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Abstract
In parliamentary elections, parties compete for a
limited, typically fixed number of seats. We study
the complexity of the following bribery-style prob-
lem: Given the distribution of votes among the par-
ties, what is the smallest number of voters that need
to be convinced to vote for our party, so that it gets a
desired number of seats. We also run extensive ex-
periments on real-world election data and measure
the effectiveness of our method.

1 Introduction
Apportionment (or, party-list) elections [Balinski and Young,
1982; Pukelsheim, 2014] are among the most common forms
of electing parliaments, used, e.g., in Austria, New Zealand,
Poland, Spain, Turkey, and a number of other countries. In
such elections each voter names the party that he or she sup-
ports, the vote counts for each party are tallied, and—based
on this data—an apportionment method is used to assign a
number of seats to each party (there are also separate proce-
dures that specify which particular party members enter the
parliament, but we disregard this issue). Some countries, such
as Poland, are partitioned into districts and hold separate ap-
portionment elections in each; the results of these elections
are then summed up. Other countries, such as Austria, have
a single, nation-wide district.1 Further, many countries use
various specific rules, such as assigning seats only to those
parties that obtain a given minimal fraction of votes (referred
to as the threshold); we abstract away from these details.

We ask for efficient algorithms for the following prob-
lem: Given parties’ vote counts (either for a single district
or for a family of districts) and a preferred party, what is
the smallest number of votes that need to be moved from
the other parties to the preferred one, so that it obtains a de-
sired number of seats (e.g., one more seat than it originally
had, or 50%+1 seats in the parliament). Historically, such
problems—where we modify voters’ preferences—fall into
the category of bribery problems [Faliszewski et al., 2009;
Faliszewski and Rothe, 2015], but they also have other,
more benign and more useful, interpretations. We mention

1Although Austria has multiple electoral districts, for the final
seat apportionment the country is treated as a single district.

the following two (already taken, e.g., by Elkind and Fal-
iszewski [2010], Faliszewski et al. [2017], Xia [2012], and
Bredereck et al. [2017]):

1. Consider a political campaign preceding a given election.
Based on poll data, leaders of each party may wish to
know which voters they should try to convince to vote for
their party. By solving our problem, they find the most
effective way of obtaining additional seats.

2. After the election, auditors and party leaders may wish to
check how close particular parties were to obtaining addi-
tional seats. If this number is small, then it is a reason to
request a post-election audit.

In addition to the problem of obtaining a given number of
seats for the preferred party, we also consider the problem
where we ask for the lowest cost of ensuring that this party
has more seats than any other one (i.e., that this party is a
winner of the election; indeed, sometimes winning an elec-
tion this way may be better for a party than obtaining more
seats, when the strongest opponent has even more). We focus
on the family of divisor apportionment methods (which in-
cludes the well-known D’Hondt and Sainte Laguë methods),
and on the largest remainder method. As a border case, we
also study the first-past-the-post (FPTP) method.2

We find that for the single-district setting, all our prob-
lems can be solved in polynomial time, but while for FPTP
it suffices to run a simple greedy algorithm, the other meth-
ods require more involved approaches, based on dynamic-
programming. For the multi-district case the complexity
spectrum is more interesting: While the single-district algo-
rithms can be used to obtain a given number of seats for the
preferred party, the problem of getting the largest number of
seats is NP-hard for all methods (except FPTP).

We complement our study by performing a series of exper-
iments on election data from Austria and Poland. First, we
ask how useful it is to use our optimal algorithms, as opposed
to either using simple “bribing” strategies (such as stealing
voters from the strongest/weakest opponent, or equally from

2Under this method, the party that has the most votes in a given
district gets all the seats. This method is not used for parliamentary
elections, but, in essence, it captures the presidential elections in the
United States, where each state holds its own election and the winner
receives all the electoral votes (seats, in our language).



all the parties) or simply motivating abstainers to vote for our
party. We find that moving voters optimally can, indeed, be
quite beneficial: Often the simple strategies need to convince
1.5-3 times more voters than the optimal one (and in some
cases up to 12 times as many).

