
Monadic Datalog and the Expressive Power of Languages
for Web Information Extraction ∗

Georg Gottlob
Database and Artificial Intelligence Group

Technische Universität Wien
A-1040 Vienna, Austria

gottlob@dbai.tuwien.ac.at

Christoph Koch
Database and Artificial Intelligence Group

Technische Universität Wien
A-1040 Vienna, Austria

koch@dbai.tuwien.ac.at

ABSTRACT
Research on information extraction from Web pages (wrap-
ping) has seen much activity in recent times (particularly
systems implementations), but little work has been done on
formally studying the expressiveness of the formalisms pro-
posed or on the theoretical foundations of wrapping.

In this paper, we first study monadic datalog as a wrap-
ping language (over ranked or unranked tree structures).
Using previous work by Neven and Schwentick, we show
that this simple language is equivalent to full monadic sec-
ond order logic (MSO) in its ability to specify wrappers.
We believe that MSO has the right expressiveness required
for Web information extraction and thus propose MSO as a
yardstick for evaluating and comparing wrappers.

Using the above result, we study the kernel fragment
Elog− of the Elog wrapping language used in the Lixto sys-
tem (a visual wrapper generator). The striking fact here
is that Elog− exactly captures MSO, yet is easier to use.
Indeed, programs in this language can be entirely visually
specified. We also formally compare Elog to other wrapping
languages proposed in the literature.

1. INTRODUCTION
The Web wrapping problem, i.e., the problem of extract-

ing structured information from HTML documents, is one of
high practical importance and has spurred a great amount
of work, including theoretical research (e.g., [5]) as well as
systems. Previous work can be classified into two categories,
depending on whether the HTML input is regarded as a se-
quential character string (e.g., TSIMMIS [27], Editor [5],
FLORID [21], and DEByE [18]) or a pre-parsed document
tree (for instance, W4F [28], XWrap [20], and Lixto1 [8, 7]).
The latter category of work thus assumes that systems may

∗This work was supported by the Austrian Science Fund
(FWF) under project No. Z29-INF.
1See http://www.lixto.com.

make use of an existing HTML parser as a front end.
Taking a practical perspective, robust wrappers are easier

to build over pre-parsed documents, as the handling of the
intricacies of HTML is left to the parser and does not need
to be programmed from scratch into each wrapper being cre-
ated. This allows the wrapper implementor to focus on the
essentials of each wrapping task. Even from the standpoint
of theory, many practical problems are presumably simpler
to solve over the parse trees of documents rather than over
the documents themselves (that is, as strings). 2

It is understood in the literature that the scope of wrap-
ping is a conceptually limited one. A wrapper is assumed
to extract relevant data from a possibly poorly structured
source and to put it into the desired representation formal-
ism by applying a number of transformational changes close
to the minimum possible. A wrapping language that permits
arbitrary data transformations may be considered overkill.

One may thus want to look for a wrapping language over
document trees that (i) has a solid and well understood the-
oretical foundation, (ii) provides a good trade-off between
complexity and the number of practical wrappers that can
be expressed, (iii) is easy to use as a wrapper programming
language, and (iv) is suitable for being incorporated into
visual tools, since ideally all constructs of a wrapping lan-
guage can be realized through corresponding visual primi-
tives. This paper exhibits and studies such languages.

The core notion that we base our wrapping approach on
is the one of an information extraction function. An in-
formation extraction function takes a labeled unranked tree
(representing a Web document) and returns a subset of its
nodes or, viewed differently, subtrees rooted by these nodes.
In the context of the present paper, a wrapper is a program
which implements one or several such functions. That way,
we can take a tree, re-label its nodes, and declare some of
them as irrelevant, but we cannot significantly transform its
original structure. This coincides with the intuition that a
wrapper may change the presentation of relevant informa-
tion, its packaging or data model (which does not apply in
the case of Web wrapping), but does not handle substantial
data transformation tasks. We believe that this captures
exactly the essence of wrapping.

We propose unary queries in monadic second-order logic
(MSO) as an expressiveness yardstick for information ex-

2In fact, it is known that a word language is context-free iff
it is the yield of a regular tree language [16], where the yield
of a tree is the sequence of labels of its leaf nodes extracted
depth-first from left to right.

traction functions. MSO over trees is well-understood theory-
wise (see e.g. [30, 25]) and quite expressive. Moreover, unary
MSO queries can be evaluated in linear time w.r.t. the sizes
of the input trees [15, 11]. Unfortunately, MSO does not
satisfy requirements (iii) and (iv): It is neither easy to use
as a wrapping language nor does it lend itself to visual spec-
ification.

The main contributions of the paper are the following.

• We study monadic datalog (over labeled trees) and show
that it is equivalent to monadic second-order logic (MSO)
in its ability to express (unary) queries for tree nodes.
This is true both for ranked and unranked trees. Proofs
are partially based on results for query automata (by
Neven and Schwentick [25]).

Monadic datalog is a very simple programming language
and much better suited as a wrapping language than
MSO. Consequently, it satisfies the first three of our re-
quirements.

• We then go on to present a simple Web wrapping lan-
guage equivalent to MSO, which we call Elog−. It is ob-
tained by slightly restricting the syntax of monadic dat-
alog and is a simplified version of the core wrapping lan-
guage of the Lixto system, Elog. Rules of this language
can be completely visually specified, without requiring
the wrapper implementor to deal with Elog− programs
directly or to know datalog. We also give a brief overview
of this visual specification process. Thus, this language
satisfies all of our four desiderata for tree-based wrapping
languages.

In Elog−, a wrapper is a function that assigns unary pred-
icates to document tree nodes. Based on these predicate
assignments and the structure of the input tree, a new
tree can be computed as the result of the information ex-
traction process in a natural way, along the lines of the
input trees but using the new labels and omitting nodes
that have not been relabeled.

• The capability to produce a hierarchically structured re-
sult is essential to tree wrapping. We define the language
Elog−2 in order to be able to make the creation of com-
plex nested structures explicit and to improve flexibil-
ity. Elog−2 is obtained by enhancing Elog− with binary
predicates in a restricted form, which allow to represent
hierarchical dependencies between selected nodes in the
fixpoint computation of an Elog− program. Note that
such a binary dependency relation can be quadratic in
the size of the input tree. Notwithstanding, we are able
to show that the expressiveness of Elog−2 and Elog− with
respect to unary queries is the same, and the edge relation
defined by the binary predicates is again MSO-definable.
Elog−2 is an actual fragment of the wrapping language
Elog used internally in the Lixto system [7], a commer-
cial visual wrapper generator.

• Finally, we take a closer look at two other tree-based ap-
proaches to wrapping HTML documents. The first is the
language of regular path queries (e.g., [1, 2]) with nest-
ing. Regular path queries are considered essential to Web
query languages [1], and by extending the language of
regular path queries by capabilities for producing nested
output (and for restricting queries by additional condi-
tions), one obtains a useful wrapping language. We show
that this formalism is strictly less expressive than Elog−2 .

• The second formalism is HEL [28], the wrapping language
of the commercially available W4F framework, which is
the only tree-based wrapping formalism besides Elog of
which a formal specification has been published. Again,
we are able to show that HEL is strictly less expressive
than Elog−2 .

This is – to the best of our knowledge – the first work pro-
viding a theoretical study of advanced tree-based wrapping
tools and languages. In summary, we present a thorough
theoretical analysis of expressiveness aspects of tree-based
information extraction based on the expressiveness of MSO
as an intuitively justifiable yardstick for languages attacking
this problem.

The paper is structured as follows. We start with prelim-
inaries regarding tree languages and MSO in Section 2 and
introduce monadic datalog (over trees) in Section 3. Sec-
tion 4 presents our equivalence results between MSO and
monadic datalog. In Section 5 we proceed to the wrapping
problem and show that Elog− captures MSO (Section 5.3).
The modification from Elog− to Elog−2 is studied in Sec-
tion 5.4. Finally, we compare our family of wrapping lan-
guages to other languages in Section 6.

