (A, rdfs:sc, ∃Q) 〈(?x, a, A), ?y →?xQ〉
r4 (?x,Q, ?y) (∃Q1, rdfs:sc, ∃Q)

〈
(?x,Q1, ?x

′), ?y →?xQ
〉

r5 (?x,Q, ?y) (Q′, rdfs:sp, Q)
〈
(?x,Q′, ?y), ∅

〉
Table 1: The result gr(t, α) of applying an inclusion α to a triple
t. Here ?x′ denotes a fresh variable.

- JEKG = {expand(µ, γ) | µ ∈ JP KG} in case E = (P, γ) is an
enriched BGP.

- JE1 AND E2KG = {µ1 ∪ µ2 | µ1 ∈ JE1KG, µ2 ∈
JE2KG, and µ1 ∼ µ2}.

- JE1 OPT E2KG = JE1 AND E2KG ∪ {µ1 ∈ JE1KG | ∀µ2 ∈
JE2KG : µ1 � µ2}.

- JE1 UNION E2KG = JE1KG ∪ JE2KG.

Our rewriting procedure relies on the following “lifting” property
of OWL 2 QL. For a guide γ, let ||γ|| denote the maximum |w|
over all w ∈ rng(γ). Given a wdPT T and an ontology O, we
let d(T ,O) = 2k1 + k2, where k1 is the number of atomic roles
occurring in T and O, and k2 is the number of triples in T .

PROPOSITION 3. Assume a wdPT T , a KB G = (G,O), and
a mapping µ ∈ JT Kcan(G). Then there exists a mapping µ′ ∈
JT Kcan(G) such that (a) µ↓= µ′ ↓, and (b) |w| ≤ d(T ,O) for every
w ∈ rng(µ′) .

Intuitively, the above says that any mapping µ for a wdPT T in the
canonical model of G can be transformed into a mapping µ′ that
is confined to the first d(T ,O) levels of the canonical model yet
agrees with µ on the assignments to constants. The property follows
from the well known fact that in each branch of the canonical model
of G one finds only a small number of types (see e.g. [4]). We note
that the above property does not hold in the presence of full OWL 2.

With the semantics and the desired properties of enriched queries
established, we can describe the rewriting algorithm. The procedure
exhaustively rewrites triples of an enriched BGP by applying inclu-
sions “backwards”. Assume a BGP P . We say an inclusion α is
applicable to a triple t w.r.t.P if t and α have the following forms:

(i) t = (?x, a, A) and α = (B,rdfs:sc, A);

(ii) t = (?x,Q, ?y), where ?y does not appear in any other triple
of P , and α has ∃Q in the third position;

(iii) t = (?x,Q, ?y), ?x does not appear in any other triple of P ,
and α has ∃Q− in the third position;

(iv) t = (?x,Q, ?y) and α = (Q′,rdfs:sp, Q).

Let App(P) denote the binary relation such that (t, α) ∈ App(P)
iff an inclusion α is applicable to a triple t w.r.t. P .

In Algorithm 1 we present the rewriting routine RefBGP, which
reformulates an input BGP P0 by taking into account the inclusions
of O. It returns pr, which is a union of enriched BGPs. The pro-
cedure is parametrized by an integer k, which restricts the length
of guide ranges and thus guarantees termination. As we shall see,
Proposition 3 ensures that we do not lose completeness. The pro-
cedure employs the function gr (t, α), which returns a tuple 〈t′, γ〉,
where t′ is a triple and γ is a singleton guide, both obtained from
t by applying α as described by Table 1. P [t/t′] denotes the BGP

Algorithm 1: RefBGP
input :a BGP P0, an inclusion set O, and an integer k
output :a set pr of enriched BGPs

1 pr ← {〈P0, ∅〉}
2 repeat
3 pr′ ← pr
4 foreach 〈P, γ〉 ∈ pr′ s.t. ||γ|| ≤ k do
5 foreach t∈P and α ∈ O s.t. (t, α) ∈ App(P) do
6 〈t′, γ′〉 ← gr (t, α)
7 pr ← pr ∪ {〈P [t/t′] , expand(γ′, γ)〉}
8 foreach pair t1, t2 in P with a MGU σ do
9 pr ← pr ∪ {〈σ(P), expand(σ, γ)〉}

10 until pr′ = pr
11 return pr

obtained from P by replacing the triple t with t′. Given a BGP P
and a substitution σ, we let σ(P) = {σ(t) | t ∈ P}. A unifier of a
pair t1, t2 of triples is a substitution σ such that σ(t1) = σ(t2). We
call σ a most general unifier (MGU) of t1, t2 if for any unifier σ′ of
t1, t2 there exists a unifier σ′′ of t1, t2 such that σ′ = σ ◦ σ′′.

