Computational Models of Argumentation: A Fresh View on Old AI Problems

Gerhard Brewka

Computer Science Institute
University of Leipzig
brewka@informatik.uni-leipzig.de

joint work with S. Ellmauthaler, H. Strass, J. Wallner, S. Woltran
40th KI: A Bit of Nostalgia

My very first conference: 9th KI 1985 (formerly known as GWAI)

KR session:

- John McCarthy: *What is Common Sense and How to Formalize it?*
- Gerhard Brewka: *Über normale Vögel, anwendbare Regeln und einen Default-Beweiser.*
- Peter Schefe: *Zur Rekonstruktion von Wissen in neueren Repräsentationssprachen der Künstlichen Intelligenz.*
- Kai von Luck, Bernhard Nebel, Christof Peltason, Albrecht Schmiedel: *BACK to Consistency and Incompleteness.*
Good Times for AI - Bad Times for Logicians?

- Due to some major breakthroughs AI in the media more than ever
- IJCAI-17 close to 2100 attendees, 2500 submissions; AAAI-18 3800(!) submissions
- Germany’s digital association Bitkom demands 4 billion Euros + 40 additional professorships for AI research in Germany
- Much of this attributed to successes in deep learning
- True, but ... a closer look often reveals intricate combination of learning and "classical" AI methods
A Prominent Example: Google Deep Mind’s AlphaGo

- widely perceived as neural network; but (Darwiche/Etzioni):

 "AlphaGo is not a neural network since its architecture is based on a collection of AI techniques ... in the works for at least fifty years."

- minimax technique for two-player games, stochastic search, learning from self play, evaluation functions to cut off minimax search trees, reinforcement learning, in addition to neural nets.
Further Witnesses

- Sandholm’s Libratus, beating a team of four top pros in poker, powered by new, domain-independent algorithms for
 - computing approximate Nash equilibrium strategies beforehand,
 - endgame solving during play, and
 - fixing its own strategy to play even closer to equilibrium based on what holes the opponents have been able to identify and exploit.

- Dan Roth (IJCAI 2017 John McCarthy Award): success in NLP will be limited unless reasoning gets involved

- Wahlster, KI 2017: "Without good planning techniques the vision of Industrie 4.0 will not come true"

- "There is life in AI outside deep learning" R. Lopez de Mantaras
The Case of Explainability

- To gain user confidence, AI systems must be able to explain their recommendations and actions

- Black box often unsuitable; not understanding brain no excuse

- Explanation: *a reason or justification given for an action or belief* (online dictionary)

- *Reasoning* the main object of study of a logician, so why worry?

- But: AI logicians need to be open to deviate from classical techniques
As a Modern AI Logician

Be prepared to work

- with inference based on some specific (preferred) rather than all models
- with inference relations that are nonmonotonic as what is preferred may change with new information
- with partial rather than complete interpretations as sometimes there is no reasonable way to assign a truth value
- with modern, operator-based techniques to single out the preferred semantic objects, e.g. as fixpoints of these operators
- with multiple semantics, as different situations may require different inferences
- with representations users want, which may look very different from classical logic syntax, e.g. labelled graphs
Form of reasoning that makes explicit the reasons for the conclusions drawn and how conflicts between reasons are resolved.

Provides natural mechanism to handle inconsistent and uncertain information and to resolve conflicts of opinion.

Argumentation approach bridges gap [between logic and human reasoning] by providing logical formalisms rigid enough to be formally studied ..., while being close enough to informal reasoning ...
Graphs as Knowledge Representation Languages

- Graphical representations extremely popular: semantic nets, rdf graphs, knowledge graphs, argument graphs
- Easy to construct, easy to read by humans, easy to maintain
- Links often represent 2-place predicates, nodes their arguments
- Focus here on **acceptance graphs**: nodes represent statements, positions, arguments ..., links relationships between the former, e.g. support, attack ...
- Main goal: identify nodes that can reasonably be accepted
T. Gordon: "It’s graphs what you want to present to the audience ..."

• Labelled graphs conveniently visualize argumentation scenarios

• Nodes propositions, statements, arguments ... whatever can be accepted or not

• Links represent relationships, labels the type of the relationship

• But what do the links really mean?

• Want to use maps not only for visualization, but for evaluation

• Requires a framework for specifying semantics!
Argument Graphs

T. Gordon: "It’s graphs what you want to present to the audience ..."

• Labelled graphs conveniently visualize argumentation scenarios

• Nodes propositions, statements, arguments ... whatever can be accepted or not

• Links represent relationships, labels the type of the relationship

• But what do the links really mean?

