Expansion-based QBF Solving on Tree Decompositions*

Günther Charwat ${ }^{\dagger}$, Stefan Woltran
Institute of Logic and Computation
TU Wien
Favoritenstraße 9-11, 1040 Vienna, Austria
gcharwat@dbai.tuwien.ac.at,woltran@dbai.tuwien.ac.at

Abstract

In recent years various approaches for quantified Boolean formula (QBF) solving have been developed, including methods based on expansion, skolemization and search. Here, we present a novel expansion-based solving technique that is motivated by concepts from the area of parameterized complexity. Our approach relies on dynamic programming over the tree decomposition of QBFs in prenex conjunctive normal form (PCNF). Hereby, binary decision diagrams (BDDs) are used for compactly storing partial solutions. Towards efficiency in practice, we integrate dependency schemes and develop dedicated heuristic strategies. Our experimental evaluation reveals that our implementation is competitive to state-of-the-art solvers on instances with one quantifier alternation. Furthermore, it performs particularly well on instances up to a treewidth of approximately 80, even for more quantifier alternations. Results indicate that our approach is orthogonal to existing techniques, with a large number of uniquely solved instances.

Keywords: QBF, expansion, dynamic programming, QSAT, treewidth

1. Introduction

Quantified Boolean formulae (QBFs) extend propositional logic by explicit universal and existential quantification over variables. They can be used to compactly encode many computationally hard

[^0]problems, which makes them amenable to application fields where highly complex tasks emerge, e.g. formal verification, synthesis, and planning. In this work we consider the problem of deciding satisfiability of QBFs (QSAT) which is, in general, PSPACE-complete [1]. We present an approach that is motivated by results from the area of parameterized complexity: many computationally hard problems are fixed-parameter tractable (fpt) [2], i.e., they can be solved in time $f(p) \cdot n^{\mathcal{O}(1)}$ where n is the input size, p the parameter, and f a computable function. It is known that QSAT is fpt w.r.t. the combined parameter quantifier alternations plus treewidth of the QBF instance (this follows from [3]), but not w.r.t. treewidth alone [4].

Intuitively, treewidth captures the "tree-likeness" of a graph. It emerged from the observation that computationally hard problems are usually easier to be solved on trees than they are on arbitrary graphs. Treewidth is defined on tree decompositions (TDs). Our approach employs dynamic programming (DP) over the TD of the primal graph of QBFs in prenex conjunctive normal form (PCNF). Partial solutions of the DP are obtained via locally restricted expansion. The practical feasibility of this approach rests on the following pillars. First, we make use of binary decision diagrams (BDDs) [5] for compactly storing information in our dedicated data structure. Second, we consider structure in the quantifier prefix by integrating dependency schemes (see, e.g., [6]) into our DP algorithm. Finally, we introduce optimization techniques such as dynamic variable removal and TD selection based on characteristics beyond treewidth. By design, our approach is expected suitable for QBF instances of low-to-medium treewidth and a restricted number of quantifier alternations.

The presented algorithms are implemented in the QBF solver $d y n Q B F^{1}$. We conduct an experimental evaluation along the lines of the 2016 [7] and 2017^{2} QBF competitions. In comparison with state-of-the-art solvers, results show that our approach is particularly competitive on instances with one quantifier alternation. Furthermore, the implementation performs well on instances that exhibit a width of up to 80 , even for instances with more quantifier alternations. Additionally, we observe a large number of instances that is uniquely solved by dynQBF. These observations underline the practical potential of parameterized algorithms in highly competitive domains and we believe that the techniques used in our system (space efficient storage via BDDs, TD selection, etc.) will also prove useful when efficient dynamic programming algorithms for other problems are to be implemented.

This article is structured as follows. In Section 2 we summarize QBF solving techniques and give a special account to related work that considers treewidth. In Section 3 we formally introduce QBFs and tree decompositions. Our core algorithm for QBF solving is presented in Section 4. Subsequently, the algorithm is extended by dependency scheme integration. Towards efficiency in practice, in Section 5 we introduce algorithmic refinements and heuristic optimizations. Section 6 contains our experimental analysis. Finally, correctness of our core algorithm is shown in Appendix A.