2. PRELIMINARIES
Throughout this paper, only finite trees will be consid-

ered. Trees are defined in the normal way and have at least
one node. We assume that the children of each node are
in some fixed order. Each node has a label taken from a
finite nonempty set of symbols Σ, the alphabet. We con-
sider both ranked and unranked trees. Ranked trees have a
ranked alphabet, i.e., each symbol in Σ has some fixed arity
or rank k ≤ K (where K is some constant integer). Thus, in
ranked trees, each node with a label a of rank k has exactly
k children. Nodes with labels of rank 0 are leaves. We may
partition Σ into sets Σ0, . . . ,ΣK of symbols of equal rank.
Each ranked tree can be considered as a relational structure3

tr = 〈dom, root, leaf, (childk)k≤K , (labela)a∈Σ〉,

and each unranked tree as a structure

tu = 〈dom, root, leaf, (labela)a∈Σ,
firstchild, lastchild, nextsibling〉

where dom is the set of nodes in the tree and the relations are
defined according to their intuitive meanings. For instance,
childk is binary and denotes the k-th direct child relation
and nextsibling(n1, n2) is true iff n1 and n2 are the i-th and
(i + 1)-th children of a common parent node, respectively.
labela(n) is true iff n is labeled a in the tree.

Monadic second-order logic (MSO) over trees is a second-
order logical language consisting of (1) variables (with lower-
case names x, y, . . .) ranging over nodes, (2) set variables
(written using upper-case names P,Q, . . .) ranging over sets
of nodes, (3) parentheses, (4) boolean connectives ∨ and ¬,
(5) quantifiers ∀ and ∃ over both node and set variables, (6)
the relation symbols of the model-theoretic tree structure in
consideration, = (equality of node variables), and, as syn-
tactic sugaring, possibly (7) the boolean operations ∧, →,
and ↔ and the relation symbols = and ⊆ between sets.

3Of course, equally well-suited structures are obtained by
adding predicates definable over the structure in some for-
malism or removing others that are redundant (w.r.t. defin-
ability).

Π1-MSO refers to MSO sentences of the form

∀P1, . . . , Pn : ψ(P1, . . . , Pn)

where the Pi are set variables and ψ is a first-order formula.
It is easy to define a natural total ordering ≺ of dom in
MSO (obtained by depth-first left-to-right traversal of the
tree, where, say, parents precede children), which is also
called the document order in the context of wrapping HTML
documents (see e.g. [32]). A unary MSO query is a unary
predicate definable in MSO (i.e., by a formula with one free
first-order variable). A tree language L is definable in MSO
iff there is a closed MSO formula ϕ over tree structures t
such that L = {t | t �MSO ϕ}.

The regular tree languages are precisely those recognizable
by a number of finite automata, such as nondeterministic de-
scending (or top-down) tree automata (NDTA), both non-
deterministic (NATA) and deterministic (DATA) ascending
(or bottom-up) tree automata [9], and deterministic (2DTA)
as well as nondeterministic (2NTA) two-way tree automata
[9, 25]. This is true for ranked as well as for unranked al-
phabets. We provide definitions of deterministic bottom-up
automata in both the ranked and the unranked case.

Definition 2.1. A deterministic bottom-up ranked tree
automaton is a tuple A = 〈Q,Σ, δ0, . . . , δn, F 〉 where Q is a
finite set of states, Σ = Σ0 ∪ · · · ∪ Σn is a ranked alphabet,
δk, for each 0 ≤ k ≤ n, is the (partial) transition function
(Qk × Σk → Q), and F ⊆ Q is a set of final states.

The semantics of A (by the notion of a run) on a tree
t, δ∗(t), is defined inductively as follows: If t consists of
only a leaf node labeled a, then δ∗(t) = δ0(a) (if δ0(a) is
defined). If t is labeled a and has the children t1, . . . , tm,
then δ∗(t) = δm(δ∗(t1), . . . , δ∗(tm), a) (if defined). A run is
called successful for some tree t (that is, the tree is accepted)
iff δ∗(t) ∈ F . The set of Σ-trees accepted by A is denoted
by L(A). 2

Definition 2.2. A deterministic bottom-up unranked tree
automaton is a tuple A = 〈Q,Σ, δ, F 〉 where Q is a finite set
of states, Σ is an (unranked) alphabet, δ is a (partial) tran-

sition function Q×Σ→ 2Q
∗

s.t. δ(q, a) is a regular language
over states in Q, and F ⊆ Q is a set of final states.

The semantics ofA on a tree t, δ∗(t), is defined inductively
as follows: If t consists of only a leaf node labeled a, and
δ(q, a) = ε for some q, then δ∗(t) = q. If t is labeled a and
has the children t1, . . . , tm with δ∗(t1) = q1, . . . , δ

∗(tm) =
qm, and there is some q such that q1 · · · qm ∈ L(δ(q, a)),
then δ∗(t) = q. As before, a run is called successful for some
tree t (that is, the tree is accepted) iff δ∗(t) ∈ F . The set of
Σ-trees accepted by A is denoted by L(A). 2

Definition 2.3. A ranked (resp., unranked) tree language
is regular iff is is accepted by some deterministic bottom-up
ranked (resp., unranked) tree automaton. 2

The following is a classical result for ranked trees, which
has been shown in [25] to hold for unranked trees as well
(see also [9]).

Proposition 2.4. A tree language is regular iff it is de-
finable in MSO.

Remark 2.5. In the context of wrapping HTML docu-
ments, it is worthwile to consider an infinite alphabet Σ,

which allows to merge both HTML tags and attribute as-
signments into labels. This requires a generalized notion
of relational structures 〈dom, R1, R2, R3, . . . 〉 consisting of
a domain dom and a countable (but possibly infinite) set
of relations, of which only a finite number is nonempty.
Even though all results cited or shown in this paper (such as
Proposition 2.4) were proven for finite alphabets, it is triv-
ial to see that they also hold for infinite alphabets in case
the symbols of the alphabet (i.e., the node labels) are not
part of the domain, and labels of domain elements are ex-
pressed via predicates (such as the labela) only. Given these
requirements, it is impossible to quantify over symbols of
Σ and any query in whatever language can only refer to a
finite number of symbols of Σ. (See the related discussion
in the preliminaries of [24].) In this paper, we avoid this
problem by assuming a finite set Σ. Attribute assignments
can be encoded, for instance, as lists of character symbols
modeled as subtrees in our document tree. 2

3. MONADIC DATALOG OVER TREES
In the following sections, we will use a syntactically re-

stricted fragment of standard datalog [31, 10]. We adhere
to the usual minimal model (= least fixpoint) semantics,
which can be defined using, say, the immediate consequence
operator TP . By signature we denote a finite set of built-in
predicates.

Definition 3.1. Let signature τ denote a tree structure.
A monadic datalog program is a set of datalog rules in which
all extensional predicates are from τ and all intensional pred-
icates are unary. 2

By default, we will always use the signature

τr = 〈root, leaf, (childk)k≤K , (labela)a∈Σ〉

for ranked trees and

τu = 〈root, leaf, (labela)a∈Σ,
firstchild, lastchild, nextsibling〉

for unranked trees. We use tr and tu to denote the exten-
sions of τr and τu, respectively.

In order to be able to compare MSO with monadic dat-
alog, we make a few assumptions. By (unary) query , for
monadic datalog as for MSO, we denote a function that as-
signs a predicate to some nodes of a tree t (or, in other
words, selects a subset of dom(t)).

The following result is part of the database folklore:

Proposition 3.2. Over arbitrary finite structures, each
monadic datalog query is Π1-MSO-definable.

We say that a monadic datalog program with some ded-
icated intensional predicate (say, “accept”) accepts a tree t
iff accept(r) ∈ TωP (t) (i.e., the root node is in the inferred
extension of “accept”). A monadic datalog program P rec-
ognizes the tree language L = {t | P accepts t}.

The following result is similar to the folklore result that
monadic fixpoint logic over trees expresses MSO (w.r.t. tree
language acceptance), and can be shown by a straightfor-
ward simulation of bottom-up tree automata (a proof will
be given in the long version of this paper).

Theorem 3.3. A tree language is regular iff it is definable
in monadic datalog.

We conclude this section by providing a new complexity
result which characterizes the hardness of executing mona-
dic datalog programs.

Theorem 3.4. For ranked and unranked trees, monadic
datalog has O(|P| ∗ |dom(t)|) combined complexity (where
|P| is the size of the input program and |dom(t)| is the size
of the tree), linear-time data complexity, and its program
complexity is complete for linear time.

Proof Sketch We assume the signature τr for ranked
trees and τu for unranked trees. Observe that all of the bi-
nary predicates in τr and τu (that is, (childk)k≤K , firstchild,
lastchild, and nextsibling) have both a functional depen-
dency from their first column to the second and one from
the second column to the first.