In our second experiment, we ask for the effect that the
number of districts has on the easiness of changing the elec-
tion result. As one may expect, we find that the more districts
there are, the fewer votes one has to move to obtain additional
seats for a given party. However, what is more surprising, we
find that the percentage of voters that need to be moved to en-
sure that a given party has a majority in a parliament is often
much lower than one might expect.
Related work. Apportionment methods are studied deeply
in mathematics and political science (see, e.g., the classic
texts of Balinski and Young [1982] and Pukelsheim [2014]),
but much less so in computer science and within computa-
tional social choice (a branch of artificial intelligence that
studies computational properties of elections). Nonetheless,
apportionment can be viewed as a special case of approval-
based multiwinner elections [Brill et al., 2018; Lackner and
Skowron, 2018b]. As a consequence, for single-district set-
tings with few parties only, one could use FPT bribery al-
gorithms of Faliszewski et al. [2017]. Yet, our algorithms
are faster and more direct (for other means of manipulat-
ing approval-based multiwinner rules, see, e.g., [Yang, 2019;
Lackner and Skowron, 2018a; Peters, 2018]).

The paper of Güney [2018] is most closely related to ours:
The author studies a campaign management problem similar
to ours (specifically for the D’Hondt rule), but instead of pro-
viding polynomial-time algorithms, he models it as a mixed
integer linear program. The paper shows that Turkish par-
liamentary elections (which are based on a multi-district sys-
tem) are susceptible to strategic campaign management.

Finally, Ostapenko et al. [2012] developed a loosely related
game-theoretic model of campaign management.

2 Preliminaries
For an integer t, we write [t] to denote the set {1, . . . , t}. Fur-
ther, by [t]0 we mean the set [t] ∪ {0}. We use the Iverson
bracket notation, i.e., for a logical expression P we write [P ]
to mean 1 if P is true, and to mean 0 if P is false.

2.1 Apportionment
An apportionment problem for m parties, P1, . . . , Pm, is
given by a number k of seats to allocate and a vote distribution
p = (p1, . . . , pm) with

∑m
i=1 pi = n (where n is the number

of voters; for each i, party Pi gets pi votes). An apportion-
ment method assigns seats to parties, i.e., it outputs a length-
m sequence of nonnegative integers a = (a1, . . . , am) with∑m

i=1 ai = k; such a sequence is called a k-apportionment.
In case of ties it may output more than one apportionment
(in our computational problems we will assume a particular
tie-breaking).

In this paper we mostly consider divisor methods (with
a focus on the D’Hondt and Sainte Laguë methods), the
Largest Remainder (LRM) method, and the First-Past-The-
Post (FPTP) method. Each divisor method is defined by an

D’Hondt Sainte Laguë
d(·) P1 P2 P3 d(.) P1 P2 P3

1 3.0 6.0 11.0 1 3.0 6.0 11.0
2 1.5 3.0 5.5 3 1.0 2.0 3.7
3 1.0 2.0 3.7 5 0.6 1.2 2.2
4 0.8 1.5 2.8 7 0.4 0.9 1.6

Table 1: Division sequences for Example 1.

(infinite), increasing divisor sequence d(1), d(2), d(3), . . . .
We require that each value d(j) is computable in polyno-
mial time with respect to j and is polynomially bounded in
j (indeed, the standard divisor methods use very simple di-
visor sequences). Given an apportionment problem p =
(p1, . . . , pm) with k seats to assign, to compute the appor-
tionment, we calculate for each party Pi its division sequence
(pi/d(1), pi/d(2), . . . , pi/d(k)). Then, we find the largest num-
ber within these m division sequences and assign one seat
to the corresponding party. Next we find the second largest
number, assign one seat to its corresponding party, and con-
tinue in this fashion until all seats are assigned. In case of a
tie, there exists more than one correct seat assignment.

