
Hypertree Decompositions: A Survey

Georg Gottlob1, Nicola Leone2, and Francesco Scarcello3

1 Information Systems Institute, TU-Wien
Vienna, Austria
gottlob@acm.org

2 Dept. of Mathematics, Univ. of Calabria
Rende (CS), Italy
leone@unical.it

3 D.E.I.S., Univ. of Calabria
Rende (CS), Italy
scarcello@acm.org

Abstract. This paper surveys recent results related to the concept of
hypertree decomposition and the associated notion of hypertree width.
A hypertree decomposition of a hypergraph (similar to a tree decomposi-
tion of a graph) is a suitable clustering of its hyperedges yielding a tree or
a forest. Important NP hard problems become tractable if restricted to
instances whose associated hypergraphs are of bounded hypertree width.
We also review a number of complexity results on problems whose struc-
ture is described by acyclic or nearly acyclic hypergraphs.

1 Introduction

One way of coping with an NP hard problem is to identify significantly large
classes of instances that are both recognizable and solvable in polynomial time.
Such instances are often defined via some structural property of a graph G(I)
that is associated in a canonical way with the instance I. For example, many
problems that are NP complete in general become tractable for instances I whose
associated graph has bounded treewidth (cf. Sect. 4). Treewidth is a measure of
the degree of cyclicity of a graph. Note that instances of bounded treewidth are
also easy to recognize given that deciding whether the treewidth of a graph is
at most k is decidable in linear time for each constant k.

The structure of a large number of problems is, however, more faithfully de-
scribed by a hypergraph than by a graph. Again, several NP complete problems
become tractable if restricted to instances with acyclic hypergraphs. In order to
obtain larger tractable instance-classes of hypergraph-based problems, we thus
investigated measures of hypergraph cyclicity that play a similar role for hyper-
graphs as the concept of treewidth does for graphs. In particular, an appropriate
notion of hypergraph width (and an associated method of hypergraph decompo-
sition) should fulfil both of the following conditions:

1. Relevant hypergraph-based problems should be solvable in polynomial time
for instances of bounded width.
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2. For each constant k, one should be able to check in polynomial time whether
a hypergraph is of width k, and, in the positive case, it should be possible
to produce an associated decomposition of width k of the given hypergraph.

Existing measures for hypergraph cyclicity we were aware of do either not
fulfil one of these two conditions (e.g. recognizing hypergraphs of bounded query
width is NP complete, cf. Section 4.3), or are not general enough (such meth-
ods are mentioned in Section 10). In particular, various notions of hypergraph
width can be obtained by first transforming a hypergraph into a graph (there
are several ways of doing so, see Section 4.2) and then considering the treewidth
of that graph. However, it is not hard to see that such measures of cyclicity are
not very significant due to a loss of structural information caused by the trans-
formation of the hypergraph to a graph (cf. Sect. 4.2). In summary, it appeared
that a satisfactory way of determining the degree of cyclicity of a hypergraph
was missing, on the basis of which large tractable instances of relevant NP-hard
problems could be defined.

Consequently, after a careful analysis of the shortcomings of various hyper-
graph decomposition methods, we introduced the new method of hypertree de-
composition and the associated notion of hypertree width. To our best knowledge,
the method of hypertree decomposition is currently the most general known hy-
pergraph decomposing method leading to large tractable classes of important
problems such as constraint satisfaction problems or conjunctive queries. The
notion of hypertree decomposition and the associated notion of hypertree width
are the main topics of the present survey paper. However, we will also report
on a number of other closely related issues, such as the precise (parallel) com-
plexity of acyclic database queries, and the notion of query decomposition. Our
results surveyed here are mainly from the following sources, where formal proofs,
details, and a number of further results can be found:

– Reference [17], where the precise complexity of acyclic Boolean conjunctive
queries (ABCQs) is determined, and where highly parallel database algo-
rithms for solving such queries are presented. (In the present paper, we will
not discuss parallel database algorithms and refer the interested reader to [17]
and [22]).

– Reference [19], where we first study query width, a measure for the amount
of cyclicity of a query introduced by Chekuri and Rajamaran [6], and where
we define and study the new (more general) concept of hypertree width.

– Reference [21], where we establish criteria for comparing different CSP de-
composition methods and where we compare various methods including the
method of hypertree decomposition. The comparison criteria and the results
of the comparison are reported in Section 10 of the present paper.

– Reference [24], where hypertree width is compared to Courcelle’s notion of
clique width [7,8].

– Reference [23], where we give a game theoretic and a logical characterization
of hypertree width. These results are reported in Sections 8 and 9 of the
present paper, respectively.
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This paper is organized as follows. In Section 2 we define a number of im-
portant hypergraph-based problems. In Section 3 we discuss the complexity of
acyclic instances of these problems. In Section 4, discuss graph treewidth and a
generalization termed query width. In Section 5 we define the concepts of hyper-
tree decomposition and hypertree width. In Section 6, we show how hypergraphs
of bounded hypertree width can be recognized in polynomial time. In Section 7,
we show how CSPs can be solved in polynomial time for instances of bounded
hypertree-width. In Section 8, we describe the Robber and Marshals game which
characterizes hypergraphs of bounded hypertree width. In Section 9, we briefly
describe our logical characterization of queries of bounded hypertree-width. In
Section 10, we give a brief account on how the notion of hypertree decomposition
compares to other related notions. Finally, in Section 11, we state some relevant
open problems.

2 Hypergraph-Based Problems

A relational vocabulary (short: vocabulary) consists of a finite nonempty set of
relation symbols P,Q,R . . ., with associated arities. A finite relational structure
(short: finite structure) C over a vocabulary τ consists of a finite universe UC
and for each k-ary relation symbol R in τ a relation RC ⊆ Uk

C . For a tuple
(c1, . . . , ck) ∈ RC we often write RC(c1, . . . , ck). We denote the vocabulary of a
structure C by vo(C).

