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Abstract
In this paper we introduce proportionality to belief merging.
Belief merging is a framework for aggregating information
presented in the form of propositional formulas, and it gener-
alizes many aggregation models in social choice. In our anal-
ysis, two incompatible notions of proportionality emerge: one
similar to standard notions of proportionality in social choice,
the other more in tune with the logic-based merging setting.
Since established merging operators meet neither of these
proportionality requirements, we design new proportional be-
lief merging operators. We analyze the proposed operators
against established rationality postulates, finding that current
approaches to proportionality from the field of social choice
are, at their core, incompatible with standard rationality pos-
tulates in belief merging. We provide characterization results
that explain the underlying conflict, and provide a complexity
analysis of our novel operators.

1 Introduction
Proportionality is one of the central fairness notions studied
in social choice theory (Black 1958; Dummett 1984; Mon-
roe 1995), arising whenever a collective decision should re-
flect the amount of support in favor of a set of issues. Thus,
notions of proportionality are key when it is desirable that
preferences of larger groups have more influence on the out-
come, while preferences of smaller groups are not neglected.

The idea of proportional representation shows up in many
application scenarios: it is a key ingredient of parliamen-
tary elections (Balinski and Young 1982) and, more gen-
erally, of multiwinner voting, i.e., the task of electing a
committee of multiple candidates (Faliszewski et al. 2017).
Recent work has set out to extend the notion of propor-
tionality from mathematically simple formalisms (mainly
the apportionment setting) to more general settings, with
significant progress in areas such as approval-based mul-
tiwinner voting (Aziz et al. 2017; Sánchez-Fernández et
al. 2017), ordinal multiwinner voting (Elkind et al. 2017a;
2017b), proportional rankings (Skowron et al. 2017), and
multi-attribute committees (Lang and Skowron 2018).

In this paper we introduce proportionality to the very gen-
eral framework of belief merging (Konieczny, Lang, and
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Marquis 2004; Konieczny and Pino Pérez 2002; 2011),
which allows agents to combine their individual positions on
a set of issues in order to obtain a collective solution, with
the added option of imposing constraints on admissible out-
comes. Though the agents’ individual positions are called
beliefs, the belief merging framework is versatile enough
that it can accommodate a broad range of attitudes (e.g., be-
liefs, preferences, judgments, goals or items of knowledge),
as long as these, together with the constraint and the out-
come, can be expressed as formulas in a logical language.
The key challenges of such a process are that agents may
hold mutually conflicting beliefs, and that beliefs may reflect
complex interdependencies between issues. The theory of
belief merging then offers (i) a range of methods, called be-
lief merging operators, for aggregating beliefs and (ii) pos-
tulates used to assess the rationality of the operators.

The most prominent belief merging operators studied so
far tend to fall into two main categories: operators follow-
ing the majority opinion, and which can be said to embody
a utilitarian stance; and operators that place particular em-
phasis on the worst-off agents, and which can be said to be
based on an egalitarian viewpoint. Our aim is to find a com-
promise between these two opposing positions, which, in a
belief merging scenario, translates as the following desider-
atum: if a large enough proportion of the agents share com-
mon beliefs, then these beliefs should be reflected at the col-
lective level, to a degree matching their proportion. Despite
its intuitive appeal, such a proportionality requirement has
yet to find its way in the study of belief merging operators.

In defining proportional belief merging operators we rely
on the Proportional Approval Voting (PAV) rule, studied in
multiwinner voting scenarios and known to satisfy particu-
larly strong proportionality requirements (Aziz et al. 2017).
Based on PAV, we introduce three belief merging operators:
the PAV operator, the bounded PAV operator and the har-
monic Hamming operator. All these operators fall into the
class of satisfaction-based operators, introduced by us (Sec-
tion 4) as an alternative to the standard way of representing
merging operators, which is distance-based.

We look at the proposed belief merging operators from
three perspectives. Firstly, in Section 5, the operators are
placed against the standard belief merging IC-postulates. We



show that any belief merging operator directly extending
PAV cannot be compatible with all IC-postulates; in partic-
ular, such an operator will not satisfy postulate IC2, which
stipulates that any admissible agreement among agents shall
be part of the merged result. We also provide a characteri-
zation of operators that fail IC2 based on properties of the
ranking a satisfaction-based operator induces. This provides
an alternative view of why the PAV approach is inconsistent
with IC2. However, we show that what we call the bounded
PAV operator can be characterized as the only merging op-
erator (of a certain natural class) that extends PAV and satis-
fies all other postulates. While the harmonic Hamming op-
erator is defined via the harmonic sum used by PAV, it does
not generalize PAV. Thus, the aforementioned impossibility
does not hold; indeed, the harmonic Hamming operator sat-
isfies all standard IC postulates IC0−8.

Secondly, in Section 6, we introduce two basic propor-
tionality postulates for the belief merging domain. The first
one, classical proportionality, is the kind of proportional-
ity requirement typically studied in social choice settings, in
particular in the apportionment setting (Balinski and Young
1982). This notion is based on the assumption that agents
derive utility from positive occurrences, i.e., from approved
candidates being selected in the collective choice. The sec-
ond notion, binary proportionality, is closer to the logical
nature of belief merging. Here, no difference is made be-
tween positive and negative agreement: the agents’ utility
derives from the (Hamming) distance between their prefer-
ences and the collective choice. We show that these two no-
tions are mutually exclusive and contradict each other. Fur-
thermore, we show by example that established belief merg-
ing operators satisfy neither of these two postulates. In con-
trast, the aforementioned PAV and bounded PAV operators
satisfy classical proportionality and the harmonic Hamming
operator satisfies binary proportionality.