This article is a significantly extended version of a paper that appeared in the proceedings of the RCRA'17 workshop [8].

[^1]
2. Related work

Approaches for QBF solving have been intensively investigated in the past 20 years. They are oftentimes based on ideas that were originally developed for SAT solving, but extended with techniques to handle quantification over variables. An overview is given in the survey article by Marin et al. [9].

In a nutshell, solving with expansion proceeds by successively eliminating variables via duplication of the (sub) formula, and replacing the eliminated variable once by true and once by false. Early systems that apply this technique are QUBOS [10] and Quantor [11]. Expansion potentially yields an exponential blow-up in the size of the formula. The solvers AReQS [12] and RAReQS [13] mitigate this problem by applying counter-example guided refinement (CEGAR) [14]: here, the idea is to first consider an abstract representation of the problem instance, and then to gradually refine the abstraction until a solution is obtained. In our approach, which is also expansion-based, we decompose the input instance in order to reduce space requirements during solving.

Search-based QBF solving is based on extensions of the well-known DPLL or CDCL algorithms for SAT solving to handle quantification over variables [15, 16, 17]. CDCL is, for instance, implemented in the QBF solver DepQBF [18]. DepQBF additionally analyzes (in)dependencies between variables [19]. In our approach we also rely on dependency schemes to reduce computational effort and memory consumption. Another search-based solver is GhostQ [20] which introduces ghost variables that help handle existential and universal variables symmetrically, and to efficiently propagate information. There also exists a version of GhostQ that integrates CEGAR-based learning [13]. The solver Qestos is based on ideas presented in [21]. It combines DPLL-based and expansion-based solving techniques, and calls a SAT solver.

The concept most closely related to our approach was developed by Pan and Vardi [22] and implemented in the QBDD system, which relies on BDDs. Variable elimination follows an elimination ordering that also underlies the construction of the tree decomposition in our approach. However, with our explicit approach of dynamic programming on tree decompositions, we gain additional flexibility on the order in which variables are to be eliminated. Similarly, the early BDD-based solver EBDDRES [23] implements an algorithm whose runtime is exponential only in the width of the used elimination ordering. Similar to QBDD, elimination has to follow the variable ordering of the prefix.

Pulina and Taccella studied the relation of treewidth to (empirical) hardness of QBFs [24]. They consider quantified treewidth that is a generalization of primal treewidth (i.e., the treewidth of the primal graph representation of the QBF matrix) by also integrating the variable ordering specified by the QBF prefix (see also [25]). They show that reducing the quantified treewidth by preprocessing consistently improves the performance of solvers [26], and incorporate the idea of quantified treewidth reduction in the (incomplete) solver QuBIS [27]. The solver may either solve the instance, or return a modified QBF whose quantified treewidth is (usually) not larger than the treewidth of the original instance. The solver StruQS [28] dynamically decides between resolution and search during the solving process. Resolution is applied when the treewidth (or an approximation thereof) is relatively small (or, in particular, if the number of clauses resulting from the elimination of a variable is less than the number of clauses it originally occurred in), and search is used otherwise. An analysis of available QBF instance characteristics, such as clause length, number of variables, but also quantified (tree)width is given in [9].

3. Preliminaries

3.1. Quantified Boolean formulae

As usual, a literal is a variable or its negation. A clause is a disjunction of literals. A Boolean formula in conjunctive normal form (CNF) is a conjunction of clauses. We sometimes denote clauses as sets of literals, and a formula in CNF as a set of clauses. Herein, we consider quantified Boolean formulae (QBFs) in closed prenex CNF (PCNF) form.

Definition 3.1. In a PCNF QBF Q. ψ, Q is the quantifier prefix and ψ is a CNF formula, also called the matrix. Q is of the form $Q_{1} X_{1} Q_{2} X_{2} \ldots Q_{k} X_{k}$ where $Q_{i} \in\{\exists, \forall\}$ for $1 \leq i \leq k, Q_{i} \neq Q_{i+1}$ for $1 \leq i<k, Q_{k}=\exists$ and $X=\left\{X_{1}, \ldots, X_{k}\right\}$ is a partition over all variables in ψ. For a variable $x \in X_{l}(1 \leq l \leq k), l$ is the block of x, and $k-l+1$ the depth of x.