Divisor methods can alternatively (and more compactly)
be described as follows: Let x be the k-th largest en-
try from the division sequences. The divisor method de-
fined by d(1), d(2), . . . returns all k-apportionments a =
(a1, . . . , am) which satisfy (pi/d(0) is interpreted as∞):

pi
d(ai)

≥ x and
pi

d(ai + 1)
≤ x for all i ≤ m.

The D’Hondt method (also known as the Jefferson method)
is defined by the divisor sequence 1, 2, 3, . . . ; the Sainte
Laguë method (also known as the Webster method) is defined
by the divisor sequence 1, 3, 5, . . . . There are also further di-
visor methods, such as Huntington–Hill, Adams, and Dean
[Balinski and Young, 1982], but we do not focus on them.

The Largest Remainder (LRM) method (also known
as the Hamilton method) assigns each party Pi at least
lqu(pi, n, k) = bpi

n ·kc seats (we refer to them as lower quota
seats); the remaining seats are distributed to the parties with
the largest remainder values rem(pi, n, k) =

pi

n · k−b
pi

n · kc
(if there are r seats left to be assigned, then r parties with the
highest remainder values get one each; we refer to these seats
as remainder seats).

Finally, First-Past-The-Post (FPTP) gives all seats to the
strongest party. This method is generally not considered an
apportionment method (as it is not proportional), but we con-
sider it as a corner case and due to its use in US presidential
elections.
Example 1. Let us consider an apportionment problem with
three parties P1, P2, and P3 and a vote distribution p =
(3, 6, 11). Assume we want to fill 4 seats. For D’Hondt
and Sainte Laguë, we select the 4 largest values in the cor-
responding divisor sequences (see Table 1), and obtain for
D’Hondt the seat distribution a = (0, 1, 3), for Sainte Laguë
a = (1, 1, 2). For LRM, P1 receives lqu(3, 20, 4) = b0.6c =
0 lower quota seats, P2 receives lqu(6, 20, 4) = b1.2c = 1,
and P3 receives lqu(11, 20, 4) = b2.2c = 2 lower quota



seats. The one remainder seat is assigned to P1 as it has
the largest remainder (0.6), and so LRM yields a = (1, 1, 2).

2.2 Apportionment Bribery
In the following, we assume that apportionment methods are
resolute, i.e., they employ a tie-breaking scheme and return
a single apportionment. Specifically, we consider lexico-
graphic tie-breaking, where ties are broken in favor of the
party with the lowest index (this simplifies the formulation of
some of our algorithms; our results can easily be adapted to
other tie-breaking orders). Without loss of generality, we as-
sume that we want to improve the result of party P1. Given a
vote distribution p = (p1, . . . , pm), we say that a vote distri-
bution q = (q1, . . . , qm) is a p-valid bribery if (i) qi ≤ pi
for all i ∈ {2, . . . ,m} (only party 1 gains votes) and (ii)∑m

i=1 qi = n (no new voters appear). The cost of a valid
bribery is defined as c(p,q) =

∑m
i=2 pi−qi; our model could

easily be generalized to allow more complex cost functions.
LetR be an apportionment method and ` a positive integer.

R BRIBERY

Instance: An apportionment problem p = (p1, . . . , pm) for
parties P1, . . . , Pm, the number k of seats to allo-
cate, a desired number ` of seats for party P1, and
a positive integer B (the bribing budget).

Question: Is there a p-valid bribery q such that c(p,q) ≤ B
and party 1 receives at least ` seats according to
apportionment methodR?

This problem can be slightly modified, to ask for a vote dis-
tribution (within the specified bribing budget) so that party 1
receives more seats than each of the other parties (a1 > ai
for i ≥ 2); we call this problemRWINNER BRIBERY.

