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Abstract

Printable version of a sample proof that uses Lamport’s proof style [1],
illustrating how structured proofs can be converted to HTML pages via
LATEX2HTML enriched with extensions for Lamport’s proof style. Note that
we try on purpose to carry out Lamport’s rule of thumb to “expand the
proof until the lowest level statements are obvious, and then continue for
one more level” in order to illustrate the principles of structured proofs.

Problem (cf. [2]):

What is the disjunctive normal form of

(x1∨y1)∧(x2 ∨ y2) ∧ . . . ∧ (xn ∨ yn)?

1 Solution 1

(x1 ∨ y1) ∧ (x2 ∨ y2) ∧ . . . ∧ (xn ∨ yn) ≡ (x1 ∧ x2 ∧ . . . ∧ xn−1 ∧ xn)
∨ (y1 ∧ x2 ∧ . . . ∧ xn−1 ∧ xn)
∨ (x1 ∧ y2 ∧ . . . ∧ xn−1 ∧ xn)
∨ (y1 ∧ y2 ∧ . . . ∧ xn−1 ∧ xn)

...
∨ (y1 ∧ y2 ∧ . . . ∧ yn−1 ∧ yn)


2n (1)

The resulting disjunctive normal form is exponentially blown up compared to
the size of the original conjunctive normal form.

Proof sketch: We show that the right side of Equation 1 is a disjunctive
normal form of its left side. Since disjunctive normal forms are unique mod-
ulo permutations of the disjuncts and modulo the order of the literals in the
disjuncts, the given disjunctive normal form cannot be reduced in size and the
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exponential blowup is unavoidable. The formal proof establishes that the right
side of Equation 1 is a disjunctive normal form of its left side by induction on n.

Proof:
1. Case: n = 1

The left hand side of Equation 1 is (x1 ∨ y1) which is true iff its right hand
side (x1) ∨ (y1) is true.
Proof:

x1 y1 (x1 ∨ y1) (x1) ∨ (y1)
true true true true
true false true true
false true true true
false false false false

Q.E.D.

2. Case: n > 1
We proceed by showing that if Equation 1 holds for n − 1 ≥ 1, then it also
holds for n.
Let:
2.1. Denote the left side of Equation 1 for each n by φn.
2.2. Denote the right side of Equation 1 for each n by ϕn.
2.3. Denote by bn,ibn−1,i . . . b2,ib1,i with bj,i ∈ {0, 1} and j ∈ {1, . . . , n} the

binary notation of i ∈ {0, . . . , 2n − 1}, such that i =
∑n
j=1 bj,i2

j−1.
2.4. Denote the (i+ 1)th disjunct of ϕn by

δn,i
def= (z1,b1,i ∧ z2,b2,i ∧ . . . ∧ zn−1,bn−1,i ∧ zn,bn,i)

where zj,0
def= xj and zj,1

def= yj .
Assume:
2.5. Equation 1 holds for n− 1 ≥ 1 (induction hypothesis):

φn−1 ≡ ϕn−1 =
2n−1−1∨
i=0

δn−1,i .

Prove:
2.6. Assumption 2.5 implies (induction step):

φn ≡ ϕn =
2n−1∨
i=0

δn,i .

Proof:

2.7. φn ≡
( 2n−1−1∨

i=0

( δn−1,i ∧ xn )
)
∨
( 2n−1−1∨

i=0

( δn−1,i ∧ yn )
)
.

2.7.1. φn ≡ φn−1 ∧ (xn ∨ yn) .
Proof: By definition of φn (cf. 2.1).

2.7.2. φn ≡
(2n−1−1∨

i=0

δn−1,i

)
∧ (xn ∨ yn) .

Proof: By step 2.7.1 and Assumption 2.5.
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2.7.3. φn ≡
2n−1−1∨
i=0

(
δn−1,i ∧ (xn ∨ yn)

)
.

Proof: By step 2.7.2, the distributivity of ∧ over ∨ [2, Proposition 4.1
(7)] (cf. Table 1), and the associativity of ∨ [2, Proposition 4.1 (4)] (cf.
Table 1), the latter two applied repeatedly.

2.7.4. φn ≡
2n−1−1∨
i=0

(
(δn−1,i ∧ xn) ∨ (δn−1,i ∧ yn)

)
.

Proof: By step 2.7.3 and the distributivity of ∧ over ∨ [2, Proposition
4.1 (7)] (cf. Table 1).

2.7.5. Q.E.D.
Proof: By step 2.7.4, the commutativity of ∨ [2, Proposition 4.1 (1)] (cf.
Table 1), and the associativity of ∨ [2, Proposition 4.1 (4)] (cf. Table 1),
the latter two applied repeatedly.

