DBAI
Ji4se

TECHNICAL
REPORT

Institut fur Informationssysteme
Abteilung Datenbanken und
Artificial Intelligence
Technische Universit Wien
Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403
Fax: +43-1-58801-18492
sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FUR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Heuristic Methods for Hypertree
Decompositions

DBAI-TR-2005-53

Artan Dermaku Tobias Ganzow Georg Gottlob
Benjamin McMahan Nysret Musliu Marko Samer

DBAI TECHNICAL REPORT
2005, (AST MODIFIED: 2006)

TU

TECHNISCHE UNIVERSITAT WIEN

DBAI TECHNICAL REPORT
DBAI TECHNICAL REPORTDBAI-TR-2005-53, 2005, I(AST MODIFIED: 2006)

Heuristic Methods for Hypertree Decompositions

Artan Dermaku ! Tobias Ganzow Georg Gottlob®
Ben McMahan* Nysret Musliu® Marko Samer®

Abstract.In this paper we propose new algorithms for generating generalizedtrege
decompositions. The well known heuristics for generating tree decompsshi@sed on
vertex ordering have been extended to produce hypertree decompeskie investigate
the generation of hypertree decompositions based on the tree decomgosititie pri-
mal and the dual graph of the hypergraph. Further, we propose a anfethgenerating
hypertree decompositions using hypergraph partitioning. We use diffalgorithms for
partitioning hypergraphs. The proposed algorithms are experimentallya¢®d in bench-
mark problems from the literature and industry. Using the proposed algonitlenmaprove
the best existing upper bounds for hypertree width for many problems.

nstitut fir Informationssysteme (DBAI), Technische Univeisitien, Favoritenstr. 9-11, A-1040
Wien, Austria. E-mail: dermaku@dbai.tuwien.ac.at

2Mathematische Grundlagen der Informatik, RWTH Aachen, D-52056 é&ach E-mail:
ganzowinformatik.rwth-aachen.de

SInstitut fur Informationssysteme (DBAI), Technische UniveidsiwVien, Favoritenstr. 9-11, A-1040
Wien, Austria. E-mail: gottlob@dbai.tuwien.ac.at

4Department of Computer Science, Rice University, Houston, TX 77082;18.S.A. Email: mcma-
hanb@rice.edu

SInstitut fir Informationssysteme (DBAI), Technische UniveidsiwVien, Favoritenstr. 9-11, A-1040
Wien, Austria. E-mail: musliu@dbai.tuwien.ac.at

SInstitut fur Informationssysteme (DBAI), Technische UniveisitWien, Favoritenstr. 9-11, A-1040
Wien, Austria. E-mail: samer@dbai.tuwien.ac.at

Acknowledgements This work was supported by the Austrian Science Fund (FWF) proldrct:
P17222-N04, Complementary Approaches to Constraint Satisfaction

Copyright(© 2007 by the authors

2 TECHNICAL REPORTDBAI-TR-2005-53

1 Introduction

Many important problems in artificial intelligence, databaystems, and operations research can
be formulated as constraint satisfaction problems (CS prob] or CSPs, for short). Such prob-
lems include problems in scheduling, planning, configorgtdiagnosis, machine vision, spatial
and temporal reasoning, truth maintenance, theory of grapd networks, etc. Although solving
a CS problem is known to b& P complete in general, many of the problems that arise in prac-
tice have special properties that allow them to be solvediefiily. The question of identifying
restrictions to the general problem that are sufficient Buemtractability is important from both a
practical and a theoretical point of view, and has been sktely studied.

A CS problem consists of a finite set of variables each with gefaidmain of possible values,
and a set of constraints (relations) on the allowed values fepecified subsets of variables. A
typical textbook example for a CS problem is the famgteph 3-colorabilityproblem, i.e., the
problem of deciding whether the vertices of a grapltan be colored by three colors such that
vertices joined by an edge receive different colors. Thabfam can be formulated in a natural
way as a CSP: we consider each vertex/ds a variable with domaiRed, Green, Blue, and for
each edggv, w) of G we take the binary constrailt, ,, that just excludes the case where both
variablesv andw receive the same color, i.&;,,, =(Red, Green), (Green, Red), (Red, Blue),
(Blue, Red), (Green, Blue), (Blue, Green).

Restrictions for obtaining tractable classes of CS problerag either involve thenature of
the constraints (i.e., which combinations of values arewadd for variables that are mutually
constrained) or they may involve trstructure of the constraints (i.e., which variables may be
constrained by which variables). In this paper we concéntrethe second aproach, which inves-
tigates classes of CS problems which can be solved efficibgtlgxploiting their structure. The
structure of a CS problem can be modeled bydastraint hypergrapha hypergraph whose ver-
tices are the variables of the problem, and whose hyperentgesspond to the constraints of the
problem (more precisely, each constraint gives rise to @fggge containing exactly the variables
which are in the scope of the constraint).

The evaluation oboolean querie®n databases, an important and excessively studied task in
database theory, is known to be equivalent to finding saistior a CS problem. This equiv-
alence allows us to apply techniques and results obtainedteibase theory directly to solving
CS problems, and vice versa. A prominent tractable class osCiBPacyclic CSPs, originates
from database theory. A CSP is acyclic if its constraint hgpegsh is acyclic (there have been
several definitions of hypergraph acyclicity consideretit@arature; fortunately, in our context the
most general concept of acyclicityd!pha acyclicity”) suffices, see [9, 16]). If the hypergraph
associated to a CSP is acyclic, then the problem can be sdifieiérgly by Yannakakis’ classi-
cal algorithm [33]. Yannakakis’ algorithm, formulated irms of conjunctive query evaluation,
processes the “join tree” corresponding to an acyclic queaybottom-up fashion. This algorithm
is also highly parallelizable [16]. Yannakakis’ algorithmas later used to compute the solution
of acyclic CS problems. Incidentally, for graph 3-coloréijlas considered above, the constraint
hypergraph is nothing but the given graghitself; if G is a tree, then the coloring problem is
trivial.

TECHNICAL REPORTDBAI-TR-2005-53 3

The favorable results about acyclic CS problems extend tesekaof “nearly acyclic’ CS
problems. Several decomposition methods have been sedgesthe literature to transform
an arbitrary CSP into an acyclic one, making the vague notidmearly acyclic” precise. The
most prominent methods includeee clustering8], hinge decompositiond9, 20], cycle cutset
andcycle hypercutsdi7, 16], hinge-tree clusteringl6], bounded query-widtf4], and bounded
hypertree-widti17]. The latter method has been shown to be the most gensedlL5].

The parametehypertree widthcorresponds to a new decomposition method cdilgokrtree
decompositionThe hypertree width of a CSP is the width of an optimal hygerttecomposition
of its constraint hypergraph. Acyclic CSPs have hypertreiiwi. Bounded hypertree width yields
the largest class of tractable queries, compared with éradcyclicity-based classes; Moreover,
it could be shown that for eadh the class of CSPs with query widthis properly contained in
the class of CSPs whose hypertree width is boundef[iy]. This is remarkable, since bounded
qguery width allowed the hitherto largest class of tractab& problems, but in contrast to the
N P hardness of finding query decompositions of fixed width (4&¢)[hypertree decompositions
of fixed width can be found in polynomial time. Thus the notminbounded hypertree width
not only shares the desirable properties of bounded quedthwit also does not share the bad
properties of the latter, and, in addition is a more genayatept. A further in-depth comparison
of hypertree width, clique-width and other decompositicgtimods in the more general context of
model checking, can be found in Gottlob and Pichler [18].

For each constart, it is possible to check in polynomial time whether a hypapir is of
hypertree-widtht, and, in the positive case, to produce a hypertree decotigosif width & of
the given hypergraph. By means of the hypertree decomposttie corresponding CS problem
can then be solved in polynomial time. (Furthermore, by Itesaf [17] the tasks of finding a
hypertree decomposition of width(if any) and of solving the corresponding CSP problem belong
to the complexity clas OGCF L, a complexity class ohighly parallelizableproblems which
is located very low in the polynomial hierarchyOGCFL C AC'.) Therefore, the efficient
generation of hypertree decompositions of small width iBigh relevance for constraint solving.
Preliminary results on practical applications of hypestdecomposition for constraint solving and
for diagnosis algorithms are reported in [13] and [30], extpely.

Formal definition of hypertree and tree decompostions isrgielow.

Definition 1 (Gottlob, Leone, and Scarcello [17])L.et H = (V(H), E(H)) be a hypergraph,
consisting of a nonempty set(H) of vertices and a set’(H) of subsets ot/ (H), thehyperedges
of H. A hypertree decompositioof a hypergraphH is a hypertree< T, x, A > for H which
satisfies all the following conditions:

1. for each hyperedge € E(H), there existp € vertices(T') such thawertices(h) C x,;

2. for each vertex € V(H), the set{p € vertices(T) | Y € x,} induces a (connected)
subtree off’;

3. for each vertey € vertices(T), x, C var(X,);

4. for each vertex € vertices(T), var(\,) N x1, € Xp

4 TECHNICAL REPORTDBAI-TR-2005-53

The width of the hypertree decomposition 7', x, A\ > IS maZpcvertices(r)|Ap|- The hypertree
width, hw(H), of H is the minimum width over all its hypertree decompositions.

If the fourth condition in definiton of hypertree decomposs is ignored, the corrosponding
decomposition is called generalized hypertree decongpushiote that the first three condions of
hypertree decompositons are sufficient to solve the thesponding CS problem in polynomial
time. The fourth condition was added to aid the proof thatafdixed k, determining if a hyper-
graph H has hypertree widtlk can be solved in polynomial time. In this paper we invesagat
the genaration of generalized hypertree decompositiomsthe proposed methods in this paper
guarantee to produce the hypertree decompositions whiidsffirst three conditions of hypertree
decompositions.

In this paper we also use tree decompostions to generatetfggdecompositions. The con-
cept of tree decompositions was introduced by Robertson eyweh&ur: [28].

Definition 2 (see [28], [2])Let G = (V, E) be a graph. Aree decompositionof G is a pair(7’, x),
whereT = (I, F') is a tree with node set and edge set’, andx = {x; : ¢ € I} is a family of
subsets of/, one for each node df, such that

L Uerxi=V,
2. for every edgév,w) € E, thereis an € [withv € x; andw € x;, and
3. foralli, j, k € I,if jis onthe path fromi to £ in 7', theny; N xx C ;.