Thirdly, in Section 7, we study the complexity of our pro-
posed merging operators. Our results are that our novel op-
erators fall into similar complexity classes as established
merging operators, which shows that the introduction of pro-
portionality comes at a moderate computational cost.

As mentioned before, belief merging can be seen as a gen-
eral framework. In Section 3 we make this argument precise
for approval-based committee elections, and in Section 8
we show that our work has implications for other settings:
in particular, it yields new proportional goal-based voting
rules (Novaro et al. 2018) and approval-based multiwinner
rules with a variable number of winners (Kilgour 2016; Fal-
iszewski, Slinko, and Talmon 2017), and gives insights for
proportional judgment aggregation (List and Puppe 2009;
Everaere, Konieczny, and Marquis 2015; 2017).

2 Belief Merging
We assume a set A of m propositional atoms, with L the set
of propositional formulas generated from A using the usual
connectives. An interpretation w is a truth-value assignment
to atoms in A, and we denote by U the set of all interpre-
tations over the set A. We typically write interpretations as
words, standing in for the set of atoms assigned to true. If
v and w are interpretations, the symmetric difference v4w

between v and w is defined as v4w = (v\w)∪(w\v). The
Hamming and drastic distances dH and dD, respectively, are
defined as dH(v, w) = |v4w| and dD(v, w) = 0, if v = w,
and 1 otherwise. If ϕ ∈ L is a propositional formula and w
is an interpretation, w is a model of ϕ if w satisfies ϕ, with
[ϕ] being the set of models of ϕ. If ϕ1, ϕ2 ∈ L, we say that
ϕ1 |= ϕ2 if [ϕ1] ⊆ [ϕ2], and that ϕ1 ≡ ϕ2 if [ϕ1] = [ϕ2]. A
formula ϕ is consistent, or satisfiable, if [ϕ] 6= ∅.

A propositional profile P = (ϕ1, . . . , ϕn) is a finite tuple
of consistent propositional formulas, with each formula ϕi
assumed to correspond to an agent i. If P1 and P2 are pro-
files, P1 + P2 is the profile obtained by appending P2 to P1.
If there is no danger of ambiguity, we write P + ϕi instead
of P + (ϕi). A merging operator ∆ is a function mapping a
profile P of consistent formulas and a propositional formula
µ, called the constraint, to a propositional formula ∆µ(P ).
Operators ∆1 and ∆2 are equivalent if ∆1

µ(P ) ≡ ∆2
µ(P ),

for any P and µ. The following postulates are typically taken
to provide a core set of rationality constraints any merging
operator ∆ is expected to satisfy (Konieczny and Pino Pérez
2002; 2011):

(IC0) ∆µ(P ) |= µ.
(IC1) If µ is consistent, then ∆µ(P ) is consistent.
(IC2) If

∧
P ∧ µ is consistent, then ∆µ(P ) ≡

∧
P ∧ µ.

(IC3) If P1 ≡ P2 and µ1 ≡ µ2, then ∆µ1
(P1) ≡ ∆µ2

(P2).
(IC4) If ϕ1 |= µ and ϕ2 |= µ, then ∆µ(ϕ1, ϕ2) ∧ ϕ1 is

consistent if and only if ∆µ(ϕ1, ϕ2)∧ϕ2 is consistent.
(IC5) ∆µ(P1) ∧∆µ(P2) |= ∆µ(P1 + P2).
(IC6) If ∆µ(P1) ∧ ∆µ(P2) is consistent, then

∆µ(P1 + P2) |= ∆µ(P1) ∧∆µ(P2).
(IC7) ∆µ1

(P ) ∧ µ2 |= ∆µ1∧µ2
(P ).

(IC8) If ∆µ1
(P ) ∧ µ2 is consistent, then ∆µ1∧µ2

(P ) |=
∆µ1

(P ) ∧ µ2.

These postulates are best understood as axiomatizing a de-
cision procedure based on the aggregation of information
coming from different sources (the formulas in P ), under
a constraint µ that must be satisfied by the result (postu-
late IC0). The result should be consistent (postulate IC1),
independent of the syntax of the formulas involved (postu-
late IC3), include outcomes that are unanimously accepted
across subprofiles (postulates IC5−6) and coherent when
varying the constraint (postulates IC7−8). Additionally, pos-
tulate IC2 requires that if there is any agreement between the
formulas in P and µ, then the merged result is nothing more
than the agreed upon outcomes; and postulate IC4 stipulates
that merging two formulas ϕ1 and ϕ2 should be fair, in the
sense that if the result contains outcomes consistent with one
of the formulas, it should contain results consistent with the
other as well. We will see that the latter two postulates are
problematic for proportionality-driven merging operators.