Example 2. Let us consider the D’HONDT BRIBERY
problem with the apportionment instance from Example 1.
Party 1, with 3 votes, can gain one more seat by convinc-
ing a single voter from P2 to vote for P1; D’Hondt yields
apportionment a = (1, 1, 2) for the vote distribution (3 +
1, 6 − 1, 11). Further, party 1 can gain two seats by moving
4 voters of P3 to P1, because D’Hondt yields apportionment
a = (2, 1, 1) for the vote distribution (3 + 4, 6, 11 − 4) (this
result uses tie-breaking in favor of P1). As P1 ends up with
more seats than the other parties, it means that for B = 4 we
have a yes-instance of D’HONDT WINNER BRIBERY.

We generalizeR BRIBERY to multiple districts:

MULTI-DISTRICT R BRIBERY

Instance: A number of districts δ, δ apportionment prob-
lems for m parties, where for each j ∈ [δ], the
j-th apportionment problems is given by pj =
(pj1, . . . , p

j
m) and kj (the number of seats for this

district); a desired number ` of seats for party 1, a
budget B ≥ 0.

Question: Is there, for every 1 ≤ j ≤ δ, a pj-valid bribery
qj such that

∑δ
j=1 c(p

j ,qj) ≤ B and party 1 re-
ceives in total at least ` seats according to appor-
tionment method R applied to each district indi-
vidually?

As before, we also consider the MULTI-DISTRICT R
WINNER BRIBERY problem, where we ask for P1 to have
more seats than each of the other parties.

We adopt the following important convention regarding our
problems: We assume that the numbers of voters (and, thus,
the bribing budgets) are specified in unary. We do so, because
each vote corresponds to a single person who cast it and thus
this number is of reasonable size (typically < 109). Further,
each vote is stored physically as a separate ballot. Nonethe-
less, dropping this assumption might be interesting for future
work as it may increase the complexity of our problems.

3 Algorithms for the Single-District Case
We start the discussion by considering the single-district
cases, i.e., by considering the R BRIBERY and R WINNER
BRIBERY problems. We find polynomial time algorithms for
all our apportionment methods, for both these problems. As a
warm-up, let us consider the FPTP method, for which a sim-
ple greedy algorithm suffices for both the problems.

Proposition 1. FPTP BRIBERY and FPTP WINNER
BRIBERY are both in P.

Unfortunately, greedy algorithms do not seem to work for
the other apportionment methods and, indeed, we resort to
dynamic programming in their cases. As a consolation prize,
we find algorithms that are nearly identical for the cases of
divisor methods and LRM.

Theorem 1. LetR be a divisor method with divisor sequence
d(1), d(2), . . . or the LRM method. TheR BRIBERY problem
is in P.

Proof. Let (p1, . . . , pm) be our input vote distribution, let k
be the number of seats to be allocated, of which we want P1

to get at least `, and let B be the bribing budget (we assume
that B < p2 + · · ·+ pm as otherwise we would move all the
votes to P1). We first takeR to be a divisor method.

By the definition of our problem (and by monotonicity of
divisor methods) we move exactly B votes to party P1, so, in
the end, party P1 will have p1 + B votes. The main part of
our algorithm is to compute from which parties we need to
take these B votes so that P1 ends up with at least ` seats. To
this end, for each nonnegative integer p we define seats(p) to
be the nonnegative integer λ such that:(

p

d(λ)
>
p1 +B

d(`)

)
∧
(

p

d(λ+ 1)
≤ p1 +B

d(`)

)
,

except that if p/d(1) ≤ p1+B/d(`) then seats(p) = 0, and if
p

d(k) >
p1+B
d(`) then seats(p) = k. Intuitively, seats(p) is the

number of seats that a party (other than P1) gets until P1 gets
its `-th seat, provided that this party ends up with p votes.

Our goal is to decide if there is a sequence of nonnegative
integers (b2, . . . , bm), specifying the numbers of voters that
we move from respective parties to P1, such that

∑m
j=2 bj =

B (so, indeed, we moveB voters) and
∑m

j=2 seats(pj−bj) ≤
k − ` (so, indeed, P1 is assigned the `-th seat, because there
are enough seats left for this to happen). To check if such a
sequence exists, we use a dynamic programming approach.