We frequently use the following notation: Given a QBF Q. ψ with $\mathrm{Q}=Q_{1} X_{1} \ldots Q_{k} X_{k}$ and an index i with $1 \leq i \leq k$, quantifier ${ }_{\mathrm{Q}}(i)=Q_{i}$ gives the i-th quantifier. For a variable $x, b l o c k_{\mathrm{Q}}(x)$ returns the block of x; $\operatorname{depth}_{\mathrm{Q}}(x)$ returns the depth of x in Q ; and quantifier ${ }_{\mathrm{Q}}(x)=Q_{\text {block }}(x)$ returns the quantifier for x. Finally, for a clause $c \in \psi$, we denote by variables $_{\psi}(c)$ the variables occurring in c. We will usually omit the subscripts whenever no ambiguity arises. For a variable x in a formula ψ, we denote by $\psi[x / \cdot]$ with $\cdot \in\{\top, \perp\}$ the assignment of true (respectively false) to x in ψ.

A PCNF QBF Q. ψ can be decided by expansion of all variables, where a subformula of the form $\exists x \psi^{\prime}$ in Q. ψ is expanded to $\psi^{\prime}[x / \top] \vee \psi^{\prime}[x / \perp]$, and subformula $\forall x \psi^{\prime}$ is expanded to $\psi^{\prime}[x / \top] \wedge$ $\psi^{\prime}[x / \perp]$. Q. ψ is said to be satisfiable (or valid) if the formula resulting from expansion over all variables equals to true.

Example 3.2. As our running example, we will consider the QBF Q. ψ with $\mathrm{Q}=\exists a b \forall c d \exists e f$ and $\psi=(a \vee c \vee e) \wedge(\neg a \vee b) \wedge(\neg b \vee f) \wedge(d \vee \neg e)$, which is valid. For instance, with $a / \top, b / \top$, for any assignment to c and d, there exists an assignment to e and f such that the formula evaluates to true. Note that this example is designed for illustration purposes, hence simplifications (such as pure literal elimination) are not considered.

3.2. Tree decompositions and treewidth

A tree decomposition (TD) [29] is a mapping from a graph to a tree, where each node in the tree decomposition can contain several vertices of the original graph.

Definition 3.3. A tree decomposition of a graph $G=(V, E)$ is a pair $\mathcal{T}=\left(S, b a g_{\mathcal{T}}\right)$ where $S=$ (T, F) is a (rooted) tree with nodes T and edges F, and $b a g_{\mathcal{T}}: T \rightarrow 2^{V}$ assigns to each node a set of vertices, such that:

1. For every vertex $v \in V$, there exists a node $t \in T$ such that $v \in b a g_{\mathcal{T}}(t)$.
2. For every edge $\left(v_{1}, v_{2}\right) \in E$, there exists a node $t \in T$ such that $\left\{v_{1}, v_{2}\right\} \subseteq b a g_{\mathcal{T}}(t)$.
3. For every vertex $v \in V$, the subtree of S induced by $\left\{t \in T \mid v \in b a g_{\mathcal{T}}(t)\right\}$ is connected.

Figure 1. Primal graph G and a possible TD \mathcal{T} of G for the QBF in Example 3.2.

Intuitively, Condition 1 and 2 guarantee that the whole graph is covered by the tree decomposition, and Condition 3 is the connectedness property, which, roughly speaking, states that a vertex cannot "reappear" in unconnected parts (w.r.t. the bags). For a tree decomposition $\mathcal{T}=\left(S, \operatorname{bag}_{\mathcal{T}}\right)$ with $S=(T, F)$ we sometimes write $t \in \mathcal{T}$ instead of $t \in T$ to access a tree decomposition node.