Standard ways of constructing merging operators that sat-
isfy postulates IC0−8 are based on the idea of minimiz-
ing overall distance to the profile P = (ϕ1, . . . , ϕn), and
rely on two ingredients (Konieczny and Pino Pérez 2002;
2011). The first ingredient is a notion of pseudo-distance



dH x1x2x3x4 x1x2x3x4 x1x2x3x4 y1y2y3y4 Σ gmax

x1x2x3x4 0 0 0 8 8 (8, 0, 0, 0)
x1x2x3y1 2 2 2 6 12 (6, 2, 2, 2)
x1x2y1y2 4 4 4 4 16 (4,4,4,4)
x1y1y2y3 6 6 6 2 20 (6, 6, 6, 2)
y1y2y3y4 8 8 8 0 24 (8, 8, 8, 0)

Table 1: Hamming distances for ∆H,Σ and ∆H,gmax.

d : U × U → R≥0 between interpretations, typically either
Hamming distance dH or drastic distance dD. The distance
d(ϕ,w) from a formula ϕ to an interpretation w is then de-
fined as d(ϕ,w) = minv∈[ϕ] d(v, w). The collective dis-
tance w.r.t. profile P is obtained using the second ingredi-
ent, an aggregation function f : Rn≥0 → R≥0 that, for any
integer n, maps a vector of n real numbers to a real number,
and is defined as df (P,w) = f(d(ϕ1, w), . . . , d(ϕn, w)).
Typical aggregation functions are the sum Σ and gmax. By
f = gmax vectors are ordered in descending order. For
this aggregation function, the resulting ordered vectors are
compared according to a lexicographic order. The distance-
based merging operator ∆d,f is defined, for any profile P
and formula µ, as a formula ∆d,f

µ (P ) such that [∆d,f
µ (P )] =

argminw∈[µ]d
f (P,w), i.e., as a formula whose models are

the models of µ at minimal collective distance to P . When
d = dD, the operators ∆D,Σ and ∆D,gmax are equivalent
and we will refer to them as ∆D. Thus, we recall three main
distance-based operators (∆H,Σ, ∆H,gmax and ∆D), all of
which are known to satisfy postulates IC0−8 (Konieczny,
Lang, and Marquis 2002; Konieczny and Pino Pérez 2011).
Example 1. For the set of atoms A = X ∪ Y , where
X = {x1, . . . , x4} and Y = {y1, . . . , y4}, take a profile
P = (ϕ1, ϕ2, ϕ3, ϕ4) with ϕi = (x1∧x2∧x3∧x4)∧(¬y1∧
¬y2∧¬y3∧¬y4), for i ∈ {1, 2, 3}, ϕ4 = (¬x1∧¬x2∧¬x3∧
¬x4)∧(y1∧y2∧y3∧y4). We obtain that [ϕi] = {x1x2x3x4},
for i ∈ {1, 2, 3} and [ϕ4] = {y1y2y3y4}. Additionally,
take a constraint µ such that [µ] = {x1x2x3x4, x1x2x3y1,
x1x2y1y2, x1y1y2y3, y1y2y3y4}. Table 1 displays Hamming
distances between models of µ and formulas in P as well as
the aggregated distances, for the Σ and gmax aggregation
functions. We have dΣ

H(P, x1x2x3x4) < dΣ
H(P, x1x2x3y1)

and dgmax
H (P, x1x2y1y2) < dgmax

H (P, x1x2x3y1), since
the overall distance (4, 4, 4, 4) lexicographically domi-
nates (6, 2, 2, 2). Optimal outcomes are written in bold,
i.e., [∆H,Σ

µ (P )] = {x1x2x3x4} and [∆H,gmax
µ (P )] =

{x1x2y1y2}. We also obtain that [∆D
µ (P )] = {x1x2x3x4}.

Example 1 illustrates a general feature of the standard
merging operators: ∆H,Σ sees optimal outcomes in utili-
tarian terms and thereby favors the majority opinion, while
∆H,gmax attempts to improve the standing of the worse off
agent, thereby favoring an egalitarian outcome. While such
approaches may produce, on occasion, proportional out-
comes, they are in no way guaranteed to do so in general.

3 Approval-Based Committee Elections as
Instances of Belief Merging

Notions of proportionality have been systematically stud-
ied in the social choice literature, notably in the case of

PAV x1x2x3x4 x1x2x3x4 x1x2x3x4 y1y2y3y4 Σ

x1x2x3x4 h(4) h(4) h(4) h(0) 6.25
x1x2x3y1 h(3) h(3) h(3) h(1) 6.5
x1x2y1y2 h(2) h(2) h(2) h(2) 6
x1y1y2y3 h(1) h(1) h(1) h(3) 4.83
y1y2y3y4 h(0) h(0) h(0) h(4) 2.08

Table 2: PAV scores for a selection of committees of size 4.

Approval-Based Committee (ABC) elections (Faliszewski et
al. 2017). An ABC election consists of a set of candidates
C, a desired size of the committee k, and a preference pro-
file A = (A1, . . . , An). The preference profile A contains
approval ballots, i.e., Ai ⊆ C is the set of candidates agent i
approves of. An ABC voting rule outputs one or more size-
k subsets of C, the chosen committee(s). The ABC voting
rule of interest to us is called Proportional Approval Voting
(PAV) (Thiele 1895). It is based on the harmonic function
h : N → R, defined as h(`) =

∑`
i=1

1
i with the added con-

vention that h(0) = 0. Given a committee w of size k, the
PAV-score ofw w.r.t.A is PAV(A,w) =

∑n
i=1 h(|Ai∩w|).

The PAV rule applied to the preference profile A, for a de-
sired size k of the committee, is defined as PAVk(A) =
argmaxw⊆C,|w|=kPAV(A,w), i.e., it outputs committees of
size k that maximize the PAV score w.r.t. A.