Given a monadic datalog program P, let us apply the fol-
lowing transformation. For each rule, we split off connected
parts that do not contain the head variable, create a rule
with a propositional head predicate for them, and add the
propositional predicates to the original rule as replacements
of the removed parts. For instance, p(X)← p1(X), p2(Y).
is rewritten into p(X) ← p1(X), b. and b ← p2(Y). It is
easy to see that this transformation is linear in the size of
the program.

Now, for each rule in the transformed program P ′, each
variable functionally determines all others, as the variables
are connected via binary predicates that are one-to-one only.
(That is, in a graph of functional dependencies, each variable
is reachable from each other variable.) Consequently, there
is only a linear number of relevant ground instances (in the
size of the data), which can be computed in linear time. It
is known from [13, 22] (see also [12]) that the fixpoint of
a ground program can be computed in time linear in the
size of the program. Thus, the composition of these steps
requires O(|P| ∗ |dom(t)|) time. This is an upper bound for
the combined complexity of the problem, and we have both
linear time data and program complexities.

Finally, the problem is P-hard w.r.t. combined resp. pro-
gram complexity, as it generalizes the propositional Horn-
SAT problem, which is P-complete (e.g., [26]). 2

The data complexity results of Theorem 3.4 also follow
from the fact that the data complexity of MSO queries over
finite structures of bounded tree-width is in linear time [15]
and the facts that ranked labeled trees (where |Σ| is the size
of the labeling alphabet) are of tree-width ≤ 1 + |Σ| and
unranked labeled trees are of tree-width ≤ 2+ |Σ|. However,
the other results of Theorem 3.4 are new.

4. MONADIC DATALOG QUERIES
In this section, we show that MSO and monadic datalog

are equivalent in their power to define unary queries. One
direction was already stated in Proposition 3.2. For the
proof of the other, we need some additional machinery.

Definition 4.1. [25] A ranked query automaton (QAr)
– that is, a two-way deterministic ranked tree automaton
with a selection function – is a tuple

A = 〈Q,Σ, F, s, δ↑, δ↓, δroot, δleaf , λ〉

where Q is a finite set of states, F ⊆ Q is the (nonempty)
set of final states, s ∈ Q is the start state, Σ is a ranked

alphabet, the δ’s are transition functions, and λ is the so-
called selection function. Let there be a partition of Q ×
Σ into two disjoint sets U and D. (1) δ↑ : U≤K → Q
is the transition function for up transitions. (2) δ↓ : D ×
{1, . . . ,K} → Q∗ is the transition function for down trans-
itions. For each i ≤ K, δ↓(q, a, i) is a string of states of
length i. (3) δroot : U → Q is the transition function for
root transitions. (4) δleaf : D → Q is the transition function
for leaf transitions.

Let t be a ranked tree. A cut is a subset of dom(t) which
contains exactly one node of each path from the root to a
leaf. A configuration of A on t is a mapping c : C → Q from
a cut C of t to the set of states Q of A.

The automaton A makes a transition between two config-
urations c1 : C1 → Q and c2 : C2 → Q, denoted by c1 → c2,
if it makes an up, down, root, or leaf transition:

1. A makes an up transition from c1 to c2 if there is a
node n s.t. (a) the children of n, say, n1, . . . , nm, are
in C1, (b) C2 = (C1 − {n1, . . . , nm}) ∪ {n}, (c) c2(n) =
δ↑(〈c1(n1), label(n1)〉, . . . , 〈c1(nm), label(nm)〉), and (d)
c2 is identical to c1 on C1 ∩ C2.

2. A makes a down transition from c1 to c2 if there is a node
n s.t. (a) n ∈ C1, (b) C2 = (C1 − {n}) ∪ {n1, . . . , nm},
where {n1, . . . , nm} is the set of children of n,
(c) c2(n1) · · · c2(nm) = δ↓(c1(n), label(n), arity(n)), and
(d) c2 is identical to c1 on C1 ∩ C2.

3. A makes a root transition from c1 to c2 if (a) C1 = C2 =
{root(t)}, where root(t) denotes the root node of t, and
(b) c2(root(t)) = δroot(c1(root(t)), label(root(t))).

4. A makes a leaf transition from c1 to c2 if there is a (leaf)
node n s.t. (a) n ∈ C1, (b) C2 = C1, (c) c2(n) =
δleaf (c1(n), label(n)), and (d) c2 is identical to c1 on C1−
{n}.

The start configuration c : C → Q has C = {n} (where
n is the root node of t) and c(n) = s. Any configuration
with c(root(t)) ∈ F is an accepting configuration. (That is,
a 2DTAr starts at the root and terminates there.) A run is
a sequence of configurations c1, . . . , cm s.t. c1 → · · · → cm
and c1 is the start configuration. A run is accepting if cm is
an accepting configuration and there does not exist a cm+1

s.t. cm → cm+1.
Since often a number of transitions can be made in paral-

lel, there are usually many different sequences of transitions
that are possible. However, because of the disjointness of U
and D, given a node n with some label and a (“current”)
state q, at most one (kind of) transition involving n is pos-
sible at any point in time, and for all nodes, the sequence of
states in which they are visited is the same in all these runs.
Thus we can consider this type of automaton as determin-
istic and refer to the run of A rather than a run of A. Even
though an automaton of the kind specified can run forever
on an input tree, we can restrict ourselves to automata that
always terminate. (This is a decidable property [25].)

The selection function λ : Q × Σ → {⊥, 1} is defined as
follows. A query automaton A selects a node n in config-
uration c : C → Q if n ∈ C and λ(c(n), label(n)) = 1. A
selects n if the run c1, . . . , cm is accepting and if there is an
1 ≤ i ≤ m s.t. n is selected by A in ci. 2

Thus, a query automaton computes the set of nodes se-
lected at any time during the run, not just in the terminat-
ing configuration (which, by our definition, only contains
the root node in its cut).

Proposition 4.2. [25] A unary query over ranked trees
is MSO-definable iff there is a ranked query automaton which
computes it.

For use in the following lemma, let

Qn,X = {q ∈ Q | 〈q, label(n)〉 ∈ X and ∃i : q = ci(n)}

where X is either U or D.

Lemma 4.3. Let A be a ranked query automaton, t be a
(ranked) tree, and n, n′ ∈ dom(t) a pair of nodes where n′ is
the k-th child of n.

We can define a (partial) function fn,k : Qn,D → Qn′,U
s.t. for all i < j with n ∈ Ci, n 6∈ (Ci+1 ∪ · · · ∪Cj), n′ ∈ Cj,
and ci(n) ∈ Qn,D, cj(n

′) ∈ Qn′,U ,

cj(n
′) = fn,k(ci(n)).

That is, the state of a node n uniquely determines the
states each of its child nodes can have directly before an
up transition back to n is made. We can define a function
fn,k by which the state (before an up transition) of the k-th
child of n only depends on the state of n but not on the
configuration to which this state assignment belongs.

Proof Sketch This lemma can easily be shown by a sim-
ple induction over trees (bottom-up). However, such an in-
duction is not even necessary: The fact that cj(n

′) function-
ally depends on ci(n) (for i < j, n ∈ Ci, n 6∈ (Ci+1∪· · ·∪Cj),
n′ ∈ Cj) is a direct consequence of determinism as required
in Definition 4.1.

Furthermore, let q = ci(n) and q′ = cj(n
′). Then, by def-

inition (in particular of down transitions, which overwrite
child states without reading them first), all the configura-
tions ci+1, . . . , cj (i.e., in which transitions occur below n in
the tree) only depend on q and on the tree. Thus, when-
ever a configuration contains state q for n (and, after all,
〈q, label(n)〉 ∈ D), the subsequent configurations again lead
to the state assignment q′ for n′ (〈q′, label(n′)〉 ∈ U). 2

Now we can state our result for ranked queries.

Theorem 4.4. For each unary MSO-definable query there
exists a monadic datalog query (over τr) s.t. these two queries
return the same result for all ranked trees.

Proof By virtue of Proposition 3.2 and Proposition 4.2,
all we need to show is an encoding that maps each ranked
query automaton A to a monadic datalog program P such
that A and P compute the same query.

In our encoding, predicate names are pairs (of state names)
in (Q ∪ {r})×Q. Intuitively, 〈q1, q2〉(n) means that n is in
state q2 and its parent is in state q1. r is a dummy state
which we will assign to the imaginary parent of the root
node. As we will see, it is only to correctly handle up tran-
sitions that parent states need to be managed via predicates.