The width of \mathcal{T} is defined as $\max _{t \in \mathcal{T}}\left|b a g_{\mathcal{T}}(t)\right|-1$. The treewidth w of a graph is the minimum width over all its tree decompositions. Given a graph and an integer w, deciding whether the graph has at most treewidth w is NP-complete [30]. However, the problem itself is fpt when w is considered as parameter [31]. Additionally, there exist good polynomial-time heuristics for constructing TDs [32, 33]. Here we consider a special type of tree decompositions.

Definition 3.4. A tree decomposition $\mathcal{T}=\left((T, F), b a g_{\mathcal{T}}\right)$ is weakly normalized, if each $t \in T$ is

- a leaf node (t has no children),
- an exchange node (t has exactly one child t_{1}, such that $\operatorname{bag}_{\mathcal{T}}(t) \neq b a g_{\mathcal{T}}\left(t_{1}\right)$); or
- a join node $\left(t\right.$ has children t_{1}, \ldots, t_{m} such that $m \geq 2$, and $b a g_{\mathcal{T}}(t)=b a g_{\mathcal{T}}\left(t_{1}\right)=\cdots=$ $\left.b a g_{\mathcal{T}}\left(t_{m}\right)\right)$.

Given a tree decomposition $\mathcal{T}=\left(S, b a g_{\mathcal{T}}\right)$ with $S=(T, F)$, for a node $t \in T$ we denote its set of children in S by $\operatorname{children}_{\mathcal{T}}(t)$. We specify firstChild $\mathcal{T}_{\mathcal{T}}(t)$ and $\operatorname{nextChild} \mathcal{T}_{\mathcal{T}}(t)$ to iterate over the children, and hasNextChild $\mathcal{T}^{(}(t)$ to check whether further children exist. The node type is checked with $\operatorname{isLeaf}_{\mathcal{T}}(t)$, isExchange $\mathcal{T}_{\mathcal{T}}(t)$ and $\operatorname{isJoin}_{\mathcal{T}}(t)$. For a node t with single child node t_{1}, changed bag contents are accessed by introduced $_{\mathcal{T}}(t)=b a g_{\mathcal{T}}(t) \backslash b a g_{\mathcal{T}}\left(t_{1}\right)$ and removed $\mathcal{T}(t)=$ $b a g_{\mathcal{T}}\left(t_{1}\right) \backslash b a g_{\mathcal{T}}(t) . i s \operatorname{Roo}_{\mathcal{T}}(t)$ returns true if t has no parent node.

Our algorithm for QBF solving is based on a tree decomposition of the given QBF Q. ψ, which is obtained from the graph $G_{\psi}=(V, E)$ where V are the variables occurring in ψ and each clause in ψ forms a clique in G_{ψ}, i.e. $E=\left\{(x, y) \mid x, y \in\right.$ variables $\left._{\psi}(c), c \in \psi, x \neq y\right\}$ (called primal or Gaifman graph). Given a tree decomposition $\mathcal{T}=\left(S, b a g_{\mathcal{T}}\right)$ of $\mathrm{QBF} \mathrm{Q} . \psi$, for $t \in \mathcal{T}$ we define clauses $_{\mathcal{T}, \psi}(t)=\left\{c \in \psi \mid\right.$ variables $\left._{\psi}(c) \subseteq \operatorname{bag}_{\mathcal{T}}(t)\right\}$. In the following we usually omit subscripts \mathcal{T} and ψ.

Example 3.5. Consider our running example with $\psi=(a \vee c \vee e) \wedge(\neg a \vee b) \wedge(\neg b \vee f) \wedge(d \vee \neg e)$. Figure 1 shows the graph representation G of ψ, and \mathcal{T} is a weakly-normalized TD for G of width 2 .

