
Documentation for D-FLAT 0.2

Bernhard Bliem
(bliem@dbai.tuwien.ac.at)

March 9, 2013

1 Introduction

Many practically relevant problems are infeasible for large instances. However, often
they become tractable when only instances where a certain parameter is bounded by
a constant are considered [Downey and Fellows, 1999, Flum and Grohe, 2006, Nieder-
meier, 2006]. This research area has attracted a lot of attention lately because it allows
for a more fine-grained analysis of the complexity of computational problems than
classical complexity theory, which only considers the size of the input as the quantity
of interest. Especially treewidth has proven to be an attractive parameter because it
applies to many different problems [Robertson and Seymour, 1984, Courcelle, 1990].
Bounded treewidth leading to tractability can frequently be exploited by dynamic pro-
gramming on a tree decomposition of the original instance [Niedermeier, 2006, Bodlaen-
der, 1997]. Until now, implementing such algorithms, however, has usually been quite
intricate which is due to the lack of supporting tools that offer an adequate language
for conveniently specifying such algorithms.

In [Bliem et al., 2012], we have introduced a framework called D-FLAT that makes
rapid prototyping of algorithms on tree decompositions possible. The acronym ab-
breviates the full name Dynamic Programming Framework with Local Execution of ASP on
Tree Decompositions. Its purpose is to take care of everything that surrounds dynamic
programming algorithms on tree decompositions and to leave the user only with the
responsibility of providing the problem-specific parts in Answer Set Programming (ASP)
– a logic programming formalism which supports a programming paradigm called
Guess & Check and is recognized for its capability to express hard problems quite suc-
cinctly [Brewka et al., 2011, Lifschitz, 2008]. Using Answer Set Programming as a
language to specify the problem-specific parts of dynamic programming algorithms,
D-FLAT benefits from efficient solvers as well as from a rich language that allows for
easily readable and maintainable code.

Because instances in practical applications often exhibit small treewidth [Thorup,
1998, Agarwal et al., 2011, Gramm et al., 2008, Huang and Lai, 2007, Latapy and Mag-
nien, 2006,Melançon, 2006], D-FLAT has great practical relevance. For many problems

1



that are hard in general, D-FLAT is thus a promising candidate for solving large in-
stances which have so far been out of reach for existing Answer Set Programming
systems.

The system can be obtained as free software from http://www.dbai.tuwien.ac.
at/research/project/dynasp/dflat/. It is written in C++ and can be compiled for
many platforms. Since we introduced version 0.1 of D-FLAT in [Bliem et al., 2012], we
have made several changes resulting in the release of D-FLAT version 0.2. The current
report serves as documentation for D-FLAT 0.2 and is based on [Bliem, 2012], where
the underlying problem solving methodology is inspected in more detail.

In Section 2, we will introduce the architecture of D-FLAT and describe the inter-
play of its components. Section 3 gives information about the main data structures
that D-FLAT offers to the user for solving problems via dynamic programming on a
tree decomposition of the input instance. In Section 4, we outline the role of the user-
specified ASP program and present which input facts D-FLAT provides to it. This is
complemented by Section 5, where we describe how the answer sets of that program
are used to populate the data structures associated with the tree decomposition nodes.
The final materialization of solutions is presented in Section 6. Section 7 describes the
input format for problem instances, and Section 8 gives details about the tree decom-
positions that D-FLAT can automatically generate from those. A complete listing of
D-FLAT’s command-line arguments can be found in Section 9, and Section 10 provides
a reference of all input and output predicates that serve as the interface between the
user-specified program and D-FLAT. Finally, Section 11 presents a simple example of
a D-FLAT encoding by means of the 3-Col problem.

2 System Overview

A key property of D-FLAT is that it associates a table with each tree decomposition
node. The computation of these tables proceeds in a bottom-up way by executing
a user-provided, problem-specific ASP program for each node, having access to the
already computed child tables.

We now give an overview of D-FLAT 0.2 by describing its organization and the
interplay of its components. Figure 1 depicts the control flow during the execution of
an algorithm with D-FLAT and illustrates the interplay of the system’s components.
The system consists of the following basic elements:

• The D-FLAT core; it coordinates the data flow between all other components and
takes care of parsing the input (see Section 7), storing and processing the tables
(see Sections 3 and 5), as well as materializing solutions (see Section 6).