• Want to use maps not only for visualization, but for evaluation

• Requires a framework for specifying semantics!
Another Example

Should s be accepted? Various options, e.g.

- no negative and all positive links are active, or
- no negative and at least one positive link is active, or
- more positive than negative links are active.

Bottom line: need an acceptance condition for each of the nodes.
Outline

1. Setting the Stage (done)
2. A Precedent: Dung’s Argumentation Frameworks
3. A Step Forward: Abstract Dialectical Frameworks
4. From ADFs to GRaph-based Argument Processing (GRAPPA)
5. Conclusions
2. A Precedent: Dung Frameworks

Abstract Argumentation Frameworks (AFs)

- immensely popular in the argumentation community
- syntactically: directed graphs
- conceptually: nodes arguments, edges attacks between arguments
- semantically: *extensions* are sets of “acceptable” arguments
- a simple special case of labelled graphs: single label (left implicit), fixed acceptance condition
AF Semantics

\(F = (A, R) \) an argumentation framework, \(S \subseteq A \).

- **S conflict-free**: no element of \(S \) attacks an element in \(S \).
- \(a \in A \) defended by \(S \): all attackers of \(a \) attacked by element of \(S \).
- a conflict-free set \(S \) is
 - *admissible* iff it defends all arguments it contains,
 - *preferred* iff it is \(\subseteq \)-maximal admissible,
 - *complete* iff it contains exactly the arguments it defends,
 - *grounded* iff it is \(\subseteq \)-minimal complete,
 - *stable* iff it attacks all arguments not in \(S \).

Main goal:

Generalize what Dung did for simple AFs to arbitrary labelled graphs.
3. ADFs: Basic Idea

An Argumentation Framework
Basic Idea

An Argumentation Framework with explicit acceptance conditions
Basic Idea

A Dialectical Framework with flexible acceptance conditions
Background on ADFs

• Directed graph, each node has explicit acceptance condition expressed as propositional formula.

• ADFs properly generalize AFs under major semantics.

• Semantics based on operator Γ_D over partial (3-valued) interpretations (here represented as consistent sets of literals).

• Takes interpretation ν and produces a new (revised) one ν'.

 $$\nu' = \Gamma_D(\nu)$$
 makes a node s

 • t iff acceptance condition true under all 2-valued completions of ν,
 • f iff acceptance condition false under all 2-valued completions of ν,
 • undefined otherwise.

• Operator thus checks what can be justified based on ν.
Background on ADFs

- Directed graph, each node has explicit acceptance condition expressed as propositional formula.
- ADFs properly generalize AFs under major semantics.
- Semantics based on operator Γ_D over partial (3-valued) interpretations (here represented as consistent sets of literals).

 Takes interpretation ν and produces a new (revised) one ν'.

 $\nu' = \Gamma_D(\nu)$ makes a node s

 - t iff acceptance condition true under all 2-valued completions of ν,
 - f iff acceptance condition false under all 2-valued completions of ν,
 - undefined otherwise.

 Operator thus checks what can be justified based on ν.
Background on ADFs

• Directed graph, each node has explicit acceptance condition expressed as propositional formula.

• ADFs properly generalize AFs under major semantics.

• Semantics based on operator Γ_D over partial (3-valued) interpretations (here represented as consistent sets of literals).

• Takes interpretation ν and produces a new (revised) one ν'.

 $\nu' = \Gamma_D(\nu)$ makes a node s

 • t iff acceptance condition true under all 2-valued completions of ν,
 • f iff acceptance condition false under all 2-valued completions of ν,
 • undefined otherwise.

• Operator thus checks what can be justified based on ν.
An interpretation ν of ADF D is

- a *model of* D iff ν is total and $\Gamma_D(\nu) = \nu$.
 Intuition: statement is \top iff its acceptance condition says so.

- *grounded* for D iff it is the least fixpoint of Γ_D.
 Intuition: collects information beyond doubt.

- *admissible* for D iff $\nu \subseteq \Gamma_D(\nu)$.
 Intuition: does not contain unjustifiable information.

- *preferred* for D iff it is \subseteq-maximal admissible for D.
 Intuition: want maximal information content.

- *complete* for D iff $\nu = \Gamma_D(\nu)$.
 Intuition: contains exactly the justifiable information.