Let A and B be two finite structures such that vo(A) ⊆ vo(B). Then a
mapping h : A −→ B is a homomorphism from A to B if for each relation
symbol R ∈ vo(A) it holds that whenever (c1, . . . , ck) ∈ RA for some ele-
ments c1, . . . , ck ∈ UA, then it also holds that (h(c1), . . . , h(ck)) ∈ RB. The
following is a fundamental computational problem in Algebra:

Definition 1 (The Homomorphism Problem HOM). Given two finite
structures A and B, decide whether there exists a homomorphism from A to B.
We denote such an instance of HOM by HOM(A,B)

It is well-known (cf. [12]) that HOM is an NP-complete problem. For ex-
ample, checking whether a graph (V,E) is three colorable amounts to solve the
HOM(A,B) problem for structures A and B over a vocabulary with a unique
binary relation symbol R, where RA = E and RB = {(red , blue), (blue, red),
(red , green), (green, red), (blue, green), (green, blue)}.

In [12,30] it was observed that HOM is equivalent to (and actually, in essence,
the same as) the important constraint satisfaction problem (CSP) of Artificial
Intelligence [9], which, in turn, is equivalent to the database problem BCQ of
evaluating Boolean conjunctive queries:

Definition 2 (The Constraint Satisfaction Problem CSP.). Given a fi-
nite set Var of variables, a finite domain U of values, a set of constraints
C = {C1, C2, . . . , Cq}, where each constraint Ci is a pair (Si, ri), and where Si is
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a list of variables of length mi, called the constraint scope, and ri is an mi-ary re-
lation over U , called a constraint relation, decide whether there is a substitution
ϑ : Var −→ U , such that, for each 1 ≤ i ≤ q, Siϑ ∈ ri.

Definition 3 (The Boolean Conjunctive Query Problem BCQ.). A re-
lational database is formalized as a finite relational structure D. A Boolean
conjunctive query (BCQ) on D is a sentence of first-order logic of the form:
∃X1, . . . , Xr R1(t11, t12 . . . , t1α(1)) ∧ . . . ∧ Rk(tk1 , tk2 . . . , tkα(k)), where, for 1 ≤
i ≤ k, Ri is a relation symbol from vo(D) of associated arity α(i), and for
1 ≤ i ≤ k and 1 ≤ j ≤ α(i), each tij is a term, i.e., either a variable from
the list X1, . . . , Xr, or a constant element from UD. The decision problem BCQ
is the problem of deciding for a pair 〈D,Q〉, where D is a database and Q is
a Boolean conjunctive query, whether Q evaluates to true over D, denoted by
D |= Q.

Given that all variables occuring in a BCQ are existentialy quantified, we
usually omit the quantifier prefix and write a BCQ as a conjunction of query
atoms. For example, let emp denote a relation containing (employee#,project#)
pairs, and let rel be a relation containing a pair (n1, n2) if n1 and n2 are numbers
of distinct employees who are relatives, then the BCQ emp(X,Z) ∧ emp(Y, Z) ∧
rel(X,Y ) expresses that there are two employees who are relatives and work on
the same project.

Note that by simple logspace operations (selections and projections on the
corresponding relations) one can always eliminate constants occurring in BCQ
atoms. We thus assume w.l.o.g. that query atoms contain only variables as ar-
guments. By this assumption, CSP and BCQ are exactly the same problem,
where each constraint scope corresponds to a query atom, each constraint rela-
tion corresponds to a database relation, and vice-versa. Now each CSP (or BCQ)
instance I can in turn be identified with HOM(A,B), where A is the structure
whose universe UA consists of the set V ar of all variables of I and whose relations
contain constraint scopes (or query atoms) as tuples, and where B is the struc-
ture whose universe UB is the finite domain U of I and whose relations are just
the constraint relations (or the database relations). In this sense, we can speak
about instances CSP(A,B) and BCQ(A,B), where A is a structure representing
the constraint scopes or the query, and B denotes the set of constraint relations,
or the database, respectively. On the other hand, each instance I = HOM(A,B)
of HOM can be identified in the obvious way with a CSP instance (or a BCQ
instance) by interpreting the elements of UA as variables and those of UB as
domain elements of the constraint (or database) relations.

Thus all three problems HOM, CSP, and BCQ are the same and are NP-
complete (for BCQ this was first shown in [5]). Therefore, it is important to
find large classes of instances that can be evaluated in polynomial time. Such
classes can be defined by imposing structural restrictions on the problem in-
stances. In particular, for HOM(A,B), CSP(A,B), or, equivalently, BCQ(A,B),
one could impose restrictions on the structure A, or on the structure B, or on
both (cf. [35,33,30]). In this paper we are interested in restrictions on the struc-
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ture A. In database terms, we can recast this by saying that we are interested in
the structure of the query, rather than on the properties of the database content.

IfA denotes a set of structures, then HOM(A), CSP(A), and BCQ(A) denote
the restrictions of HOM, CSP, and BCQ to instances HOM(A,B), CSP(A,B),
and BCQ(A,B) respectively, where A ∈ A.

Each finite structure C over universe UC defines a hypergraphH(C) = (V,H)
as follows: The set V of vertices V of H(C) coincides with UC ; the set of hy-
peredges H of H(C) consists of all sets {c1, . . . , ck} such that there exists a
relation R in voc(C) and (c1, . . . , ck) ∈ RC .

To each problem instance I = HOM(A,B) or I = CSP(A,B), or I =
BCQ(A,B), we define the associated hypergraph HI by HI = H(A). In particu-
lar, this means, that for an instance I of CSP, HI denotes the hypergraph whose
vertices are the variables of I and whose hyperedges are all sets {X1, . . . , Xk}
such that there exists a constraint scope S = (X1, . . . , Xk) belonging to I.
For an instance I = (D,Q) of BCQ, HI denotes the hypergraph whose vertices
are all the variables occurring in Q and whose hyperedges are the sets var(α) of
variables occuring in α, for each query atom α.