The D-FLAT core is tightly intertwined with a software called SHARP1 [Morak,
2011] which is a framework for working on tree decompositions using C++ as a

1http://www.dbai.tuwien.ac.at/research/project/sharp/

2

http://www.dbai.tuwien.ac.at/research/project/dynasp/dflat/
http://www.dbai.tuwien.ac.at/research/project/dynasp/dflat/
http://www.dbai.tuwien.ac.at/research/project/sharp/


Gringo/clasp Compute
table rows

D-FLAT Parse instance Populate table Flatten
child tables

Materialize
solution

htdecomp Decompose

SHARP Done?
no

yes

Visit next
node in

post-order

Figure 1 A flowchart illustrating the (simplified) interplay of D-FLAT’s components

language for the algorithms.

• An ASP solving system; currently we use Gringo for grounding and clasp for
solving. These programs are part of the Potsdam Answer Set Solving Collection
[Gebser et al., 2011] and are currently the generally most efficient ASP solving
tools available [Denecker et al., 2009]. For the interface between the user’s ASP
program and these tools, see Section 10.

• A tree decomposition library; we currently employ htdecomp [Dermaku et al.,
2008] for this purpose. For details about the decomposition, see Section 8.

Initially, D-FLAT parses the problem instance – a set of facts describing a graph –,
stores this graph and constructs a tree decomposition. Now a bottom-up processing
is initiated. Until all tables have been computed, D-FLAT visits the next node whose
child tables are already completed. It takes these child tables and flattens the rows
contained in them such that a string representing a set of facts is obtained. It is passed
to the integrated ASP solver together with the user’s ASP program and a description
of the bags of the current node and its children. The answer sets which result are now
scanned for predicates that instruct D-FLAT to store certain values in a table row. This
way, D-FLAT populates the current node’s table and continues with the next node.
When all tables have thus been computed, the solutions are materialized depending
on the problem type. For instance, for a decision problem, “yes” or “no” is returned
depending on whether the root table has a row or not; for a counting problem, the
number of solutions is read off from the table rows; and for an enumeration problem,
complete solutions are obtained by following extension pointers stored in the table
rows for this purpose. Note that for optimization problems, D-FLAT automatically
takes care of only counting or enumerating optimal solutions.

3



3 Basic Data Structures: Tables and Rows

Each table row corresponds to a set of partial solutions and consists of a characteristic
and additional information. The remainder of this section will describe the structure
of characteristics and give an overview of the additional information stored in table
rows. Section 5 then shows how tables can be computed from the answer sets of the
user-specified program.

Characteristics of table rows. The information stored in characteristics is comprised
of items in a way we describe in this section. An item can be any ground term the user
pleases. By means of terms containing uninterpreted function symbols, the user can
even store structured data in an item.

In the case where we are dealing with problems that are, in general, members of
NP, it is usually sufficient to consider a characteristic as just an item set, i.e., a set
of arbitrary items. With this, all examples presented in [Bliem et al., 2012] can be
implemented. However, algorithms on tree decompositions for problems higher in
the polynomial hierarchy than NP usually require a more involved table row structure
than that, due to the polynomial hierarchy’s characterization by quantifier alternation.

In order to allow handling also such problems in a natural way, D-FLAT uses a
more general notion of a table row’s characteristic: Any item set can possess arbitrarily
many subsidiary item sets.This can be recursively utilized to obtain a tree of item sets
within a single table row.

It should be noted that, for many problems, multi-level characteristics are not re-
quired and a characteristic is just a single (top-level) item set as proposed above. In
such cases, we use the terms “characteristic” and “item set” interchangeably. The
reader should keep in mind, however, that more complicated structures are possible.

Additional information in table rows. A table row contains additional information
beside its characteristic, depending on the problem type.

• For decision problems, no additional information is stored.

• In algorithms for counting problems, a table row contains the number of partial
solutions it represents.

• When solving enumeration problems, each table row r of a node that has n children
contains a set of n-tuples of extension pointers, where the ith element of any such
tuple references a row in the ith child table that has given rise to r. These pointers
will be followed when materializing solutions.

When dealing with multi-level characteristics, extension pointers are usually not
only present for enumeration problems but also for other problem types. More-
over, in these cases, each item set can possess extension pointers – not merely

4



Current table

Answer sets

ASP solver
User program

Instance
Bag

Child rows

1st child table

Child rows

nth child table

. . .