For each i ∈ [m]\{1}, s ∈ [k]0, and b ∈ [B]0, let f(i, s, b)
be a Boolean function whose value is true exactly if there
is a sequence (b2, . . . , bi) of nonnegative integers such that∑i

j=2 bj = b and
∑i

j=2 seats(pj − bj) = s. Our algorithm
accepts exactly if

∨
k′∈[k−`]0 f(m, k

′, B) is true.
To compute the values f(i, s, b) in polynomial time, we

first set f(1, 0, 0) to be true and we set f(1, s, b) to be false
for all (s, b) 6= (0, 0). Then, we note that for each i ≥ 2 we
have:

f(i, s, b) =
∨

bi∈[b]0

f(i− 1, s− seats(pi − bi), b− bi).

Using this recursion and standard dynamic-programming
techniques, we obtain a polynomial-time algorithm for com-
puting values f(i, j, b). This completes the proof for the case
of divisor methods.

For the case of LRM we proceed as follows. First, we note
that there is no reason to move fewer than B votes to P1.
Thus, in the final election P1 will get q1 = lqu(p1 +B,n, k)
lower quota seats and, possibly, one additional remainder
seat. If q1 ≥ ` then we immediately accept. Similarly, if
q1 < ` − 1 then we immediately reject. Otherwise, if P1

would get exactly ` − 1 lower quota seats, we need to check
if there is a way of moving B votes from the other parties so
that P1 gets its remainder seat. To this end, we use the same
function f as for the divisor methods, except that we redefine
the meaning of seats(p) to be:

lqu(p, n, k) + [rem(p, n, k) > rem(p1 +B,n, k)].

The interpretation of seats(p) is as follows: Consider a party
(other than P1) that has p votes. Then, seats(p) gives the
number of lower quota seats that this party gets plus the num-
ber of remainder seats (0 or 1) that it is guaranteed to get if
P1 gets a remainder seat (recall that tie-breaking is in favor
of P1). As in the divisor methods case, our algorithm accepts
exactly if

∨
k′∈[k−`]0 f(m, k

′, B) is true.

Similar algorithms also work for the cases of ensuring
that P1 has strictly more seats than any other party (but with-
out requiring a particular number of them), i.e., for WIN-
NER BRIBERY. However, in this scenario the algorithms re-
quire more care. The issue is that while our algorithms for
BRIBERY find ways to give ` seats to party P1 (provided that
this is possible), as a side effect they may also increase the
numbers of seats allocated to other parties. It is also possi-
ble that to solve WINNER BRIBERY it suffices to move votes
in such a way that a party with the most seats loses some of
them in favor of parties other than P1. Finally, we need to pay
more attention to tie-breaking.
Theorem 2. Let R either be a divisor method or LRM. The
RWINNER BRIBERY problem is in P.

To conclude, we note that our algorithms from Theorems 1
and 2 can be adapted to the case where for each party Pi,
i ∈ {2, . . . ,m}, there is a polynomially-bounded, nonde-
creasing function costi(x) (provided as part of the input),
specifying the cost of moving x voters from Pi to P1, and
where we ask if there is a bribery of total cost at most B.

This way we can, e.g., model the increasing difficulty of con-
vincing larger groups of voters to vote for P1. To take such
functions into account, in our algorithms we would modify
the f function to not return a true/false value, but the low-
est cost of achieving a particular effect (where cost∞ would
correspond to impossibility).

4 Algorithms for the Multi-District Case
It turns out that we can use the single-district algorithms to
solve the MULTI-DISTRICT R BRIBERY problem. Briefly
put, we can compute the cost of getting each possible num-
ber of seats for P1 in each district separately, and then solve
a Knapsack-like problem to find out if by moving at most B
voters we can obtain ` seats for P1 (which we can do in poly-
nomial time due to our assumption that B is given in unary).
Proposition 2. LetR either be a divisor method with divisor
sequence d(1), d(2), . . . or LRM. The MULTI-DISTRICT R
BRIBERY problem is in P.