Example 4. Figure 1(a) shows HI1 for an instance I1 of BCQ having query Q1 :
a(S,X, T,R) ∧ b(S, Y, U, P ) ∧ f(R,P, V ) ∧ g(X,Y ) ∧ c(T, U, Z) ∧ d(W,X,Z) ∧
e(Y, Z)

It is furthermore easy to see that HOM, BCQ, and CSP are all equivalent (via
logspace transformations) to the following fundamental problems in database
theory and artificial intelligence [17]: The Query Output Tuple Problem: Given a
conjunctive query Q, a database db, and a tuple t, determine whether t belongs
to the answerQ(db) of Q over db. The Conjunctive Query Containment: Decide
whether a conjunctive queryQ1 is contained in a conjunctive queryQ2. QueryQ1

is contained in queryQ2 if, for each database instance db, the answerQ1(db) is a
subset of Q2(db). The Clause Subsumption Problem: Check whether a (general)
clause C subsumes a clause D, i.e., whether there exists a substitution ϑ such
that Cϑ ⊆ D. A (general) clause is a disjunction of (positive or negative) literals,
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Fig. 1. (a) Hypergraph HI1 ; (b) a width 2 hypertree decomposition of HI1 ; and
(c) the primal graph of HI1
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possibly containing function symbols. Note that subsumption is an extremely
important technique used in clause-based theorem proving [1].

Just for the sake of presentation, we will focus in the rest of this paper on
the constraint statisfaction problem (CSP).

While, as we will see, many interesting structural properties of a CSP instance
I = CSP(A,B) can be identified by looking at the associated hypergraph HI =
H(A), which in AI is called the constraint hypergraph, some structural properties
of I may be also detected using its primal graph, i.e., the primal graph of the
hypergraph associated to A, which coincides with the Gaifman graph of A [15].
Let HI = (V,H) be the constraint hypergraph of a CSP instance I. The primal
graph of I is a graphG = (V,E), having the same set of variables (vertices) asHI

and an edge connecting any pair of variables X,Y ∈ V such that {X,Y } ⊆ h for
some h ∈ H . Note that, if the vocabulary of A contains only binary predicates,
then all constraints of I are binary and its associated hypergraph is identical to
its primal graph. The primal graph of the hypergraph of query Q1 (and of the
equivalent CSP instance) is depicted in Fig. 1(c).

Since in this paper we always deal with hypergraphs corresponding to CSP
or BCQ instances, the vertices of any hypergraph H = (V,H) can be viewed
as the variables of some constraint satisfaction problem or of some conjunctive
query. Thus, we will often use the term variable as a synonym for vertex, when
referring to elements of V . For the hypergraphH = (V,H), var (H) and edges(H)
denote the sets V andH , respectively. When illustrating a decomposition, we will
usually represent hyperedges of the hypergraph HI of a BCQ or CSP instance I
by their corresponding query atoms or constraint scopes.

3 Acyclic Instances

The most basic and most fundamental structural property considered in the
context of CSPs and conjunctive queries is acyclicity. It was recognized in AI
and database theory that acyclic CSPs or conjunctive queries are polynomially
solvable. A CSP instance I is acyclic if its associated hypergraph HI is acyclic.

A hypergraph H is acyclic if and only if its primal graph G is chordal (i.e.,
any cycle of length greater than 3 has a chord) and the set of its maximal cliques
coincide with edges(H) [2].

A join tree JT (H) for a hypergraph H is a tree whose nodes are the edges of
H such that whenever the same vertex X ∈ V occurs in two edges A1 and A2

of H, then A1 and A2 are connected in JT (H), and X occurs in each node on
the unique path linking A1 and A2 in JT (H). In other words, the set of nodes
in which X occurs induces a (connected) subtree of JT (H). We will refer to this
condition as the Connectedness Condition of join trees.

Acyclic hypergraphs can be characterized in terms of join trees: A hypergraph
H is acyclic iff it has a join tree [3,2,32].

Note that acyclicity as defined here is the usual concept of acyclicity in the
context of database theory and AI. It is referred to as α-acyclicity in [11]. This
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is the least restrictive concept of hypergraph acyclicity among all those defined
in the literature.

Acyclic CSPs and conjunctive queries have highly desirable computational
properties:

1. Acyclic instances can be efficiently solved. Yannakakis provided a (sequen-
tial) polynomial time algorithm solving BCQ on acyclic queries1 [41].

2. Acyclicity is efficiently recognizable, and a join tree of an acyclic hypergraph
is efficiently computable. A linear-time algorithm for computing a join tree
is shown in [37]; an LSL method has been provided in [17] (LSL denotes
logspace relativized by an oracle in symmetric logspace; this class could also
be termed “functional SL”).

3. The result of a (non-Boolean) acyclic conjunctive query Q can be computed
in time polynomial in the combined size of the input instance and of the
output relation [41].

4. Arc-consistency for acyclic CSP instances can be enforced in polynomial
time [9,10].

Intuitively, the efficient behavior of acyclic instances is due to the fact that
they can be evaluated by processing any of their join trees bottom-up by perform-
ing upward semijoins, thus keeping small the size of the intermediate relations
(which could become exponential if regular join were performed).

We have recently determined the precise computational complexity of BCQ,
and hence of HOM, CSP, and all their equivalent problems. It turned out all
these problems are highly parallelizable on acyclic structures, as they are com-
plete for the low complexity class LOGCFL [17]. This is the class of all deci-
sion problems that are logspace-reducible to a context-free language. Note that
NL ⊆ LOGCFL ⊆ AC1 ⊆ NC2 ⊆ P where NL denotes nondeterministic logspace
and AC1 and NC2 are logspace-uniform classes based on the corresponding types
of Boolean circuits (for precise definitions of all these complexity classes, cf. [29]).
Let AH be the set of all finite acyclic relational structures.