2.8. δn−1,i ∧ xn ≡ δn,i .
Proof: By definition of δn,i (cf. 2.4).

2.9. δn−1,i ∧ yn ≡ δn,2n−1+i .
Proof: By definition of δn,i (cf. 2.4).

2.10. ϕn ≡
( 2n−1−1∨

i=0

( δn,i )
)
∨
( 2n−1−1∨

i=0

( δn,2n−1+i )
)
.

2.10.1. ϕn ≡
( 2n−1−1∨

i=0

( δn,i )
)
∨
( 2n−1∨
i=2n−1

( δn,i )
)
.

Proof: By definition of δn,i (cf. 2.4) and by splitting up the expression
of ϕn in 2.6 into two equally sized parts, which is possible because of the
associativity of ∨ [2, Proposition 4.1 (4)] (cf. Table 1).

2.10.2. Q.E.D.
Proof: By shifting the offset 2n−1 in the second term of the right part of
Equivalence 2.10.1 from the running variable i into the term expression
δn,2n−1+i in the second term of the right part of Equivalence 2.10.

2.11. Q.E.D.
Proof: Substituting from left to right Equivalences 2.8 and 2.9 in Equiv-
alence 2.7, we get Equivalence 2.10. Thus, φn ≡ ϕn (2.6) is proved.

3. Q.E.D.

Proof: By steps 1 and 2 of the inductive argument.
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Table 1: Proposition 4.1 of [2]: Let φ1, φ2, and φ3 be arbitrary Boolean expres-
sions. Then:

(1) (φ1 ∨ φ2) ≡ (φ2 ∨ φ1) (commutativity of ∨)
(2) (φ1 ∧ φ2) ≡ (φ2 ∧ φ1) (commutativity of ∧)
(3) ¬¬φ1 ≡ φ1 (double negation is canceled)
(4) ((φ1 ∨ φ2) ∨ φ3) ≡ (φ1 ∨ (φ2 ∨ φ3)) (associativity of ∨)
(5) ((φ1 ∧ φ2) ∧ φ3) ≡ (φ1 ∧ (φ2 ∧ φ3)) (associativity of ∧)
(6) ((φ1 ∧ φ2) ∨ φ3) ≡ (φ1 ∨ φ3) ∧ (φ2 ∨ φ3)) (distributivity of ∨ over ∧)
(7) ((φ1 ∨ φ2) ∧ φ3) ≡ (φ1 ∧ φ3) ∨ (φ2 ∧ φ3)) (distributivity of ∧ over ∨)
(8) ¬(φ1 ∨ φ2) ≡ (¬φ1 ∧ ¬φ2) (De Morgan’s law for ∨)
(9) ¬(φ1 ∧ φ2) ≡ (¬φ1 ∨ ¬φ2) (De Morgan’s law for ∧)

(10) φ1 ∨ φ1 ≡ φ1 (idempotency of ∨)
(11) φ1 ∧ φ1 ≡ φ1 (idempotency of ∧)

2 Solution 2

(x1 ∨ y1) ∧ (x2 ∨ y2) ∧ . . . ∧ (xn ∨ yn) ≡ (x1 ∧ x2 ∧ . . . ∧ xn−1 ∧ xn)
∨ (y1 ∧ x2 ∧ . . . ∧ xn−1 ∧ xn)
∨ (x1 ∧ y2 ∧ . . . ∧ xn−1 ∧ xn)
∨ (y1 ∧ y2 ∧ . . . ∧ xn−1 ∧ xn)

...
∨ (y1 ∧ y2 ∧ . . . ∧ yn−1 ∧ yn)


2n (2)

The resulting disjunctive normal form is exponentially blown up compared to
the size of the original conjunctive normal form.

Proof sketch: Consider the directed graph shown in Figure 1. Observe that
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Figure 1: Visual proof of Equation 2.

paths from a0 to an can be described either as going through nodes ( x1 or y1 )
and ( x2 or y2 ) and . . . and ( xn or yn ) (cf. the conjunctive normal form), or
alternatively as going through nodes ( x1 and x2 and . . . and xn−1 and xn ) or
( x1 and x2 and . . . and xn−1 and yn ) or ( x1 and x2 and . . . and yn−1 and
xn ) or ( x1 and x2 and . . . and yn−1 and yn ) or . . . or ( y1 and y2 and . . . and

4

http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?equivalence+relation
http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?Exponential
http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?directed+graph


yn−1 and yn ) (cf. the disjunctive normal form). The formal proof makes this
precise.
Let: Denote the left side of Equation 2 by φ, and its right side by ϕ (the

variable-names are reused in Figure 1 to label the top and bottom nodes).
Prove: φ ≡ ϕ .
Proof:
1. There is a one-to-one correspondence (a bijection) between the paths from

node a0 to node an and the minimal satisfying truth assignments of φ (the
conjunctive normal form).
1.1. Every path from node a0 to node an corresponds to a unique minimal

satisfying truth assigment of φ.
Let:
1.1.1. Let a variable of φ be set to true whenever the path goes through a

node with the same name as the variable.
Proof:
1.1.2. The truth assignments induced by paths from a0 to an are satisfying

truth assigments of φ.
1.1.2.1. Every path from a0 to an must go through either xi or yi for all

i ∈ {1, . . . , n}.
Proof: Structure of the graph in Figure 1.