The width of a tree decomposition is max|x;| — 1. Thetreewidthof a graphG, denoted by
tw(G), is the minimum width over all possible tree decompositioh§'.

1.0.1 Current Algorithms for Hypertree Decompositions

The exact algorithnoPT-K-DECOMPfor the generation of optimal hypertree decompositions, de
veloped by Gottlob, et al. [14], has been implemented in 8atlal For details about the imple-
mentation of this algorithm, see [21]. Additionally, thigarithm has also been implemented in
C++ by the research group at the University of Calabria, ttaBoth implementations are used
successfully for the generation of hypertree decompestmf small instances of CS problems.
However, for larger and important practical cases, the tealgorithm is not practical and runs
out of time and space. To overcome the limitations of the eakgorithm heuristic methods were
proposed. In [26] a heuristic method is proposed based owmdttex connectivity of the given
hypergraph (in terms of its primal and incidence graphs)e @pplication of branch decompo-
sition heuristics for hypertree decomposition was ingagéd in [29]. These heuristic methods
were used to find hypertree decompositions of small widtlpfoblem instances where the exact
algorithm opT-K-DECOMP did not yield results within a reasonable amount of time. Easy,
the preliminary heuristics were still not useful to give daesults for larger problem instances;

1see http://si.deis.unical itfrank/Hypertrees/html/body.htm

TECHNICAL REPORTDBAI-TR-2005-53 5

in particular, we have identified several important pradt@ases in which the current heuristics
cannot give satisfying solutions.

To obtain better results for hypertree decompostions ftfergint range of problems, in this
paper we propose new heuristic algorithms for generatidtypértree decompositions. In particu-
larly we investigate the application of algorithms whichrevesed very succesfully for generation
of tree decompostions based on vertex ordering. Furtheinvestigate the use of hypergraph
partitioning algorithms to obtain hypertree decompoasgioT his paper is organized as follows. In
Section 2 we propose an algorithm for generation of germ@lhypertree decompositions based
on tree decomposition of primal graph (obtained from theehgph). Section 3 investigates the
use of tree decompostion of dual graph for generalized ngeedecompostions. Generation of
hypertree decompositions through hypergraph partitpmnproposed in Section 4. Further, in
Section 5 the proposed algorithms are evaluated in benéhexamples, and Section 6 gives the
conclusion remarks.

2 Bucket Elimination for Hypertree Decomposition

Bucket elimination (BE) is used in Constraint Satisfactione firethod uses the topological struc-
ture of the problem to help find a solution efficiently. In peutar, the method approximates the
induced width of its primal graph, which has shown to be igehto the treewidth of its primal
graph [11]. The method has the property that given an optuaaéble order, BE will produce
a tree decomposition of optimal width [6, 5]. The algorithrorks as follows: Assume we are
given an order, ..., z, of the variables of a CS problem (or vertices of hypergraprcivinep-
resents the CS problem). BE starts by creatintbuckets”, one for each variable;. For an
constraintr;(z;,, ..., x;,) of the problem, we place the relation with variablesz;,, ..., z;, in
bucket maxiq,...,i;}. We now iterate on from n to 1, eliminating one bucket at a time. In
iterationi, we find in bucket several relations, where is a variable in all these relations. We
compute their join, and project out. Let the result be.. If r, is empty, then the result of the CSP
is empty. Otherwise, lef be the largest index smaller thaisuch thatz; is a variable ofr}; we
mover; to bucketj. The answer to the original CSP is 'yes’ if none of the joinsines an empty
result.

Note that for the given CSP the corresponding hypergraplpetgdges represent the scope
of constraints of the CSP, and the vertices of the hypergrapiresents the variables of the CSP
problem.

This method can easily be extended to create a tree decdiopasil’ = (I, F), x > of CSP.
First, anode € [is created for each buckein the algorithm. Then each node’s lahglcontains
the variables that appear in the corresponding buckgtlges(:, j) € F' are created when, in the
algorithm, the result of bucketis placed in buckej.

6 TECHNICAL REPORTDBAI-TR-2005-53

2.1 Variable Orders

Bucket elimination requires an underlying variable ordemc& choosing an optimal order for
BE is NP-hard [1], we choose the order heuristically, usirgyjdin graph (primal graph) of the
hypergraphH which represents the CSP. The join gra@h = (Vy, Ey) of a hypergraph H
contains a vertex for every variable in the relations of CS# @medge between two vertices iff
there is a relation in CSP that contains both variables.

An order that is often used in constraint satisfaction [Stis Maximum-Cardinality Search
(MCS) order of [31]. The order is computed iteratively. At eateration MCS picks a vertex that
has the highest connectivity with the vertices already ehpbreaking ties arbitrarily. In other
words, MCS picks the vertex with the greatest number of neghin the set of vertices already
picked.

Other vertex-ordering heuristics have been explored irctiméext of treewidth approximation
and constraint satisfaction [5, 27]. One variable-ordgheuristic method is based on using lex-
icographic breadth-first search to triangulate a graph. Vamants were developed [27]. Two
greedy heuristics can also be found in the literature. Thedine, callesnin-induced-widttorder-
ing, computes the order iteratively. At each iteration idsithe vertex with the smallest degree.
Next it adds to the graph’'s induced edges, i.e. with edges that connect the neighdfarsand
deletesv from the graph. A variation of the min-induced-width oraheyiis themin-fill heuristic.
At each iteration we pick the vertex that has the smaflgstiet, which is the edge set needed to be
filled to make the parent set fully connected. Tiagent seof a nodev are all the nodes adjacent
to v that precede it in the ordering. Once this vertex has beé®gize update the graph by added
its induced edges and deleting the vertex as in the min-edhwadth ordering. In [5], min-fill is
said to have been shown empirically to produce orders witletavidth than min-induced-width.

We use in this paper three vertex-ordering heuristit€S min-fill hueristic, andnin-induced-
width heuristic.

2.2 Two simple extentions

Hypertree decompositions, in satisfying their own prapsrtmust also satisfy the properties of
tree decompositions. In particular, the first property gbérgree decompositions satisfy the first
two properties of tree decompositions and the second propehypertree decompositions is the
same as the third property of tree decompositions. Thetiotubehind the extensions is then that
the edge labek is made up of atoms needed to “cover” the variables foung ifhe extension
also makes the greedy assumption that a low treewidth dalvafor a lower hypertree width.

The first approach we attempted , called hyperBE, basicallgbthe hypertree decomposition
as the algorithm proceeds. Given an order. . ., x,, of the variables of a CSP. It starts by creating
n “buckets”, one for each variable. For an constraint (relation)(x;,, ..., z;,) of the CSP, we
place the relation; with variablesz;,, ..., z;, in bucket maxi,,...,i,}. We now iterate on
from n to 1, eliminating one bucket at a time. In iterationwe find in bucket several relations,
wherez; is a variable in all these relations. We compute their jomq project outz;. Let the
result ber!. If r; is empty, then the result of the CSP is empty. Otherwisej le¢ the largest
index smaller thar such thatr; is a variable of}; we mover; to bucketj. Now, this is where

TECHNICAL REPORTDBAI-TR-2005-53 7

the extention appears. We add relations from the CSP to buicketover any new variables that
might have appeared from placimgin the bucket. We do this greedily, just picking atoms from
the previous bucket that cover any uncovered variable.

A second approach, called coverBE, first creates a tree dexsitigm using BE, then creates
the A labels for the nodes of the tree greedily by attempting teecdie variables in thg label.
So, for each node of the tree, the algorithm covers its veasaby iteratively picking the relation
(hyperedge of hypergraph which represents the scope diomavith the highest cost function
(defined later) until all the variables are covered. As a ¢asttion, we have found two that
worked well. The first one picks the hyperedge that coverstbst number of uncovered variables.
Ties are broken by taking the hyperedge that on averageineritee least occuring variables of
all the hyperedges in hypergraph which reperesents the Q&Pother cost function does not
include a tie breaker. A weight is assigned to each variableibthe variable is covered and as
(1-— |Con§tc7"c(;ti:1(iZ(CéSP)\) if it is not covered. Occurance is the number of constraints ISP the
variable appears in. The algorithm then picks the atom thatle highest weighted sum until all
the variables are covered.

There are some things to be noted with these extensions. rBhariid most important is that
both of them use early projection and thus violate the focotidition of hypertree decompositions.
This, though, is not as bad as it sounds because the fourthticonwas added to aid the proof
that, for a fixedk, determining if a hypergraph which represents CSP has hggentidthk can be
solved in polynomial time. Since we are approximating hyneerdecompositions, this restriction
isn’t necessary.

Another major item to note is that the first extension creat@smplete decompositipmean-
ing that for every constraint of the CSRB, € constraints(CSP), there is some nodg €
vertices(T') such thatvar(A) C x(p) andA € A(p). But for the second extension, coverBE,
it does not necessarily produce a complete decompositiotasvery hyperedge (relation) may
be used. This is not a problem, since a complete decompositéio easily be created by adding
nodes to the hypertree decomposition containing the ngssioms and connecting them to the
nodes in the tree where thdabel is a superset of the variables in the atom. In genehslpartree
decomposition can be transformed to a complete decompogitiogspace [17].

3 Dual Bucket Elimination

Another approach we investigated is calldall bucket elimination Dual bucket elimination is
very similar to bucket elimination, but instead of consting a tree decomposition of the original
hypergraph in the first step, we construct a tree decompasiti thedual hypergraph. The dual
hypergraph of a hypergraph, as exemplified in Fig. 1, is singbitained by swapping the roles
of hyperedges and vertices. It is easy to see that there &yala one-to-one mapping between a
hypergraph and its dual hypergraph, i.e., we do not looserdagmation by this transformation.
Our intuition for using the dual hypergraph instead of thigioal hypergraph is that bucket
elimination tries to minimize the size of the labeling s&thjch are they-labels of the hypertree
in the case of using the original hypergraph. However, thédtlwof a hypertree decomposition

8 TECHNICAL REPORTDBAI-TR-2005-53

Figure 1: A hypergraph and its dual hypergraph

is determined by the size of thelabels and not of thg-labels. So our aim is to apply bucket
elimination in order to minimize tha-labels, which is exactly what is done when applying bucket
elimination to the dual hypergraph. Hence, our procedutigei$ollowing: (i) build the dual hyper-
graph, (ii) apply bucket elimination to construct a treeaaposition, (iii) interpret the labeling
sets as\-labels of a hypertree, and (iv) set tRelabels appropriately in a straight-forward way.
The resulting hypertree is then a hypertree decomposifitimecoriginal hypergraph.