Theorem 5 ([17]). CSP(AH) is LOGCFL-complete.

Moreover, the functional version of these problems belongs to the functional
version of LOGCFL, i.e., a solution for a CSP instance can be computed in
LLOGCFL, i.e., functional logspace with an oracle in LOGCFL. Efficient parallel
algorithms – even for non-Boolean queries – have been proposed in [22]. They run
on parallel database machines that exploit the inter-operation parallelism [40],
i.e., machines that execute different relational operations in parallel.

The important speed-up obtainable on acyclic instances stimulated several
research efforts towards the identification of wider classes of queries and con-
straints having the same desirable properties as acyclic CQs and CSPs.
1 Note that, since both the database db and the query Q are part of an input-instance
of BCQ, what we are considering is the combined complexity of the query [38].
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4 Treewidth, Query Width, and Hypertree Width

4.1 Tree Decompositions and Treewidth of Graphs

The treewidth of a graph is a well-known measure of its tree-likeness introduced
by Robertson and Seymour in their work on graph minors [34]. This notion plays
a central role in algorithmic graph theory as well as in many subdisciplines of
Computer Science.

Definition 6. A tree decomposition of a graph G = (V,E) is a pair 〈T, χ〉,
where T = (N,F ) is a tree, and χ is a labeling function associating to each
vertex p ∈ N a set of vertices χ(p) ⊆ V , such that the following conditions are
satisfied: (1) for each vertex b of G, there exists p ∈ N such that b ∈ χ(p); (2)
for each edge {b, d} ∈ E, there exists p ∈ N such that {b, d} ⊆ χ(p); (3) for
each vertex b of G, the set {p ∈ N | b ∈ χ(p)} induces a (connected) subtree
of T .

The width of the tree decomposition 〈T, χ〉 is maxp∈N |χ(p)−1|. The treewidth
of G is the minimum width over all its tree decompositions. The treewidth of a
CSP instance is the treewidth of its associated primal graph.

The notion of treewidth is a generalization of graph acyclicity. In particular,
a graph is acyclic if and only if its treewidth is one [34].

Checking whether a graph has treewidth at most k for a fixed constant k,
and in the positive case computing a k-width tree decomposition, is feasible in
linear time [4]. Moreover, this task is also parallelizable. Indeed, Wanke [39] has
shown that, for a fixed constant k, checking whether a graph has treewidth k is
in LOGCFL. By proving some general complexity-theoretic results and by using
Wanke’s result, the following was shown in [18]:

Theorem 7 ( [18]). For each constant k, there exists an LLOGCFL trans-
ducer Tk that behaves as follows on input G. If G is a graph of treewidth ≤ k,
then Tk outputs a tree decomposition of width ≤ k of G. Otherwise, Tk halts with
empty output.

Thus, a tree decomposition of width at most k can be also computed in (the
functional version of) LOGCFL, and thus by logspace uniform AC2 and NC2

circuits.
An important feature of treewidth is that many NP-complete problems are

decidable in polynomial-time on structures having bounded treewidth, i.e., hav-
ing treewidth at most k for some fixed constant k > 0. In particular, Courcelle
proved that every property expressible in monadic second order logic is decidable
in linear time over bounded treewidth graphs [7].

4.2 Treewidth of Hypergraphs

As mentioned in the previous section, many NP-complete problems become
tractable on bounded treewidth graphs. In order to exploit this nice feature
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for CSP, BCQ, and their equivalent problems, many researchers in the AI and
the database communities considered the primal graph (of the hypergraph) as-
sociated to the relational structure. Let TW[k] be the set of all finite relational
structures whose associated primal graph has treewidth at most k. It has been
shown that CSP(TW[k]) is solvable in polynomial time [14] and has the same
properties of CSP(AH), including its precise computational complexity.

Theorem 8 ([17]). CSP(TW[k]) is LOGCFL-complete.

Note that considering the primal graph associated to a hypergraph is not
the one possible choice. Given a CSP instance I, the dual graph [9,10,32] of the
hypergraph HI is a graph Gd

I = (V,E) defined as follows: the set of vertices V
coincides with the set of (hyper)edges of HI , and the set E contains an edge
{h, h′} for each pair of vertices h, h′ ∈ V such that h ∩ h′ �= ∅. That is, there is
an edge between any pair of vertices corresponding to hyperedges of HI sharing
some variable.

The dual graph often looks very intricate even for simple CSPs. For in-
stance, in general, acyclic CSPs do not have acyclic dual graphs. However, it
is well known that the dual graph Gd

I can be suitably simplified in order to
obtain a “better” graph G′ which can still be used to solve the given CSP in-
stance I. In particular, if I is an acyclic CSP, Gd

I can be reduced to an acyclic
graph that represents a join tree of HI . In this case, the reduction is feasible
in polynomial (actually, linear) time. (See, e.g., [32].) However, in general, it
is not known whether there exists an efficient algorithm for obtaining the best
simplified graph G′ with respect to the treewidth notion, i.e., the simplification
of Gd

I having the smallest treewidth over all its possible simplifications (see [30]
for a formal statement of this open problem and [21] for a comparison of this
notion with some hypergraph-based notions).

Another possibility is considering the so called incidence graph [6]. Given
a CSP instance I, the incidence graph Gi

I(HI) = (V ′, E) associated to the
hypergraph HI = (V,H) has a vertex for each variable and for each hyperedge
of HI . There is an edge {x, h} ∈ E between a variable x ∈ V and and hyperedge
h ∈ H whenever x occurs in h.