The encoding P of A is the following set of rules. For all
q, q′, q1, . . . , qm ∈ Q and for all a, a1, . . . , am ∈ Σ,

1. (Start state) we add the single rule

〈r, s〉(n)← root(n).

where s is the start state of A;

2. (Up transition)

if δ↑(〈q1, a1〉, . . . , 〈qm, am〉) = q′, we add the rules

〈x, q′〉(n)← 〈x, q〉(n),
child1(n, n1), . . . , childm(n, nm),
〈q, q1〉(n1), . . . , 〈q, qm〉(nm),
labela1(n1), . . . , labelam(nm).

for all x ∈ (Q ∪ {r});

3. (Down transition) if δ↓(q, a,m) = q1 · · · qm, we add

〈q, qi〉(ni)← 〈x, q〉(n), childi(n, ni), labela(n).

for all 1 ≤ i ≤ m, x ∈ (Q ∪ {r});

4. (Root transition) if δroot(q, a) = q′, we add

〈r, q′〉(n)← 〈r, q〉(n), labela(n), root(n).

5. (Leaf transition) finally, if δleaf (q, a) = q′, we add

〈x, q′〉(n)← 〈x, q〉(n), labela(n), leaf(n).

for all x ∈ (Q ∪ {r});

Note that all datalog variables n, ni in our encoding range
over nodes in dom(t).

The encoding aims at computing exactly all the state as-
signments made during the run of A, formalized as

H = {〈q, n〉 | n ∈ dom(t), ci(n) = q for some i}

(the “history” of A), while we do not try to model config-
urations. We abbreviate {〈q, n〉 | 〈q0, q〉(n) ∈ X} (for a set
X ⊆ T ωP) as π(X).

It is easy to see from P and Definition 4.1 that the state
assignments in our fixpoint T ωP are certain to subsume those
in H, i.e., π(T ωP) ⊇ H. The other direction (i.e., soundness
of T ωP) can be shown by induction over the computation of
T ωP .

• Initially, we obtain T 1
P = {〈r, s〉(root(t))} by applying the

start state rule. (Clearly, π(T 1
P) ⊆ H.)

• Let X (with π(X) ⊆ H) be the set of facts obtained so
far in the fixpoint computation. Rules in P which cor-
respond to root, leaf, and down transitions have only a
single state assignment premise in their bodies. If the
premise is true w.r.t. X (and thus H), the state assign-
ment 〈q0, q〉(n) inferred by such a rule must again be in
some configuration of the run of A and thus be sound
(that is, 〈q, n〉 ∈ H).

• Let X (with π(X) ⊆ H) be the set of facts obtained so
far in the fixpoint computation, and let an up transition
rule r of P infer 〈x, q′〉(n) from

〈q, q1〉(n1), . . . , 〈q, qm〉(nm) ∈ X

(where nodes n1, . . . , nm are the children of node n and
〈q1, label(n1)〉, . . . , 〈qm, label(nm)〉 ∈ U).

By Lemma 4.3, we know that for each q ∈ Q and each
node nk, there is at most one qk ∈ Q s.t. 〈q, qk〉(n) ∈ X
and 〈qk, label(nk)〉 ∈ U .

Since for each 〈q, qk〉(nk), qk only depends on q and on
t, the 〈qk, nk〉 are all computed independently by A after
some down transition has been made from n to the nk,
and state assignments of this form remain in the current

configuration of A until a common up transition occurs,
〈q1, n1〉, . . . , 〈qm, nm〉 can be assumed to be in the same
configuration of A at some point. Consequently, the new
state assignment inferred by r is again sound. (That is,
〈q′, n〉 ∈ H.)

Thus, π(T ωP) = H. The definition of the selection function
for a query automaton nicely coincides with the monotonic
semantics of monadic datalog. We obtain the program P ′
from P by adding, for each q ∈ Q, a ∈ Σ, with λ(q, a) = 1,
a rule

query(n)← 〈x, q〉(n), labela(n).

for each x ∈ (Q ∪ {r}). Then,

query(A) = {n | 〈q, n〉 ∈ H and λ(q, label(n)) = 1}
≡ {n | query(n) ∈ T ωP′}.

2

Next we characterize queries in monadic datalog over un-
ranked trees. Analogously to query automata for ranked
trees, we define the class of strong query automata over un-
ranked trees as a tool for proving the above theorem. Let
two-way deterministic finite (string) automata (2DFA) be
defined in the normal way (e.g., [17]).

Definition 4.5. [25] A strong unranked query automaton
(SQAu) is a tuple

A = 〈Q,Σ, F, s, δ↑, δ↓, δ , δroot, δleaf , λ〉,

where Q, F , s, U , D, δleaf , δroot and λ are as in Defini-
tion 4.1. Let Uup and Ustay be two disjoint regular subsets
of U∗. The transition function for up transitions is now
of the form δ↑ : Uup → Q, and the transition function for
down transitions is of the form δ↓ : D × N → Q∗ (where
N is the set of natural numbers). For each 〈q, a〉 ∈ D,
L↓(q, a):={δ↓(q, a, i) | i ∈ N} is regular; for each j ∈ N ,
δ↓(q, a, j) must be a string of length j; and for each q ∈ Q,
the language L↑(q):={w ∈ U∗ | δ↑(w) = q} must be regular.
To assure determinism, we require that L↑(q) ∩ L↓(q′) = ∅
for all q 6= q′.
δ : Ustay → Q∗ is the transition function for so-called stay

transitions. We require this function to be computed by a
2DFA B = 〈S,ΣB = Q× Σ, s0, δB, FB, L,R〉 over the string
〈c1(n1), label(n1)〉, . . . , 〈c1(nm), label(nm)〉 with a selection
function λB : S × ΣB → Q ∪ {⊥} that – anytime during its
run – maps nodes to states s.t., upon the termination of B,
each node has been assigned exactly one state inQ. Amakes
a stay transition at a node n (whose children are n1, . . . , nm)
from a configuration c1 : C1 → Q to c2 : C2 → Q if

(a) n1, . . . , nm ∈ C1,
(b) C2 = C1,
(c) δ (〈c1(n1), label(n1)〉, . . . , 〈c1(nm), label(nm)〉) =

c2(n1) · · · c2(nm), and
(d) c2 is identical to c1 on C1 − {n1, . . . , nm}.

We require that at each node, at most one stay transition
is made (this is a decidable property [25] for a given SQAu).

The definitions of configurations, leaf, root, up and down
transitions, run, and accepting run carry over from Defini-
tion 4.1. The query computed by A and the tree language
defined by A are defined analogously to Definition 4.1. 2

Proposition 4.6. [25] A unary query over unranked trees
is MSO-definable iff there is an SQAu that computes it.

We can now show the following theorem by a proof similar
to the one of Theorem 4.4.

Theorem 4.7. For each unary MSO-definable query there
is a monadic datalog query (over τu) s.t. for all unranked
trees, these two queries return the same result.

Proof (Sketch) The proof works analogously to the one
for the case of ranked queries4, with the following changes
to the encoding of the automaton (which now is an SQAu)
in monadic datalog.

1. Down transitions: It is clear from Definition 4.5 that the
regular language L↓(q, a) must be of density 1 (i.e. for
each i, |L↓(q, a) ∩ Σi| ≤ 1).

As a special case of an interesting result for regular lan-
guages of polynomial density [29, 33], we have that if a
regular language L over Σ has constant density, L can
be denoted by a finite union of regular expressions of the
form uv∗w (where the u, v, w are words over Σ).

Let
⋃
i uiv

∗
iwi be such a union expression for L↓(q, a)

(that is, the ui, vi, and wi are words over an alphabet
consisting of the states of the query automaton).

Intuitively, we proceed as follows, for each i in parallel.
First, we use temporary predicates to match the word ui
with the first |ui| child nodes of n with respect to the
nextsibling relation, starting from the left (rules 1 and
2 of the encoding provided below). Next, we match wi
with the |wi| rightmost children of n (rules 3 and 4). We
furthermore mark all nodes before those with ¬wi (rules
5 and 6; This is not needed if we use monadic datalog
with stratified negation). Next we match the (|ui|+1)-th
node up to the rightmost node marked ¬wi with v∗i (rules
7 to 9; let y be the length of this sequence of nodes). If
this matching is exact (y = |vi| = 0 or y mod |vi| = 0),
we create state assignments out of the temporary facts
computed so far for i (rules 10 to 13). Since L(

⋃
i uiv

∗
iwi)

has density one, such assignments are made for at most
one i.