The attentive reader may have noticed that there are twdgmsbwith this approach: First,
the hypertree-width is at least the cardinality of the latgalge in the dual hypergraph which is
equal to the maximum number of hyperedges having a commaexviarthe original hypergraph.
Second, the\-labels satisfy the connectedness condition of a tree dpesition by construction.
Hence, the hypertree-width may be larger than necessarycaiWeovercome the first problem
by slightly modifying the bucket elimination algorithm duthat the second condition of a tree
decomposition is violated. To overcome the second probleenteset the\-labels by set cover
heuristics after the-labels have been set. Although the results of dual bucketredtion are not
outperforming other hypertree decomposition heuristmssome examples we obtain in this way
hypertree decompositions of smallest width.

4 Hypertree Decomposition through Hypergraph Partitioning

In this section we consider the use of hypergraph partitigr@igorithms for generating hypertree
decompositions. Let/ (V, E) be a hypergraph wheré is the set of vertices, an#l is the set of
hyperedges (each hyperedge is a subset of the vertéx)setertices and hyperedges can have
different weights. In Hypergraph Partitioning the aim isfited partitions of set” in two (or k)
disjoint subsets such that the number of vertices in eacly;sstbounded, and some objective
defined over hyperedges is optimized. Most commonly useelctifag is to minimize the sum of
the weights of hyperedges connecting two or more subsets.

An example of partitioning a hypergraph in two parts is giwerkigure 2. The hypergraph
contains 10 hyperedges and 14 vertices. The cut dividesyfhergraph in two parts. The first part
contains 8 vertices, whereas the second part containsiéegrT hese two partitions are connected

TECHNICAL REPORTDBAI-TR-2005-53 9

by two hyperedges1 andh7. If all hyperedges in the hypergraph weighed 1, the cost®ttit
(weighted sum of the cut) will be 2.

Figure 2: Example of partitioning a hypergraph in two parts

Hypergraph partitioning constrained on the number of gegtin each partition is NP-Complete
problem. Thus, different heuristics methods have been instb@ literature to produce a good hy-
pergraph partitioning for large hypergraphs. In this papeexperiment with two heuristics which
has been used very succesfully in the literature, and audilly propose and apply a new method
for hypergraph partitioning. In this section, we first shomnhthe hypertree decompostions can
be constructed using hypergraph partitioning and then werd® in detail the heuristics used for
hypergraph partitioning.

The basic idea of using hypergraph partitioning for hymertdecomposition is due to Ko-
rimort [26]: The given hypergraph is partitioned into suplggraphs, the subhypergraphs are
partitioned into subsubhypergraphs, etc. For each suc¢higaing step, a new hypertree node is
constructed which is labeled with the corresponding setedtices respectively hyperedges used
to separate the hypergraph. If vertices are chosen as seanae have theg-labels given and
use set cover heuristics to compute tiabels. Otherwise, if hyperedges are chosen as separa-
tors, we have the-labels given and compute thelabels in a straight forward way as described
in [17]. Note, however, that it is not enough to construct pdryree by connecting the hypertree
nodes according to the partitioning tree. The problem istti@partitionings of a hypergraph and
its subhypergraphs are not independent of each other diraetinectedness condition has to be
satisfied by the resulting hypertree decomposition. TloeeefKorimort [26] suggested to add a
special hyperedg® each subhypergraph which contains the vertices in tleesettion between
the hypergraph and its subhypergraph, i.e., the verticashahust occur in thec-labels of the
child hypertree node in order to satisfy the connectednassditon. By the hypertree conditions,
we know that for each hyperedge there must be a hypertreewtuidb contains all vertices in the

10 TECHNICAL REPORTDBAI-TR-2005-53

hyperedge in itg-labels. Thus, when constructing a hypertree top-down, vesvithat there must
be a hypertree node in the subtree which contains all verircéhe corresponding special hyper-
edge in itsy-labels. Hence, we choose this hypertree node as child acidtual hypertree node.
It is then easy to check that a hypertree decompostion aatamthis way satisfies all hypertree
conditions. A detailed description of this procedure caifdomd in [26].

4.1 Partitioning with Fiduccia-Mattheyses algorithm

The hypergraph partitioning algorithm proposed by Fidaamd Mattheyses in [10] is based on
an iterative refinement heuristic. In a first step, the hygsgaly is arbitrarily partitioned into two
parts, followed by a sequence of passes during which th&ipang is optimized by successively
moving vertices to the opposite partition. The selectiateda for choosing the next move are
based on the so-calleghin which is associated to every vertex and a balancing constitaat
prevents the application of moves which would lead to an larzed partitioning. The gain is a
measure for the impact of the move on the size of the hyperedgeositive values indicate that
the size of the cut decreases, i.e. that the solution is ivegko Furthermore, there is a locking
mechanism to prevent situtations where sets of verticesdamei moved back and forth between
the partitions again and again. Towards this end, at thenbey of each pass all vertices are
unlocked (i.e., free to move), and once a vertex is movedd®iposite partition it is locked. The
next move is determined by choosing one of the vertices Wwélntghest gain among the remaining
unlocked vertices whose movement does not violate the balgrronstraint. A pass is finished
after all vertices have been moved, such that the partitgpoorresponds to the initial partitioning
except that the partitions are swapped. Note, that sincthtst” next move does not necessarily
have a positive gain, the solution might get worse duringss gdélowing the algorithm the chance
to climb out of local minima. However, the best solution seerfar is memorized and, after the
pass is finished, this solution is taken as the initial sotufor the next pass. The whole algorithm
terminates if the initial solution could not be improved idigra pass. Fiduccia’s and Mattheyses’
main contribution was to show that these gains can be céézlédficiently at the beginning of the
pass, and, even more important, that the gains can also lagadbefficiently after a move has been
made.

4.2 Implementation

The implementation of the Fiduccia-Mattheyses algorithii) is oriented at the architecture
proposed in [3] that identifies and defines several compsmezeded for the implementation of an
arbitrary move-based partitioning heuristic. The mainaadage of this “decentralized” approach
is the possibility to easily replace a component by a moreiefit implementation or by a modified
version without having to change anything in the other parts

There are several possibilities of how to handle the spégijpéredges which are introduced
after each partitioning step to ensure the connectednesktiom of the hypertree decomposition.
As these hyperedges are not contained in the original hygeing they have to be replaced in the
final decomposition by possibly more than one hyperedgeenbtiginal graph. So the question is

TECHNICAL REPORTDBAI-TR-2005-53 11

Figure 3: Gains

how to evaluate the cost of a cut that contains such speqiarbgges.

To determine which evaluation function yields the bestltsswe implemented four different
variants of the FM algorithm. First, the original algoritlusing efficient gain updates that does not
differentiate between “normal” and special hyperedged,s&tond, a minor variant that handles
hyperedges with associated weights. The first variant caseba as a special case of the latter
where the weight of each hyperedge is set to one. During theteection of the hypertree, for
each arising special hyperedge it is determined how mangsdfthe original hypergraph are
needed to cover all of its nodes, and this value is taken asvéght of the special hyperedge.
However, the apparent problem with this approach is thantimaber of hyperedges needed to
cover the vertices of the special hyperedge is not alwaysamate measure for the contribution
of the hyperedge to the separator size. This problem appednsse cases where a hyperedge
needed for the covering is also part of the cut and thus woelddunted twice, or in case that
there are two (or even more) special hyperedges in the cusevkets of covering edges have a
non-empty intersection. Thus, by simpy adding all weiglithie cut hyperedges, a solution might
be valuated worse than it actually is.

This problem is addressed in a third variant that evaluatsast of the set of hyperedges being
cut more accurately by determining the number of hyperedg#se original hypergraph that are
needed to cover the vertices of all hyperedges in the cute M@t this modification eliminates
the possibility of efficient gain updates since the amouat ¢hsingle hyperedge contributes to the
total cost of a cut highly depends on the set of hyperedges)lweit.

The fourth variant completely avoids the problem by movitighades contained in a special
hyperedge at once. Thus, there is never a special hyperedtgmed in the separator, and hence
the valuation of the separator is straightforward. Acaogdio Korimort [26], considering sepa-
rators containing special hyperedges should make the garobf finding a good decomposition
harder and should not lead to better results.

12 TECHNICAL REPORTDBAI-TR-2005-53

Initial Partitioning Phase

Figure 4: Multilevel partitioning algorithms [22]

4.3 Partitioning through HMETIS

The next approach which we use in order to achieve a good gsggEr partitioning is based on
hMETIS algorithms. hMETIS is a software package for patitng hypergraphs, developed at the
University of Michigan. According to the literature, h(MES Is one of the best available packages
for hypergraph partitioning [22, 23, 25].

We will give a brief description of the hMETIS algorithms. kéoinformation about h(METIS
can be found in [22, 23, 25, 24]. In general the algorithm]lastrated in Figure 2 [22], comprise
of three phases.

In thecoarseningohase the group of vertices of hypergraph will be mergedtt@gen order to
create the single vertices and smaller hypergraph. In thisthe size of large hyperedges will be
reduced, and itis very helpful because of the fact that FMrétlgm is better than other algorithms
when refining smaller hyperedges [23]. There are three lpiiies to merge the vertices during
the coarsening phase: the finding of a maximal set of verniitesh have the common hyperedges
(edge coarsening), the merging of vertices within the saypetedge (hyperedge coarsening), and
finally the modified hyperedge coarsening which also mengeséertices within hyperedges that
have not yet been contracted [23].