Example 2. Take a set C = X ∪ Y of candidates, where
X and Y are as in Example 1, and a preference profile
A = (A1, A2, A3, A4) with Ai = [ϕi], where ϕi are as
in Example 1. Suppose k = 4, i.e., the task is to choose com-
mittees of size 4. Intuitively, a proportional outcome would
consist of three candidates fromX and one from Y , to reflect
the fact that supporters of X outnumber supporters of Y in
A by a ratio of 3 : 1. Indeed, this is exactly the type of out-
come PAV will select. A committee maximizing the overall
PAV score w.r.t. A is x1x2x3y1, as depicted in Table 2.

In Example 2 we have identified models of propositional for-
mulas with sets of approved candidates in an ABC election.
Indeed, we may pursue this analogy further and show that
any ABC election can be rephrased as a belief merging in-
stance. Given an instance of an ABC election, we associate
to C the set of propositional atoms AC = C. To agent i’s
approval ballot Ai ⊆ C we associate the propositional for-
mula: ϕAi

=
∧
x∈Ai

x ∧
∧
x∈C\Ai

¬x, the sole model of
which is Ai. To the preference profile A we associate the
propositional profile PA = (ϕA1

, . . . , ϕAn
). To obtain solu-

tions that adhere to the cardinality constraint k, we choose
µk to be a formula whose models are all subsets of AC of
size k. By postulates IC0 and IC1, [∆µk

(PA)] consists of a
non-empty set of models of size k, which can be seen as the
winning committees of the ABC election.

In general, any ABC election for size-k committees can be
seen as a belief merging instance where the profile consists
of formulas with exactly one model and the constraint µ has
models of fixed size k. A merging operator ∆ extends PAV
if for all preference profiles A, it holds that PAVk(A) =
[∆µk

(PA)], i.e., the output of the PAV voting rule is the set
of interpretations, or sets of atoms, returned by ∆µk

(PA).



approval-based

{
sAV(v, w) = |v ∩ w|
sPAV(v, w) = h(|v ∩ w|)
sbPAV(v, w) = 2h(|v ∩ w|)− h(|w|)

binary sat.-based

{
shH(v, w) = h(m− dH(v, w))
shD(v, w) = h(m− dD(v, w))

Figure 1: Proposed satisfaction measures.

In the following we will introduce merging operators that
extend PAV and another one that is inspired by it.

4 Satisfaction-based Merging Operators
The framework of ABC elections presented in Section 3 can
be used as a springboard for designing proportional belief
merging operators. By conceiving ways in which an agent
derives utility from a possible outcome, it becomes possible
to reason about the social welfare of merging, i.e., the utility
of the agents’ society as a whole.

The key notion in doing so is a satisfaction measure
s : U × U → R, quantifying the amount of satisfaction
s(v, w) of interpretation v with interpretation w. The sat-
isfaction s(ϕ,w) of a formula ϕ with w is then defined
as s(ϕ,w) = maxv∈[ϕ] s(v, w). Finally, the collective
satisfaction s(P,w) of a profile P with w is defined as
s(P,w) =

∑
ϕ∈P s(ϕ,w). The satisfaction-based merging

operator ∆s outputs a formula ∆s
µ(P ) such that [∆s

µ(P )] =
argmaxw∈[µ]s(P,w), i.e., a formula whose models are ex-
actly the models of µ that maximize satisfaction of P .

Note that we can convert a distance-based merging op-
erator ∆d,Σ (see Section 2) into an equivalent satisfaction-
based operator by inverting the pseudo distance d, i.e., by
defining a satisfaction measure s as s(v, w) = m− d(v, w),
for any interpretations v andw (remember thatm is the num-
ber of atoms in A). The resulting satisfaction-based opera-
tor is s.t. ∆s

µ(P ) ≡ ∆d,Σ
µ (P ), for any profile P and µ. Note

that since d is a pseudo distance and thus symmetric (i.e.,
d(v, w) = d(w, v), for any interpretations v and w), the sat-
isfaction measure s defined on the basis of it is also sym-
metric. This being said, we do not require satisfaction mea-
sures to be symmetric in general. Consequently, satisfaction-
based operators as defined here form a more general class
than distance-based operators ∆d,Σ, where d is a pseudo-
distance. It is worth mentioning that the satisfaction-based
approach we propose here is not a mere stylistic variant of
the distance-based view; it also encourages a different view-
point on merging, where the goal is to find an outcome mak-
ing agents happy, subject to fairness norms. Scenarios where
this viewpoint is warranted occur most of all in settings re-
quiring social considerations.

The concrete satisfaction measures we propose are de-
fined, for any interpretations v and w, in Figure 1, and gen-
erate two groups of operators. The approval-based opera-
tors, consisting of the AV operator ∆AV, the PAV operator
∆PAV and the bounded PAV operator ∆bPAV, mimic the
behavior of an ABC voting rule (see Section 3) in that they
compute satisfaction of v with w based on how many atoms
v and w have in common, similarly to how satisfaction of

an approval ballot Ai with a potential committee w is based
on how many approved candidates in Ai find themselves in
w. Note that, while an ABC voting rule is defined only for
committees of fixed size, the merging operators we propose
select among interpretations of any size. Nonetheless, it is
straightforward to see that if the allowed outcomes (here,
models of the constraint µ) are restricted to a given size, then
the operators ∆PAV and ∆bPAV are equivalent and extend,
in the sense described in Section 3, the PAV voting rule.

