InfoPipes: A Flexible Framework for
M-Commerce Applications

Marcus Herzog!>? and Georg Gottlob!

! Vienna University of Technology, Database and AI Group
Favoritenstr. 9, A-1040 Wien, Austria
[herzog, gottlobl@dbai.tuwien.ac.at
2 Electronic Commerce Competence Center - EC3
Siebensterngasse 21, A-1070 Wien, Austria

Abstract. M-Commerce applications are E-Commerce applications hav-
ing at least at one end a mobile terminal. Therefore M-Commerce ap-
plications share a number of properties with E-Commerce applications
while adding additional burdens on the application developer. In this
paper we present a conceptual model of an application framework that
provides services at the core of M-Commerce applications. We will also
present an implementation of this framework and discuss the properties
of the information processing involved.

1 Introduction

The World-Wide Web technology has triggered a new business era. While the
web has been invented to share scientific documents the marketing departments
soon discovered this technology to communicate the latest product information
to potential customers world-wide. The next generation of E-Business solutions
included online transaction processing facilities for actually selling those prod-
ucts to customers. With the advent of mobile devices capable to tap into the
information universe the installed base of terminals for E-Commerce processing
quickly increased.

Although the rising number of access and transaction points is a positive
development it has also some hidden drawbacks. The environment gets more
complex and heterogeneous. Different operating systems, smaller memory foot-
prints, slower communications and data synchronization, and different data in-
put methods all come into play. The incompatibilities of first releases of assorted
standards such as early versions of the WAP — Wireless Application Protocol [9]
did not help matters.

We now see a massive trend towards personalized information systems, and
mobile devices enable users to access portals that can be configured according to
their needs. But since M-Commerce applications are even more platform-specific
than conventional E-Commerce applications, systems need additional adaptors
in order to integrate with legacy systems or to retrieve specific Web content.
Data must be enabled to be sent to different devices without being authored for

each device individually. A scalable and flexible approach uses transformation
to generate the content from a single source to fulfil the formatting needs of all
clients.

2 Application Scenarios

In the following we will give some application examples that will underpin the
need for general architectures of M-Commerce applications that can be config-
ured to fit the specific application needs. In our application scenarios we will
concentrate on information mediation services and will spare transaction pro-
cessing systems for a later presentation.

2.1 Flight Information

Flight information is only one example of all kinds of travel information services
that are vital to travelers around the globe. The information domain is quite
similar among those including a departure location, an arrival location, and
some time and date information at its core.

Although this kind of information is usually available on the web, it is often
not available on a central point for all service providers. In the case of flight
information, timetables of individual flights are either scattered about different
airport information systems or about the portals of individual airlines.

Moreover, as a traveller is out of home by definition, this kind of information
is best communicated over mobile devices. The user has the ability to subscribe
to specific flights either by providing the flight number or the departure and
destination location. The system will send the actual flight status to the user,
but only if the status changed between consecutive requests.

2.2 Quoting Service

Another class of typical applications for M-Commerce are all sorts of quoting
services that report the price for a certain product or service. The range of
tradable goods spawn from stocks to second-hand articles to computer devices.
All those share the property of being for sale at a given price, although the price
might be determined by different methods and the rate of price building will
vary.

If we take for instance the case of an auction site the notification of new quotes
for bidding items can be very well communicated over wireless devices. Moreover
a bid can be acknowledged instantaneously and at any location. This service can
also be easily integrated with existing web services and be offered as an add-on.
The integration of a number of source services can be very interesting, especially
in comparison shopping applications, where a quote for a specific product is
collected from different vendors.

2.3 Tourist Information

On of the disadvantages of wireless applications is the reduced bandwidth and
complexity of interaction available. On the other hand the mobility of the device
can be exploited for additional request properties such as the location from which
the request is made. The location property can be used to provide personalized
information such as the closest facility of a certain kind.

Location-based services are best suited for tourist information systems where
travelers are searching for services in a given distance to their current location.
For instance locating a hotel room in a given price range would be a typical task.
Integrating such a service with the actual transaction processing of booking a
free resource further enhances the value for the customer.

3 Information Processing

The previous section presented some application scenarios that expose typical
properties of the information processing involved. In this section we will present
our information processing model for M-Commerce applications derived from
these scenarios. We show how to decompose the overall task of information
processing into stages that can be used as building blocks for assembling an
information processing pipeline which we call INFOP1PES . We will also describe
the characteristics that are associated with these sub tasks. The stages are as
follows:

— acquiring the required content from the source locations;
integrating the content;

transforming the content;

and delivering the content.