. . .

Figure 2 Data flow while processing a node with n children

the row (or top-level item set) itself. The reason is that when the characteristic
is a tree of item sets, these pointers are usually required for reconstructing the
intended structure of this tree from the answer sets, as is described in Section 5.

• In order to determine the minimum cost among all solutions, a table row contains
the cost of the cheapest partial solution it represents.

• For counting optimal solutions, a row is required to contain the minimum cost of
all the partial solutions it represents, as well as the number of represented partial
solutions having that cost.

4 Executing the Problem-specific ASP Program

Figure 2 depicts the data flow when D-FLAT visits a node. D-FLAT first flattens the
table of each child node, i.e., it builds a set of facts which describes all the rows in
that table. Then, to compute the new table, D-FLAT invokes the integrated ASP solver
with the following input:

• The dynamic programming algorithm provided by the user as an ASP program

• The entire problem instance (given to D-FLAT as a set of facts)

• A description of the current bag as a set of facts stating which vertices are present
in that bag

• For each child node, the set of facts describing its table and a description of its
bag contents

5



The answer sets resulting from this constitute the new table. The user’s dynamic pro-
gramming algorithm must instruct D-FLAT which values it should store in a table row
by means of special predicates that are used for communication between D-FLAT and
the user’s program (cf. Section 10). D-FLAT scans the answer sets for these predicates
and inserts rows into the table accordingly.

Figure 3c depicts an example for the Minimum Vertex Cover problem.2 Consider
as the current node the one corresponding to the bag {a, b}. D-FLAT describes the
current bag as just the two facts:3

current(a;b).

D-FLAT then declares the children and their bags and tables as follows:

childNode(c0).

childBag(c0,b;c).

childRow(c0r0;c0r1;c0r2 ,c0).

childItem(c0r0 ,b). childCost(c0r0 ,4).

childItem(c0r1 ,c). childCost(c0r1 ,3).

childItem(c0r2 ,b;c). childCost(c0r2 ,4).

For convenience, D-FLAT also passes facts using the predicates introduced/1 and
removed/1 to the user’s program. They are, strictly speaking, redundant; but using
them in algorithms is very common. Their semantics is in accordance with the follow-
ing rules:

-introduced(X) ← childBag(_,X).

introduced(X) ← current(X), not -introduced(X).

removed(X) ← childBag(_,X), not current(X).

For some problems it is necessary to perform final actions once all tables have been
computed. For cases like this, it is reasonable to use tree decompositions with an
empty root node. Having empty roots even enables us to perform additional post-
processing steps that are different from what happens when vertices are removed and
thus only occur at the end. The user’s ASP program is provided with the input fact
root if the currently processed node is the empty root.

If there are rows in the root table, it is ensured that the solution count, cost and
extension pointers only refer to optimal solutions because suboptimal solutions are
discarded when merging rows with equal characteristics as described above.

2A concrete D-FLAT encoding for this problem can be found in [Bliem et al., 2012].
3To emphasize that these are input predicates provided by D-FLAT, we print them in color (see

Section 10).

6



a

b

c

d g

e f

(a) A Minimum Vertex Cover instance

∅

{a, b}

{b, c}

{c, d}

{d, e, f }

{c, g}

(b) A tree decomposi-
tion of the instance
with an empty root

i items cost extend
0 ∅ 4 {(0), (1)}

i items cost extend
0 {a} 4 {(1)}
1 {b} 4 {(0), (2)}
2 {a, b} 5 {(0), (2)}

i items cost extend
0 {b} 4 {(1, 1)}
1 {c} 3 {(0, 0), (2, 0)}
2 {b, c} 4 {(0, 0), (2, 0)}

i items cost extend
0 {c} 3 {(2)}
1 {d} 2 {(0), (1)}
2 {c, d} 3 {(0), (1)}

i items cost extend
0 {d, e} 2 ∅

1 {d, f } 2 ∅

2 {e, f } 2 ∅

3 {d, e, f } 3 ∅

i items cost extend
0 {c} 1 ∅

1 {g} 1 ∅

2 {c, g} 2 ∅

(c) The dynamic programming tables

a

b

c

d g

e f

(d) Visualization of a
partial solution at
the parent of the left
leaf

Figure 3 Dynamic programming for Minimum Vertex Cover

7



5 Populating a Table from Answer Sets

Each answer set encodes a complete characteristic together with additional informa-
tion (like extension pointers, a count or a cost). Therefore, when an answer set is
reported that encodes a characteristic not already stored in any row, D-FLAT inserts a
new row into the table and fills it with the encoded characteristic and additional infor-
mation. When another answer set arrives specifying the same characteristic, D-FLAT
looks up the existing table row and performs the following actions for the additional
information:

1. If the answer set encodes a cost that exceeds the cost in the stored row, the
answer set is discarded because there are already better partial solutions for that
characteristic.