The monadic datalog encoding for down transitions is as
follows.

tmpq,ui,1(n1) ← 〈x, q〉(n),

firstchild(n, n1), labela(n).

tmpq,ui,k+1(nk+1) ← tmpq,ui,k(nk),

nextsibling(nk, nk+1).

tmpq,wi,|wi|(n
′) ← 〈x, q〉(n), lastchild(n, n′).

tmpq,wi,l−1(n′) ← tmpq,wi,l(n),

nextsibling(n′, n).

tmpq,¬wi(n
′) ← tmpq,wi,|1|(n), nextsibling(n′, n).

tmpq,¬wi(n
′) ← tmpq,¬wi(n), nextsibling(n′, n).

4Clearly, an analogous result to Lemma 4.3 can be stated
for unranked trees.

tmpq,vi,1(n′) ← tmpq,ui,|u|(n),

nextsibling(n, n′), tmpq,¬wi(n
′).

tmpq,vi,m+1(n′) ← tmpq,vi,m(n),

nextsibling(n, n′), tmpq,¬wi(n
′).

tmpq,vi,1(n′) ← tmpq,vi,|vi|(n),

nextsibling(n, n′), tmpq,¬wi(n
′).

succq,i(n
′) ← tmpq,ui,|ui|(n

′),

nextsibling(n′, n), tmpq,wi,1(n).

succq,i(n
′) ← tmpq,vi,|v|(n

′),

nextsibling(n′, n), tmpq,wi,1(n).

succq,i(n
′) ← succq,i(n), nextsibling(n, n′).

succq,i(n
′) ← succq,i(n), nextsibling(n′, n).

〈q, αi,j〉(n) ← succq,i(n), tmpq,αi,j(n).

for all x ∈ Q ∪ {r}, i, j, 1 ≤ k < |ui|, 1 ≤ l < |wi|,
1 ≤ m < |vi|, and where αi is either ui, vi, or wi and αi,j
is the j-th symbol in αi.

2. Up transitions: Let B = 〈Q, s0, δ, F 〉 be a deterministic
finite automaton for L↑(q0, a0) (that is, its alphabet is
U). For each x ∈ (Q ∪ {r}), y ∈ Q, we create rules as
follows.

(a) For each δ(s0, 〈q, a〉) = s′,

tmpy,s′(n) ← 〈y, q〉(n), firstchild(n0, n),

labela(n).

(b) For each δ(s, 〈q, a〉) = s′,

tmpy,s′(n
′) ← tmpy,s(n), nextsibling(n, n′),

〈y, q〉(n′), labela(n′).

(c) For each s ∈ F ,

〈x, q0〉(n0) ← tmpy,s(n), 〈x, y〉(n0),

lastchild(n0, n), labela0(n0).

That is, we traverse siblings from a first to a last (from
left to right) to check whether their state-and-label pairs
constitute a word of language L↑(q0, a0) before we make
our up transition.

3. Stay transitions: Since each tree node may only be in-
volved in a stay transition once, we may consider the
simulation of the 2DFA taken out of the context of our
proof, by itself.

The encoding of a 2DFA with a selection function λ is
straightforward. Each transition only depends on a sin-
gle state assignment. As discussed for the case of query
automata for ranked trees earlier, this condition entails
that the computation of the union of all the configura-
tions run through by the 2DFA as a fixpoint of our mo-
nadic datalog program and the application of a selection
function λ to this set is sound. 2

5. TREE WRAPPING
In this section, we make a bridging step from the topic of

the previous sections – monadic datalog over trees – to ex-
tracting information from parse trees of HTML documents.

Definition 5.1. A document is a node-labeled unranked
tree in which the root node has a special label “document”
not used by any other node. 2

We assume that HTML attributes are simply represented
as nodes of the parse tree and can be accessed through the
child relation of the document tree. 5

Definition 5.2. An information extraction function is a
function that maps each unranked labeled tree t to a subset
S ⊆ dom(t) of its nodes. 2

Clearly, each unary predicate of a monadic datalog pro-
gram can be considered to define one information extraction
function. Now consider the following method of wrapping a
Web document using information extraction functions: 6

Remark 5.3. Given a tree t and a number of information
extraction functions f1, . . . , fm, there is a natural way of
extracting a wrapped tree t′ from t using f1, . . . , fm. Let
An = {‘fi’ | n ∈ fi(t), 1 ≤ i ≤ m}, for each node n ∈
dom(t), and let compute label be a function that computes
a label from a set of predicate assignments An of a node n.
Tree t′ is obtained as follows:

• n ∈ dom(t) is a node of t′ iff An 6= ∅ or n is the root
of t (then, it is also the root of t′). Let the label of
n ∈ dom(t′) for tree t′ be compute label(An).

• Let n0, n ∈ dom(t′). n is a child of n0 iff (1) n0 is an
ancestor of n in t and (2) there is no node n′ ∈ dom(t′)
s.t. n0 is an ancestor of n′ in t and n′ is an ancestor of n
in t.

• The ordering of siblings in t′ is coherent with the docu-
ment order in t. 2

5.1 Elog−
In this section, we introduce Elog−, a simplified fragment

of the wrapping language Elog presented in [8, 7]. Subse-
quently, we refer to monadic intensional predicates as pat-
tern predicates.

Definition 5.4. The language Elog− is a fragment of
monadic datalog over the signature

τElog− = 〈(subelemπ)π∈Π, (containsπ)π∈Π,
(beforeπ)π∈Π, (afterπ)π∈Π,
firstson, lastson〉,

where Π is the set of star-free (and disjunction-free) regular
paths over Σ and rules are restricted to the form

p(X)← p0(X0), subelempath(X0, X), C, R.

s.t. p is a pattern predicate, p0 – the so-called “parent pat-
tern” – is either a pattern predicate or “root”, R (“pattern
references”) is a set of atoms over pattern predicates, and
C is a set of “condition atoms” (using the predicates “con-
tains”, “before”, “after”, “firstson”, and “lastson”).

The predicate subelempath is defined inductively7 in terms
of τu and the predicate “child” (which is easily definable in

5See also Remark 2.5.
6However, note that this method is not central to our work
and may be replaced by a different one.
7Note that the definition of subelem is nonrecursive and for
each path π, subelemπ is defined through a fixed conjunction
of child and label atoms.

MSO over τu) as

subelemε(X,Y) := X = Y.

subelem .path(X,Y) := child(X,Z),

subelempath(Z, Y).

subelema.path(X,Y) := child(X,Z), labela(Z),

subelempath(Z, Y).

where ‘ ’ is a wild card matching any symbol, and the re-
maining (condition) predicates are defined as

containspath(X,Y) := subelempath(X,Y).

beforepath(X0, X, Y) := subelempath(X0, Y),

nextsibling(X,Y).

afterpath(X0, X, Y) := subelempath(X0, Y),

nextsibling(Y,X).

firstson(X0, X) := firstchild(X0, X).

lastson(X0, X) := lastchild(X0, X).

ε-paths must not be used in condition atoms. 2

We may write rules of the form

p(X)← p0(X0), subelemε(X0, X), C, R.

as

p(X)← p0(X), C, R.

and call such rules specialization rules.

5.2 Visual Wrapper Specification
A main strength of Elog− (and Elog) is that programs

can be completely visually specified (see [8]). The above
mentioned “patterns” are a useful metaphor for the build-
ing blocks of wrappers. Given an example document to be
wrapped, a user may be guided in the graphical specification
of an Elog− rule

p(X)← p0(S), subelemπ(S,X), C, R.

as follows8.

• First, a destination pattern p is named (which may be
new) and a parent pattern p0 is selected from among
the patterns defined so far. Initially, the only pattern
available is the “root” pattern, which matches an entire
document.

• The system can then display the document and highlight
those regions in it which correspond to nodes in its parse
tree that are classified p0 using the wrapper program
specified so far.

• A new rule is defined by selecting – by a few mouse clicks
over the example document – a subregion of one of those
highlighted. The system can automatically decide which
path π relative to the highlighted region best describes
the region selected by the user.

• The basic rule p(X)← p0(S), subelemπ(S,X). can then
be refined by generalizing the path or adding conditions
or references of other patterns. Conditions that involve
a path (such as “contains”, “before” and “after”) are de-
fined similarly to the process just described. It is easy
to imagine an appropriate graphical user interface for the
other manipulations.