Stable semantics: reduct-based check as in logic programming.
Stable Models for ADFs

Based on ideas from Logic Programming:

- no self-justifying cycles,
- achieved by reduct-based check.

To check whether a two-valued model v of D is stable do the following:

- eliminate in D all nodes with value f and corresponding links,
- replace eliminated nodes in acceptance conditions by f,
- check whether nodes t in v coincide with grounded model of reduced ADF.
Stable Models for ADFs

Based on ideas from Logic Programming:

- no self-justifying cycles,
- achieved by reduct-based check.

To check whether a two-valued model v of D is stable do the following:

- eliminate in D all nodes with value f and corresponding links,
- replace eliminated nodes in acceptance conditions by f,
- check whether nodes t in v coincide with grounded model of reduced ADF.
Results

- ADFs properly generalize AFs.
- All major semantics available.
- Many results carry over, e.g. the following inclusions hold:
 \[\text{sta}(D) \subseteq \text{val}_2(D) \subseteq \text{pref}(D) \subseteq \text{com}(D) \subseteq \text{adm}(D). \]
- for ADFs corresponding to AFs models and stable models coincide (as AFs cannot express support).
- Various results regarding realizability, complexity, ...
 - ADFs CANNOT in general be translated to AFs in polynomial time.
 - Same complexity in case of bipolar ADFs.
 - Shows that in this case additional expressiveness comes for free.
Results

- ADFs properly generalize AFs.
- All major semantics available.
- Many results carry over, e.g., the following inclusions hold:
 \[\text{sta}(D) \subseteq \text{val}_2(D) \subseteq \text{pref}(D) \subseteq \text{com}(D) \subseteq \text{adm}(D). \]
- for ADFs corresponding to AFs models and stable models coincide (as AFs cannot express support).
- various results regarding realizability, complexity, ...
 - ADFs CANNOT in general be translated to AFs in polynomial time.
 - Same complexity in case of bipolar ADFs.
 - Shows that in this case additional expressiveness comes for free.
Using ADFs: Earlier Example

- Positive and negative links
- Acceptance condition of s:
 - no negative and all positive links active: $\neg c \land (a \land b)$
 - no negative and at least one positive link active: $\neg c \land (a \lor b)$
 - more positive than negative links active: $(\neg c \land (a \lor b)) \lor (a \land b)$
- Acceptance condition defined individually for each node
4. From ADFs to GRAPPA

- Compiling argumentation graphs to ADFs tedious in general
- Can we define ADF-like semantics directly for any labelled graph?
 - YES, requires
 - to define acceptance conditions in terms of labels of active links
 - and adequate modification of characteristic operator
- The rest basically falls into place
- Main advantages:
 - Closer to graphical models people use
 - Same intuition has same representation for all nodes, e.g. $\# + > \# -$ rather than node specific prop. formula
An acceptance function over labels L is a function $c : (L \rightarrow \mathbb{N}) \rightarrow \{t, f\}$.

A labelled argument graph (LAG) is a tuple $G = (S, E, L, \lambda, \alpha)$ where
- S is a set of nodes (statements),
- E is a set of edges (dependencies),
- L is a set of labels,
- $\lambda : E \rightarrow L$ assigns labels to edges,
- $\alpha : S \rightarrow FL$ assigns L-acceptance-functions to nodes.
The Characteristic Operator Γ_G

• Operator revises partial interpretation ν, produces new one ν'.

• Checks which truth values of nodes in S can be justified by ν.

• Done by considering all possible completions of ν and their induced multisets of active labels:

 • if acceptance function of s yields t under all such multisets, then ν' assigns t to s.

 • if acceptance function of s yields f under all such multisets, then ν' assigns f to s.

 • otherwise the value remains open.

• Basically the same as for ADFs, except for acceptance functions involved.
As for ADFs

Let $G = (S, E, L, \lambda, \alpha)$ be an LAG, ν a partial interpretation of S.

- ν is a model of G iff ν is total and $\nu = \Gamma_G(\nu)$,
- ν is grounded in G iff ν is the least fixed point of Γ_G,
- ν is admissible in G iff $\nu \subseteq \Gamma_G(\nu)$,
- ν is preferred in G iff ν is \subseteq-maximal admissible in G,
- ν is complete in G iff $\nu = \Gamma_G(\nu)$.