3.1 Acquiring the Content

Content can be retrieved from a number of sources with different characteristics.
The main characteristics of content feeds are:

relationship to the originator of the content;
transport protocol used to transfer the content;
— format of the content feeds;

access modality;

— periodicity of update.

The relationship to content owners can be somewhere between the two ex-
tremes of cooperative and non-cooperative (we are speaking of technical coop-
eration, not of legal implications, which have to be dealt with separately). In
the cooperative case, the content feed is fully transparent to the M-Commerce
applications. This is e.g. the case in direct access to databases or to files in the
file system, where the structure is known and the access rights are granted. This

is often the case when the system and the content feeds are under the same
control such as in EAT systems. If the M-Commerce application has to integrate
content from different content providers, the interface will often be restricted
to access content only from web services. The issue of the relationship actually
determines most of the following characteristics.

The transport protocol of choice will be in most cases HTTP, as it is well
suited for all kinds of file access, wether remote or local. The access is also nicely
abstracted in the URN respectively URL concept, which defines a transport
protocol along with a resource identifier. HTTP furthermore allows to tunnel
through firewalls, which relieves the problem of connecting to proprietary ports,
albeit dodging the concept of assigning ports to specific services to a certain
extend.

The format of content ranges from structured (e.g., table rows in a database)
to unstructured (e.g., plain text). Semi-structured formats tend to increase in
importance with the advent of XML [5]. XML brings together the advantages
of the structured and unstructured format, allowing to define the structure to a
certain degree while still providing a certain flexibility [1]. XML can be both used
for document-based as well as message-based communication. Although XML
seems to be the future, we still have to take legacy data into account, especially
the myriad of HTML formatted resources. In this case transformation of HTML
formatted content into an XML representation is an important subtask.

The access modalities differs according to the transfer protocol and to the
formatting of the content feed. In the best case retrieving the content is a single
command (e.g., executing a SQL statement or reading a file). Interacting with a
web service is more tricky including the complexity of navigating the document
structure. In this case the system has to emulate the browsing behaviour of the
user to acquire the content.

Finally, M-Commerce applications have to deal with the high volatility of the
source content. We can distinguish between pull and push content. While the
update rate of push content is under control of the supplier-side, push content
is actively fetched by the receiver. The receiver has to decide weather to fetch
data on demand or in advance. On demand would fetch data only it data are
currently needed, while in advance would fetch data at a given rate independent
of an actual request for that data. For most applications both methods have to
be supported to be able to trade accuracy of the data against response time.

3.2 Integrating the Content from Various Sources

In our model acquiring data from a number of heterogeneous sources is supported
in the integration stage. We assume that the input to this stage is XML based,
either by native XML data sources or by translation during the acquiring stage
of the processing pipeline. The purpose of the integration stage is two-fold:

— integrate and normalize the XML element structure; this is achieved by map-
ping rules between incoming and outgoing XML document types. The map-
ping process can be necessary when conceptually similar sources do not share
a common document type, although the structure of the domain is related;

— normalize the content of XML elements; it is sometimes necessary to map
between textual fragments and concepts, e.g., the flight status could be de-
noted as delayed in one web source and as verspdtet in another — both terms
will be mapped to a single concept that can be processed by other stages.

The output of the integration stage is a canonical data structure that can
be used as a data source for the subsequently following information processing
steps. The integration needs some human intervention for the specification of
the various mappings being applied. It is our intention that this mapping is
carried out using interactive tools. Furthermore, it is an interesting research
issue to apply techniques from various fields such as statistics and information
retrieval to support the user in creating those mappings for the individual source
structures.

3.3 Transforming the Content According to the User Needs

The purpose of the transformation stage is to enable the application designer
to define XML transformations on the content. This is needed to customize the
content according to the requirements of the user who is requesting the content.
This stage can be compared to defining a query in traditional databases. In fact
we are currently evaluating which XML query language can be applied to fulfil
this task. In contrast to the classical relational approach there is no definitive
standard for query formulation in the XML field. A recent survey of XML query
languages is given in [4].

While the previous two stages can be performed independent of the appli-
cation user, the transformation and also the subsequent delivery of the result
will be tailored according to the user configuration. The transformation is com-
posed by the application designer and parameters are submitted by the user.
This strategy is well known from so-called publish-subscribe systems [2, 6, 11].
Applying the transformation on XML data allows to generate results indepen-
dent of platform specific formatting constraints. The formatting of the result is
part of the delivery stage.