8The process outlined is used in the Lixto system and is
described in more detail in [8].

Very few example documents are needed for defining a
wrapper program: It is only required that for each rule to
be specified, there exists a document in which an instance
of the parent pattern can be recognized and an instance of
the destination pattern relates to it in the desired manner.

5.3 Elog− Captures MSO
As stated next, Elog− – some surrogate for a completely

visual wrapper specification process – has exactly the wrap-
ping power of MSO (and equally, monadic datalog) over
unranked trees.

Theorem 5.5. A wrapper (over documents) is definable
in monadic datalog over τu iff it is definable in Elog−.

Proof Sketch A full proof of Theorem 5.5 is quite easy to
obtain and will appear in the long version of the paper; here,
we give a rough sketch. The fact that each query in Elog−

can be expressed in monadic datalog over τu follows directly
from the definition of Elog− and its consequence that each
query in Elog− can be expressed in MSO. For the other
direction, one can basically observe in the proof of Theo-
rem 4.7 that only a very limited fragment of monadic datalog
is required to simulate (strong) query automata. Programs
of that form can be decomposed into a small number of rule
templates; for instance, one such template is

p2(X2)← p1(X1), nextsibling(X1, X2).

for some predicates p1 and p2. Each of the rules of the
simplified program can now easily be simulated in Elog−.
For example, the above template rewrites into

p2(X2) ← dom(X0), subelem (X0, X2),

after (X0, X2, X1), p1(X1).

2

Note at this point that the full Elog language of [7] is
strictly more expressive than MSO. For example, Elog sup-
ports so-called distance tolerances in before and after predi-
cates. Let Elog−∆ be the new language obtained from Elog−

by extending its “before” predicate by a distance tolerance,
which is a pair of percentage values s.t. whenever S refers to
a node with k children, beforea∈Σ,x%−y%(S,X, Y) requires
that among the children of S, X is at least k∗100

x
and at

most k∗100
y

before Y .

Theorem 5.6. The Elog−∆ language is strictly more ex-
pressive than unary MSO queries over unranked trees.

Proof The Elog−∆ program P

a0(X) ← parent(X0), subelema(X0, X), notaftera(X0, X).
b0(X) ← parent(X0), subelemb(X0, X), notafterb(X0, X).
anbn(X) ← parent(X),

containsa(X, Y), a0(Y),
beforeb,50%−50%(X, Y, Z), b0(Z),
notbeforea(X, Z).

over Σ = {a, b} classifies a node as anbn if and only if its list
of children is of the same form. However, the tree language
{t | anbn(root(t)) ∈ T ωP } is not regular. 2

5.4 Binary Pattern Predicates
In this section, we step out of our framework of infor-

mation extraction functions to address the limited form of
binary pattern predicates that the Elog language supports.
We enhance Elog− by such predicates and obtain a new lan-
guage which we call Elog−2 . In the long version of this pa-
per, we discuss the generalization of the subelem predicate
to support paths with the Kleene star (and ranges). Such
an extended subelem predicate remains MSO-definable, but
the size of our binary pattern relations can become quadratic
in the size of the input tree. Binary intensional predicates
allow to explicitly represent the parent-child relationship of
the tree computed as a result of the wrapping process, and
extend the expressiveness of the wrapping formalism when
subelem paths make use of the Kleene star.

Definition 5.7. Let Elog−2 be a language such as Elog−,
but where all pattern predicates are binary and all rules are
of the form

p(X0, X)← p0(, X0), subelempath(X0, X), C, R.

where C is again a set of condition atoms as for Elog− and
R is a set of pattern atoms of the form pi(, Xi). In ac-
cordance with Elog−, the predicate “root” is also pro-forma
binary and can be substituted as a pattern predicate, al-
though built-in. 2

There is a close correspondence between the semantics of
Elog− and Elog−2 .

Lemma 5.8. Let P be an Elog−2 program and P ′ be the
Elog− program obtained by rewriting the i-th rule

p(X0, X) ← p0(, X0), subelempathi(X0, X), C,

p1(, X1), . . . , pn(, Xn).

of P (where C is a number of condition atoms) into

p(X) ← ri(X).

ri(X) ← p0(X0), subelempathi(X0, X), C,

p1(X1), . . . , pn(Xn).

in P ′ (where ri is a new predicate). Then,

1. p(v) ∈ T ωP′ iff p(v, w) ∈ T ωP for some node w.

2. p(v1, v2) ∈ T ωP iff there is a rule with head predicate p,
parent predicate p0, and, say, index i, in P s.t.
p0(v1), ri(v2) ∈ T ωP′ and subelempathi(v1, v2).

In the above lemma, we have introduced the intermediate
step through ri predicates in order to make the mapping of
rules (and their subelem atoms) to head predicates unique.

It immediately follows from Lemma 5.8 and previous the-
orems that Elog−2 and Elog− characterize the same tree lan-
guages, can define the same (monadic) queries, and have the
same data complexity.

Theorem 5.9. (1) A monadic query resp. tree language
over documents is definable in Elog−2 iff it is definable in
MSO and (2) the data complexity of Elog−2 is in linear time.

Note that Elog−2 is equally well-suited for visual specifi-
cation as is Elog−.

The rationale of supporting binary pattern predicates in
Elog is to build a child relation for an output XML graph
during the wrapping process.

Definition 5.10. The output language of Elog−2 is de-
fined as follows. An Elog−2 program P is a function mapping
each document t to a node-labeled directed graph

G = 〈dom(t), E = {〈n1, n2〉 | pi(n1, n2) ∈ T ωP }, (Qp)p∈P 〉

where Qp = {n | ∃n′ : p(n′, n) ∈ T ωP } and P is the set of
pattern predicate names occurring in P. 2

The edge relation E constitutes a partial order of the
nodes. The graph is acyclic except for the reflexive loops
of the form 〈n, n〉 ∈ E.

Theorem 5.11. The relations of G are MSO-definable.

Proof Let P be an Elog−2 program. The case of the Qp
relations was covered in Proposition 3.2, so we only need to
show the MSO-definability of E, which is defined as

E(x, y) ≡def ∀P1, . . . , Pn : SAT (P1, . . . , Pn)→ Φ

where SAT is based on a version P ′ of P where the first
columns of all IDB predicates have been projected out and
Φ is a disjunction of formulae B (one for each rule H ← B
in P ′) where the variable appearing in H has been replaced
by y and the variable appearing in the parent pattern atom
of B has been replaced by x. (We assume that x and y are
new variables that do not appear in P ′). 2

6. OTHER WRAPPING LANGUAGES
In this section, we compare the expressiveness of two more

wrapping languages, namely regular path queries with nest-
ing and HEL, the wrapping language of the W4F framework
[28], to Elog−2 . For space reasons, we have to be extremely
brief in this section.

Other previously proposed wrapping languages were eval-
uated as well. The majority of previous work is string-based
(e.g., TSIMMIS [27], EDITOR [5], FLORID [21], DEByE
[18], and Stalker [23]) and artificially restricting them in
some way to work on trees would not be true to their moti-
vation. Thus, we decided not to include them in this discus-
sion. For some other systems (such as XWrap [20], which is
essentially tree-based like W4F or Lixto), no formal specifi-
cations have been published which can be made subject to
expressiveness evaluations.

Web query languages were also evaluated, but some (e.g.,
WebSQL [4], WebLOG [19]) are unsuited for wrapping be-
cause they cannot access the structure of Web documents,
and others (e.g., WebOQL [3]; for a survey of further Web
query languages see [14]) are highly expressive query lan-
guages that permit data transformations not in the spirit of
wrapping.

6.1 Regular Path Queries with Nesting
The first language we compare to Elog−2 is obtained by

combining regular path queries [2] with nesting to create
complex structures. This new language – which we will call
RPN (Regular Path queries with Nesting) – on one hand
is simple yet appropriate for defining practical wrappers,
and on the other hand serves to prepare some machinery
for comparing further wrapping languages later on. The
creation of complex objects is a characteristic common to
many wrapping approaches (e.g., [28, 18]), but on which we
have insufficiently shed light up to this point.