2. If the encoded cost is lower than the stored one, the old contents of the row are
thrown away and replaced by the information contained in that answer set.

3. Otherwise, if the encoded cost equals the stored one (or if no optimization prob-
lem is solved and there are therefore no costs), the following actions are taken:

(a) If the problem type demands enumeration of solutions, D-FLAT inserts the
encoded extension pointers into the corresponding sets of extension pointer
tuples.

(b) If the problem type demands counting, D-FLAT adds the encoded solution
count to the stored count.

When multi-level characteristics are employed, compiling table rows from answer sets
is more complicated than with only a single level, for then an answer set alone gener-
ally no longer specifies a complete characteristic. Rather, an answer set only encodes
one branch of a characteristic (i.e., of a tree of item sets). This is because the most con-
venient way to generate such a tree of sets with ASP is guessing a set for each level
from the root to a leaf.

Reconstructing the intended trees from the branches described by answer sets is,
however, a relatively intricate task. To accomplish this, an answer set must state, for
each node of its specified path, extension pointers referring to the predecessor of the
respective node if ambiguities should be avoided.

Just as it is required that there is at most one table row with a given characteristic,
D-FLAT makes sure that for each node in a characteristic it holds that there are no two
equal subtrees rooted at a child of that node. Equal subtrees are therefore merged,
similar to merging rows with equal characteristics.

To summarize, when working with multi-level characteristics, the user can not
only specify extension pointers for table rows but also for subsidiary item sets. If such
pointers are present, D-FLAT uses this information to construct the characteristics

8



from the answer sets accordingly. In either case, it ensures that there is at most one
table row for each characteristic, and that within a characteristic there are no duplicate
subtrees at the same level.

6 Materializing the Solutions

When all tables have been computed, the result of the computation should be reported.
Which form this takes of course depends on the problem type.

• For a decision problem, we either report “yes” or “no” depending on whether there
are rows in the root table or not.

• When dealing with a counting problem, we inspect the counts in the root table
rows and thus print their sum as the total number of solutions.

• Given an enumeration problem, complete solutions can be constructed by recur-
sively following the extension pointers in the root table rows. A global solution
can be assembled by unifying the item sets of all rows that can be reached using
these pointers.

• For determining the optimum value of a solution, we return the minimum cost of
any row in the root table, or “no” if the table is empty.

• Counting optimal solutions is performed by summing the solution counts of only
those root table rows that have minimal cost.

• Enumerating optimal solutions proceeds like enumerating all solutions but only
performs the materialization for root table rows that have minimal cost. Because
D-FLAT discards extension pointers that would give rise to suboptimal solutions
during the construction of the tables as discussed above, it is ensured that thereby
only optimal solutions are materialized.

The algorithm must, of course, provide the information that is required for the respec-
tive problem type (like counts, extension pointers or costs).

The specific solution enumeration strategy of our implementation still needs some
clarification. In general, there can be exponentially many solutions. When materi-
alizing solutions for enumeration, it is therefore infeasible to construct all of them
simultaneously and subsequently iterate over this set to print every solution, because
this way the huge set of all complete solutions must be stored in memory. We rather
require a “lazy materialization” technique that only materializes one solution at a time,
prints it and then proceeds to the next one. To this end, D-FLAT implements an it-
erator interface for enumerating solutions that avoids the explosion of memory. This
enumeration is even possible with just linear delay, provided the treewidth is bounded
and the user designs the dynamic programming algorithm such that the size of each

9



table can be considered as bounded by a constant (which is the case if it is bounded
by a function only depending on the treewidth).

7 Input Format

As we are using tree decompositions as a way to decompose problem instances, we
require the input to be a graph.4 D-FLAT makes this input available to the user’s ASP
program because the graph contains the problem-specific information and is needed
to compute tables.