3.4 Delivering the Content to the User

The final stage of the information processing chain is responsible for delivering
the result to the target platform. In M-Commerce applications this can be a
number of different clients ranging from mobile phones (usually with different
capabilities) to PDAs and other mobile devices. While the basic infrastructure for
E-Commerce and M-Commerce applications is pretty equivalent, M-Commerce
applications have to face the multi-platform publishing challenge to a greater
extend.

In principle the delivery stage can be regarded as the opposite side to the
acquisition stage. During acquisition the application has to communicate with
a number of different data sources by means of correct requests. In the delivery
phase requests from heterogeneous clients have to be answered correctly. It is

the challenge not to use only the least denominator of all features exposed by
the various clients but to adapt the response according to the features of the
client.

The task of formatting the information processing result has to be supported
by graphical and interactive tools that are targeted at content managers in con-
trast to application programmers.

4 System Architecture

In the remainder of the paper we will present our approach towards an system
architecture that enables application designers to rapidly build M-Commerce
applications. In our system architecture the whole information processing task
is split into a number of stages according to the task decomposition as presented
in subsection 3. The stages are implemented as software components that can
easily be combined to build full-featured information processing pipelines. The
construction of these infopipes is supported by a visual tool (see figure 1). The
infopipe architect creates and configures the elements of the infopipe by a number
of mouse clicks and parameter entries.

3t InfoPipe System - Netscape =& x|
Datel Beatbeiten Ansicht Gshe Communicator Hifs
¥ 2 A B . £ & £ B F N
Zuriick Wor Neuladen Anfang Suchen Guide Dnucken Sicherheit Shop Stop

LogOut

My Pipes x[llFlight Information
Pipe Name Status

B a [
e ® B

Train Information [l Datei Bearbeben Ansicht Gehe Communicator Hife

World Weather [

e B)H’\N owpm

Add new pipe

e P
— Ouputsmactae
%
Geory Pipes I Airport W*|= i
7aacvare |
H1zDport /Forecast/hirport
Flightoumoer 5 « _’,_‘FXPATHExpr)

eece ST o —

[sace m Eﬂrecas\:/ihrpnr\:/CDnd)\:an Ji‘ b
‘ >

[foarding |
#
[pace B I ﬁm
[Time @ [FLignenuroer
Forecast/Flightnurber =

i
/hirport/Flightnunber
1 » rl

o= [Dokument; bermiteel:

pe——| T — |
S| | S S QSRR E &4 B || o) FulfE: ol on] @] Re|Fn 8] MLOlERgEe0 we

Fig. 1. Main infopipe screen and transformer configuration screen

The actual data flow within the infopipes is realized by handing over XML
documents. Each stage within the infopipe accepts XML documents (except for

the source, which accepts HTML documents), performs its specific task, and
produces an XML document as result. This result is fed to the successor compo-
nents which in turn will perform the next information processing stages. Com-
ponents which are not on the boundaries of the network are only activated by
their neighbouring components. Boundary components (i.e., source and deliverer
components) have the ability to activate themselves according to a user specified
strategy and trigger the information processing on behalf of the user. Figure 2
shows an infopipe topology representing the information processing according to
the flight information scenario.

Two source components to the left wrap the airport web sites in Frankfurt
and Vienna. The output of these source components are data on flight departures
in XML format. These structurally differing outputs are fed into an integrator
component which normalizes the data. The normalized data are transformed
to select flight data based on the flight ID or the departure and destination
attributes respectively, which are supplied by users of this information pipe. The
deliverer components transform the XML output of the transformer components
into formats appropriate for the target devices.

Source
‘ignha

Source
Frarikfurt
Transfarmer
Dep/Dest ve Sourcel
Mews Inbegrators
d d Mews Transformer,
Deliverer Deliverer
Alert EMaIL

=" Transformer Deliverer
, FlightiD S5

Integrator
Depatures

Deliverer
SMS

Fig. 2. An example of an infopipe topology

The topology of an infopipe is determined by the application designer. Once
activated the information flow within the infopipe is request driven. In our ar-
chitecture the activation is spreading from the sinks towards the sources. All
stages use local caches to cache intermediate results that can be reused by other
connected components. A checksum computed over the input XML document
and the configuration of the component is applied to detect whether the cache
is still valid.

In the following we will discuss the tasks that are carried out at the different
stages of the infopipe information processing model.