Using an adaptation of the proof in [7], we can show that evaluat-
ing the output of RefBGP over a plain RDF graph corresponds to
evaluating the original query over an initial segment of the canonical
model. More formally:

PROPOSITION 4. Let P be a BGP, G = (G,O) a KB, k
an integer and pr the union of enriched BGPs returned by
RefBGP(P,O, k). Then (JprKG)|vars(T) = JP KG′ , where G′ is
the restriction of can(G) to URIs a ∈ U such that |a| ≤ k.

We can now generalize the rewriting from BGPs to full wdPTs.
Given a wdPT T and an ontology O, we simply apply RefBGP to
the BGP of every node in T .

Definition 6. Let T be a wdPT and O an ontology. Let
RefPT(T ,O) denote the enriched query obtained by replacing in
T every BGP P by RefBGP(P,O, d(T ,O)).

We arrive at the main technical result of this section.

THEOREM 3. Let T be a wdPT and G = (G,O) be a KB. Let
M = (JRefPT(T ,O)KG)|vars(T). Then

certp(T , (G,O)) = MAX(M↓).

PROOF (SKETCH). First note that by using Proposition 4 and
induction on the structure of T , one can show (?) M = JT KG′ ,
where G′ is the restriction of can(G) to URIs a ∈ U such that
|a| ≤ d(T ,O).

Due to Theorem 2, to prove the present theorem it suffices to
show that (JT Kcan(G))↓= M ↓.

Take an arbitrary mapping µ∗ ∈ (JT Kcan(G))↓. Then there exists
a mapping µ ∈ (JT Kcan(G)) such that µ↓= µ∗ ↓. Moreover, due to
Proposition 3 we can w.l.o.g. assume that |w| ≤ d(T ,O) for every
w ∈ rng(µ). Then due to (?), µ′ ∈M . Thus also µ∗ ∈M ↓.

Take an arbitrary mapping µ∗ ∈M ↓. Then there exists µ ∈M
such that µ ↓= µ∗ ↓. Then due to (?), µ ∈ JT KG′ . Thus trivially
µ ∈ JT Kcan(G) and µ∗ ∈ (JT Kcan(G))↓.

We put our algorithm to work in the following example.

Example 6. Let O be the following set of inclusions:

(Person,rdfs:sc, ∃knows), (7)
(Prof,rdfs:sc, ∃teaches), (8)

which states that every Person object knows somebody and that
every Prof object teaches somebody. Let G be an RDF graph
containing the following triples: (a, a,Person), (b, a,Prof). We
want to derive answers for the following query T over the above
knowledge base:

(?x, teaches, ?y) OPT
(
(?z, teaches, ?y) OPT (?u, knows, ?y)

)
This query asks for all ?x, ?z, ?u s.t. ?x teaches some ?y and op-
tionally all ?z, s.t. ?z teach the same ?y as ?x and optionally all ?u
that know ?y. We derive new queries by rewriting each node of the
pattern tree corresponding to the above query separately.

1. We start with the first BGP (?x, teaches, ?y): We use t =
(?x, teaches, ?y). Equation 8 is applicable to t, hence in Line
6 〈t′, γ′〉 = 〈(?x, a,Prof), ?y →?x · teaches〉, which will be
the enriched query that we add to pr in Line 7. Since our
BGP consists of a single triple pattern, we will not unify
any pairs of triple patterns in Line 8 and 9. No further ap-
plication of inclusions leads to a new query. Hence, Ref-
BGP((?x, teaches, ?y),O, d(T ,O)) outputs:

〈(?x, teaches, ?y), ∅〉 (9)
〈(?x, a,Prof), ?y →?x · teaches〉 (10)

2. Similar as above for the second BGP:
RefBGP((?z, teaches, ?y),O, d(T ,O)) outputs:

〈(?z, teaches, ?y), ∅〉 (11)
〈(?z, a,Prof), ?y →?z · teaches〉 (12)

3. And similar as above for the third BGP:
RefBGP((?u, knows, ?y),O, d(T ,O)) outputs:

〈(?u, knows, ?y), ∅〉 (13)
〈(?u, a,Person), ?y →?u · knows〉 (14)

Evaluating each of the enriched queries (9)-(14) over G gives the
following mappings: Query (10) evaluated over G outputs {?x→
b, ?y → b · teaches}, Query (12) {?z → b, ?y → b · teaches} and
Query (14) {?u → a, ?y → a · knows}. Combining the answers
via Definition 5 gives the mapping: {?x→ b, ?z → b}.