After the coarser hypergraph is created, the next phassddhkéinitial partitioning phase com-
putes a bisection of those hypergraphs tending a small cué apecified balanced constraint. The
coarser hypergraph has a small number of verticies, uslesiythan 200 vertices [23], therefore
the partitioning time tends to be small. In order to comphbteinhitial partitioning hMETIS uses
two different algorithms followed by the Fiduccia-Mattlseg (FM) refinement algorithm [23].
Because the algorithms are randomised, different runstrgsdifferent solutions, and the best
initial partitioning will be selected for the next phase.

During theuncoarseninghase the partitioning will be successively projected &rtbxt level
finer hypergraph and a partitioning refinement algorithnh mélused to reduce the cut-set in order
to improve the quality of partitioning. hMETIS implementsariety of algorithms that are based

TECHNICAL REPORTDBAI-TR-2005-53 13

on the FM algorithm which repeatedly moves vertices betwsgtitions in order to improve the
cut [23, 25].

The hMETIS package offers a stand-alone library which gtesithe HMETISPartRecursive()
and HMETIS PartkKway() routines. HMETISPartRecursive() routine computek-avaypartition-
ing and is based on recursive partitioning of hypergraphwio partitions (multilevel recursive
bisection) [23, 25]. HMETISPartkway() routine also comput&sway partitioning and is based
on recursive partitioning of hypergraph in more than twdipans (multilevelk-waypartitioning)
[25]. We use both routines in order to achieve appropriatétjpas that lead to a hypertree de-
composition of small width. hMETIS package offers the piisy to change different parameters
which have an impact on the quality of partitioning. Therefave make a series of tests with
parameters of different values, and we come to the conclubiat the parameters which mostly
impact the quality are the number of desired partitioparts and the imbalance factor between
partitionsubfactor For a complete description of parameters see [22]. Thedeatts show that
for npartsless than 3 the hypertree decomposition was not necesbattigr, and usually higher
ubfactorslead to smaller hypertree-widths.

4.4 Partitioning with the algorithm that includes tabu search mechanisn

In this section we present a new hypergraph partitioningréttymn based in the ideas of tabu search.
Tabu search [12] is a powerful modern meta-heuristic tephamiwhich has been used successfully
for many practical problems. The basic idea of tabu searth &void cycles (visiting the same
solution) during the search by using the tabu list. In theutlidt specific information about the
search history for a fixed number of past iterations are dtofbe acceptance of the solutions for
the next iterations in this technique depends not only onutslity, but also on the information
about the history of the search. In the tabu list one stoogsnétance, the moves or inverse moves
that have been used during a specific number of past itegatibime stored moves are made tabu
for several iterations. A solution is classified as a tabutsmh if it is generated from a move that
is in the tabu list. In this technique, a complete neighbodh(with defined moves) of the current
solution is generated during each iteration. In the basi@amtof TS the best solution (not tabu)
from the neighborhood is accepted for the next generatimwener, it is also possible to accept
the tabu solution if it fulfils some conditions, which aretelenined by the so called aspiration
criteria (i.e., the solution is tabu but has the best objedtinction value so far).

In this paper we propose a simple iterative improvementrétga which applies the ideas
of tabu search for hypergraph partitioning. In the itemtimprovement phase, which includes
moving of vertices from one partition to another partitidhe information about the moves of
vertices between partitions are stored in the memory (tiabu This information about the history
of moves is then used in the process of selecting the soltdidhe next iteration. For example, if
the solution accepted for the next iteration is obtained bying of vertex3 from first partition to
the second patrtition, then vert&wwill be added in the tabu list. The vertices added in the taiu |
are kept in the list only for a determined number of iteragiowwhen selecting a solution from the
neighborhood for the next iteration, the solutions obtdilbg moving vertices that are in the tabu
list are not taken into consideration for selection. An @tima is made if the solution has the best

14 TECHNICAL REPORTDBAI-TR-2005-53

objective function value so far (aspiration criteria [12])

Note that tabu search has been used for hypergraph partgigmeviously in the literature.
Our algorithm includes several changes compared to basicsearch algorithm for hypergraph
partitioning. First, to reduce the size of the neighborhwodur algorithm only part of the neigh-
borhood is generated during each iteration. The neighloatr®obtained only by moving vertices
which are contained in the hyperedges that are in the cuteofdirent solution. This heuristic is
similar with min-conflicts heuristic, as we take into cores@tions only the vertices which appear
in cut (seperator) hyperedges. Additionally, we includéig algorithm some randomness during
the search. Not all vertices of seperators are moved dueaoly eration, but with some probabil-
ity in some iterations the vertices of only one seperatori¢tvis selected randomly) are moved
to create the neighborhood of the solution. The pseudo cbtte@rocedure which includes the
tabu mechanism and generates the restricted neighboragpeen in Algorithm 1.

Algorithm 1 Partitioning with algorithm which inlcudes tabu meachnisna restricted neighbor-

hood
Generate initial solution

Initialize tabu list

while termination-condition not trudo
With probability p:
pick randomly one of seperators and generate the whole lb@ibbod of current solutions
by moving nodes of selected seperator

With probability 1 — p: Generate the whole neighborhood of current solution byingov
nodes of all seperators

Evaluate neighborhood solutions

Select the solution for the next iteration based on selectigteria which includes tabu
mechanism

Update tabu list

end while

The algorithms starts with very simple initial solution.the initial solution one partition con-
tains only one node and the second partition the rest of tdesiol'he neighborhood of the current
solution is generated by moving nodes from the partition imch they are located to the other
partition. With some probability only the nodes of one seperator, which is selected randomly,
are moved, whereas with some probability- p all nodes which are vertices of seperators will
be moved. Clearly, the size of the neighborhood in the casewhly one seperator is selected

TECHNICAL REPORTDBAI-TR-2005-53 15

is much smaller compared to case when all seperators areleoed. After the generation of the
neighborhood the solutions are evaluated according totiiess function. The fithess function is
the sum of weights of all seperators (hyperedges that corwecpartitions). We experimented
with different weights of seperators. In the first variantsgperators have weightwhether they
are special hyperedges or not. In the second variant theveaght of seperators is used, and in the
third variant the maximal weight afis set to seperators which have weight larger than 1 (as a con-
sequence of being special hyperedges). The followingraite applied to determine the solution
that will be accepted for the next iteration. The best solufrom the neighborhood, if it is not
tabu, becomes the current solution in the next iteratiothdfbest solution from the neighborhood
is tabu, then the aspiration criteria is applied. For thérapn criterion, we use a standard version
[12] according to which the tabu status of a move is ignoreédafmove has a cost better than the
current best solution. For finding the most appropriate taebgth for tabu search approach we
experimented with different lengths of tabu list and difietr probabilityp. The length of the tabu
list was selected to be dependent on the size of the problemkier of nodes in the hypergraph).

i i vV Y
We experimented with these lengths of tabu ligt; 5+, =, 75

4.5 Combination of Partitioning Algorithms with Bucket Elimination

We additionally experimented with the combination of theéngraph partitioning algorithms with
the bucket elimination algorithm. The algorithm first apglibboth bucket elimination and hyper-
graph partitioning algorithm to find the upper bound for tlypdrtree width. HMETIS package is
used for hypergraph partitioning. In HMETIS different camdttion of parameters for balancing
and number of partitions are used. The parameters whiclupeatthe best results are selected for
further runs of the partitioning algorithm. Using the obtd upper bound for the hypertree de-
compositions the algorithm that combines hypergraphtganing and bucket elimination runs as
follows: It applies recursively the hypergraph partitiogialgorithm in the given hypergraph. The
partitioning of a particular subgraph = is stopped if the separator obtained by the partitioning
of that subgraph is larger than the upper bound for the hsgeewidth or if the hypertree width of
the subgraph obtained by applying bucket elimination iri udograph is smaller or equal to the
size of the separator produced by hypergraph partitiorAftpough some results can be improved
by this algorithm, the disadvantage of this algorithm istihee performance, because the bucket
elimination algorithm is executed in every subgraph oladifrom the partitoning algorithm.

5 Evaluation of the heuristics

In this section we report the computational results obtawéh the current implementation of
the methods described in this paper. The results for prabfeom CSP hypergraph library [32]
are given. This collection of problems contains hypergreggresentation of of several classes
of CSP instances. These instances include industrial exanipm DaimlerChrysler, NASA,
and the ISCAS circuits as well as synthetically generatetheles like Grids and Cliques. The
Library contains problems of different size. For detailescription of these instances the reader

16 TECHNICAL REPORTDBAI-TR-2005-53

is refered to [32]. These instances can be downloaded froml BB/pertree Project web site

2. Additionally, the executables of the current implementabf the algorithms described in this
paper can be downloaded from this web site . All experimemtshfe methods presented in this
paper were perfomed in a machine with a Intel Xenon (2x) gsog 2.2Mhz, 2GB memory. For
each problem 5 independent runs with each algorithm areuée@c The maximal time for each

run is set to be 1 hour.

5.1 Comparison of algorithms based on vertex ordering

Tables 1, 2, 3 present the results obtained by applying Buglk®ination (BE) and Dual Bucket
Elimination (DBE) algorithms in 112 examples from Daimler@sier, NASA, Grids, Cliques, and
ISCAS circuits. The first column represents the name of igtamd its characteristics (number
of hyperedges and variables). The second and third column 8ie results obtained byPT-K-
DEcompPalgorithm. Column¥ represents the width of the generated hypertree and colutha
time in which the hypertree decomposition is generatedthEamore, the fourth and fifth columns
represent the results obtained by algorithms proposedin({Rese results were obtained using a
Intel Pentum Ill, 1 GHZ, 25MB RAM). The last four columns repeat the results obtained by the
Bucket Elimination (BE) and the Dual Bucket EImination (DBE)a@ithms. For BE and DBE the
best width found over 5 runs and the everage time of 5 runsesgnted. BE algorithm applies the
coverBE approach (see Section 2, according to our experatleistapproach gives better results
than hyperBE).