On the other hand, MULTI-DISTRICT R WINNER
BRIBERY is NP-hard. Intuitively, this is so because the prob-
lem gives us flexibility to require that all parties from a given
set lose one seat each, and form districts so that in each of
them only subsets of these parties can lose seats. This way
we form a reduction from CUBIC VERTEX COVER.
Theorem 3. Let R either be a divisor method with divisor
sequence d(1), d(2), . . . or LRM. MULTI-DISTRICTRWIN-
NER BRIBERY is NP-hard, even if the number of seats per
districts as well as the number of voters transferred per dis-
trict is at most three and the total number of votes per district
is a constant depending on d(1) and d(2).

Proof. We show NP-hardness by a reduction from the CU-
BIC VERTEX COVER problem. An instance of CUBIC VER-
TEX COVER consists of a graph G, where each vertex has
exactly three neighbors, and an integer k; we ask if it is pos-
sible to choose k vertices so that each edge is incident to at
least one of them. Below we provide a reduction for the case
of the D’Hondt apportionment method (we omit the details
regarding how to adapt it for other methods).
Construction. Let (G, k) be our input instance of CUBIC
VERTEX COVER, where G = (V,E) is a graph and k is an
integer (without loss of generality, we assume that k ≥ 3).
Further, let V = {v1, . . . , vr} and E = {e1, . . . , et}. We
form an instance of MULTI-DISTRICT D’HONDT WINNER
BRIBERY as follows. First, we set our bribing budget to be
B = 3k. Next, we create 1 + t+ 10r + 1 parties:

1. P1 is our preferred party.
2. For each edge ei, we form an edge party P (ei)=P1+i

3. For each vertex vj we form 10 dummy parties, so for
each ` ∈ [10] we let P (vj , `) = P1+t+10(j−1)+` be the
`-th dummy party for vertex vj .

4. We also form one blocker party P (b) = P1+t+10r+1.
Then we form r + t(k − 2) + (k − 1) districts:

1. For every vertex vj we form a vertex district d(vj) with
three seats to allocate, where P1 gets 7 votes, each
dummy party associated with vj gets 10 votes, and for
each edge ei incident to vj , party P (ei) gets 10 votes.



2. We form t(k − 2) dummy districts, each with a single
seat to allocate. For each edge party there are exactly
k−2 dummy districts where this party gets 2B+1 votes
and all the other parties get zero votes (this way this edge
party gets the seat and a bribery of cost at mostB cannot
change that).

3. We form k − 1 blocker districts, each with a single seat
to allocate. In each of these districts the blocker party
gets 2B+1 votes and all the other parties get zero votes.

This completes the description of our construction.
Initial Seat Allocation. Let us now describe the initial seat
allocation, prior to any bribery. The blocker party gets exactly
k−1 seats from the blocker district (it has zero votes in every
other district so it cannot get seats anywhere else). Similarly,
each edge party gets k−2 seats from the dummy districts. For
the vertex districts, let us recall that the tie-breaking prefers
party P1 over the edge parties, which are then preferred over
the dummy parties and the blocker party. Now consider some
vertex district d(vj), and let ea, eb, and ec be the three edges
incident to vj . There are three seats to allocate and one can
verify that, due to tie-breaking, each of the parties P (ea),
P (eb), and P (ec) gets one of them. In total, party P1 and the
dummy parties get no seats, the blocker party gets k−1 seats,
and the edge parties get k seats each. In particular, P1 does
not have the majority of seats in the unbribed election.
Main Idea. The intuition behind our construction is that with
budget B = 3k, P1 can obtain k seats by getting one seat in
k vertex districts. We ensure that this is enough to have more
seats than any other party exactly if the k districts correspond
to a vertex cover in G.
Correctness. To show the correctness of our reduction, we
will show that graph G has a vertex cover of size k if and
only if there is a valid bribery that moves at most B voters
and ensures that party P1 gets more seats than any other party.