The class of all CSP instances whose dual graphs (resp. incidence graphs)
have bounded treewidth are solvable in polynomial time and, actually, they are
LOGCFL-complete. However, note that none of these classes of CSP instances
generalize the class CSP(AH). Indeed, there are families of acyclic hypergraphs
whose associated primal graphs, dual graphs (without considering simplifica-
tion), and incidence graphs have unbounded treewidth.

Note that by results of [25] bounded treewidth is most likely the best and
most general structural restriction for obtaining tractable CSP and BCQ in-
stances, when the structure of a CSP or BCQ is described via a graph (e.g.
the primal graph), rather than by a hypergraph. Further interesting material on
BCQ and treewidth can be found in [13].
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4.3 Query Decompositions and Query Width

A more general notion that generalizes hypergraph acyclicity is query width [6].
The notion of bounded query-width is based on the concept of query decomposi-
tion [6]. We next adapt this notion to the more general setting of hypergraphs,
while it was originally defined in terms of queries. Roughly, a query decomposi-
tion of a hypergraph H consists of a tree each vertex of which is labelled by a
set of hyperedges and/or variables. Each variable and hyperedge induces a con-
nected subtree (connectedness condition). Each hyperedge occurs in at least one
label. The width of a query decomposition is the maximum of the cardinalities
of its vertices. The query-width qw(H) of H is the minimum width over all its
query decompositions.

Example 9. Consider the CSP instance I2 having the following constraint scopes:

a(S,X,X ′, C, F ), b(S, Y, Y ′, C′, F ′), c(C,C′, Z), d(X,Z), e(Y, Z),
f(F, F ′, Z ′), g(X ′, Z ′), h(Y ′, Z ′), j(J,X, Y,X ′, Y ′)

The query-width of HI2 is 3. Figure 2 shows a query decomposition of HI2 of
width 3. W.l.o.g. we represent hyperedges by the corresponding constraint scopes
or query atoms in such decompositions.

a(S,X,X’,C,F),   b(S,Y,Y’,C’,F’)

a(S,X,X’,C,F),   b(S,Y,Y’,C’,F’),   f(F,F’,Z’)j(J,X,Y,X’,Y’),   c(C,C’,Z)

g(X’,Z’) h(Y’,Z’)e(Y,Z)d(X,Z)

Fig. 2. A 3-width query decomposition of HI2

Each hypergraph whose primal graph has treewidth at most k has query
width at most k, too. The converse does not hold, in general. Moerover, this
notion is a true generalization of the basic concept of acyclicity: A hypergraph
is acyclic iff it has query width 1.

Let k be a fixed constant. Chekuri and Rajaraman [6] proved that, given a
BCQ instance I and a query decomposition of HI having width at most k, I is
solvable in polynomial time. In [17] it was shown that this problem is LOGCFL-
complete (and thus highly parallelizable).
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However, when the notion of query-width was defined and studied in [6],
no polynomial algorithm for checking whether a hypergraph has query-width
at most k was known, and Chekuri and Rajaraman [6] stated this as an open
problem. This problem is solved in [19], where it is shown that is unlikely to find
an efficient algorithm for recognizing instances of bounded query-width.

Theorem 10 ([19]). Determining whether the query-width of a hypergraph is
at most 4 is NP-complete.

Fortunately, it turned out that the high complexity of determining bounded
query-width is not, as one would usually expect, the price for the generality of
the concept. Rather, it is due to some peculiarity in its definition. In the next
section, we present a new notion that does not suffer from such problems. Indeed,
this notion generalizes query width (and hence acyclicity) and is tractable.

5 Hypertree Decompositions and Hypertree Width

A new class of tractable CSP instances, which generalizes the class CSP(AH) of
CSP instances having an acyclic hypergraph, has recently been identified [19].
This is the class of CSPs whose hypergraph has a bounded-width hypertree
decomposition [19].

A hypertree for a hypergraph H is a triple 〈T, χ, λ〉, where T = (N,E) is a
rooted tree, and χ and λ are labeling functions which associate to each vertex
p ∈ N two sets χ(p) ⊆ var(H) and λ(p) ⊆ edges(H). If T ′ = (N ′, E′) is a
subtree of T , we define χ(T ′) =

⋃
v∈N ′ χ(v). We denote the set of vertices N

of T by vertices(T ), and the root of T by root(T ). Moreover, for any p ∈ N , Tp
denotes the subtree of T rooted at p.

Definition 11. A hypertree decomposition of a hypergraph H is a hypertree
HD = 〈T, χ, λ〉 for H which satisfies all the following conditions:

1. for each edge h ∈ edges(H), there exists p ∈ vertices(T ) such that var(h) ⊆
χ(p) (we say that p covers h);

2. for each variable Y ∈ var(H), the set {p ∈ vertices(T ) | Y ∈ χ(p)} induces
a (connected) subtree of T ;

3. for each p ∈ vertices(T ), χ(p) ⊆ var(λ(p));
4. for each p ∈ vertices(T ), var(λ(p)) ∩ χ(Tp) ⊆ χ(p).

Note that the inclusion in Condition 4 is actually an equality, because Con-
dition 3 implies the reverse inclusion.

An edge h ∈ edges(H) is strongly covered inHD if there exists p ∈ vertices(T )
such that var(h) ⊆ χ(p) and h ∈ λ(p). We then say that p strongly covers h.

A hypertree decomposition HD of hypergraphH is a complete decomposition
of H if every edge of H is strongly covered in HD.

The width of a hypertree decomposition 〈T, χ, λ〉 is maxp∈vertices(T )|λ(p)|.
The hypertree width hw(H) of H is the minimum width over all its hypertree de-
compositions. A c-width hypertree decomposition of H is optimal if c = hw(H).
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The acyclic hypergraphs are precisely those hypergraphs having hypertree
width one. Indeed, any join tree of an acyclic hypergraphH trivially corresponds
to a hypertree decomposition of H of width one. Furthermore, if a hypergraph
H′ has a hypertree decomposition of width one, then, from this decomposition,
we can easily compute a join tree of H′, which is therefore acyclic [19].