The operator ∆AV is put forward as a benchmark
approval-based operator, based on a satisfaction measure
that simply counts the atoms v and w have in common:
in particular, ∆AV does not incorporate any proportionality
ideas. Consequently the ∆AV operator does not extend PAV,
and, as shown in Section 6, does not meet any of the propor-
tionality requirements we propose. The ∆PAV operator re-
fines ∆AV by using the harmonic function h, which is known
to behave well w.r.t. proportionality requirements (Aziz et
al. 2017). Intuitively, the harmonic function reflects the “di-
minishing returns” of added satisfaction: the difference be-
tween h(x) and h(x + 1) gets smaller as x increases. Thus,
the operator ∆PAV is a prime candidate for a proportional
satisfaction-based merging operator. Nonetheless, ∆PAV has
several shortcomings, which serve as motivation for the re-
maining operators.

One drawback of ∆PAV is that it favors larger interpreta-
tions if available (Example 3), i.e., it tries to increase agents’
satisfaction by setting as many atoms to true as possible.
Such an inflationary strategy may be undesirable in practice
and, in a belief merging setting, interferes with postulate IC4.
Example 3. For A = {x1, x2}, P = (ϕ1, ϕ2), with [ϕ1] =
{x1} and [ϕ2] = {x1x2}, and µ such that [µ] = {x1, x1x2},
we obtain that [∆PAV

µ (P )] = {x1x2}, contradicting IC4.
The same result is obtained for ∆AV, but [∆bPAV

µ (P )] =
{x1, x1x2}, which is in accordance with IC4.
To curb the inflationary tendencies of ∆PAV, operator
∆bPAV introduces a penalty on interpretations depending on
their size, in the process ensuring satisfaction of postulate
IC4 as well. Indeed, as Section 5 shows, ∆bPAV is the only
operator from a fairly broad class that manages to balance
proportionality and fairness, as formalized by postulate IC4.
Note, however, that sbPAV is not symmetric.
Example 4. It holds that sbPAV(x, xy) < sbPAV(xy, x).
Intuitively, this means it is worse to get y if it is not wanted
than to not get it if it is wanted.
A related problem with ∆PAV stems from the fact that
sPAV(v, w) is obtained by counting only atoms v andw have
in common. Hence, ∆PAV has a bias towards positive liter-
als, which turns out to interfere with postulate IC2.

The binary satisfaction-based operators, consisting of the
harmonic drastic operator ∆hD and the harmonic Hamming
operator ∆hH, are introduced in an attempt to deal with the
effect of unwanted atoms while, at the same time, providing
proportional outcomes. The satisfaction measures they are
based on penalize interpretations w if they include atoms
for which an explicit preference is not stated. This is done
by inverting familiar notions of distance, which pay atten-
tion to atoms appearing in one of the interpretation but not



in the other, and leads to an equal treatment of positive and
negative literals. The harmonic function h is applied to this
satisfaction notion, with the idea of ensuring proportionality.
The operators that emerge are worth investigating: neither of
them extends PAV (as hinted at in Example 5), but from this
point onward their properties diverge. Though ∆hH does not
extend PAV, it still ends up having interesting proportional-
ity properties, formalized in Section 6.
Example 5. It holds that sPAV(x1, x1) = sPAV(x1, x1x2).
The assumption behind sPAV is that an agent who wants x1

is equally satisfied with x1x2 as it is with x1, i.e., is not both-
ered by the presence of x2. This leads to non-satisfaction of
IC2: forA = {x1, x2}, P = (ϕ), [ϕ] = {x1} we obtain that
[∆PAV
> (P )] = {x1, x1x2}, contrary to IC2. On the other

hand, shH(x1, x1) = h(2), while shH(x1, x1x2) = h(1)
and [∆hH

µ (P )] = {x1}, in accordance with IC2. Thus, ac-
cording to shH, x1x2 provides less satisfaction to x1 than
x1 alone, i.e., the agent is bothered by the presence of x2,
for which an explicit preference was not stated.
The operator ∆hD turns out to be so coarse in its assessment
of satisfaction as to become, as Proposition 1 shows, indis-
tinguishable from existing merging operators defined using
drastic distance dD. As a result, the ∆hD operator is not re-
sponsive to proportionality requirements.
Proposition 1. The satisfaction-based operator ∆hD is
equivalent to the distance-based operator ∆D.
What emerges is a landscape with three merging operators
relevant to the issue of proportionality, i.e., ∆PAV, ∆bPAV

and ∆hH. Out of these, ∆bPAV and ∆hH address, each in its
own way, problems arising with the ∆PAV operator: ∆bPAV

penalizes interpretations according to their size, while ∆hH

uses an approach reminiscent from logic, where positive and
negative literals are treated equally. As we will see in Sec-
tions 5 and 6, the proposed solutions involve various trade-
offs between proportionality and the IC postulates.

5 IC Postulates: Possibility and Impossibility
In this section we analyze the merging operators introduced
in Section 4 in light of the standard merging postulates
IC0−8. The first result shows that any satisfaction-based op-
erator satisfies a core set of IC-postulates.
Proposition 2. If s is a satisfaction measure, then the merg-
ing operator ∆s satisfies postulates IC0−1,3,5−8.
Proposition 2 applies to both the approval-based and the har-
monic distance-based operators. What remains, then, is an
understanding of how the new satisfaction measures interact
with postulates IC2 and IC4, and we settle the issue by char-
acterizing the types of satisfaction measures compliant with
these postulates. If v 6= w, the following properties prove to
be relevant:

(S1) s(v, v) > s(v, w); (S2) s(v, v) > s(w, v);
(S3) s(v, v) = s(w,w); (S4) s(v, w) = s(w, v).