The exact algorithnoPT-K-DECOMP can be used only for the small examples and for larger
and important practical cases, the exact algorithm is rexttppal and runs out of time and space.
The algorithms developed in [26] are tested using the Dafdhigysler instances and could be
used for larger problem instances thapT-K-DECOMP algorithm. For these instances the algo-
rithm gives very good results with respect to the hypertraithy however the time performance
is much worse compared to BE and DBE. In [26] results are nondgweother problems, and for
larger instances this algorithm is very time consuming &cexample, for the NASA problem the
algorithm proposed in [26] could not give satisfiable restdt the width of hypertree decomposi-
tion. Comparing BE and DBE, the tables 1, 2, and 3 show that BE dotpes DBE with regards
to the width of the hypertree generated. BE gives better te$ol 59 problems, whereas DBE
elimination gives better results than BE fidr problems. The total sum of widths for all examples
for BE is 2881, whereas for DBE386. Overall, the results show that BE and DBE can give very
good upper bounds for the width of hypertree decompositfonslifferent sized problems in a
reasonable amount of time.

5.2 Comparison of partitioning algorithms

In this section we compared results for three partitiongxhhiques described in section 4. The
results obtained based on Fiduccia-Mattheyses algoritfd),(algorithm which includes tabu
search (TS) and HMETIS (HM) are presented.

2http://www.dbai.tuwien.ac.at/proj/hypertree/dowrdea

TECHNICAL REPORTDBAI-TR-2005-53 17

We tested several variants for assigning weights to spegpsredges. The first possibility is to
not consider weights at all which is the same as assigningghivef 1 to all hyperedges. Second,
we set the weight of a special hyperedge equal to the numtetgss of the original hypergraph
needed to cover all of its vertices. As described above, iy lead to an unfair valuation of
seperators containing more than one hyperedge. In a thitrdntave tried to set the weight of
special hyperedges tband of all other edges tb This restricts the use of special hyperedges in
separators, but does not penalize it too much. The resultiséddiM technique presented in Table 4
indicate that the first and the latter heuristic both yieldikir results and clearly outperform the
second one. Note that the class of examples Misc represemMAISA problem and two other
random problems which are not presented in this paper.

Tables 5, 6, and 7 are the results obtained by appplying FMah8 HM in 140 examples
from DaimlerChrysler, NASA, Grids, Cliques, and ISCAS cirsuiResults for FM are obtained
by the original algorithm using efficient gain updates thagsinot differentiate between “normal”
and special hyperedges. Slightly better hypertree widdhse obtained by using the third variant
for special hyperedges. This variant evaluates the codieokét of hyperedges being cut more
accurately by determining the number of hyperedges of tiggnail hypergraph that are needed
to cover the vertices of all hyperedges in the cut. However ¥ariant has much worse time
performace. The results presented for HM2 and TS are olgtdopesetting the weight of special
hyperedges ta (other hyperedges have weight The column HM best represents the best result
obtained by HM techniques by using all variants considetirggweights of special hyperedges.
For each technique the best width found over 5 runs and thagedime (for 5 runs) needed to
find hypertree decomposition is presented.

From the results we can conclude that the best hypertredsvidt the most of problems are
obtained by using HMETIS partitioning algorithm. FM givestter results only for 11 instances
and TS only for 6 instances. An explanation why HMETIS givaschbetter results could be
that both FM and TS produce only a bi-partitioning of the hgoaph, whereas HMETIS divides
the hypergraph into more components. Regarding the timemeaice the algorithms give com-
parable results and in general all the partitioning alpong generated solutions quickly. Note
that the combination of hypergraph partitioning algoritiuith BE give marginal improvements
to results obtained by hypergraph partitioning algorithmd 8E individually. Furthermore, this
algorithm has the disadvantage that it is very time consgraimd because the time perfomance of
this algorithm is much worse, results of this algorithm aségiven in this paper.

5.3 Comparison of hypergraph partitioning algorithm and node ordering
based heuristics

Based on the results givenin Tables 1, 2, 3, 5, 6, 7 we can cdethat the best results are obtained
by BE and HM algorithms. Comparing these two algorithms, the BBréhm gives better results
than HM for 52 instances. HM performs better for 29 instané#d’s time performance is overall
better than the time performance of the BE algorithm. As thedgosition methods based on
hypergraph partitioning are fast, it seems to be a good ideart both heuristics and select the
best result as an output.

18 TECHNICAL REPORTDBAI-TR-2005-53

Additional results for SAT problems are given in Tables 810, 11. For these instances the
BE algorithm gives in general better results than HM. HM perf® better for some instances.

6 Conclusions

In this paper we presented two classes of heuristic algosttor generation of generalized hyper-
tree decompositions with small width. We proposed the geiter of hypertree decompositions
based on the tree decompostions of the primal and dual gfapdenerate tree decompostions we
used Bucket Elimination and three heuristics for finding afexeorderings. Further, we proposed
a method for generating hypertree decompositions basedaumsive partitioning of the hyper-
graph in weakly connected subgraphs. We used a state oftthgpergraph partitioning library, a
well known hypergraph bi-partitioning heuristic in theeliature, and proposed a new hypergraph
partitioning heuristic based on ideas of tabu search. Aalditly, we investigated the hybridiza-
tion of the proposed heuristic algorithms. The proposecous were evaluated in more than 200
problems from industry, literature and random generatetilpms.

Overall, we found that good tree decompositions can makel gypertree decompositions,
even when just using greedy set-covering techniques. Heedecompositions of hypergraphs
obtained from their primal graph gave in general betterltefompared to tree decompositions
constructed from their dual graph. The experimental redudive shown that hypergraph parti-
tioning algorithms can be used successfully for generdtypertree decompositions in a short
amount of time. Results show that better hypergraph partrtgalgorithms give better hypertree
decompositions.

Comparison of heuristics based on tree decompostions aretdrgph partitiong has shown
that methods based on tree decompositions give slightteretsults than methods based on hy-
pergraph partitioning. However, for many problems hypapgrpartitioning based algorithms give
better upper bounds for hypertree decompositions. Therigmppts have shown that the time per-
formance of hypergraph partitioning based algorithms isebe&ompared to tree decomposition
based algorithms. In general the results indicate thatingnof these two techniques in very large
instances gives very good upper bounds for hypertree deasitigqns. By applying the algorithms
proposed in this paper we could obtain new upper bounds éowitith of hypertree decomposition
for many large hypergraphs, whose width were not known presly in the literature.

References

[1] Arnborg, Corneil, and Proskurowski. Complexity of findiembeddings in a k-tre&lAM Journal of Algebraic
and Discrete Method$(2):277-284, 1987.

[2] H.L. Bodlaender. A tourist guide through treewidihcta Cyberneticall:1-21, 1993.

[3] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Design andphementation of move-based heuristics for VLSI
hypergraph partitioningACM Journal on Experimental Algorithms, 2000.

[4] Chandra Chekuri and Anand Rajaraman. Conjunctive quentainment revisitedTheoretical Computer Sci-
ence 239(2):211-229, 2000. Database theory (Delphi, 1997).

TECHNICAL REPORTDBAI-TR-2005-53 19

[5]
[6]

[7]

[8]
(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

R. Dechter.Constraint ProcessingMorgan Kaufmann, 2003.

R. Dechter and J. Pearl. Network-based heuristics fostraint satisfaction problemgrtificial Intelligence
34, 1987.

Rina Dechter. Constraint networks. Encyclopedia of Atrtificial Intelligencevolume 1, pages 276-285. 2nd
edition, 1992.

Rina Dechter and Judea Pearl. Tree clustering for caimtnetworks.Al, 38(3):353-366, 1989.

Ronald Fagin. Degrees of acyclicity for hypergraphs agldtional database schemedournal of the ACM
30(3):514-550, 1983.

C. M. Fiduccia and R. M. Mattheyses. A linear-time hetid for improving network partitions. IDAC '82:
Proceedings of the 19th conference on Design automagiages 175-181, Piscataway, NJ, USA, 1982. IEEE
Press.

Eugene C. Freuder. Complexity of k-tree structuredst@int satisfaction problems. WAAI, pages 4-9, 1990.
Fred Glover and Manuel Lagun&abu searchKluwer Academic Publishers, 1997.

Georg Gottlob, Martin Hutle, and Franz Wotawa. Combinhypertree, bicomp, and hinge decomposition. In
15th European Conference on Atrtificial Intelligence (EC2),Qyon, France, July 2002.

Georg Gottlob, Nicola Leone, and Francesco Scarcdltactable queries and constrainBroceedings of the
Conference on Database and Expert Systems ApplicationSA9R), LNCS 1677:1-15, 1999.

Georg Gottlob, Nicola Leone, and Francesco Scarcalmmparison of structural CSP decomposition methods.
124(2):243-282, 2000.

Georg Gottlob, Nicola Leone, and Francesco Scarc@li@ complexity of acyclic conjunctive queriesournal
of the ACM 48(3):431-498, 2001.

Georg Gottlob, Nicola Leone, and Francesco Scarcelipertree decomposition and tractable querdesirnal
of Computer and System Sciend®¥(3):579-627, 2002.

Georg Gottlob and Reinhard Pichler. Hypergraphs in eh@thiecking: Acyclicity and hypertree-width versus
clique-width. In Fernando Orejas, Paul G. Spirakis, and/darLeeuwen, editor28th International Colloquium
on Automata, Languages and Programming (ICALR®@)ume 2076, pages 708-719, 2001.

Marc Gyssens, Peter G. Jeavons, and David A. Cohen. rgasing constraint satisfaction problems using
database techniques. 66(1):57—-89, 1994.

Marc Gyssens and Jan Paredaens. A decomposition nwtlgydfor cyclic databases. In HenGallaire, Jean-
Marie Nicolas, and Jack Minker, editorAdvances in Data Base Thegonolume 2, pages 85-122. Plemum
Press, New York, 1984.

M. Hutle. Constraint satisfaction problems - hybriccdmposition and evaluation. Master’s thesis, Technical
University of Vienna, 2002.

G. Karypis and V. Kumar. hmetis: A hypergraph partifiggnpackage version 1.5.3, 1998.

George Karypis, Rajat Aggarwal, Vipin Kumar, and Sh&ekhar. Multilevel hypergraph partitioning: appli-
cations in visi domainlEEE Trans. Very Large Scale Integr. Sy3i1):69-79, 1999.

George Karypis and Vipin Kumar. Multilevel k-way pditining scheme for irregular graph¥ournal of Parallel
and Distributed Computingt8(1):96-129, 1998.