It is worthwhile noting that from any hypertree decomposition HD of H, we
can easily compute a complete hypertree decomposition of H having the same
width in O(‖H‖ · ‖HD‖) time.

Intuitively, if H is a cyclic hypergraph, the χ labeling selects the set of vari-
ables to be fixed in order to split the cycles and achieve acyclicity; λ(p) “covers”
the variables of χ(p) by a set of edges.

a(S,X,X′, C, F ), b(S,Y, Y ′, C′, F ′)

j(J,X, Y,X′, Y ′)

e(Y, Z)

j( , X, Y, , ), c(C,C′, Z) j( , , , X′, Y ′), f(F, F ′, Z′)

d(X,Z) g(X′, Z′) h(Y ′, Z′)

Fig. 3. A Hypertree decomposition of H2

Example 12. Figure 3 shows an hypertree decomposition HD2 of the cyclic hy-
pergraph H2 associated to the CSP instance in Example 9. Each node p in the
tree is labeled by a set of hyperedges representing λ(p); χ(p) is the set of all
variables, distinct from ‘ ’, appearing in these hyperedges. Thus, the anonymous
variable ‘ ’ replaces the variables in var(λ(p)) − χ(p).

Using this graphical representation, we can easily observe an important fea-
ture of hypertree decompositions. Once an hyperedge has been covered by some
vertex of the decomposition tree, any subset of its variables can be used freely
in order to decompose the remaining cycles in the hypergraph. For instance,
the variables in the hyperedge corresponding to constraint j in H2 are jointly
included only in the root of the decomposition. If we were forced to take all
the variables in every vertex where j occurs, it would not be possible to find a
decomposition of width 2. Indeed, in this case, any choice of two hyperedges per
vertex yields a hypertree which violates the connectedness condition for variables
(i.e., Condition 2 of Definition 11).
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Figure 1(b) shows a complete hypertree decomposition of width 2 of the
hypergraph HI1 in part (a) of the figure. Note that this decomposition also
happens to be a query decomposition of width 2.

Let k be a fixed positive integer. We say that a CSP instance I has k-bounded
hypertree width if hw(HI) ≤ k, where HI is the hypergraph associated to I.

6 Computing Hypertree Decompositions

Let H be a hypergraph, and let V ⊆ var(H) be a set of variables and X,Y ∈
var(H). Then X is [V ]-adjacent to Y if there exists an edge h ∈ edges(H) such
that {X,Y } ⊆ h−V . A [V ]-path π fromX to Y is a sequenceX = X0, . . . , X! = Y
of variables such that Xi is [V ]-adjacent to Xi+1, for each i ∈ [0...8-1]. A set
W ⊆ var(H) of variables is [V ]-connected if, for all X,Y ∈ W , there is a
[V ]-path from X to Y . A [V ]-component is a maximal [V ]-connected non-empty
set of variables W ⊆ var(H) − V . For any [V ]-component C, let edges(C) =
{h ∈ edges(H) | h ∩ C �= ∅}.

Let HD = 〈T, χ, λ〉 be a hypertree for H. For any vertex v of T , we
will often use v as a synonym of χ(v). In particular, [v]-component denotes
[χ(v)]-component; the term [v]-path is a synonym of [χ(v)]-path; and so on. We
introduce a normal form for hypertree decompositions.

ALTERNATING ALGORITHM k-decomp
Input: A non-empty Hypergraph H.
Result: “Accept”, if H has k-bounded hypertree-width; “Reject”, otherwise.

Procedure k-decomposable(CR : SetOfVariables, R: SetOfHyperedges)
begin
1) Guess a set S ⊆ edges(H) of k elements at most;
2) Check that all the following conditions hold:

2.a) ∀P ∈ edges(CR), (var(P ) ∩ var(R)) ⊆ var(S) and
2.b) var(S) ∩ CR �= ∅

3) If the check above fails Then Halt and Reject; Else
Let C := {C ⊆ var(H) | C is a [var(S)]-component and C ⊆ CR};

4) If, for each C ∈ C, k-decomposable(C, S)
Then Accept
Else Reject

end;

begin(* MAIN *)
Accept if k-decomposable(var(H), ∅)

end.

Fig. 4. A non-deterministic algorithm deciding k-bounded hypertree-width
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Definition 13 ([19]). A hypertree decomposition HD = 〈T, χ, λ〉 of a hyper-
graph H is in normal form (NF) if, for each vertex r ∈ vertices(T ), and for each
child s of r, all the following conditions hold:
1. there is (exactly) one [r]-component Cr such that χ(Ts) = Cr∪(χ(s)∩χ(r));
2. χ(s) ∩ Cr �= ∅, where Cr is the [r]-component satisfying Condition 1;
3. var(λ(s)) ∩ χ(r) ⊆ χ(s).

Intuitively, each subtree rooted at a child node s of some node r of a normal
form decomposition tree serves to decompose precisely one [r]-component.

Theorem 14 ([19]). For each k-width hypertree decomposition of a hypergraph
H there exists a k-width hypertree decomposition of H in normal form.

This normal form theorem immediately entails that, for each optimal hy-
pertree decomposition of a hypergraph H, there exists an optimal hypertree
decomposition of H in normal form.

Importantly, NF hypertree decompositions can be efficiently computed. Fig-
ure 4 shows the algorithm k-decomp, deciding whether a given hypergraphH has
a k-bounded hypertree-width decomposition. k-decomp can be implemented
on a logspace ATM having polynomially bounded tree-size, and therefore entails
LOGCFL membership of deciding k-bounded hypertree-width.

Theorem 15 ([19]). Deciding whether a hypergraph H has k-bounded
hypertree-width is in LOGCFL.