5. HOLISTIC QUERY REWRITING
The modular approach from the previous section follows the gen-

eral philosophy of SPARQL entailment regimes from [12] which
also proceeds by first treating each BGP individually. However,
a possible disadvantage of our modular approach is that we need
to maintain additional data structures (in particular, the “guides”)
to ensure consistency when combining the partial solutions from
different nodes in the pattern tree to an overall solution. As a conse-
quence, our whole algorithm has to be implemented from scratch
because standard tools cannot handle these additional data struc-
ture. In this section, we therefore present a second approach to
SPARQL evaluation under OWL 2 QL entailment. Its main goal
is to make use of standard technology as far as possible. We thus
aim at a transformation of OWL 2 QL entailment under our novel
certain answer semantics into SPARQL evaluation with respect to
RDFS Entailment. For the latter task, strong tools (e.g. [13, 22])
are available. For the actual rewriting, we shall follow the rewriting

from [9] (see also [28] for a similar approach) which incorporates
several improvements compared with the original algorithm from
[7] used in the previous section. The most important conceptual dif-
ference between our two algorithms, however, is that the algorithm
presented below proceeds in a holistic way, i.e., our query rewriting
always takes the entire pattern tree into account. Further differences
between our modular and holistic algorithm will be discussed in
Section 6.

As the modular rewriting, the holistic rewriting may unify and
thus eliminate original variables; this needs to be memorized in
order to construct correct answers in the end. Thus the rewriting
operates on pairs 〈T , β〉, where T is a wdPT and β a partial function
from variables to sets of variables. Intuitively, ?x ∈ β(?u) says
that ?x was substituted by the variable ?u during the rewriting. The
evaluation of a pair 〈T , β〉 over an RDF graph is defined as follows:

J〈T , β〉KG = {expand(µ, β) | µ ∈ JT KG}, where

expand(µ, β) = {?z → µ(?u) |?z ∈ β(?u), ?u ∈ dom(µ)}

The rewriting of 〈T , β〉 is obtained by applying exhaustively the
following procedure.

Definition 7. For a wdPT T together with a function β and an
ontology O, we write 〈T , β〉 →O 〈T ′, β′〉 if T ′ and β′ can be
obtained from T and β by the following steps:

(S1) non-deterministically pick a variable ?x ∈ vars(T) and a role
Q.

(S2) pick a concept BQ, s.t. O |= (BQ,rdfs:sc,∃Q) and Q
is a basic role. If no such concept BQ exists, continue with
(S1).

(S3) Set 〈T ′, β′〉 = 〈T , β〉. Drop from T ′ every subtree whose
root has an triple of the form

(a) (?z,Q1, ?x) such that O 6|= (Q,rdfs:sp, Q1), or

(b) (?x,Q1, ?z) such that O 6|= (Q,rdfs:sp, Q−1), or

(c) (?x, a, A) such that O 6|= (∃Q−,rdfs:sc, A).

Note that ?z is an arbitrary variable.

(S4) Let neighboursT ′(?x) = {?z | (?x, P, ?z) ∈
pat(T ′) or (?z, P, ?x) ∈ pat(T ′)}. Take a fresh variable
?u and replace in T ′ all ?z ∈ neighboursT ′(?x) with ?u. In
other words, collapse all neighbours of ?x into ?u. Moreover,
let β′(?u) =

⋃
?z∈neighboursT ′ (?x)

β(?z).

(S5) In all nodes n of T ′ where ?x ∈ vars(n):

– if BQ is an atomic concept: add (?u, a, BQ).

– if BQ is of the form ∃Q′: add (?u,Q′, ?y), where ?y is
a new variable, i.e. not yet occurring in T ′.

(S6) In T ′, drop every triple t where ?x ∈ vars(t).

We write 〈T , β〉 →∗O 〈T ′, β′〉 if 〈T ′, β′〉 can be obtained from
〈T , β〉 by finitely many rewrite iterations. We let rewO (T , β) =
{〈T ′, β′〉 | 〈T , β〉 →∗O 〈T ′, β′〉}.

Example 7. Let us revisit the KB and the query of Example 6.
Let T denote the wdPT corresponding to this, and let βT be defined
as in Theorem 4. Then, the set rewO(T , βT) is obtained as follows.
We start with the query 〈T , βT 〉 and proceed as in Definition 7. The
steps that change the PT are depicted in Figure 1.

(S1) Let us pick variable ?y and the role teaches.

(?x, teaches, ?y)

(?z, teaches, ?y)

(?u, knows, ?y)

(?x, teaches, ?y)

(?z, teaches, ?y)

(?u1, teaches, ?y)

(?u1, teaches, ?y)

(?u1, teaches, ?y), (?u1, a, Prof)

(?u1, teaches, ?y), (?u1, a, Prof)

(?u1, a, Prof)

(?u1, a, Prof)

(S3) (S4)

(S5)

(S6)

Figure 1: Holistic rewriting given in Example 7.

(S2) Since O |= (Prof,rdfs:sc, ∃teaches), we pick the con-
cept Prof.

(S3) T ′ contains a node with (?u, knows, ?y), since O 6|=
(teaches,rdfs:sp, knows−), we drop from T ′ the subtree
rooted at the node containing (?u, knows, ?y).

(S4) Now, neighboursT ′(?y) = {?x, ?z}. We introduce a fresh
variable ?u1 and replace all occurrences of ?x and ?z in T ′
with ?u1. In addition, we set β′(?u1) = β(?x) ∪ β(?z) =
{?x, ?z}.