For instance, the following input describes the graph from Figure 3a:

vertex(a;b;c;d;e;f;g).

edge(a,b). edge(b,c). edge(c,d). edge(c,g).

edge(d,e). edge(d,f). edge(e,f).

In order to recognize how this set of facts represents a graph, D-FLAT expects the user
to specify as command-line arguments which predicates in the input denote edges –
in this case, edge/2.

The constants which appear as arguments of the edge predicates in the input are
considered to be exactly the vertices of the graph – thus, the vertices do not need to be
declared explicitly (although no one is preventing the user from doing so if convenient,
as we have done in the listing using the vertex/1 predicate).

8 Constructing a Tree Decomposition

The graph that was obtained as described in Section 7 is now decomposed. D-FLAT
leaves the details of this to an external library that is concerned with heuristically con-
structing a tree decomposition that has near-optimal width (cf. Section 2). In the litera-
ture, algorithms for dynamic programming on tree decompositions can often be found
to use a restricted class of decompositions, viz. normalized or semi-normalized tree
decompositions.5 A semi-normalized tree decomposition is a tree decomposition where
each node falls under one of the following types:

• Leaf nodes having no children

• Exchange nodes having one child

• Join nodes having two children with bags equal to the join node’s bag

4To be precise, D-FLAT can also handle hypergraphs, but here we only speak of graphs for the sake
of simplicity.

5Normalized tree decompositions are sometimes also called nice. There is also the concept of semi-nice
tree decompositions [Dorn and Telle, 2009] which are, however, different from our semi-normalized ones
and are not supported by D-FLAT at this time.

10



A normalized tree decomposition is a semi-normalized tree decomposition where the bags
of adjacent nodes differ in at most one element.

At the moment, the only available possibility for controlling the tree decomposition
that D-FLAT generates is specifying on the command-line which normalization should
be performed. The correct choice, of course, depends on what the particular dynamic
programming algorithm expects as a tree decomposition.

When the dynamic programming phase begins, a bottom-up traversal of the tree
decomposition is performed to compute the tables. This way, upon reaching a tree
decomposition node, the child tables are already computed. In each node, D-FLAT
invokes the ASP solver to compute the new table, which is described next. Note that
D-FLAT constructs a tree decomposition such that bag of the root is empty, as depicted
in Figure 3b.6

9 Command-Line Interface

The file name of the user’s ASP program must be specified as a command-line argu-
ment and the instance will be read from the standard input.

On semi-normalized tree decompositions, D-FLAT distinguishes two programs –
one for exchange nodes and one for join nodes – that have to be specified separately. In
[Bliem et al., 2012], we introduced encodings for this setting. When a program for
exchange nodes but not for join nodes is specified, D-FLAT executes a default join im-
plementation which joins all pairs of candidate rows that have the same characteristic.
We refer to [Bliem et al., 2012] for a discussion of the default join implementation.

Table 1 summarizes the command-line options that control D-FLAT’s behavior.
Executing the D-FLAT binary dflat is illustrated by the following example call, pre-
supposing a 3-Col instance with the file name instance.lp and an encoding with the
file name 3col.lp (for an example see Section 11), instructing D-FLAT to enumerate
all optimal solutions (which also prints their number and costs):

dflat -p opt-enum -e edge 3col.lp < instance.lp

10 Interface to ASP Programs: Reserved Predicates

The user’s program communicates with D-FLAT by means of reserved predicates.
These are partitioned into two sets:

• Input predicates are provided by D-FLAT as input for the user’s program and
describe the relevant bags and child tables.

6It should be noted that when D-FLAT is asked to construct a semi-normalized tree decomposition,
it also provides for empty leaf nodes because the algorithms for semi-normalized tree decompositions
presented in [Bliem et al., 2012] consist of two separate encodings – one for exchange nodes and one for
join nodes.

11



Argument Meaning

-e hyperedge_predicate The predicate hyperedge_predicate in the input denotes a hy-
peredge connecting the argument vertices. At least one -e
argument must be given.

-j join_program join_program is the file name of an ASP program that
is to be executed in join nodes of (semi-)normalized
tree decompositions. This is only allowed if -n semi or
-n normalized is present. If it is omitted and an exchange
program is given via -x, the default join implementation
will be used.

--multi-level If this option is present, multi-level characteristics can be
used. If it is absent, D-FLAT uses a more efficient imple-
mentation that can, however, only be used for single-level
characteristics.