Acceptance condition for all nodes: all positive links active, no negative link active.
16 admissible interpretations:

Models: \{a, b, c, \neg d\}, \{a, \neg b, \neg c, d\}.
Grounded: \{a\}.
Preferred: \{a, b, c, \neg d\}, \{a, \neg b, \neg c, d\}.
Complete: \{a, b, c, \neg d\}, \{a, \neg b, \neg c, d\}, \{a\}.
The GRAPPA Pattern Language

• How to express acceptance conditions?
• Developed pattern language for this purpose.
• Can refer to number of total and active labels of specific types; to minimal/maximal elements; simple arithmetics and relations.
• Won’t define language completely, illustrate it with examples.

 • Let $L = \{++, +, -, --\}$
 • Assume node accepted if support stronger than attack, measure strength by counting respective links; multiply strong support/attack with a factor of 2.
 • Describe this using pattern:

$$2(#++) + (#+) - 2(#--) - (#-) > 0.$$
Use Cases

Dung AFs

Single label - left implicit. Single pattern for all nodes:

- no negative active link: $(\neg \neg) = 0$

ADFs

ADF acceptance conditions propositional formulas. GRAPPA: label each link with its source node. Pattern:

- replace each occurrence of atom a in ADF acceptance condition by the basic pattern $\#a = 1$.
Bipolar argument graphs

Labels for support (+) and attack (-). Possible acceptance conditions:

- all positive, no negative link active: $(\#_t^+ - \#^+) = 0 \land (\#^-) = 0$,
- at least one positive, no negative active link: $(\#^+) > 0 \land (\#^-) = 0$,
- more positive than negative active links: $(\#^+) - (\#^-) > 0$.

Weighted argument graphs

Labels positive or negative numbers. Various possible patterns:

- the sum of weights of active links is greater than 0: $sum > 0$.
- the highest active support is stronger than the strongest (lowest) attack: $max + min > 0$.
- the difference among strongest active support and the strongest active attack is above some threshold b: $max + min > b$.
Use Cases, ctd.

Proof standards (Farley and Freeman)

Framework for expressing proof standards based on 4 types of arguments: valid, strong, credible and weak. Need 8 labels $v, s, c, w, \neg v, \neg s, \neg c, \neg w$. Patterns of some of the proof standards:

- scintilla of evidence: $\#\{v, s, c, w\} > 0$
- dialectical validity: $\#\{v, s, c\} > 0$, $\#\{-v, -s, -c, -w\} = 0$
- beyond reasonable doubt: $\#\{v, s\} > 0$, $\#\{-v, -s, -c, -w\} = 0$
- beyond doubt: $\#v > 0$, $\#\{-v, -s, -c, -w\} = 0$
Carneades (Gordon, Prakken, Walton)

Argument graphs with 2 types of nodes. Pattern for argument nodes:

- $(\#_{t^+}) - (\#_{^+}) = 0 \land (\#_{^+}) = 0,$

Patterns for proposition nodes (α, β and γ numerical parameters):

- scintilla of evidence: $\max > 0$
- preponderance of evidence: $\max + \min > 0$
- clear and convincing evidence: $\max > \alpha \land \max + \min > \beta$
- beyond reasonable doubt: $\max > \alpha \land \max + \min > \beta \land -\min < \gamma$
- dialectical validity: $\max > 0 \land \min > 0$
5. Conclusions

• Presented a semantical framework for labelled argument graphs based on ideas from ADFs, yet domain of acceptance conditions multisets of labels,
• pattern language for expressing acceptance conditions,
• demonstrated generality by reconstructing various systems,
• implementations by compilation to ADFs.

• What does GRAPPA buy you?
 • pick your favourite graphical representation of argumentation scenarios
 • turn it into a well-founded formalism with full range of Dung semantics
 • by specifying patterns in a convenient language.
5. Conclusions

- Presented a semantical framework for labelled argument graphs based on ideas from ADFs, yet domain of acceptance conditions multisets of labels,
- pattern language for expressing acceptance conditions,
- demonstrated generality by reconstructing various systems,
- implementations by compilation to ADFs.

- What does GRAPPA buy you?
 - pick your favourite graphical representation of argumentation scenarios
 - turn it into a well-founded formalism with full range of Dung semantics
 - by specifying patterns in a convenient language.
Current Work

- System development, based on DIAMOND, our ADF solver
- Mobile App *ArgueApply*, LPNMR-17 best system description
- Extension to weighted case: partial multi-valued interpretations
- Application to interesting argument graphs