For the “only if” direction, assume that G has a vertex
cover of size k. In particular, let S be a set of k vertices that
forms a vertex cover for G. We form a bribery as follows.
For each vertex district that corresponds to a vertex v ∈ S,
we transfer to P1 one vote from each of the three edge parties
corresponding to edges incident to v. In every such district,
P1 now has 10 votes, every edge party has at most 9 votes,
and the dummy parties still have 10 votes each. Thus, due to
tie-breaking, in each such district one seat goes to P1 and the
other two seats go to the dummy parties (each of them to a
different dummy party). It directly follows that this gives P1

k seats. Moreover, since every edge is covered by at least one
vertex from S, every edge party looses at least one seat and
ends up with k − 1 seats. The blocker party also gets k − 1
seats, so P1 has more seats than any other party.

We omit the “if“ direction due to limited space.

It is also interesting to consider the parametrized complex-
ity of MULTI-DISTRICT R WINNER BRIBERY. We show
that the problem is W[1]-hard for the parameterization by the
number of districts.

Theorem 4. LetR be a divisor method with divisor sequence
d(1), d(2), . . . or the LRM method. The MULTI-DISTRICTR

WINNER BRIBERY is W[1]-hard with respect to the number
of districts.

We have not been able to find a hardness reduction nor to
find an FPT algorithm for the parameter “number of parties”
(a natural approach would be, e.g., to form an integer linear
program and solve it using an FPT algorithm; unfortunately,
for Lenstra’s algorithm [Lenstra, Jr., 1983] we end up with
too many variables, and for many other approaches, includ-
ing n-fold IP, we end up with two large coefficients in the
constraints; see the overview of Gavenciak et al. [2018]).

5 Experiments
With our experimental analysis, we approach two main ques-
tions: First, we ask how much more effective is an optimal
bribing strategy as opposed to simpler heuristics. Second, we
study the influence of the number of districts on the easiness
of changing the election result. We use two datasets, vote
counts from Polish parliamentary elections from years 2011,
2015, and 2019, with 41 districts each; and Austrian parlia-
mentary elections from years 1994–2019 (nine single-district
elections). These two countries were chosen as they both use
the D’Hondt method.

For a given vote distribution p, party Pi, and desired num-
ber of seats `, we express the effectiveness of a bribing strat-
egy S as follows. Let x be the smallest number such that
after adding x votes supporting Pi, party Pi gets (at least) ad-
ditional ` seats. Then, let y be the number of votes that S
moves to Pi to obtain ` additional seats. We define the ef-
fectiveness of S as x/y. Intuitively, this indicates how much
more effective it is to convince the voters who already de-
cided to vote relative to bringing in new ones. We consider
the following bribing strategies for party Pi:

1. optimal bribery: we move the voters from other parties
to Pi optimally (as in the algorithms from Sections 3
and 4, but using Pi in the place of P1).

2. weakest/strongest rival: move voters from the weak-
est/strongest party to Pi (and if this rival party does not
have enough voters, then introduce additional voters),3

3. balanced bribery: move votes from the other parties pro-
portionally to their vote counts (this is a derandomized
analogue of bribing voters uniformly at random).

One can view the latter two strategies as simple heuristics for
solving the bribing problem.

Table 2 shows the average efficiency for gaining one seat
in the Polish and Austrian elections. We distinguish values
for all parties on average (1st column), for the strongest party,
and for the weakest party. One can see that the strongest party
is generally in the best position to benefit from moving voters.
Further, optimal bribery is significantly more effective than
the other forms. When choosing between the simple bribing
strategies, taking votes from the strongest rival appears to be
the most promising option: a vote moved from the strongest
rival is roughly 1.5 times as effective as an additional, previ-
ously abstaining, voter.