-n normalization normalization specifies the normalization to be performed.
Possible values are none (default), semi and normalized.

--only-decompose If specified, D-FLAT terminates after decomposing and, if
requested by --stats, printing statistics.

-p problem_type problem_type specifies the type of the problem to be solved.
Possible values are enumeration (default), counting,
decision, opt-enum, opt-counting and opt-value.

-s seed This sets the seed of the pseudo-random number generator
used for the tree decomposition heuristic to seed.

--stats This prints statistics about the constructed tree decompo-
sition.

-x exchange_program exchange_program is the file name of an ASP program that
is to be executed in exchange nodes of (semi-)normalized
tree decompositions. This is only allowed if -n semi or
-n normalized is present.

program program is the file name of an ASP program that is to be
executed in each tree decomposition node. This is incom-
patible with the -x and -j options.

Table 1 Command-line options for D-FLAT

12



Input predicate Meaning

root The current node is the root node.

childNode(N) N is the identifier of a child node.

childBag(N, V) V is a vertex contained in the bag of the child node N.

current(V) V is an element of the current bag.

introduced(V) V is a current vertex but was in no child node’s bag.

removed(V) V was in a child node’s bag but is not in the current one.

childRow(R, N) R is the identifier of a row in the table of child node N.

sub(R, S) If R is the identifier of a child row, S is the identifier of
an item set that is a child of that row’s top-level item set.
Otherwise, R is the identifier of a subsidiary item set and
S is the identifier of an item set that is a child of R.

childItem(S, I) If S is the identifier of a child row, that row’s top-level item
set contains I. Otherwise, S is the identifier of a subsidiary
item set containing I.

childCount(R, C) C is the number of partial solutions corresponding to the
child row R.

childCost(R, C) C is the total cost of the partial solution corresponding to
the child row R.

Table 2 Predicates supplied to the user’s program by D-FLAT

• Output predicates occurring in an answer set instruct D-FLAT to store certain
information in the table currently under consideration.

These predicates are summarized in Tables 2 and 3, respectively.
For better readability, we use colors to highlight input predicates and output pred-

icates in our listings.

11 Example: Graph Coloring

The D-FLAT encoding in Listing 1 serves as an example of how to solve the 3-colorability
problem of graphs (3-Col for short) using D-FLAT. If the treewidth of instances is
bounded, this encoding together with D-FLAT solves the problem in linear time.

13



Output predicate Meaning

item(I) Let I be in the top-level item set.

extend(R) Declare R to be the identifier of a child row that is ex-
tended by the currently described one. This is required for
enumerating solutions.

count(C) Let C be the number of partial solutions the currently de-
scribed row corresponds to. This is required for counting
problems if extend/1 is not used.

cost(C) Let C be the total cost of the current partial solution. This
is required for optimization problems.

currentCost(C) Let C be the local cost of the current table row. This is only
required when solving an optimization problem and using
the default join implementation for semi-normalized tree
decompositions. See [Bliem et al., 2012] for details.

levels(L) When using multi-level characteristics, declare L to be the
number of levels of the root-to-leaf path (within a charac-
teristic) described by the current answer set.

item(L, I) Let I be in the item set at level L of the multi-level charac-
teristic. It holds that L ≥ 0, with 0 being the top level.

extend(L, S) Declare that the item set at level L described by this answer
set stems from the item set S from a child characteristic.
This is used for constructing the tree of the characteristic.

Table 3 Predicates in the ASP program’s answer sets recognized by D-FLAT

14



Listing 1 A D-FLAT encoding for the 3-Col problem

color(red;green;blue).

% For e a c h c h i l d node , g u e s s a c h i l d t a b l e row t o e x t e n d

1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

% Keep c o l o r s o f s t i l l −c u r r e n t v e r t i c e s

item(map(X,C)) ← extend(R), childItem(R,map(X,C)),

current(X).

% Only j o i n match ing c o l o r i n g s

← item(map(V,C0;C1)), C0 6= C1.

% Guess c o l o r o f i n t r o d u c e d nodes

1 { item(map(X,C)) : color(C) } 1 ← introduced(X).

% Check t h a t a d j a c e n t v e r t i c e s a r e c o l o r e d d i f f e r e n t l y

← edge(X,Y), item(map(X;Y,C)).