George Karypis and Vipin Kumar. Multilevel k-way hygeaph partitioning. I'DAC '99: Proceedings of the
36th ACM/IEEE conference on Design automatipages 343—-348, New York, NY, USA, 1999. ACM Press.

Thomas KorimortHeuristic Hypertree DecompositiohD thesis, Vienna University of Technology, 2003.

20

[27]

(28]

[29]

(30]

[31]

[32]

[33]

TECHNICAL REPORTDBAI-TR-2005-53

A. Koster, H. Bodlaender, and S. van Hoesel. Treewidilmmputational experimentsElectronic Notes in
Discrete Mathematics 8, Elsevier Science Publish2@§1.

N. Robertson and P. D. Seymour. Graph minors. Il. atbaric aspects of tree-widthJournal Algorithms
7:309-322, 1986.

Marko Samer. Hypertree-decomposition via branchedgmosition. In19th International Joint Conference on
Artificial Intelligence (IJCAI 2005)pages 1535-1536, 2005.

Markus Stumptner and Franz Wotawa. Coupling CSP deositipn methods and diagnosis algorithms for
tree-structured systems. 18th International Joint Conference on Artificial Intekigce (IJCAI 03)

R.E. Tarjan and M. Yannakakis. Simple linear-time aitjon to test chordality of graphs, test acyclicity of
hypergraphs, and selectively reduce acyclic hypergraplfsv J. Comput.13:566-579, 1984.

Nysret Musliu Marko Samer Tobias Ganzow, Georg Gottlad csp hypergraph library. Technical Report,
DBAI-TR-2005-50, Technische Universitt Wien, 2005.

Mihalis Yannakakis. Algorithms for acyclic databaséemes. In C. Zaniolo and C. Delobel, editdfsty Large
Data Bases, 7th International Conference, Sep. 9-11, 188hnes, France, Proceedingsages 81-94. IEEE
Computer Society, 1981.

TECHNICAL REPORTDBAI-TR-2005-53 21

Table 1: Results for Bucket Elimination and Dual Bucket Elintioia

opt-k-decomp [26] BE DBE
Instance (Atoms / Variables) Min w T W| T Wi| T W| T
adder15 (76 / 106) 2 2 5 2 2 0 2 0
adder25 (126 / 176) 2 2 40 2 2 0 2 0
adder50 (251 / 351) 2 2 2 0 2 0
adder75 (376 / 526) 2 2 2 0 2 1
adder99 (496 / 694) 2 2 2 1 2 1
bridge 15 (137 / 137) 2 2 19 2| 40 | 3 0 3 0
bridge 25 (227 / 227) 2 2 138 3] 65 || 3 0 3 0
bridge 50 (452 / 452) 2 2 2211 3| 174 || 3 1 3 1
bridge 75 (677 / 677) 2 2 | 726 || 3 1 3 2
bridge 99 (893 / 893) 2 2 1190 3 2 3 3
NewSystem1l (84 / 142) 3 3] 31 || 3 0 3 0
NewSystem?2 (200 / 345) 3 4| 88 || 4 0 4 0
NewSystem3 (278 / 474) 4 | 271 || 5 1 5 0
NewSystem4 (418 / 718) 4 | 741 || 5 2 5 1
atv_partial system (88 / 125 3 3| 47 3 0 4 0
NASA (680 /579) 22| 25 | 56| 876
grid2d 10 (50 / 50) 4 ? 5 0 6 0
grid2d .15 (112 /113) 6 ? 8 0 9 0
grid2d .20 (200 / 200) 7 ? 12| O 11| O
grid2d 25 (312 / 313) 9 ? 15| 3 15| 3
grid2d_30 (450 / 450) 11 ? 19| 7 20| 8
grid2d-35 (612 / 613) 12 ? 23| 15 || 23| 17
grid2d 40 (800 / 800) 14 ? 26| 28 | 25| 31
grid2d 45 (1012 / 1013) 16 ? 31| 51 || 30| 56
grid2d .50 (1250 / 1250) 17 ? 33| 86 ||32] 94
grid2d .60 (1800 / 1800) 21 ? 41| 204 || 39| 233
grid2d.70 (2450 / 2450) 24 ? 48| 474 || 47| 503
grid2d.75 (2812 / 2813) 26 ? 48| 631 || 50| 692
grid3d 4 (32/32) 5 ? 6 0 6 0
grid3d5 (62 / 63) [6,8] ? 9 0 10, O
grid3d 6 (108 / 108) [9,11] ? 14| 1 14| 1
grid3d.7 (171/172) [11,14] ? 18| 5 20| 5
grid3d.8 (256 / 256) [14,17] ? 25| 17 || 27| 17
grid3d.9 (364 / 365) [18,22] ? 33| 68 || 26| 63
grid3d_10 (500 / 500) [21,27] ? 41| 164 | 40| 202
grid3d.11 (665 / 666) [26,32] ? 52| 466 | 53| 514
grid3d.12 (864 / 864) [30,37] ? 63| 1036 62| 1139

22 TECHNICAL REPORTDBAI-TR-2005-53

Table 2: Results for Bucket Elimination and Dual Bucket Elintioia

opt-k-decomp| [26] BE DBE
Instance (Atoms / Variables) Min w T T| W T w T

grid3d 13 (10987/1099) | [35,42] 73 | 2357 68 | 2667

grid3d 14 (1372/1372) | [41,49] 78 | 3600]| 93 | 3600

grid3d 15 (1687 /1688) | [46,56] 104 | 3600 103 | 3600

grid3d 16 (204872048) | [53,63] 114 3600 131 3600

grid4d 3 (40 / 41)

grid4d 4 (1287 128) 17| 4 | 18] 5

grid4d5 (312 /313) 39 | 148 || 37 | 138

grid4d 6 (648 / 648) 68 | 2153 71 | 2115

grid4d.7 (1200 / 1201) 109 | 3600 || 110 | 3600

grid4d 8 (2048 / 2048) 148 | 3600 || 166 | 3600

grid5d 3 (121 /122) 18 5 | 20| 6

grid5d 4 (512 /512) 62 | 2039 68 | 2058

grid5d’5 (1562 / 1563) 137| 3600 | 159 3600

cliqgue 10 (10/ 45) 5 5 0 5 0 5 0
clique 15 (15/105) 8 8 4 8 0
clique 20 (20 / 190) 10 10 | 47 10 0
clique 25 (25 / 300) 13 13 | 351 | 13 0
cliqgue_30 (30 / 435) 15 15 | 1656 | 15 0
cliqgue 35 (35/595) 18 18 | 3600 18 0
clique 40 (40 / 780) 20 20 | 3600 20 0
clique 45 (45/990) 23 23 | 3600| 23 0
cliqgue 50 (50 / 1225) 25 25 | 3600 25 1
clique 60 (60 /1770) 30 30 | 3600 30 2
clique 70 (70 / 2415) 35 35 | 3600 35 3
clique 75 (75/ 2775) 38 38 | 3600 38 4
clique 80 (80 / 3160) 40 40 | 3600 40 5
clique 90 (90 / 4005) 45 45 | 3600 45 8
cligue 99 (99 / 4851) 50 50 | 3600\ 50 | 12
c432 (160/196) >3 9 1 9 1
€499 (202 / 243) >3 13 1 20 2
c880 (383 /443) 19 2 25 4
c1355 (546 / 587) 13 2 22 7
c1908 (880/913) 34 7 33 | 19
€2670 (1193 /1350) 31 9 35| 26
c3540 (1669 /1719) 65 | 56 | 73 | 413

c5315 (2307 / 2485) 44 | 64 || 61 | 574

c6288 (2416 / 2448) 41 | 102 | 45 | 828

N[N N N N NI N N |)|)|)|)|)|)|)|)| N[)|)| N N N N N | N N N N N N N)| N)|)|)| N E

38| 8 | 35| 191

c7552 (3512 / 3718)

TECHNICAL REPORTDBAI-TR-2005-53

Table 3: Results for Bucket Elimination and Dual Bucket Elintioia

opt-k-decomp|| [26] BE DBE
Instance (Atoms / Variables)Min | W T WIT|W| T | W T
s27 (13/17) 2 2 0 ? 2| 0 2 0
s208 (104 / 115) >3 ? 710 7 0
$298 (133/139) >3 ? 5] 0 8 1
s344 (175/184) >3 ? 71 0 8 0
$349 (176 / 185) >3 ? 710 9 0
s382 (179/182) >3 ? 5|0 8 1
$386 (165/172) ? 8| 1 15| 3
s400 (183 /186) >3 ? 6| 0 8 1
s420 (212 /231) >3 ? 9| 0 9 1
s444 (202 / 205) >3 ? 6| 0 8 1
s510 (217 / 236) >3 ? 23 1 (|31 O
s526 (214 /217) >3 ? 8| 1 13| 3
s641 (398/433) ? 701 14| 2
s713 (412] 447) ? 71113 2
$820 (294 / 312) >3 ? 13| 3 || 27| 79
$832 (292 / 310) >3 ? 12| 3 | 28 | 87
s838 (4221 457) >3 ? 16| 1 15 2
s953 (424 1 440) >3 ? 40| 8 || 53 | 29
$1196 (547 / 561) ? 35| 11 | 53 | 80
$1238 (526 / 540) ? 34| 13 | 56 | 107
$1423 (731 /748) ? 18| 3 || 22 | 27
$1488 (659 / 667) ? 23| 18 || 77 | 1035
s1494 (653 /661) ? 24| 19 | 78 | 1098
s5378 (2958 / 2993) ? 85| 141 108 | 504
b01 (45/47) >4 ? 6| 0 6 0
b02 (26 / 27) 3 3 2 ? 3]0 5 0
b03 (152 / 156) >3 ? 710 11 1
b04 (718 / 729) ? 24| 6 || 39 | 63
b05 (961 / 962) ? 18| 10 | 29 | 48
b06 (48 / 50) 4 ? 510 6 0
b07 (432 /433) >3 ? 19| 2 | 29 7
b08 (170 /179) >3 ? 10| O 13 1
b09 (168 / 169) >3 ? 10| O 12 1
b10 (189 / 200) >3 ? 14| 1 18 2
b1l (757 / 764) ? 30| 8 | 47 | 67
b12 (1065 / 1070) ? 27| 19 | 39 | 137
b13 (342 /352) >3 ? 9| 1 10 2