Definition 6.1. The syntax of RPN is defined by the
grammar

rpn: path.txt | path ‘(’ rpn ‘#’ · · · ‘#’ rpn ‘)’
path: patom ‘.’ · · · ‘.’ patom
patom: patom0 | patom0 conds
patom0: regexp | regexp ‘[’ range ‘;’ · · · ‘;’ range ‘]’
conds: ‘{’ cond ‘and’ · · · ‘and’ cond ‘}’
cond : path‘.txt’ = string

where a range is either ‘*’, i, or i−j (where i and j are inte-
gers), “regexp” denotes the regular expressions over HTML
tag names, and “string” the set of strings. 2

Definition 6.2. Denotational semantics of RPN. In the
following, ρ denotes a regular expression over HTML tags,
α a range, s a string, and n, n′ denote tree nodes. Without
loss of generality, we assume that every patom has a range9.
We have

E[[.ρ[α]X]]n := E[[X]]{n′ | n.ρ[α] = n′}
E[[X1# . . .#Xn]]n := 〈E[[X1]]n, . . . , E[[X1]]n〉

E[[.txt]]n := {n.txt}

n.ρ[α] denotes the tree nodes reachable from n through
the path ρ which satisfy the range α in depth-first left-to-
right traversal (where nodes are marked before going down
in the depth-first traversal); that is, in document order. Fur-
thermore, we have

E[[.ρ[α]{Y1 and . . . and Yn}X]]n :=
E[[.ρ[α]X]]n ∩
{n′ | E[[Y1]]n′ 6= ∅} ∩ · · · ∩ {n′ | E[[Yn]]n′ 6= ∅}

E[[.txt = s]]n := if n.txt = s then {true} else ∅

for conditions. 2

Intuitively, in RPN, all entries in tuples are set-valued and
may remain empty. Whenever a condition {path.txt = s}
is tested for a node n, there must be at least one node n′

reachable from n through path “path” s.t. n′.txt = s.

Example 6.3. Note that the semantics of paths and con-
ditions in RPN is similar to those of the fragment obtained
from XPath [32] by removing the functional aspect of the
language. Using the syntax of Definition 6.1, the XPath
query

/html/body/table/tr[td[1] = ”item”]/td[2];

is written as

html.body.table.tr{td[0].txt = “item”}.td[1];

A path of the form · · · //a/ · · · in XPath corresponds to
· · · .ā∗.a. · · · in RPN.

However, apart from nesting and a more general class of
path expressions that can be used in RPN, there is another
difference. While XPath selects nodes of a document tree –
and the HTML tree of a document is usually irrelevant to
a wrapping result per se – RPN extracts text below nodes
rather that selecting the nodes themselves. 2

Theorem 6.4. For each wrapper expressible in RPN, there
is an equivalent wrapper in Elog−2 .

9We can always add a range [*] to a patom without a range
without changing the semantics.

Proof Sketch We use Elog−2 extended as follows. We use

the predicates subelem
(b,f)
path,range and contains

(b,f)
path,range and

allow arbitrary numbers of binary predicates as in monadic
datalog. It is easy to verify that this language is not more
expressive than Elog−2 .

Ranges in RPN are regular and can be encoded using

the subelem
(b,f)
path,range and contains

(b,f)
path,range predicates. We

make a shortcut and assume that each range in RPN is
directly understood by the Elog−2 predicates. Let W be an
RPN wrapper in which every patom has a range.

We create the Elog−2 program P = f(root, root,W) from
the query tree of W using the function f defined as follows.

f(p′, p, .ρ[α]X) = f(p′1, p1, X) ∪
{ p′1(X0, X)← p′(, X0), subelemρ[α](X0, X).
p(X0, X)← p′(X0, X), containsρ[α](X,Y), p1(, Y). }

if p 6= p′. Otherwise,

f(p, p, .ρ[α]X) = f(p1, p1, X) ∪
{ p1(X0, X)← p(, X0), subelemρ[α](X0, X). }

f(p, p, .txt) = ∅

f(p′, p, .txt = s) =
{ p(X0, X)← p′(X0, X), containss′.nil(X,Y). }

f(p′, p, .ρ[α]X{X1 and . . . and Xn}Y) =

f(p0, p, Y) ∪ f(p′, p1, X1) ∪ · · · ∪ f(p′, pn, Xn) ∪
{ p0(X0, X)← p′(X0, X),

∧
i pi(, X). }

f(p, p, (X1# . . .#Xn)) = f(p, p,X1) ∪ · · · ∪ f(p, p,Xn)

where the p, p0, p1, p
′, p′1 are new predicates, the ρ are regular

expressions over HTML tags, the α are ranges, s is a string,
and s′ is the same string represented as a path of character
labels (e.g., “string” becomes “s.t.r.i.n.g”).

Now, let M be the fixpoint of P. M is interpreted as
follows to obtain the semantics of RPN for W . First we
remove all atoms over auxiliary predicates (using prime ′)
and predicates used to verify conditions from M . Then, for
each sequence of predicates p1, . . . , pn s.t. p1 . . . pn cover ex-
actly the patoms of a path10 (from left to right), we compute
pn := p1 ./ · · · ./ pn and eliminate all atoms with predicates
p1, . . . , pn−1 from M . Now, we can interpret M as complex
objects by assuming each n nested in n0 if there is an atom
p(n0, n) in M .

The ordering of tuple elements is implicit in the naming
of the predicates chosen. Note that in the Lixto system,
by convention, computed edges are ordered (in the XML
output) in the same way rules in the Elog program are. 2

Theorem 6.5. There is an Elog−2 wrapper for which no
equivalent RPN wrapper exists.

Proof For trees of depth one, all RPN queries are first-
order. We thus cannot check whether, say, the root node
has an even number of children (which we can do easily in
MSO and thus Elog−2). 2

10That is, the p1 is invented while computing f(p, p, .ρ[α]X).

6.2 HEL
In this section, we compare the expressive power of the

HEL wrapping language of the World Wide Web Wrapper
Factory (W4F) with the expressiveness of Elog−2 . For an
introduction to and a formal specification of HEL please
refer to [28].

We consider a fragment of HEL called HEL− which is ob-
tained by taking HEL without string extraction using match
and split expressions (although we support strings in condi-
tions as essential to the philosophy of HEL) and without the
getNumberOf and getAttr functions. Note that this is done
to compare this language in the framework we have built
based on the languages Elog− and Elog−2 . Full Elog again
supports string extraction in the way HEL does. Using the
getNumberOf function, one may require that the number of
nodes (in the document tree) reachable through a given path
starting from some node is equal to some constant number,
which is easy to define in MSO. The getAttr function of
HEL extracts HTML attributes, which we manage as tree
nodes. Given the assumptions we have made, the function
is redundant with those for accessing nodes.

Definition 6.6. The syntax of the language HEL− is de-
fined by the following grammar.

HEL−: cc | cc ‘where’ conds
cc: path.txt | path ‘(’ cc ‘#’ · · · ‘#’ cc ‘)’
path: patom ((‘.’|‘→’)patom)∗

patom: tag | tag‘[’vrange‘]’
vrange: ranges | var‘:’ ranges | var
ranges: range ‘;’ · · · ‘;’ range
conds: cond [‘!’] ‘and’ · · · ‘and’ cond [‘!’]

where “var” is a set of index variable names, “int” is the set
of integers, “tag” the set of HTML tag names, “string” the
set of strings, and range and cond are defined as in RPN.

Each index variable used in a wrapper occurs exactly once
in its cc construct. Each cond construct c in the where clause
of a wrapper is constrained in the way that the smallest
prefix of c that contains all ranges with index variables has
to match a prefix of a path (in terms of both tags and index
variables appearing in ranges) that can be constructed by
concatenating a path in the cc construct starting from the
left and always choosing one element of a record while going
to the right. 2

Defining the semantics of HEL (and HEL−) is a tedious
task. Here, we will define an alternative variable-free lan-
guage (called HEL−vf and described below) which has the

desirable property that the semantics of HEL− and HEL−vf
entail a one-to-one relationship between wrappers in the two
languages [6]. This variable-free syntax is possible because
of the very special and restricted way in which index vari-
ables may be used in HEL.

Definition 6.7. The language HEL−vf (that is, variable-

free HEL−) mainly inherits the syntax of RPN, except that
patoms are restricted to the form (‘.’|‘→ ’)t, conditions may
be marked with a prolog-like cut ‘!’, and conditions may not
be nested inside conditions.

The semantics of HEL−vf differs from RPN as follows.

• ‘→’ denotes reachability of nodes in the tree.

• Condition paths must be single-valued.