From an accepting computation of the algorithm of Figure 4 we can efficiently
extract a NF hypertree decomposition. Since an accepting computation tree of a
bounded-treesize logspace ATM can be computed in (the functional version of)
LOGCFL [18], we obtain the following.

Theorem 16 ([19]). Computing a k-bounded hypertree decomposition (if any)
of a hypergraph H is in LLOGCFL, i.e., in functional LOGCFL.

As for sequential algorithms, a polynomial time algorithm opt-k-decomp
which, for a fixed k, decides whether a hypergraph has k-bounded hypertree
width and, in this case, computes an optimal hypertree decomposition in normal
form is described in [20]. As for many other decomposition methods, the running
time of this algorithm to find the hypergraph decomposition is exponential in
the parameter k. More precisely, opt-k-decomp runs in O(m2kv2) time, wherem
and v are the number of edges and the number of vertices of H, respectively.

7 Solving CSP Instances of Bounded Hypertree Width

Figure 5 outlines an efficient method to solve CSP instances of bounded Hy-
pertree Width. The key point is that any CSP instance I having k-bounded
hypertree width can be efficiently transformed into an equivalent acyclic CSP
instance (Step 4.), which is then evaluated by the well-known techniques defined
for acyclic CSPs (see Section 3). Let HW[k] be the set of all finite relational
structures whose associated hypergraph has hypertree width at most k.
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ALGORITHM
Input: A k-bounded hypertree width CSP instance I .
Result: A solution to I , if I is satisfiable; “No”, otherwise.

begin
1) Build the hypergraph HI of I .
2) Compute a k-width hypertree decomposition HD of HI in normal form.
3) Compute from HD a complete hypertree decomposition HD′ = (T, χ, λ) of HI .
4) Compute from HD′ and I an acyclic instance I∗ equivalent to I .
5) Evaluate I∗ employing any efficient technique for solving acyclic CSPs.
6) If I∗ is satisfiable, then return a solution to I∗;

Else Return “No”
end.

Fig. 5. An algorithm solving CSP instances of k-bounded hypertree-width

Theorem 17 ([21]). Given a CSP instance I ∈ CSP(HW[k]) and a k-width
hypertree decomposition of HI in normal form, I is solvable in O(‖I‖k+1 log ‖I‖)
time.

We have also determined the precise computational complexity of solving
CSP instances having bounded hypertree-width.

Theorem 18 ([19]). CSP(HW[k]) is LOGCFL-complete.

8 Game Theoretic Characterization of Hypertree Width

In [36], graphs G of treewidth k are characterized by the so called Robber-and-
Cops game where k+1 cops have a winning strategy for capturing a robber on G.
Cops can control vertices of a graph and can jump at each move to arbitrary
vertices. The robber can move (at infinite speed) along paths of G but cannot go
over vertices controlled by a cop. It is, moreover, shown that a winning strategy
for the cops exists, iff the cops can capture the robber in a monotonic way,
i.e., never returning to a vertex that a cop has previously vacated, which implies
that the moving area of the robber is monotonically shrinking. For more detailed
descriptions of the game, see [36] or [23].

In order to provide a similarily natural characterization for hypertree-width,
we defined in [23] a new game, the Robber and Marshals game (R&Ms game).
A marshal is more powerful than a cop. While a cop can control a single vertex
(=variable) only, a marshal controls an entire hyperedge. In the R&Ms game, the
robber moves on vertices just as in the robber and cops game, but now marshals
instead of cops are chasing her. During a move of the marshals from the set of
hyperedges E to to the set of hyperedges E′, the robber cannot pass through the
vertices in B = (∪E)∩ (∪E′), where, for a set of hyperedges F , ∪F denotes the
union of all hyperedges in F . Intuitively, the vertices in B are those not released
by the marshals during the move. As in the monotonic robber and cops game,
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it is required that the marshals capture the robber by monotonically shrinking
the moving space of the robber. The game is won by the marshals if they corner
the robber somewhere in the hypergraph.

Example 19. Let us play the robber-and-marshals game on the hypergraph HI1

of query Q1 of Example 4 (see Fig 1). We can easily recognize that two marshals
can always capture the robber and win the game by using the following strategy:
Independently of the initial position of the robber, the two marshals initially
move on edges {a,b}, and thus control the vertices (=variables) T, X, S, R, P ,
Y, U , as shown in Figure 6.A. After this move of marshals, the robber may be
in V , in Z or in W . If the robber is on V , then the marshals move on edge f ,
and capture the robber, as shown in Figure 6.B (note that the robber cannot
escape from V during this move, as both P and R – the only possible ways to
leave V – are kept under the marshals’ control during the move). Otherwise, if
the robber is on W or on Z, then the marshals move on {g, c} (see Figure 6.C).
Since they keep the control of X, Y, T, and U during the move, then the robber
can escape only to vertex W . Therefore, a further move on edge d allows the
marshals to eventually capture the robber, as shown in Figure 6.D.
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Fig. 6. (A) The first move of the marshals playing the game on HI1 ; (B) move
of the marshals if the robber stands on V (capture position); (C) move of the
marshals if the robber stands onW or on Z; (D) the marshals capture the robber
in W

In [23] we prove that there is a one-to-one correspondence between winning
strategies for k marshals and hypertree decompositions of width at most k in a
certain normal form.

Theorem 20 ([23]). A hypergraph H has k-bounded hypertree width if and
only k marshals have a winning strategy for the R&Ms game played on H.

9 Logical Characterization of Hypertree Width

Denote by L the fragment of first-order logic (FO) whose connectives are re-
stricted to existential quantification and conjunction (i.e., ¬, ∨, and ∀ are dis-
allowed). Kolaitis and Vardi [30] proved that the class of all queries having
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treewidth < k coincides in expressive power with the k-variable fragment Lk of
L, i.e., the class of all L formulas that use k variables only. Se also [13].