23

TECHNICAL REPORTDBAI-TR-2005-53

Examples . . aggregate .htW

w/o weights| w/ weights| she-weight 2| “best of” | bestof2
DaimlerChrysler 49 50 50 47 48
Misc 99 107 102 97 98
Grid2D 278 349 275 271 273
Grid3D 503 639 507 482 489
Grid4D5D 458 534 462 455 455
Clique 593 577 598 570 591
ISCAS85 383 421 379 370 373
ISCAS89 564 567 534 514 532
ISCAS99 265 269 242 238 239
Total 3192 3513 3149 3044, 3098
Total (w/o cliques) 2599 2936 2551 2474 2507

Table 4. Comparison between different hyperede weightihgees for h(METIS

TECHNICAL REPORTDBAI-TR-2005-53

Table 5: Results for Partitioning algorithms

FM TS HM2 HM best
Instance (Atoms / Variables) Min W| T |W| T Wi T | W|T
adder15 (76 / 106) 2 2 0 41 02 || 2| 3 2| 3
adder25 (126 / 176) 2 2| 1 4 | 02 | 2| 7 2| 6
adder50 (251 / 351) 2 2| 6 4| 12 || 2|13 || 2| 12
adder75 (376 / 526) 2 2 21| 5 2 2 21| 2| 19
adder99 (496 / 694) 2 2 | B3| 5] 32 |2 |28| 2|25
bridge 15 (137 / 137) 2 8| 1 8| 08 || 4] 7 3| 6
bridge 25 (227 / 227) 2 13| 1 6] 14 [4]11] 3] 11
bridge 50 (452 / 452) 2 29| 5 (10| 32 |4 | 24| 4| 22
bridge 75 (677 / 677) 2 441 10] 10| 54 [4[39] 3] 35
bridge 99 (893 / 893) 2 64| 18 | 10| 6.8 || 4 | 48 | 4 | 45
NewSystem1 (84 / 142) 3 4 | 1 6| 08 | 4] 5 3| 5
NewSystem2 (200 / 345) 3 9| 2 6| 22 | 4| 14| 4 | 13
NewSystem3 (278 / 474) 17 4 || 11 4 5119 | 5| 18
NewSystem4 (418 / 718) 22| 8 (12| 68 | 5| 31| 5| 29
atv_partial system (88 / 125 3 41 0 5|1 06 |4 6 4 | 6
NASA (680 /579) 56| 20 | 98| 33.6 | 33| 90 | 32| 84
grid2d.10 (50 / 50) 4 5| 0 8| 02 | 5] 3 5| 3
grid2d.15 (112 /113) 6 10/ 1 || 12| 1.2 || 10| 11 | 10| 10
grid2d 20 (200 / 200) 7 15| 2 ||18| 2.2 || 14| 29 | 12| 28
grid2d 25 (312 / 313) 9 18| 5 ||[26| 4.6 || 15| 50 || 15| 43
grid2d_30 (450 / 450) 11 21| 11 (29| 8 16| 70 | 16| 58
grid2d 35 (612 / 613) 12 30| 20 || 41| 126 | 19| 87 | 19| 73
grid2d 40 (800 / 800) 14 28| 38 || 41| 19.8 | 22| 108 22| 91
grid2d 45 (1012 / 1013) 16 40| 58 || 47| 31.2 | 25|130| 25| 109
grid2d 50 (1250 / 1250) 17 44| 88 || 52| 40.8 | 28| 154 | 28| 130
grid2d 60 (1800 / 1800) 21 55203 75| 74.6 || 34| 209| 34| 178
grid2d.70 (2450 / 2450) 24 65| 347 | 65| 119 | 41| 283| 41| 239
grid2d.75 (2812 / 2813) 26 70| 504 | 99 | 157.8| 44 | 324 | 44| 274
grid3d 4 (32/32) 5 6| 0 (12| 0.2 | 6| 1 6| 1
grid3d.5 (62 / 63) [6,8] 8| 1 ||18] 0.8 ||11| 4 | 10| 3
grid3d.6 (108 / 108) [9,11] || 12| 1 | 25| 1.8 ||[15]| 9 (14| 9
grid3d.7 (171/172) [11,24] || 18| 2 || 33| 4.8 | 19| 27 | 16| 24
grid3d.8 (256 / 256) [14,17]] 25| 5 | 44| 86 | 21| 48 | 20| 40
grid3d.9 (364 / 365) [18,22] | 34| 9 | 56| 14.4 | 24| 67 || 24| 56
grid3d.10 (500 / 500) [21,27]| 41| 20 | 67| 26.4 || 31| 93 | 31| 77
grid3d.11 (665 / 666) [26,32] || 40| 36 || 83| 42.6 || 37| 119 37| 99
grid3d.12 (864 / 864) [30,37] || 53| 61 || 98| 66.4 | 45| 150 | 44 | 127

25

26

TECHNICAL REPORTDBAI-TR-2005-53

Table 6: Results for Partitioning algorithms

FM TS HM2 HM best
Instance (Atoms / Variables) Min W | T | W T W | T|W|T
grid3d.13 (1098 / 1099) [35,42] || 60 | 107 | 122| 100.8 | 53 | 186|| 53 | 158
grid3d .14 (1372 /1372) [41,49]| 86 | 161 | 176| 162.2 | 69 | 230 || 69 | 196
grid3d.15 (1687 / 1688) [46,56] || 93 | 253 || 151| 245.4 | 76 | 278 76 | 244
grid3d 16 (2048 / 2048) [53,63] | 100| 400 174| 328 | 87 [339| 82 | 303
grid4d 3 (40/41) 8 0O | 20| 04 9 2 8 2
grid4d 4 (128 /128) 17 | 1 40 3.4 19 | 13 | 18 | 12
grid4d5 (312 /313) 32| 8 || 78| 16.8 | 28 | 58 | 28 | 48
grid4d 6 (648 / 648) 58 | 40 || 140| 66.8 | 47 | 123| 47 | 106
grid4d 7 (1200 / 1201) 89 | 134 182| 193.8 | 74 | 229| 71 | 208
grid4d 8 (2048 / 2048) 120| 441 || 310| 580.8 || 107 | 408 107 | 393
grid5d 3 (121/122) 18| 1 || 49| 36 20 | 11 | 19 | 10
gridsd 4 (512 /512) 49 | 25 || 137| 56.2 | 46 | 92 || 46 | 78
grids5d.5 (1562 / 1563) 118 | 280 362| 474 | 111|328 111 319
clique 10 (10/ 45) 5 5 0 6 0.2 5 0 5 0
clique 15 (15/105) 8 12 | 0 8 14 8 1 8 1
clique 20 (20 / 190) 10 20| O 11 | 3.4 10 | 1 10| 1
clique 25 (25 / 300) 13 25| 0 14 | 8.2 13 | 2 13| 2
clique 30 (30 / 435) 15 30| 0 16 | 16.2 || 15| 3 15 | 3
clique 35 (35 / 595) 18 35| 0 19 | 288 | 18 | 5 18 | 5
clique 40 (40 / 780) 20 40 | O | 22| 508 | 20| 6 || 20| 6
clique 45 (45/990) 23 45| 1 | 24| 80.2 | 23| 10| 23| 9
clique 50 (50 / 1225) 25 50 | 1 || 28| 1446 | 25| 15 || 25 | 13
clique 60 (60 /1770) 30 60 | 2 | 34| 3402 59| 1 |50 1
clique 70 (70 / 2415) 35 70| 4 | 39| 601 [68| 2 | 67| 1
clique 75 (75/2775) 38 751 6 || 41| 920 (| 71| 3 || 71| 2
clique 80 (80 / 3160) 40 80| 8 | 43| 1248 | 76 | 4 | 72| 3
clique 90 (90 / 4005) 45 90 | 12 | 50 | 2045 | 89| 8 || 78 | 5
clique 99 (99 / 4851) 50 99 | 19 | 54 | 28448 99 | 14 | 97 | 8
c432 (160/196) >3 15| 3 | 24| 3.6 13 | 20 | 12 | 19
c499 (202 / 243) >3 18| 3 | 27| 4.6 18 | 30 | 17 | 28
€880 (383 /443) 31| 8 | 41 7.4 29 | 50 | 25 | 46
c1355 (546 / 587) 32 | 10 | 55| 138 || 22 | 66 || 22 | 61
c1908 (880 /913) 65| 23 || 70| 256 | 29 | 86 | 29 | 77
€2670 (1193 /1350) 66 | 56 | 78 | 45.8 || 38 | 119| 38 | 106
c3540 (1669 /1719) 97 | 133| 129| 103.8 | 73 | 166| 73 | 149
c5315 (2307 / 2485) 120 | 250 || 157 | 156.6 | 72 | 242| 68 | 214
c6288 (2416 / 2448) 148 | 478 || 329| 245 || 45 | 210| 45 | 186
c7552 (3512 /3718) 161|514 | 188| 351 || 37 | 365| 37 | 309