They formalize the intuition that satisfaction is symmetric
(S4), maximal when one gets exactly what one wants, and
trailing off as the outcome diverges from one’s most desired
outcome (S1−3). Theorem 1 shows that properties S1−3 cap-
ture satisfaction measures compliant with postulate IC2.

Theorem 1. A satisfaction-based merging operator ∆s sat-
isfies postulate IC2 iff s satisfies properties S1−3.

Since the satisfaction measures sAV, sPAV or sbPAV satisfy
none of the properties S1−3, Theorem 1 implies that the
approval-based operators ∆AV, ∆PAV or ∆bPAV do not sat-
isfy postulate IC2. On the other hand, the satisfaction mea-
sures shD and shH do satisfy properties S1−3, showing that
the corresponding operators satisfy postulate IC2.

As mentioned in Section 4, we do not require satisfaction
measures to be symmetric and, indeed, sbPAV is not sym-
metric (though the other satisfaction measures are). The fol-
lowing result shows that, in the presence of postulate IC2,
symmetry is connected to postulate IC4.

Theorem 2. If a satisfaction-based merging operator ∆s

satisfies postulate IC2, then ∆s satisfies postulate IC4 if and
only if s also satisfies property S4 (i.e., is symmetric).

Since the satisfaction measures shD and shH are symmetric
and, as implied by Theorem 1, satisfy properties S1−3, we
get by Theorem 2 that they also satisfy postulate IC4. To-
gether with Proposition 2, this yields the full picture for the
binary satisfaction-based operators ∆hH and ∆hD.

Corollary 1. The operators ∆hH and ∆hD satisfy postu-
lates IC0−8.

For the approval-based operators, satisfaction of postulates
IC2 and IC4 is clarified by another perspective on satisfaction
measures. A satisfaction measure s is a counting index if
there exists a function σ : N× N→ R, called the witness of
s, such that σ(0, 0) = 0 and s(v, w) = σ(|v ∩ w|, |w|), for
any interpretations v and w. Theorem 3 shows that counting
indices do not fit with postulate IC2.

Theorem 3. If s is a counting index, the satisfaction-based
merging operator ∆s does not satisfy postulate IC2.

It is straightforward to see that the approval-based satisfac-
tion measures introduced in Section 4 are counting indices.
Thus, by Theorem 3, none of the operators they generate sat-
isfies postulate IC2. For postulate IC4, however, the situation
is different. Example 3 shows that the ∆AV and ∆PAV oper-
ators do not satisfy postulate IC4, though ∆bPAV manages to
evade the counter-example. In fact, it turns out that not only
does the operator ∆bPAV satisfy postulate IC4, but a much
stronger result can be shown: it is the only operator based on
a counting index that does so.

Theorem 4. If ∆s is a satisfaction-based merging operator
such that s is a counting index with σ as witness, extends
PAV and satisfies postulate IC4, then σ(x, y) = 2h(x) −
h(y), for any x, y ∈ R.

It deserves emphasis that ∆bPAV manages to satisfy pos-
tulate IC4 even though sbPAV is not a symmetric satisfac-
tion measure: since ∆bPAV does not satisfy IC2, Theorem 2
does not apply. Indeed, none of the approval-based opera-
tors manages to satisfy both IC2 and IC4. This suggests that
there is a trade-off between the kind of proportionality these
operators stand for and the satisfaction of IC2 and IC4.

It is relevant that approval-based operators can consider
interpretations of various sizes: reflection on Examples 3



and 5 shows that they are at the root of the problematic sit-
uations. Interestingly, it turns out that fixing the size of the
models of the constraint µ yields merging operators that be-
have well w.r.t. the IC postulates.

Theorem 5. If all models of the constraint µ have some fixed
size k, then the approval-based merging operators ∆AV,
∆PAV and ∆bPAV satisfy all postulates IC0−8.

6 Two Types of Proportionality
Here we formalize two notions of proportionality, arising out
of two different ways of conceptualizing satisfaction with
respect to a possible outcome. For the sake of clarity, we
define these notions for rather restricted profiles.

A formula ϕ is complete if it has exactly one model, and
a profile P is complete if all its formulas are complete. We
write P = (v1, . . . , vn) to denote the complete profile with
[ϕi] = {vi}, for all i ∈ {1, . . . , n}. A complete profile
P = (v1, . . . , vn) is simple if v1 ∪ · · · ∪ vn = A, and ei-
ther vi = vj or vi ∩ vj = ∅, for every i, j ∈ {1, . . . , n}.1
A complete profile P = (v1, . . . , vn) is `-simple if it is
simple and |{v1, . . . , vn}| = `, i.e., P contains ` distinct
sets. If v1, . . . , v` constitutes a partition ofA, and p1, . . . , p`
are positive integers, we write (vp11 , . . . , vp`` ) to denote the
`-simple profile: (v1, . . . , v1︸ ︷︷ ︸

p1 times

, v2, . . . , v2︸ ︷︷ ︸
p2 times

, . . . , v`, . . . , v`︸ ︷︷ ︸
p` times

). If

P = (vp11 , . . . , vp`` ) is an `-simple profile with
∑`
i=1 pi =

n, we say that P is k-integral if k·pin is an integer, for every
i ∈ {1, . . . , `}. Intuitively, for a model w of µ of size k, the
fraction k·pi

n denotes the intended satisfaction if proportion-
ality is taken into account: out of the k atoms selected, the
share of group i should be the relative size of the group.