References

[Agarwal et al., 2011] Agarwal, R., Godfrey, P. B., and Har-Peled, S. (2011). Approx-
imate distance queries and compact routing in sparse graphs. In Proc. INFOCOM,
pages 1754–1762. IEEE.

[Bliem, 2012] Bliem, B. (2012). Decompose, guess & check: Declarative problem solv-
ing on tree decompositions. Master’s thesis, TU Wien, Vienna.

[Bliem et al., 2012] Bliem, B., Morak, M., and Woltran, S. (2012). D-FLAT: Declarative
problem solving using tree decompositions and answer-set programming. TPLP,
12(4-5):445–464.

[Bodlaender, 1997] Bodlaender, H. L. (1997). Treewidth: Algorithmic techniques and
results. In Proc. MFCS, volume 1295 of LNCS, pages 19–36. Springer.

[Brewka et al., 2011] Brewka, G., Eiter, T., and Truszczyński, M. (2011). Answer set
programming at a glance. Commun. ACM, 54(12):92–103.

[Courcelle, 1990] Courcelle, B. (1990). The monadic second-order logic of graphs. I.
Recognizable sets of finite graphs. Inf. Comput., 85(1):12–75.

[Denecker et al., 2009] Denecker, M., Vennekens, J., Bond, S., Gebser, M., and
Truszczyński, M. (2009). The second answer set programming competition. In
Proc. LPNMR, volume 5753 of LNCS, pages 637–654. Springer.

15



[Dermaku et al., 2008] Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B. J., Musliu,
N., and Samer, M. (2008). Heuristic methods for hypertree decomposition. In Proc.
MICAI, volume 5317 of LNCS, pages 1–11. Springer.

[Dorn and Telle, 2009] Dorn, F. and Telle, J. A. (2009). Semi-nice tree-decompositions:
The best of branchwidth, treewidth and pathwidth with one algorithm. Discrete
Applied Mathematics, 157(12):2737–2746.

[Downey and Fellows, 1999] Downey, R. G. and Fellows, M. R. (1999). Parameterized
Complexity. Monographs in Computer Science. Springer.

[Flum and Grohe, 2006] Flum, J. and Grohe, M. (2006). Parameterized Complexity The-
ory. Texts in Theoretical Computer Science. Springer.

[Gebser et al., 2011] Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub,
T., and Schneider, M. T. (2011). Potassco: The potsdam answer set solving collection.
AI Commun., 24(2):107–124.

[Gramm et al., 2008] Gramm, J., Nickelsen, A., and Tantau, T. (2008). Fixed-parameter
algorithms in phylogenetics. Comput. J., 51(1):79–101.

[Huang and Lai, 2007] Huang, X. and Lai, J. (2007). Parameterized graph problems in
computational biology. In Proc. IMSCCS, pages 129–132. IEEE.

[Latapy and Magnien, 2006] Latapy, M. and Magnien, C. (2006). Measuring funda-
mental properties of real-world complex networks. CoRR, abs/cs/0609115.

[Lifschitz, 2008] Lifschitz, V. (2008). What is answer set programming? In Proc. AAAI,
pages 1594–1597. AAAI Press.

[Melançon, 2006] Melançon, G. (2006). Just how dense are dense graphs in the real
world? A methodological note. In Proc. BELIV, pages 1–7. ACM Press.

[Morak, 2011] Morak, M. (2011). dynASP – A dynamic programming-based answer
set programming solver. Master’s thesis, TU Wien, Vienna.

[Niedermeier, 2006] Niedermeier, R. (2006). Invitation to Fixed-Parameter Algorithms.
Oxford Lecture Series in Mathematics And Its Applications. Oxford University
Press.

[Robertson and Seymour, 1984] Robertson, N. and Seymour, P. D. (1984). Graph mi-
nors. III. Planar tree-width. J. Comb. Theory, Ser. B, 36(1):49–64.

[Thorup, 1998] Thorup, M. (1998). All structured programs have small tree-width and
good register allocation. Inf. Comput., 142(2):159–181.

16


	Introduction
	System Overview
	Basic Data Structures: Tables and Rows
	Executing the Problem-specific ASP Program
	Populating a Table from Answer Sets
	Materializing the Solutions
	Input Format
	Constructing a Tree Decomposition
	Command-Line Interface
	Interface to ASP Programs: Reserved Predicates
	Example: Graph Coloring