• Ranges and the Cut apply relative to document order
traversal and only to those nodes for which all given
conditions hold (i.e., intuitively, conditions are evaluated
“first”). The cut causes the evaluation of a path to stop
if a condition marked with the cut is false.

Formally, we can denote this as

E[[π[α]{
∧
k

πk.txt = sk}X]]n = E[[X]]Y

where π is either .t or → t (t is a tag), the πk are paths
without conditions, and y ∈ Y ↔ y ∈ Z ∧Rα(y)∧¬!(y) s.t.
Z is the largest set for which

∀z ∈ Z : subelemπ(n, z) ∧ C(z)

with

C(n)↔
∧
k

(
|E[[πk]]n| = 1 ∧ E[[πk]]n.txt = sk

)
and Rα(y) is stated relative to Y ; e.g.,

Ri(yi)↔∃y0, . . . , yi ∈ Y : ¬∃y−1 ∈ Y : y−1 ≺ y0

∧
∧

0≤k<i(yk ≺ yk+1 ∧ ¬∃y′ : yk ≺ y′ ≺ yk+1),

and !(y) ↔ ∃x : x � y ∧ subelemπ(n, x) ∧ ¬C(x) and a
condition for n has the cut. 2

Lemma 6.8. [6] A wrapper is expressible in HEL− iff it
is expressible in HEL−vf .

Proof Sketch A HEL− wrapper can be easily trans-
formed into HEL−vf by simply removing its conditions one
by one and merging them into the construction part of the
wrapper (everything up to the where clause). Starting from
the left, each condition is deleted up to the rightmost of
its variables, and the remaining condition is nested into the
construction part of the wrapper at the position of that vari-
able. For example, the HEL wrapper

html.body.table(tr[0].td[0].txt
tr[i:*].td[1].txt)

where html.body.table.tr[i].td[0].txt = “item”;

can be written as

html.body.table(tr[0].td[0].txt
tr[*]{td[0].txt = “item”}.td[1].txt);

in HEL−vf . 2

Theorem 6.9. For each wrapper expressible in the HEL−vf
language, there is an equivalent wrapper in Elog−2 .

Proof Sketch By Definition 6.7, which is essentially al-
ready stated in MSO. 2

Finally, Theorem 6.10 can be justified by the same argu-
ment used previously for showing Theorem 6.5.

Theorem 6.10. There is an Elog−2 wrapper for which no
equivalent HEL− wrapper exists.

Acknowledgments
We thank Fabien Azavant, Martin Grohe, Frank Neven, and
Thomas Schwentick for insightful discussions.

7. REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the

Web. Morgan Kaufmann Publishers, 2000.

[2] S. Abiteboul and V. Vianu. “Regular Path Queries
with Constraints”. In Proceedings of the ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, May 11–15, 1997, Tucson, AZ
USA, 1997.

[3] G. Arocena and A. Mendelzon. “WebOQL:
Restructuring Documents, Databases, and Webs”. In
Proc. ICDE’98, Orlando, Florida, Feb. 1998.

[4] G. Arocena, A. Mendelzon, and G. Mihaila.
“Applications of a Web Query Language”. In
Proceedings of the 6th International WWW
Conference, Santa Clara, California, Apr. 1997.

[5] P. Atzeni and G. Mecca. “Cut and Paste”. In
Proceedings of the ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, May
11–15, 1997, Tucson, AZ USA, 1997.

[6] F. Azavant. Personal communication, Oct. 2001.

[7] R. Baumgartner, S. Flesca, and G. Gottlob.
“Declarative Information Extraction, Web Crawling,
and Recursive Wrapping with Lixto”. In Proc.
LPNMR’01, Vienna, Austria, 2001.

[8] R. Baumgartner, S. Flesca, and G. Gottlob. “Visual
Web Information Extraction with Lixto”. In Proc.
VLDB’01, 2001.

[9] A. Brüggemann-Klein and D. Wood. “Regular Tree
Languages over Non-ranked Alphabets”. Unpublished
manuscript, 1998.

[10] S. Ceri, G. Gottlob, and L. Tanca. “Logic
Programming and Databases”. Springer-Verlag, Berlin,
1990.

[11] B. Courcelle. “Graph Rewriting: An Algebraic and
Logic Approach”. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume 2, chapter 5,
pages 193–242. Elsevier Science Publishers B.V., 1990.

[12] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
“Complexity and Expressive Power of Logic
Programming”. To appear in ACM Computing
Surveys.

[13] W. F. Dowling and J. H. Gallier. “Linear-Time
Algorithms for Testing the Satisfiability of
Propositional Horn Formulae”. Journal of Logic
Programming, 1(3):267–284, 1984.

[14] M. Fernandez, J. Siméon, P. Wadler (eds.), S. Cluet,
A. Deutsch, D. F. A. Levy, D. Maier, J. M. J. Robie,
D. Suciu, and J. Widom. “XML Query Languages:
Experiences and Exemplars”, 1999. http://www-
db.research.bell-labs.com/user/simeon/xquery.html.

[15] J. Flum, M. Frick, and M. Grohe. “Query Evaluation
via Tree-Decompositions”. In Proc. of the
International Conference on Database Theory, 2001.

[16] F. Gécseg and M. Steinby. “Tree Languages”. In
G. Rozenberg and A. Salomaa, editors, Handbook of
Formal Languages, volume 3, chapter 1, pages 1–68.
Springer Verlag, 1997.

[17] J. E. Hopcroft and J. D. Ullman. “Introduction to
Automata Theory, Languages, and Computation”.
Addison-Wesley Publishing Company, Reading, MA
USA, 1979.

[18] A. H. F. Laender, B. Ribeiro-Neto, and A. S. da Silva.

“DEByE – Data Extraction By Example”. Data and
Knowledge Engineering, 40(2):121–154, Feb. 2002.

[19] L. V. Lakshmanan, F. Sadri, and I. N. Subramanian.
“A Declarative Language for Querying and
Restructuring the World-Wide-Web”. In Workshop on
Research Issues in Data Engineering (RIDE-NDS’96),
New Orleans, Feb. 1996.

[20] L. Liu, C. Pu, and W. Han. “XWRAP: An
XML-Enabled Wrapper Construction System for Web
Information Sources”. In Proceedings of the 16th
International Conference on Data Engineering, 1998.

[21] B. Ludäscher, R. Himmeröder, G. Lausen, W. May,
and C. Schlepphorst. “Managing Semistructured Data
with Florid: A Deductive Object-oriented
Perspective”. Information Systems, 23(8):1–25, 1998.

[22] M. Minoux. “LTUR: A Simplified Linear-Time Unit
Resolution Algorithm for Horn Formulae and
Computer Implementation”. Information Processing
Letters, 29(1):1–12, 1988.

[23] I. Muslea, S. Minton, and C. Knoblock. “STALKER:
Learning Extraction Rules for Semistructured,
Web-based Information Sources”, 1998.

[24] F. Neven and T. Schwentick. “Expressive and Efficient
Pattern Languages for Tree-structured Data”. In
Proceedings of the ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems
(PODS) 2000, 2000.

[25] F. Neven and T. Schwentick. “Query Automata on
Finite Trees”. Theoretical Computer Science (to
appear), 2001.

[26] C. H. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

[27] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina,
and J. Ullman. “A Query Translation Scheme for
Rapid Implementation of Wrappers”. In Proc.
International Conference on Deductive and
Object-oriented Databases (DOOD’95), pages 97–107,
Aug. 1995.

[28] A. Sahuguet and F. Azavant. “Building Intelligent
Web Applications Using Lightweight Wrappers”. Data
and Knowledge Engineering, 36(3):283–316, 2001.

[29] A. Szilard, S. Yu, K. Zhang, and J. Shallit.
“Characterizing Regular Languages with Polynomial
Densities”. In Proceedings of the 17th International
Symposium on Mathematical Foundations of
Computer Science, LNCS 629, pages 494–503.
Springer Verlag, Berlin, 1992.

[30] W. Thomas. “Languages, Automata, and Logic”. In
G. Rozenberg and A. Salomaa, editors, Handbook of
Formal Languages, volume 3, chapter 7, pages
389–455. Springer Verlag, 1997.

[31] J. D. Ullman. Principles of Database &
Knowledge-Base Systems Vol. 1. Computer Science
Press, Dec. 1988.

[32] World Wide Web Consortium.
http://www.w3c.org/tr/xpath/.

[33] S. Yu. “Regular Languages”. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages,
volume 1, chapter 2. Springer-Verlag, 1997.