In [23], we characterize HW[k] in terms of a guarded logic. We show that
HW[k] = GFk(L), where GFk(L) denotes the k-guarded fragment of L. The
1-guarded fragment coincides with the classical notion of guardedness, where
existentially quantified subformulas ϕ of a formula are always conjoined with a
guard, i.e., an atom containing all free variables of ϕ. In the k-guarded fragment,
up to k atoms may jointly act as a guard (for precise definitions, see [23]). For
the particular case k = 1, this gives us a new characterization of the acyclic
queries stating that the acyclic queries are precisely those expressible in the
guarded fragment of L. In order to prove these results, we played the robber and
marshals game on the appropriate query hypergraphs.

10 Comparison of Hypertree Width with Other Methods

We report about results comparing the Hypertree decomposition method with
other methods for solving efficiently CSPs and conjunctive queries, which are
based only on the structure of the hypergraph associated with the problem (we
consider tractability due to restricted structure, as discussed in Section 2). We
call these methods decomposition methods (DM), because each one provides a
decomposition which transforms any hypergraph to an acyclic hypergraph. For
each decomposition method D, this transformation depends on a parameter
called D-width. Let k be a fixed constant. The tractability class C(D, k) is the
(possibly infinite) set of hypergraphs having D-width ≤ k. D ensures that ev-
ery CQ or CSP instance whose associated hypergraph belongs to this class is
polynomial-time solvable.

The main decomposition methods considered in database theory and in ar-
tificial intelligence are: Treewidth [34] (see also [30,17]), Cycle Cutset [9], Tree
Clustering [10], Induced Width (w∗) cf. [9], Hinge Decomposition [27,26], Hinge
Decomposition + Tree Clustering [26], Cycle Hypercutset [21], Hypertree Decom-
position. All methods are briefly explained in [21]. Here, we do not consider
the notion of query width, because deciding whether a hypergraph has bounded
query width is NP-complete. However, recall that this notion is generalized by
hypertree width, in that whenever a hypergraph has query width at most k, it
has hypertree width at most k, too. The converse does not hold, in general [19].
For comparing decomposition methods we introduce the relations �, ✄, and ≺≺
defined as follows:

D1 � D2, in words, D2 generalizes D1, if ∃δ ≥ 0 such that, ∀k > 0,
C(D1, k) ⊆ C(D2, k + δ). Thus D1 � D2 if every class of CSP instances which
is tractable according to D1 is also tractable according to D2.

D1 ✄D2 (D1 beats D2) if there exists an integer k such that ∀m C(D1, k) �⊆
C(D2,m). To prove that D1✄D2, it is sufficient to exhibit a class of hypergraphs
contained in some C(D1, k) but in no C(D2, j) for j ≥ 0. Intuitively, D1 ✄ D2

means that at least on some class of CSP instances, D1 outperforms D2.
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D1 ≺≺ D2 if D1 � D2 and D2 ✄ D1. In this case we say that D2 strongly
generalizes D1.

Mathematically,� is a preorder, i.e., it is reflexive, transitive but not antisym-
metric. We say thatD1 is �-equivalent toD2, denotedD1 ≡ D2, if bothD1 � D2

and D2 � D1 hold.
The decomposition methods D1 and D2 are strongly incomparable if

both D1 ✄ D2 and D2 ✄ D1. Note that if D1 and D2 are strongly incompa-
rable, then they are also incomparable w.r.t. the relations � and ≺≺.

Figure 7 shows a representation of the hierarchy of DMs determined by the
≺≺ relation. Each element of the hierarchy represents a DM, apart ¿from that
containing the three �-equivalent methods Tree Clustering, Treewidth, and w∗.

Theorem 21 ([21]). For each pair D1 and D2 of decompositions methods rep-
resented in Figure 7, the following holds. There is a directed path from D1 to D2

iff D1 ≺≺ D2, i.e., iff D2 strongly generalizes D1. Moreover, D1 and D2 are
not linked by any directed path iff they are strongly incomparable. Hence, Fig. 7
completely describes the relationships among the different methods.

w∗ ≡ treewidth

Tree Clustering ≡

Tree Clustering
+

Hinge Decomposition

Hinge Decomposition

Biconnected Components

Cycle Hypercutset

Hypertree Decomposition

Cycle Cutset

Fig. 7. Constraint tractability hierarchy

Recently, a comparison between hypertree width and Courcelle’s concept of
clique-width [7,8] was made [24]. Given that clique-width is defined for graphs,
it had to be suitably adapted to hypergraphs. Defining the clique-width of a
hypergraph H as the cliquewidth of its primal graph makes no sense in the con-
text of CSP-tractability, because then CSPs of bounded clique-width would be
intractable. Therefore, in [24], the clique-width H is defined as the clique-width
of its incidence graph Gi

I(H). With this definition it could be shown in [24] that
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(a) CSP’s whose hypergraphs have bounded clique-width are tractable, and (b)
bounded hypertree width strongly generalizes bounded clique-width.

11 Open Problems

Several questions are left for future research. In particular, it would be inter-
esting to know whether the method of hypertree decompositions can be further
generalized. For instance, let us define the concept of generalized hypertree de-
composition by just dropping condition 4 from the definition of hypertree de-
composition (Def. 11). Correspondingly, we can introduce the concept of gen-
eralized hypertree width ghw(H) of a hypergraph H. We know that all classes
of Boolean queries having bounded ghw can be answered in polynomial time.
But we currently do not know whether these classes of queries are polynomially
recognizable. This recognition problem is related to the mysterious hypergraph
sandwich problem [31], which has remained unsolved for a long time. If the latter
is polynomially solvable, then also queries of bounded ghw are polynomially rec-
ognizable. Another question concerns the time complexity of recognizing queries
of bounded hypertree width. Is this problem fixed-parameter tractable such as
the recognition of graphs of bounded treewidth?
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