(S5) In all nodes of T ′ with an occurrence of ?y we add
(?u1, a,Prof).

(S6) We now drop all triples where ?y occurs.

After this step, we will have the pattern tree depicted in the lower
left of Figure 1 together with the function β′, where β′(?u1) =
{?x, ?z}. Due to lack of space, we omit further rewriting steps.
The evaluation of the query depicted in Figure 1 over the Graph
G given in Example 6 outputs the mapping {?u1 → b}. Then,
expand({?u1 → b}, β′) = {?x → b, ?z → b}, which is the
answer also obtained in Example 6.

In order to compute the certain pre-answers certp(T ,G), it just
remains to eliminate all non-maximal mappings:

THEOREM 4. Let G = (G,O) be a KB and T a wdPT. Let βT
be the function s.t. for every ?x ∈ vars(T) : βT (?x) = {?x}. Let
M = (JrewO(T , βT)Kcomp(G))|vars(T). Then,

certp(T , (G,O)) = MAX(M).

PROOF IDEA. For soundness, one shows the correctness of ev-
ery rewriting step 〈T , β〉 →O 〈T ′, β′〉. For this, one shows
if µ ∈ J〈T ′, β′〉Kcan(G), then there is a µ′ ∈ J〈T , β〉Kcan(G),
s.t. µ v µ′. For completeness, one shows for a mapping µ ∈
certp(T ,G) that a sequence of rewriting steps to a query 〈T ′, β′〉,
s.t. µ ∈ J〈T ′, β′〉Kcomp(G), can be found.

6. DISCUSSION
In the previous sections, we have presented two algorithms for

obtaining certain answers of well-designed SPARQL queries over
OWL 2 QL ontologies. The obvious difference between the two
algorithms is that the first one proceeds by rewriting each node of the
pattern tree individually while the second one targets the complete
pattern tree at once. We now aim at a more detailed analysis of the
characteristics of each of the two algorithms. In particular, we want
to identify typical settings which favour one or the other. To this
end, we look at a simple ontology consisting of a single inclusion
triple: (A,rdfs:sc, ∃R).

First, consider the following pattern tree with 2 nodes:

(?x, P, ?y1), . . . , (?x, P, ?yn)

(?z1, R, ?y1), . . . , (?zn, R, ?yn)

- Modular rewriting gives a total number of queries whose order of
magnitude is O(2n), since:

a) In the root node we cannot apply any inclusion triple to the
BGP. Hence, the algorithm just outputs one query.

b) In the child node we can immediately apply the inclusion
(A,rdfs:sc, ∃R) to any of the n triples. This can be done
in any order, i.e. the total number of queries obtained isO(2n).

- Holistic rewriting outputs only the original query. Whatever vari-
able ?yi we pick in Step (S1), we will drop the complete query
in Step (S3), since O 6|= (R,rdfs:sp, P). Picking any other
variable ?x or ?zi does not lead to further queries either.

For this query, the holistic approach by far outperforms the mod-
ular rewriting. Observe that all ?yi variables are shared by the two
nodes in the wdPT. Hence, if some ?yi is mapped into the anony-
mous part of the canonical model, we would need to infer that the
R edge is also a P edge, which is of course not true. Consequently,
there exists no rewriting of the entire wdPT. However, in the modular
approach, each node of the wdPT is processed individually. Hence,
we do not detect that it is impossible to map the variable ?yi in the
root node to the same anonymous element as ?yi in the child node.

Second, we consider the following wdPT with n nodes:

(?x1, P, ?z), (?x1, R, ?y1)

(?xn, P, ?z), (?xn, R, ?yn)

...

- Modular rewriting gives a total number of 2 ∗ n queries since, in
each of the n nodes, we apply (A,rdfs:sc,∃R) independently.

- Holistic rewriting will do the same as the modular rewriting, but it
copies with each rewriting also all other nodes, which then in turn
must again be rewritten. Therefore, the holistic rewriting outputs
a total number of queries whose order of magnitude is O(2n).

For the second query, clearly, the modular rewriting by far outper-
forms the holistic rewriting. We observe that now, the ?yi variables
which have to be picked, only appear once in the tree. Hence, the
nodes are independent of each other. This is in sharp contrast to the
first query, where the two nodes shared all of the ?yi variables.

These two examples show that neither of the two algorithms is
uniformly better than the other: depending on the setting, each of the
two algorithms may produce exponentially fewer rewritings than the
other. The way in which the same variables occur in multiple nodes
looks like the key feature to distinguish situations where one or
the other algorithm is preferable. The main strength of the holistic
approach is to recognize incompatible occurrences of the same
variable in different nodes, which allows the pruning of subtrees in
the wdPT. The main strength of the modular approach is to avoid
the same rewriting of subtrees in the wdPT for different rewritings
in a parent node by treating each node individually. At any rate, it
seems advantageous to have both algorithms in one’s portfolio.