We propose two proportionality postulates, formulated for
simple profiles P = (vp11 , . . . , vp`` ). As in Section 3, con-
straint µk has as its models all interpretations of size k.

(ICcp) For any k ∈ {1, . . . ,m} and w ∈ [∆µk
(P )], it holds

that if P is k-integral and |vj | ≥ k·pj
n for each j, 1 ≤

j ≤ l, then |vi ∩ w| = k·pi
n , for all i ∈ {1, . . . , `}.

(ICbp) If P = (vp11 , vp22 ) is simple and there is a w ∈ [µ]
such that m− dH(vi, w) = m·pi

n for i ∈ {1, 2}, then
this equality holds for all w′ ∈ [∆µ(P )].

We refer to ICcp and ICbp as postulates of weak classical pro-
portionality and weak binary proportionality, respectively,
as they refer to different sources of satisfaction. Postulate
ICcp talks about classical satisfaction, in which agent i’s sat-
isfaction with an interpretation w is given by |vi ∩ w|, just
like the satisfaction with a committee in an ABC election is
measured by the number of approved committee members.
This is the kind of satisfaction notion typically used in a so-
cial choice context. Postulate ICbp talks about binary satis-
faction, in which agent i’s satisfaction with w is given by
m−dH(vi, w), i.e., by the closeness between vi and w. This
type of satisfaction, alluded to already in Section 4, follows

1In the context of ABC voting, such profiles are referred to as
party-list profiles (Lackner and Skowron 2018b).

from a logical viewpoint where positive and negative vari-
able assignments are treated equally. This approach is better
suited to deal with interpretations of varying sizes than the
classical one, and thus postulate ICbp allows such interpreta-
tions to be selected.

Intuitively, both postulates stipulate ‘shares’ groups of
agents shall receive (under a classical or binary viewpoint)
that meet proportionality based on the relative size of the
groups. For ICcp we restrict to µk, with k atoms to be dis-
tributed proportionally by each solution w (like for ABC
elections). Postulate ICbp states that in the presence of at
least one admissible w ∈ [µ] that meets the proportional-
ity requirements, all solutions shall meet said requirements
(otherwise µ permits no proportional solution). Note that if
P = (vp11 , vp22 ) satisfies the conditions of ICbp, then P is m-
integral, and the binary satisfaction of v1 and v2 adds up to
m, i.e.,m−dH(v1, w)+m−dH(v2, w) = m. Postulate ICbp

demands that this total satisfaction m is split proportionally.

Example 6. For A = X ∪ Y , with X = {x1, . . . , x6} and
Y = {y1, y2}, take the simple profile P = (v3

1 , v
1
2), with

v1 = x1 . . . x6 and v2 = y1y2, and a constraint µ4, with
models of size 4. According to ICcp, an optimal outcome con-
tains three variables from X and one from Y , e.g., the inter-
pretation w = x1x2x3y1. Such an outcome is in the spirit of
classical proportionality.

According to postulate ICbp, an optimal outcome w
would be such that dH(v1, w) = 2 and dH(v2, w) = 6,
e.g., w′ = x1x2x3x4, w′′ = x1x2x3x4x5y1 or w′′′ =
x1x2x3x4x5x6y1y2. Note, ICbp allows interpretations of
varying sizes to be selected. If the size is restricted to 4 (i.e.,
the constraint is µ4), then the outcome narrows down to in-
terpretations such as w′, consisting of four atoms from X .

Example 6 shows that classical and binary proportionality
may require different interpretations to be selected on the
same input. Thus, even though our notions of proportionality
apply only to simple profiles, they set up a clear boundary
for distinguishing among the different merging operators.

Theorem 6. The merging operators ∆PAV and ∆bPAV

satisfy postulate ICcp, ∆hH satisfies postulate ICbp, while
∆H,Σ, ∆H,gmax, ∆hD and ∆AV satisfy neither ICcp nor ICbp.

The proposed merging operators ∆PAV and ∆bPAV are rep-
resentative of the notion of classical proportionality, while
∆hH is representative for binary proportionality. Theorem 7
shows that these notions are thoroughly incompatible.

Theorem 7. There is no merging operator that satisfies IC1

and both ICcp and ICbp.

The literature on belief merging suggests other properties
concerned, in some way or another, with fairness of merg-
ing operators (Konieczny and Pino Pérez 2002; Everaere,
Konieczny, and Marquis 2010; 2014). In the interest of
brevity, we mention only that these properties are largely or-
thogonal to the proportionality requirements we study here.
The one exception is the majority axiom (Konieczny and
Pino Pérez 2002), which our operators do satisfy.



7 Computational Complexity
To investigate the complexity of our novel merging oper-
ators, we look at the standard decision problem studied in
this context (Konieczny, Lang, and Marquis 2004): given
an operator ∆, a profile P , an integrity constraint µ, and a
Boolean formula ψ, determine whether ∆µ(P ) |= ψ holds.
That is, the decision problem asks whether formula ψ fol-
lows from the merged result. The hardness results we use
and recall here hold when ψ = a is an atom. The two main
complexity classes appearing here are ∆P

2 and ΘP
2 , denoting

the classes of decision problems solvable via a deterministic
polynomial time algorithm with access to an NP oracle, with
the latter class having the additional restriction that at most
logarithmically many oracle calls may be made. Many stan-
dard merging operators are complete for one of these two
classes (Konieczny, Lang, and Marquis 2004).