1.1.2.2. Q.E.D.

Proof: 1.1.1, 1.1.2.1, and the stucture of φ.
1.1.3. The truth assignments induced by paths from a0 to an are minimal

satisfying truth assigments of φ.
1.1.3.1. Flipping any variable from true to false in such a truth assign-

ment makes φ unsatisfied.
Proof: Structure of φ (every conjunct has only one variable that
makes it true in any minimal truth assignment of φ).

1.1.3.2. Q.E.D.
Proof: 1.1.2 and 1.1.3.1.

1.1.4. These minimal satisfying truth assigments are unique.
Proof: 1.1.3, the structure of the graph, the structure of φ, and because
the order of variables in truth assigments does not matter.

1.1.5. Q.E.D.
1.2. Conversely, every minimal satisfying truth assignment of φ corresponds

to a unique path from node a0 to node an.
Let:
1.2.1. Let a variable of φ be set to true whenever the path goes through a

node with the same name as the variable.
Proof:
1.2.2. Every minimal satisfying truth assignment of φ corresponds to a path

from node a0 to node an.
Proof: From the structure of φ, exactly one variable in each conjunct
must be true in any minimal satisfying truth assignment of φ. This
defines a path from node a0 to node an by the structure of the graph in
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Figure 1 and 1.2.1.
1.2.3. The thus induced path is unique.

Proof: Structure of φ and the construction of the graph in Figure 1.
1.2.4. Q.E.D.

1.3. Q.E.D.
Proof: 1.1 and 1.2.

2. There is a one-to-one correspondence between the paths from node a0 to
node an and the minimal satisfying truth assignments of ϕ (the disjunctive
normal form).
2.1. Every path from node a0 to node an corresponds to a unique minimal

satisfying truth assigment of ϕ.
Let:
2.1.1. Let a variable of ϕ be set to true whenever the path goes through a

node with the same name as the variable.
Proof:
2.1.2. The truth assignments induced by paths from a0 to an are satisfying

truth assigments of ϕ.
2.1.2.1. Every path from a0 to an must for all i ∈ {1, . . . , n} either go

through xi or yi.
Proof: Structure of the graph in Figure 1.

2.1.2.2. Q.E.D.
Proof: 2.1.1, 2.1.2.1, and the stucture of ϕ.

2.1.3. The truth assignments induced by paths from a0 to an are minimal
satisfying truth assigments of ϕ.

2.1.3.1. Flipping any variable from true to false in such a truth assign-
ment makes ϕ unsatisfied.

Proof: Structure of ϕ (only one disjunct is made true by any minimal
truth assignment of ϕ).

2.1.3.2. Q.E.D.
Proof: 2.1.2 and 2.1.3.1.

2.1.4. These minimal satisfying truth assigments are unique.
Proof: 2.1.3, the structure of the graph, the structure of ϕ, and because
the order of variables in truth assigments does not matter.

2.1.5. Q.E.D.
2.2. Conversely, every minimal satisfying truth assignment of ϕ corresponds

to a unique path from node a0 to node an.
Let:
2.2.1. Let a variable of ϕ be set to true whenever the path traverses a node

with the same name as the variable.
Proof:
2.2.2. Every minimal satisfying truth assignment of ϕ corresponds to a path

from node a0 to node an.
Proof: From the structure of ϕ, exactly one variable in each disjunct
must be true in any minimal satisfying truth assignment of ϕ. This
defines a path from node a0 to node an by the structure of the graph in
Figure 1 and 2.2.1.
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2.2.3. The thus induced path is unique.
Proof: Structure of ϕ and the construction of the graph in Figure 1.

2.2.4. Q.E.D.
2.3. Q.E.D.

Proof: 2.1 and 2.2.
3. Q.E.D.

Proof: Since each satisfying truth assignment of a boolean formula must
contain a minimal satisfying truth assignment (by definition of the latter),
and since by proof steps 1 and 2 there must be a one-to-one correspondence
between the minimal satisfying truth assignment of φ and of ϕ, a truth as-
signment satisfies φ iff it also satisfies ϕ.
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