7. COMPUTATIONAL COMPLEXITY
Having proposed two concrete algorithms for computing the cer-

tain answers to well-designed SPARQL queries according to our

new semantics, we will next study the computational complexity of
the evaluation problem. We show that the certain answer semantics
does not increase its complexity compared to the setting without
ontologies. Formally, we thus study the following problem.

OWL 2 QL-EVALUATION

Input: pwdPT (T ,X), KB G, mapping µ.
Question: µ ∈ cert(T ,X ,G)?

For establishing several of the complexity results presented in
this section, including the one on OWL 2 QL-EVALUATION, it is
convenient to first consider the following problem.

PARTIAL OWL 2 QL-EVALUATION

Input: pwdPT (T ,X), KB G, mapping µ.
Question: µ v cert(T ,X ,G)?

THEOREM 5. The problem PARTIAL OWL 2 QL-EVALUATION
is NP-complete.

PROOF SKETCH. The membership can be shown using The-
orem 4: First, compute comp(G) in polynomial time. Next,
guess a subtree 〈T ′, β′〉 of a rewriting 〈T ′′, β′′〉 ∈ rewO(T , βT)
(with dom(µ) ⊆ vars(〈T ′, β′〉)) and an extension λ of µ s.t.
λ(pat(T ′)) ⊆ comp(G).

Hardness follows immediately from the NP-completeness of the
query evaluation problem for CQs.

Deciding OWL 2 QL-EVALUATION can now be reduced to several
calls of PARTIAL OWL 2 QL-EVALUATION.

THEOREM 6. The problem OWL 2 QL-EVALUATION is DP-
complete. Hardness holds even if the ontology is empty.

PROOF IDEA. For membership, note that OWL 2 QL-
EVALUATION ((T ,X), (G,O), µ) can be solved by deciding:

1. µ v cert(T ,X , (G,O)), and

2. for all µ′ : X̄ → dom(G) with X̄ ⊆ X and µ < µ′ :
µ′ 6v cert(T ,X , (G,O))?

Step (1) is in NP as shown in Theorem 5. For step (2), the co-
problem is in NP: It can be solved by first guessing a mapping µ′

(of polynomial size) and then checking if µ′ v cert(T ,X , (G,O)).
Guessing µ′ and the witness for µ′ v cert(T ,X , (G,O)) can be
done in one step. Thus step (2) is in coNP.

The hardness is shown in the full version.

We continue by studying typical query analysis tasks, i.e., subsump-
tion (v), containment (⊆), and equivalence (≡) between pwdPTs.
First of all, we have to adapt these notions to our setting including on-
tologies. That is, let (T1,X1) and (T2,X2) be pwdPTs, andO be an
ontology. We say that (T1,X1)◦(T2X2) (for ◦ ∈ 〈vO,⊆O,≡O〉) if
cert(T1,X1, (G,O)) ◦′ cert(T2,X2, (G,O)) (for ◦′ ∈ 〈v,⊆,=〉,
respectively). This allows us to define the query analysis problems
studied in this section.

OWL 2 QL-SUBSUMPTION/OWL 2 QL-CONTAINMENT/
OWL 2 QL-EQUIVALENCE

Input: pwdPTs (T1,X1), (T2,X2), ontology O.
Question: (T1,X1) vO / ⊆O / ≡O (T2,X2)?

These problems can be decided by using (PARTIAL) OWL 2 QL-
EVALUATION. For characterizing the relationships between these
problems, we have to introduce some additional notation first. Let

(T ,X) be a pwdPT. We use fvars(T) = vars(T)∩X to denote the
set of free variables in T . Moreover, let db(.) be a bijective function
that assigns to each variable ?x ∈ vars(T) a unique, new URI
db(?x), and that maps constants onto themselves. Then the frozen
RDF graph G for T is the set of triples G = {db(t) | t ∈ pat(T)}.
Finally, for a subtree T ′ of T , let µT ′ be defined as dom(µT ′) :=
fvars(T ′) and µT ′(?x) := db(?x) for each ?x ∈ dom(µ).

This allows us to characterize the subsumption problem in terms
of PARTIAL OWL 2 QL-EVALUATION.

THEOREM 7. Given pwdPTs (T1,X1), (T2,X2), and an ontol-
ogy O, we have (T1,X1) vO (T2,X2) iff for every subtree T ′1 of
T1 we have µT ′

1
v cert(T2,X2, (db(T ′1),O)).

Intuitively, the idea is that given some G and µ ∈
cert(T1,X1, (G,O)), an extension µ′ v cert(T2,X2, (G,O)) can
be obtained by a combination of µ and the mapping witnessing
µT ′

1
v cert(T2,X2, (db(T ′1),O)).