4.1 Source

The source component is responsible for retrieving the data from the data
sources. Data sources are any kind of machine readable data store that fea-
tures an access protocol to fetch data over the network. Source components
abstract the individual data stores and provide a unified interface for other in-
fopipe components. In a first step the main focus of our INFOPIPES system is on
web sources. The task is to emulate the browsing behaviour of a user to retrieve
the data from the web by utilizing a crawler engine [10]. The source component
implements the HTTP, respectively HT'TPS protocol to communicate with web
sources. Moreover, it supports Cookies to handle client-side state management.

The source component is configured by the user through observing the in-
teraction of the human user with the web source. The result of the source con-
figuration is a list of HTTP method calls and associated arguments. The aim
of the navigation is to locate a web page that holds the information the user is
interested in. Once the user arrives at this page, the HTML code is handed over
to the extraction component. In the INFOPIPES system we use a novel approach
for generating HTML extractor programs. Details on the extraction process are
given in [3].

4.2 Integration

The source and extraction components are responsible for retrieving web data
and translating it into an initial XML representation. The integration compo-
nent is responsible for integrating the various fragments that are passed along
from source components into a unified XML representation. The integrator will
integrate data from information sources in the same domain that share a similar
data structure, e.g., data that are retrieved from various airport flight informa-
tion systems. The incoming data will be mapped to a unified output structure
that incorporates all necessary XML elements.

The integration process is also configured via a graphical user interface (see
figure 3). The user sees the document type structure of all incoming XML docu-
ments. After defining the document type of the output document, the individual
incoming document types are mapped to the output structure. Furthermore reg-
ular expressions can be defined to perform the concept matching as described in
the previous paragraph.

The result of the configuration are XSLT [8] programs that perform the
necessary translations between the input documents and the output document.
Again the user is not required to know the mechanism of XSLT but can take
advantage of the full-fledged capabilities if the automatically generated XSLT
does not fully satisfy the users’ needs.

The result of the integration component is a normalized view on all integrated
web sources that will serve as a data source for the following components in the
pipeline. Due to the implicit cache architecture in the INFOPIPES network only
those documents have to be reintegrated that changed in between successive
request.

JAirpon/Flight/Status =t Mapping between oulput

and input document element

None -l @
None -]
fairportFlight/Gate -] @

airparfPighyFlghnumber] 5} Application designer defined

output structure

"1.077> <xsl:stylesheet
xmlns:xsl="http://www.w3.org/ 1999/ X3L/ Transform™ version="1.0" > <!-- This file is
automatically generated by the Integrator Component. Do not edit! --> <xsl:template match="/">
<document> <xsl:for-each select="/VIE/Flight"> <hirport><Airportar: <xsl:value-of
select="/VIE/kirportar™/> </Airportnr> <Flight><Flightnumber> <xsl:value-of

"> </FLi > <xslivalue-of select="./Status"/> </Status>

xslivalue-of select="./Gace”/> </Gate> <Boarding><Date></Date> <Time> <xsl:value-of

select="./Time"/> </Time> </Boarding> </Flight> </Airpert> </xsl:for-each> </document>
</xsl:template> <!-- Filtering out what we don't want --> <xsl:template match=r"text(}">
</xsl:template> </xslistyleshest>

@] Fertig (3 Lokales Intranet

Fig. 3. Integrator configuration dialog

4.3 Transformation

In addition to the expressive power of the query language we have to evaluate
how queries can be formulated by graphical means to fit into the overall strategy
of a fully visual interface. An example of a visual query language for XML
documents is given in [7]. The first impression is that visual representations of
queries tend to get rather confusing when complexity is increased. This leads to
the assumption that we have to trade complexity for usability. An alternative is
to allow the experienced user to formulate queries in the native query language
while lay users use the visual interface with reduced expressive power.

Besides query formulation the transformation component will also generate
query masks according to the formulated queries where users can submit actual
values to arguments in the query. It is important to note that these masks are
available for different clients on different platforms, e.g., for HTML and WML
clients. These masks are used during the information processing when users can
only state their information needs according to predefined transformations.

Figure 4 shows a screenshot of the transformer configuration dialog.