We show that our novel operators fit into this picture; we
obtain ΘP

2 hardness and ∆P
2 membership for all new oper-

ators, except for ∆AV, which we show to be ΘP
2 -complete.

That is, our introduction of proportionality leads to neither
milder nor significantly more complex operators. Hardness
for ΘP

2 can be shown by adapting an existing reduction, orig-
inally from belief revision (Eiter and Gottlob 1992, Theorem
6.9). Finally, membership diverges for ∆hH, ∆PAV, ∆bPAV

and ∆AV, since the first three operators induce an exponen-
tial set of possible satisfaction scores for interpretations—in
contrast to ∆AV that only induces a polynomial set.

Theorem 8. Deciding whether a formula follows from the
result of merging operator ∆s is ΘP

2 -complete for s = AV,
and both ΘP

2 -hard and in ∆P
2 , for s ∈ {PAV,bPAV,hH}.

We conjecture that merging under ∆hH, ∆PAV and ∆bPAV

is ∆P
2 -complete.

8 Applications Beyond Belief Merging
In this section we briefly discuss how our results can be
transferred to other, related formalisms.

Variable Approval-Based Committee Elections In con-
trast to ABC elections as introduced in Section 3, it is some-
times desirable to have flexibility with respect to the size
of the committee by not fixing its size in advance (Kilgour
2016; Faliszewski, Slinko, and Talmon 2017). We refer to
ABC voting rules without a size constraint as variable ABC
voting rules. Note that a merging operator defines a vari-
able ABC rule by setting µ = >. It is easy to see that the
AV and PAV operators are not sensible in this context, as
w = A (i.e., setting all atoms to true) is always an opti-
mal model. However, the ∆bPAV and ∆hH operators present
themselves as novel additions to this framework, being pro-
portional variable ABC rules.

Goal-Based Voting Goal-based voting (Novaro et al.
2018) is a formalism similar to belief merging but with a fo-
cus on resolute rules (i.e., rules return only one model) and
with different postulates. All proposed operators in this pa-
per can be viewed as goal-based voting rules (subject to tie-
breaking), and our proportionality postulates can be adapted
for this setting as well. To the best of our knowledge, our

Table 3: Summary of results. New results in gray, for all oth-
ers see (Konieczny, Lang, and Marquis 2004)). Per Theo-
rem 5, for results marked with ∗ the × becomes X when
models of the constraint µ are assumed to have fixed size.

IC0,1,3,5−8 IC2 IC4 ICcp ICbp Complexity

∆H,Σ X X X × × ΘP
2 -c

∆H,gmax X X X × × ∆P
2 -c

∆hD ≡ ∆D X X X × × ΘP
2 -c

∆hH X X X × X in ∆P
2 , ΘP

2 -h
∆AV X ×∗ ×∗ × × ΘP

2 -c
∆PAV X ×∗ ×∗ X × in ∆P

2 , ΘP
2 -h

∆bPAV X ×∗ X X × in ∆P
2 , ΘP

2 -h

proposed merging operators yield the first proportional goal-
based voting rules. It would be particularly interesting to see
whether Theorem 4 can be replicated by axioms from the
goal-based voting setting (instead of postulate IC4).

Judgment Aggregation Judgment aggregation (JA) is an-
other formalism for aggregating beliefs, distinct from be-
lief merging but overlapping in certain respects (Everaere,
Konieczny, and Marquis 2015; 2017). Even though they dif-
fer in important aspects, the main ideas in our paper can be
transferred to JA. While propositional variables are the basic
building blocks for belief merging, it might be more suitable
to take the agenda (a set of propositional formulas) as the
basis for defining proportionality in JA. This allows for the
definition of proportional JA operators. Further work is re-
quired to analyze the resulting JA operators.

9 Discussion
In this paper we have initiated the study of proportional be-
lief merging operators. We have presented three proportional
operators: the PAV operator and the bounded PAV operator,
both satisfying ICcp, and the harmonic Hamming operator
satisfying ICbp. We summarize our results in Table 3.

Apart from the questions posed in Section 8, the cur-
rent work suggests several directions for future research.
While the two proportionality postulates we proposed ap-
ply only to certain instances, even weak proportionality pos-
tulates have proven sufficient for axiomatic characteriza-
tions (Lackner and Skowron 2018b) and in our paper these
two postulates are sufficient to distinguish proportional from
non-proportional operators. On the other hand, stronger pos-
tulates are desirable to determine to which degree propor-
tionality guarantees can be given. This has recently been in-
vestigated in the context of approval-based committee elec-
tions (Aziz et al. 2017; 2018; Sánchez-Fernández et al.
2017); this line of work can serve as a basis for a similar
analysis for belief merging operators.

Finally, manipulation and strategic voting, common con-
cerns in social choice theory, have received some attention in
the belief merging framework as well (Everaere, Konieczny,
and Marquis 2007; Haret and Wallner 2019). It can be ex-
pected that proportional belief merging operators are prone
to strategic voting, as in ABC voting even weak forms of



proportionality and strategy-proofness have been shown to
be incompatible (Peters 2018). Still, it has been found that
the percentage of manipulable instances depends strongly on
the choice of voting rules (Lackner and Skowron 2018a),
indicating that a detailed analysis of vulnerabilities is an in-
teresting avenue for future work.
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