The containment problem on the other hand can be character-
ized in terms of OWL 2 QL-SUBSUMPTION and OWL 2 QL-
EVALUATION. In fact, the following result presents a characteriza-
tion of *O , i.e. a characterization of the co-problem, since we think
it is more intuitive.

THEOREM 8. Given pwdPTs (T1,X1), (T2,X2), and an ontol-
ogy O. Then (T1,X1) *O (T2,X2) iff

1. X1 6= X2, or

2. (T1,X1) 6vO (T2,X2), or

3. there exist subtrees T ′1 of T1 and T ′2 of T2 with fvars(T ′1) (
fvars(T ′2) s.t. µT ′

1
∈ cert(T1,X1, (db(T ′1) ∪ db(T ′2),O)).

We briefly discuss the idea of this characterization: By proper-
ties 1 and 2, containment cannot hold. Now assume (T1,X1) vO
(T2,X2). Then clearly the only reason for some certain answer µ of
T1 not being a certain answer of T2 is that some proper extension
µ′ of µ is actually a certain answer of T2. This situation is covered
by the third property: T ′1 represents µ, T ′2 represents µ′. Finally
µT ′

1
∈ cert(T1,X1, (db(T ′1) ∪ db(T ′2),O)) ensures that while µ

can be extended to µ′ on T2, this is not possible on T1.
The equivalence problem can of course be solved by checking

mutual containment. Moreover, it is easy to see that (T1,X1) ≡O
(T2,X2) iff (T1,X1) vO (T2,X2) and (T2,X2) vO (T1,X1).
Just consider the case that for some RDF graph G, assuming
mutual subsumption, there is some µ ∈ cert(T1,X1, (G,O)),
s.t. µ /∈ cert(T2,X2, (G,O)). Then there must be µ′ ∈
cert(T2,X2, (G,O)) with µ < µ′. Thus either µ′ or some ex-
tension of it must be contained in cert(T1,X1, (G,O)), which con-
tradicts µ ∈ cert(T1,X1, (G,O)).

Observe that Theorems 7 and 5 give an immediate ΠP
2 upper

bound on the complexity of OWL 2 QL-SUBSUMPTION. Also, this
result combined with Theorem 6 provides a ΠP

2 upper bound for
OWL 2 QL-CONTAINMENT (via a ΣP2 bound for the co-problem).
Finally, these results imply the same upper bound for OWL 2 QL-
EQUIVALENCE. By proving matching lower bounds, we show that
this is in fact the exact complexity of all three problems.

THEOREM 9. The problems OWL 2 QL-SUBSUMPTION, OWL
2 QL-CONTAINMENT, and OWL 2 QL-EQUIVALENCE are ΠP

2 -
complete. Hardness holds even for empty ontologies.

PROOF IDEA. Membership results follow from the above discus-
sion. Hardness for OWL 2 QL-SUBSUMPTION follows from the
hardness of subsumption without ontologies [19]. The hardness for
OWL 2 QL-CONTAINMENT and OWL 2 QL-EQUIVALENCE is
shown in the full version.

Of course, we cannot compare these results directly with the known
results for well-designed SPARQL queries in settings without on-
tologies. In fact, over plain RDF graphs, most of the problems have
even a higher complexity: The evaluation problem is ΣP2 -complete
[19] while the containment and equivalence problem are even un-
decidable [26]. Only the subsumption problem was shown to have
the same complexity [26]. The reason for the higher complexity, or
even undecidability, respectively, is the existence of subsumed map-
pings in query answers. Recall that, for any RDF graph G, pwdPT
(T ,X) and ontology O, the set J(T ,X)KG may contain subsumed
mappings. This is not the case for cert(T ,X , (G,O)), due to the
restriction to maximal mappings in our definition of certain answers.

For the subsumption problem, this of course does not make a
difference, since for two sets of mappings M,M ′ we clearly have
M v M ′ if and only if MAX(M) v MAX(M ′) (observe
however, that in the presence of subsumed answers, pairwise sub-
sumption does not guarantee equivalence [19]). However, for a
reasonable comparison of the other problems under our new certain
answer semantics with the settings without ontologies, we need to
study suitable variants of these problems first. We thus investigate
the following problem.

MAXEVALUATION

Input: pwdPT (T ,X), RDF graph G, mapping µ.
Question: µ ∈ MAX(J(T ,X)KG)?

For containment and equivalence, we consider the relations
⊆MAX and ≡MAX where, for pwdPTs (T1,X1), (T2,X2),
we have (T1,X1) ◦ (T2,X2) (for ◦ ∈

〈
⊆MAX ,≡MAX

〉
) if

MAX(J(T1,X1)KG) ◦MAX(J(T2,X2)KG) (for ◦ ∈ 〈⊆,=〉, resp.)
for all RDF graphs G. This gives the following problems.

MAXCONTAINMENT/MAXEQUIVALENCE

Input: pwdPTs (T1,X1), (T2,X2).
Question: (T1,X1) ⊆MAX / ≡MAX (T2,X2)?