4.4 Delivery

The final stage in the processing pipeline is to deliver the information to the
user. An important design principle of the INFOPIPES architecture has been to
support clients on various platforms. This implies a multi-platform publishing
supporting both push and pull technology. The responsibility of the delivery
component is to:

Parameter for flight selection

@O O @ @ Commichanges J

r [airpont

- \Cond\tmn

rfec3

 [Fught

" |Airparnr u B

/document /Airport/Airporear
/Forecast/Airport/Airporcnr

[{
| JF

/document / Airport/Airpectnc
/Forecast/kirpore/kirporenr

r [staws |

r~|Gate |

r~ [Boearding |

Fig. 4. Transformer configuration dialog

— check on delivery constraints such as time, date, or if the information content
has changed since the last delivery;

— transform the information from XML into a format suitable for the request-
ing client, ranging from simple text formats (e.g., e-mail, SMS) to markup
languages (e.g., HTML, WML, or VoxML);

— deliver the content to the client utilizing the appropriate communication
channel and protocol.

The delivery component is on the boundary of the network structure and
has the ability to activate itself and trigger the processing of the pipeline. The
processing takes place through backward chaining to all immediate successor
components which in turn activate their successor components. The user can
configure at what time or in what intervals the component should activate the
pipeline processing. On the other hand the delivery component gets activated if
one of the source components in the same pipeline changes its state.

In the case of activation by source components checking delivery constraints
is important because otherwise the infopipe would permanently push information
to users even when they are not interested in it. Once the user has subscribed
to the pipeline and the processing is started the infopipe continuously produces
information output. On the other hand activation by delivery component is inter-
esting for infopipes with ”lazy” source components which change only infrequent
but the user wants to be informed on a specific point in time.

The transformation process is visually configured by selecting elements from
the DTD of the input document and assembling an output DTD in case of

markup documents or assembling a text document in case of text based out-
put formats. The configuration is then translated into an XSLT program that is
executed at run time. Similar to the transformer component the infopipe archi-
tect can replace this program with a hand-coded one in case of more complex
transformation needs. See figure 5 for a screenshot of the deliverer configuration
dialog.

Input structure with
example data

Text element for IFRAFug/Flgnummer,

SMS message e
o

Data element for
SMS message

é_] & Lokales Intranet

Fig. 5. Deliverer configuration dialog

5 Conclusions

We have presented our novel approach towards an architecture for personalized
information channels that feed content extracted from semi-structured informa-
tion sources to clients on various platforms. The main focus of this paper has
been on the presentation of the whole system architecture from a logical point of
view and to clearly structure the problem domain. Some of the technical details
had to be omitted due to the restricted scope of the presentation.

The INFOPIPES system is currently under construction and is designed as a
web-based application. The implementation language is Java and we utilize the
J2EE infrastructure to translate the logical components into software compo-
nents. The project is carried out in cooperation with the Electronic Commerce

Competence Center in Vienna, where we realize the airport scenario using the in-
fopipe infrastructure. The prototype has received high attention from the mobile
telecom companies that are partners of this center.

6

Acknowledgement

This work was partly supported by the Austrian Science Fund Project NZ29-INF
and by the Electronic Commerce Competence Center - EC3, Austria.

References

[1]
[2]

[9]

S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, 1999.

Guruduth Banavar, Tushar Deepak Chandra, Bodhi Mukherjee, Jay Nagarajarao,
Robert E. Strom, and Daniel C. Sturman. An efficient multicast protocol for
content-based publish-subscribe systems. In Proc. of International Conference on
Distributed Computing Systems, pages 262-272, 1999.

Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Visual web information
extraction with Lixto. In Procs. of 27th International Conference on Very Large
Data Bases (VLDB), Roma, Italy, 2001. to appear.

Angela Bonifati and Stefano Ceri. Comparative analysis of five XML query lan-
guages. SIGMOD Record, 29(1):68-79, 2000.

T. Bray, J. Paoli, C. Sperberg-MacQueen, and E. Maler. Extensible Markup
Language (xml) 1.0 (Second Edition), 2000.

Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Achieving scal-
ability and expressiveness in an internet-scale event notification service. In Proc.
of Symposium on Principles of Distributed Computing, pages 219-227, 2000.

S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. XML-
GL: A graphical language for querying and restructuring xml documents. In Proc.
of 8th Int. World Wide Web Conference, pages 1171-1187, 1999.

J. Clark (ed.). XSL Transformations (XSLT) Version 1.0, November 1999.
WAP Forum. Wireless application protocol.

Allan Heydon and Marc Najork. Mercator: A Scalable, Extensible Web Crawler.
World Wide Web, 2(4):219-229, December 1999.

Radu Preotiuc-Pietro, Joao Pereira, Francois LLirbat, Francoise Fabret, Kenneth
Ross, and Dennis Shasha. Publish/subscribe on the web at extreme speed. In
Proc. of ACM SIGMOD Conf. on Management of Data, Cairo, Egypt, 2000.