TECHNICAL REPORTDBAI-TR-2005-53

Table 7: Results for Partitioning algorithms

FM TS HM2 HM best
Instance (Atoms / Variables)Min | W | T | W | T |W | T |W | T
s27 (13/17) 2 2 0 3 0 2 0|20
s208 (104 / 115) >3 || 7 1 |11|08| 7|10 7| 9
$298 (133/139) >3 || 7 1| 17|18 7| 11| 6 | 10
s344 (175/184) >3 || 8 2 12 | 16| 8 | 21| 7| 19
s349 (176 / 185) >3 || 8 1 | 12|16 9|21 7| 19
s382 (179/182) >3 71 217 2 [8|16 7] 15
$386 (165/172) 13| 2 || 26| 28 || 11| 16 || 11| 15
s400 (183 /186) >3 || 8 2 18 | 22 || 8| 18 | 7 | 17
s420 (212 /231) >3 || 10 | 2 14 | 1.6 | 10| 29 | 10| 24
s444 (202 / 205) >3 || 8 2 | 25|28 8] 21| 8| 20
s510 (217 / 236) >3 || 23| 4 || 41| 42 |\ 27| 27 | 27| 25
s526 (214 /217) >3 || 13| 2 || 32| 3 |[11| 29 || 11| 27
s641 (398 /433) 19| 5 21 | 54 14| 31 | 14| 28
S713 (4121 447) 21| 5 25| 54 14| 33| 14| 31
$820 (294 / 312) >3 || 23| 8 || 77| 94 || 24| 42 | 19| 38
$832 (292 / 310) >3 || 22| 8 || 71| 98 || 26| 42 | 20| 39
s838 (4221 457) >3 | 19| 6 || 24| 64 | 15| 55 | 15| 46
S953 (424 | 440) >3 || 50 | 18 || 70 | 11.6| 45| 52 || 45| 47
s1196 (547 / 561) 50 | 22 || 73 | 15.2| 43| 69 | 43| 62
s1238 (526 / 540) 56 | 20 | 80 | 18.4| 43| 66 || 43| 59
s1423 (731 /748) 29 | 25 || 54| 19 (27| 78 || 26| 71
s1488 (659 /667) 45 | 46 || 148| 36 | 39| 85 || 39| 77
s1494 (653 /661) 49 | 45 | 150| 38.4| 38| 85 || 36| 77
s5378 (2958 / 2993) 178|308 | 169| 271 | 89| 279 | 89 | 246
b01 (45/47) >4 || 5 O |10/ 02|5| 2 |5]| 2
b02 (26 / 27) 3 4 0 7102|4141
b03 (152 / 156) >3 11 1 |16]16| 9] 15 8] 14
b04 (718 / 729) 44 | 26 || 69 | 26.2| 38| 82 || 35| 73
b05 (961 /962) 42 | 33 | 70 | 29.8| 32| 114 32| 99
b06 (48 / 50) 4 5 0| 12025 3|5 2
b07 (432 /433) >3 || 38| 7 || 59| 98|33 5731 54
b08 (170/179) >3 | 14| 2 |20 2 |12 21 |12 19
b09 (168 /169) >3 || 13 | 2 20| 1.8 | 12| 20 || 12| 19
b10 (189 /200) >3 || 17| 3 || 33| 3 ||16| 24 |16 21
b11 (757 /764) 65 | 28 | 98 | 27.2| 38| 89 || 38| 79
b12 (1065 /1070) 38 | 55 | 83 |38.6| 34| 111| 34| 102
b13 (342 /352) >3 10| 4 || 17| 36 || 8 | 36 || 8| 33

27

TECHNICAL REPORTDBAI-TR-2005-53

Table 8: Results for SAT problems

Instance (Atoms / Variables)) BE (width) | DBE (width) | HM best (width)
uf20-01 (91 / 20) 6 7 8
uf20-050 (91 / 20) 6 8 9
uf20-099 (91 / 20) 6 8 8
uf75-01 (325 /75) 20 29 23
uf75-050 (325 /75) 19 30 23
uf75-099 (325/75) 20 30 23
uuf75-01 (325 / 75) 20 29 23
uuf75-050 (325 / 75) 19 29 23
uuf75-099 (325 / 75) 20 29 22
uf150-01 (645 / 150) 40 61 39
uf150-050 (645 / 150) 38 60 38
uf150-099 (645 / 150) 38 59 37
uufl50-01 (645 / 150) 38 61 37
uufl50-050 (645 / 150) 38 60 38
uufl50-099 (645 / 150) 37 58 37
uf200-01 (860 / 200) 49 78 50
uf200-050 (860 / 200) 50 81 51
uf200-099 (860 / 200) 51 78 51
uuf200-01 (860 / 200) 52 81 50
uuf200-050 (860 / 200) 51 78 50
uuf200-099 (860 / 200) 50 77 50
ais6 (581 /61) 10 11 14
ais8 (1520/ 113) 14 15 21
ais10 (3151/181) 19 19 23
2bitcomp5 (310 / 95) 11 11 11
2bitmax6 (766 / 192) 15 23 27
2bitadd 10 (1422 / 330) 25 24 28
2bitadd 11 (1562 / 363) 28 24 34
2bitadd12 (1702 / 396) 25 24 34
flat30-1 (300 / 90) 10 17 15
flat30-50 (300 / 90) 11 22 14
flat30-99 (300 / 90) 11 18 14
flat75-1 (840 / 225) 27 49 32
flat75-50 (840 / 225) 30 56 30
flat75-99 (840 / 225) 28 44 32
flat150-1 (1680 / 450) 52 44 54
flat150-50 (1680 / 450) 55 93 49
flat150-99 (1680 / 450) 53 84 53
flat200-1 (2237 / 600) 65 115 66
flat200-50 (2237 / 600) 68 110 65
flat200-99 (2237 / 600) 71 109 70

TECHNICAL REPORTDBAI-TR-2005-53

Table 9: Results for SAT problems

Instance (Atoms / Variables) BE (width) | DBE (width) | HM best (width)
sw180-1 (3100 / 500) 50 100 55
sw180-99 (3100 /500) 48 100 55
sw181-1 (3100 /500) 51 100 52
sw181-99 (3100 /500) 44 100 54
sw182-1 (3100 / 500) 32 100 40
sw182-99 (3100 / 500) 42 100 41
sw18p0-1 (3100 / 500) 17 100 24
aim-50-16-n0-3 (80 / 50) 9 11 9
aim-50-16-yes1-3 (80 / 50) 10 10 11
aim-50-20-no-3 (100 / 50) 12 14 13
aim-50-20-yes1-3 (100 / 50) 11 12 13
aim-50-34-yes1-3 (170 / 50) 13 16 15
aim-50-60-yes1-3 (300 / 50) 14 19 17
aim-100-16-no-3 (160 / 100) 19 22 21
aim-100-16-yes1-3 (160 / 100) 17 21 20
aim-100-20-no-3 (200 / 100) 23 25 26
aim-100-20-yes1-3 (200 / 100) 20 23 24
aim-100-34-yes1-3 (340/100) 26 31 28
aim-100-60-yes1-3 (600 / 100) 28 37 31
aim-200-16-no-3 (320 / 200) 37 42 39
aim-200-16-yes1-3 (320 / 200) 38 40 37
aim-200-20-no-3 (400 / 200) 47 49 47
aim-200-20-yes1-3 (400 / 200) 41 45 45
aim-200-34-yes1-3 (680 / 200) 52 60 48
aim-200-60-yes1-3 (1200 / 200 58 79 57
dubois20 (160 / 60) 2 2 2
dubois21 (168 / 63) 2 2 2
dubois22 (176 / 66) 2 2 2
dubois23 (184 / 69) 2 2 2
dubois24 (192 /72) 2 2 2
dubois25 (200 / 75) 2 2 2
dubois26 (208 / 78) 2 2 2
dubois27 (216 / 81) 2 2 2
dubois28 (224 / 84) 2 2 2
dubois29 (232 / 87) 2 2 2
dubois30 (240 /90) 2 2 2
dubois50 (400 / 150) 2 2 2
dubois100 (800 / 300) 2 2 2

29

TECHNICAL REPORTDBAI-TR-2005-53

Table 10: Results for SAT problems

Instance (Atoms / Variables)BE (width) | DBE (width) | HM best (width)
iiBal (186 / 66) 7 8 8
ii8a2 (800 / 180) 15 16 17
ii8a3 (1552 / 264) 18 30 21
iiBa4 (2798 / 396) 18 54 25
ii8b1 (2068 / 336) 30 42 30
ii8cl (3065 /510) 40 37 42
ii8d1 (3207 /530) 42 39 44
iiBel (3136 /520) 41 39 43
ii32b1 (1374 / 228) 14 16 27
ii32b2 (2558 / 261) 12 27 51
ii32cl (1280 / 225) 13 15 24
ii32c2 (2182 / 249) 13 23 51
1132¢3 (32721 279) 11 34 73
ii32d1 (2703 / 332) 16 23 29
ii32el (1186 /222) 12 14 24
ii32e2 (2746 / 267) 12 29 47
jnh201 (800 / 100) 15 20 35
jnh205 (800 / 100) 16 23 28
jnh210 (800 / 100) 16 20 30
jnh215 (800 / 100) 16 23 30
jnh220 (800 / 100) 16 24 32
jnh1 (850 /100) 15 20 33
jnh5 (850 /100) 16 19 28
jnh10 (850 / 100) 16 20 31
jnh15 (850 / 100) 16 21 32
jnh20 (850 / 100) 16 22 28
jnh301 (900 / 100) 15 21 33
jnh305 (900 / 100) 15 20 32
jnh310 (900 / 100) 15 22 31

TECHNICAL REPORTDBAI-TR-2005-53

Table 11: Results for SAT problems

Instance (Atoms / Variables)BE (width) | DBE (width) | HM best (width)

par8-1-c (254 / 64) 7 11 7
par8-2-c (270 / 68) 6 12 7
par8-3-c (298 / 75) 8 11 8
par8-4-c (266 / 67) 7 11 7
par8-5-c (298 / 75) 7 11 8
par8-1 (1149 / 350) 18 21 23
par8-2 (1157 / 350) 19 21 22
par8-3 (1171 / 350) 19 21 19
par8-4 (1155 / 350) 18 21 23
par8-5 (1171 / 350) 19 21 22
parl6-1-c (1264 /317) 16 32 24
parl6-2-c (1392 / 349) 16 33 26
parl6-3-c (1332 /334) 16 33 26
parl6-4-c (1292 / 324) 17 33 29
parl6-5-c (1360 /341) 17 32 28
parl6-1(3310/1015) 31 39 43
parl6-2 (3374 /1015) 33 38 43
parl6-3 (3344 / 1015) 33 38 43
parl6-4 (3324 / 1015) 33 38 42
parl6-5 (3358 / 1015) 32 38 42
hole6 (133 /42) 7 7 7
hole7 (204 / 56) 8 8 8
hole8 (297 / 72) 9 9 9
hole9 (415 / 90) 10 10 10
hole10 (561 /110) 11 11 11
pret6025 (160 / 60) 5 5 5
pret6040 (160 / 60) 5 5 5
pret6060 (160 / 60) 5 5 5
pret6Q75 (160 / 60) 5 5 5
pret15025 (400 / 150) 5 5 5
pret15040 (400 / 150) 5 5 5
pret15060 (400 / 150) 5 5 5
pret15075 (400 / 150) 5 5 5