THEOREM 10. The problem MAXEVALUATION is DP-
complete. The problems MAXCONTAINMENT and MAXEQUIVA-
LENCE are ΠP

2 -complete

PROOF IDEA. The corresponding problems in the presence of
an ontology of course provide an upper bound. Hardness results are
provided in the full version.

We have thus pinpointed the complexity of the most relevant reason-
ing problems related to query evaluation and query analysis: Starting
from the problems respecting our new certain answer semantics, we
also reconsidered the corresponding problems for settings without
ontologies where we remove subsumed mappings from the query
answers.

Our results show that for all the problems analysed in this sec-
tion, applying the certain answer semantics does not increase their
computational complexity compared to the case without ontologies.

8. CONCLUSION AND FUTURE WORK
Summary. In this work, we have provided an intuitive definition
of certain answers for well-designed SPARQL queries under entail-
ment regimes. As a basis for the design of evaluation algorithms,
we have established the relationship between certain answers and
canonical models. It should be noted that this part of our work is
completely generic in the sense that it applies to any entailment
regime. We have then turned our attention to a concrete entailment
regime – OWL 2 QL – for which we have presented novel evaluation

algorithms together with a detailed complexity analysis. We have
thus shown that – analogously to CQ-answering under DL-Lite [7]
– one can extend SPARQL evaluation to OWL 2 QL entailment
without significantly increasing the complexity.

Related Work. Work related to our findings first and foremost
includes the work our approaches are based upon [7, 9, 12, 2] as
discussed throughout this paper. There is a huge body of results on
query answering under different Description Logics (cf. [7, 27, 9,
23]). However, the queries considered there are typically CQs. So
far, query languages comparable to well-designed SPARQL have not
yet been studied in the context of Description Logics. The problem
of answering SPARQL queries under OWL 2 QL via rewriting has
been recently studied in [16], where a translation of the problem
into SQL is provided. Unlike our work, the authors do not modify
the semantics defined by the entailment regime [12]. Investigating
aggregate functions, similar to our observation in the presence of
weak monotonicity, the authors of [18] notice that defining certain
answers as the intersection over all possible worlds does not provide
satisfactory answers. For the counting operator, they solve this
problem by defining the certain answer to be the minimum over all
possible worlds. In [1], the authors describe a rewriting of SPARQL
query answering under OWL 2 QL into Datalog±. A modification
of this translation allows them to remove the restriction to map
all variables to actual values from the RDF graph. However, this
relaxation applies only to variables occurring in a single BGP, while
we allow this for all non-distinguished variables. Also, a discussion
of the resulting semantics is missing. Libkin [20] also criticizes the
standard notion of certain answers in case of non-monotone queries.
Similar to his suggestion to use the greatest lower bounds in terms
of informativeness, our approach chooses the most informative
solutions as certain answers.

Future Work. Above all, we want to investigate further entailment
regimes under our certain answer semantics. The implementation of
the rewriting algorithms, the development of suitable benchmarks
and alternative methods, e.g. employing materialization [15], is a
challenging task as well. It also remains to be seen whether the
optimization in [14] can be adopted by the proposed semantics.
Moreover, we want to study combinations of our semantics with
other approaches: our definition of certain answers is a relaxation
of the current semantics; it allows to infer additional mappings that
logically follow from the knowledge base. Recently, a stronger
semantics was presented in [17], which discards entire mappings
whose possible extensions to optional subqueries would imply incon-
sistencies in the knowledge base. A semantics that would integrate
both principles is also an exciting research problem. Another exten-
sion envisaged refers to the restrictions imposed on the fragment
of SPARQL considered here: so far, we have only considered well-
designed SPARQL, which was further restricted to queries of the
form (?x, a, B) or (?x,Q, ?y). However, since SPARQL allows
for variables in all positions, i.e. also (?x, ?y, ?z) is a valid triple
pattern, we will extend our work to allow these triple patterns as
well. Even though we obtain nice complexity results, by investi-
gating well-designed SPARQL, for the certain answer semantics
this restriction should not be of big importance. Hence, we want to
further investigate the certain answer semantics in the presence of
standard SPARQL queries over OWL 2 QL ontologies.

Acknowledgements
This work was supported by the Vienna Science and Technology
Fund (WWTF), project ICT12-15 and by the Austrian Science Fund
(FWF): P25207-N23 and P25518-N23.

9. REFERENCES
[1] M. Arenas, G. Gottlob, and A. Pieris. Expressive languages

for querying the semantic web. In Proc. of PODS 2014, pages
14–26. ACM, 2014.

[2] M. Arenas and J. Pérez. Querying semantic web data with
SPARQL. In Proc. of PODS 2011, pages 305–316. ACM,
2011.