3By the strongest/weakest party we mean the one that originally
had the most/the fewest votes.



strongest weakest
average party party

Po
la

nd

optimal bribery 2.32 2.77 2.38
balanced bribery 1.39 1.53 1.43
from weakest rival 1.27 1.37 1.21
from strongest rival 1.50 1.62 1.61

A
us

tr
ia

optimal bribery 1.85 2.30 1.73
balanced bribery 1.29 1.41 1.16
from weakest rival 1.20 1.31 1.04
from strongest rival 1.35 1.51 1.03

Table 2: Effectiveness of different bribing strategies for one addi-
tional seat (Austria and Poland, both use D’Hondt)

Figure 1: Average effectiveness of optimal and balanced bribery in
the Austrian dataset; the x-axis shows the number of seats gained.

Let us now move on to Figure 1, which compares effective-
ness values for an increasing number of seats to be gained.
This plot was generated using the Austrian dataset (the Pol-
ish data yields qualitatively similar results, but generally with
higher effectiveness of bribery). We see that as the num-
ber of additional seats increases, the effectiveness of opti-
mal bribery diminishes, and becomes similar to that of bal-
anced bribery (although there still is some advantage to us-
ing optimal bribery). This is due to the proportional nature
of D’Hondt; larger changes require a roughly proportional
amount of votes.

While the most effective optimal bribery in the Austrian
dataset had an efficiency of 3.7, the most effective optimal
bribery in the Polish dataset had one of 12.6. Together with
the insights gained from Table 2, this encourages the hypoth-
esis that fewer districts decrease the potential gain from mov-
ing voters. We investigate this now in more detail by present-
ing a different empirical study on the Polish election data.

Here, we consider the Polish elections and compute for
each party an optimal bribery allowing this party to obtain a
majority (50%+1) of seats. To study the effect of the number
of districts, we start with the original partition of the country
into 41 electoral districts, and then we decrease their number
by merging districts. We do this sequentially, always merging
two districts chosen uniformly at random, until only one large
district remains. The result for a given number of districts is
computed as follows: (1) we take the average of the number
of bribed voters over five trials, each for a different districting

# districts 41 30 20 1

Moves per Seat/# voters 0.12% 0.14% 0.15% 0.21%

Table 3: The results for party 2 and the Polish 2019 election; the
results are representative for all conducted experiments.

(computed as described above); (2) we compute the average
number of vote transfers per gained seat, and (3) we divide it
by the overall number of voters. This way we can compare
the results for different initial elections, obtaining an average
“relative price” per seat.

We conducted the experiment for all three elections in the
Polish dataset where there are 460 seats in total, six parties,
and between 12 and 18 million voters. For each election, we
considered some parties 1, 2, and 3 from the ballots used in
these elections (the numbers are assigned to parties uniformly
at random, prior to each election); we excluded party 3 for the
election from 2019 since it already initially got a majority of
seats. Despite the fact that we considered different parties
in different elections, and despite the fact that they received
very different vote counts, the results we obtained were qual-
itatively the same. Thus, in Table 3, we provide the results
for party 2 and the election from 2019 for the original 41 dis-
tricts, 30 districts, 20 districts, and a single district.

The results of this experiment confirm that the fewer dis-
tricts there are, the more vote moves are required to obtain a
certain number of seats. To be precise, when we merged half
of the districts, then, on average, we needed around 22% more
vote moves per gained seat. This is natural as with fewer dis-
tricts, there are fewer “rounding errors” that apportionment
needs to deal with. It is, however, interesting that the results
do not differ much, no matter if a party needed around 220
or around 100 additional seats (out of 460) to get a majority.
What is particularly striking is that even for a party with few
seats (11 in our case) at the beginning, it was enough to move
only around 26% of the voters to obtain the majority.

6 Future Work
We study election campaign management (modeled as
bribery) in the apportionment setting, focusing on the com-
putational perspective. Our algorithms require precise infor-
mation about vote counts and, as this information is difficult
to obtain before an election, we ask how such campaigns can
be planned given only approximate vote counts. The compar-
ison of simple bribing schemes in Section 5 can be seen as
the first step in this direction. Further, we focused on popular
apportionment schemes, but there are others such as, e.g., the
Quota method [Balinski and Young, 1975] or Frege’s appor-
tionment method [Harrenstein et al., 2020].
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