[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and
P. F. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[4] M. Bienvenu, T. Eiter, C. Lutz, M. Ortiz, and M. Šimkus.
Query answering in the description logic S. In Proc. of DL
2010. CEUR-WS.org, 2010.

[5] M. Bienvenu, M. Ortiz, M. Šimkus, and G. Xiao. Tractable
queries for lightweight description logics. In Proc. of IJCAI
2013. IJCAI/AAAI, 2013.

[6] S. Bischof, M. Krötzsch, A. Polleres, and S. Rudolph.
Schema-agnostic query rewriting in SPARQL 1.1. In Proc. of
ISWC 2014, pages 584–600. Springer, 2014.

[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Tractable reasoning and efficient query answering
in description logics: The DL-Lite family.
J. Autom. Reasoning, 39(3):385–429, 2007.

[8] A. K. Chandra and P. M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In Proc. of STOC
1977, pages 77–90. ACM, 1977.

[9] T. Eiter, M. Ortiz, M. Šimkus, T. Tran, and G. Xiao. Query
rewriting for Horn-SHIQ plus rules. In Proc. of AAAI 2012.
AAAI Press, 2012.

[10] B. Glimm. Using SPARQL with RDFS and OWL entailment.
In Reasoning Web 2011, Tutorial Lectures, pages 137–201.
Springer, 2011.

[11] B. Glimm, C. Lutz, I. Horrocks, and U. Sattler. Conjunctive
query answering for the description logic SHIQ. J. Artif. Intell.
Res. (JAIR), 31:157–204, 2008.

[12] B. Glimm and C. Ogbuji. SPARQL 1.1 Entailment Regimes.
W3C Recommendation, W3C, Mar. 2013.
http://www.w3.org/TR/sparql11-entailment.

[13] F. Goasdoué, I. Manolescu, and A. Roatis. Efficient query
answering against dynamic RDF databases. In In Proc. of
EDBT 2013, pages 299–310. ACM, 2013.

[14] I. Kollia and B. Glimm. Optimizing SPARQL query
answering over OWL ontologies. J. Artif. Intell. Res. (JAIR),
48:253–303, 2013.

[15] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and
M. Zakharyaschev. The combined approach to query
answering in DL-Lite. In Proc. of KR 2010. AAAI Press,
2010.

[16] R. Kontchakov, M. Rezk, M. Rodriguez-Muro, G. Xiao, and
M. Zakharyaschev. Answering SPARQL queries over
databases under OWL 2 QL entailment regime. In Proc. of
ISWC 2014, pages 552–567. Springer, 2014.

[17] E. V. Kostylev and B. C. Grau. On the semantics of SPARQL
queries with optional matching under entailment regimes. In
Proc. of ISWC 2014, pages 374–389. Springer, 2014.

[18] E. V. Kostylev and J. L. Reutter. Answering counting
aggregate queries over ontologies of the DL-Lite family. In
Proc. of AAAI 2013. AAAI Press, 2013.

[19] A. Letelier, J. Pérez, R. Pichler, and S. Skritek. Static analysis
and optimization of semantic web queries. ACM Trans.
Database Syst., 38(4):25, 2013.

[20] L. Libkin. Incomplete data: what went wrong, and how to fix
it. In Proc. PODS 2014, pages 1–13. ACM, 2014.

[21] C. Lutz. The complexity of conjunctive query answering in
expressive description logics. In Proc. of IJCAR 2008, pages
179–193. Springer, 2008.

[22] B. Motik, Y. Nenov, R. Piro, I. Horrocks, and D. Olteanu.
Parallel materialisation of datalog programs in centralised,
main-memory RDF systems. In Proc. AAAI 2014, pages
129–137. AAAI Press, 2014.

[23] M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of
query answering in expressive description logics via tableaux.
Journal of Automated Reasoning, 41(1):61–98, 2008.

[24] M. Ortiz, S. Rudolph, and M. Šimkus. Query answering in the
horn fragments of the description logics SHOIQ and SROIQ.
In Proc. of IJCAI 2011, pages 1039–1044. IJCAI/AAAI, 2011.

[25] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. ACM Trans. Database Syst., 34(3),
2009.

[26] R. Pichler and S. Skritek. Containment and equivalence of
well-designed SPARQL. In Proc. of PODS 2014, pages 39–50.
ACM, 2014.

[27] R. Rosati. On conjunctive query answering in EL. In Proc. DL
2007. CEUR-WS.org, 2007.

[28] R. Rosati and A. Almatelli. Improving query answering over
DL-Lite ontologies. In Proc. of KR 2010. AAAI Press, 2010.

[29] M. Schmidt, M. Meier, and G. Lausen. Foundations of
SPARQL query optimization. In Proc. of ICDT 2010, pages
4–33. ACM, 2010.

[30] J. F. Sequeda, M. Arenas, and D. P. Miranker. OBDA: query
rewriting or materialization? In practice, both! In Proc. of
ISWC 2014, pages 535–551. Springer, 2014.