4. Dynamic programming-based QBF solving

In a nutshell, the algorithm proceeds as follows. Given a QBF instance $Q . \psi$, we heuristically construct a weakly normalized tree decomposition $\mathcal{T}=\left(S, b a g_{\mathcal{T}}\right)$ of the primal graph of ψ. Then, \mathcal{T} is traversed in post-order. For each $t \in \mathcal{T}$ we compute partial solution candidates and store them in a dedicated data structure (called nested set of formulae (NSF), see below). In this context, partial means that the data structure is restricted to variables occurring in $b a g_{\mathcal{T}}(t)$. Candidate refers to the fact that other parts of the QBF might not yet be considered. Intuitively, during traversal of the tree decomposition for variables that are introduced to the bag of the tree decomposition, we add the respective bag-induced clauses to the formulae stored in the NSF. If a variable is removed from the bag it is assigned either T or \perp, representing the step of expansion in traditional expansion-based QBF solvers: the NSF keeps track of the quantifier block the removed variable occurred in and stores different formulae resulting from the variable assignment. At the root node, the whole instance was taken into account and the problem is decided by finally evaluating the quantifiers.

4.1. Data structure

We define nested sets of formulae (NSFs) where the innermost sets contain reduced ordered binary decision diagrams (BDDs) [5]. A BDD compactly represents Boolean formulae in form of a rooted directed acyclic graph (DAG). For a fixed variable ordering, BDDs are canonical, i.e., equivalent formulae are represented by the same BDD, a property that is vital to our approach. Nestings will be used to differentiate between quantifier blocks, and BDDs store parts of the QBF matrix.

Definition 4.1. A nested set of formulae ($N S F$) of depth k is inductively defined over the depth of nestings d with $0 \leq d \leq k$: for $d=0$, the NSF is a BDD; for $1 \leq d \leq k$, the NSF is a set of NSFs of depth $d-1$.

For a QBF Q. ψ with $\mathrm{Q}=Q_{1} X_{1} \ldots Q_{k} X_{k}$ and an NSF N of depth k, for any NSF M appearing somewhere in N we denote by $\operatorname{depth}(M)$ the depth of the nesting of $M, b \operatorname{lock}_{\mathrm{Q}}(M)=$ $k-\operatorname{depth}(M)+1$ is the block of M, and quantifier $\mathcal{Q}(M)=Q_{b l o c k_{Q}(M)}\left(\right.$ for $\left.\operatorname{block}_{\mathrm{Q}}(M) \leq k\right)$. We define the procedure $\operatorname{init}(k, \phi)$ that initializes an NSF of depth k, such that each set contains exactly one NSF, and the innermost NSF represents the propositional formula ϕ. For instance, init $(3, \top)$ returns $\{\{\{\top\}\}\}$. Furthermore, for an NSF N we denote by $N\left[B / B^{\prime}\right]$ the replacement of each BDD B in N by B^{\prime}. For a BDD B, restriction of a variable v is denoted by $B[v / \top]$ or $B[v / \perp]$. Quantification and standard logical operators are applied as usual.

Example 4.2. Suppose we are given an NSF $N=\{\{\{\top, \perp\}\},\{\{\neg a \vee b\},\{\perp\},\{a \wedge b\}\}\}$. In the examples, we will illustrate nested sets as trees where leaves contain the formulae represented by the BDDs. Figure 2 shows the tree representing N together with the one resulting from $N[B / B \wedge c]$.

NSFs can be used to efficiently keep track of parts of the QBF (with respect to the TD), instead of representing the whole QBF instance at once.

Figure 2. Tree representation of example NSF N and $N[B / B \wedge c]$ applied to N (each BDD B is replaced with $B \wedge c$).

Definition 4.3. For a PCNF QBF Q. ψ with k quantifier blocks and a tree decomposition \mathcal{T} of ψ, for a node $t \in \mathcal{T}$ a nested set of formulae (NSF) N_{t} is of depth k and each BDD at depth 0 represents a propositional formula over variables in $b a g_{\mathcal{T}}(t)$.

Internal elements of the NSF have quantifier semantics, as we will show later. Opposed to the similar concept of quantifier trees [34], NSFs are defined as recursive sets in order to automatically remove trivial redundancies. Furthermore, the depth is specified by the number of quantifiers, not by the number of variables. We remark that although CNFs of bounded treewidth can be stored entirely in a BDD of polynomial size, existential quantification can result in an exponential blowup [35]. Our NSFs mitigate this by only storing parts of the QBF's CNF in the BDDs.

4.2. Main procedure

In the following we present our expansion based algorithm for deciding satisfiability of QBFs and provide intuitive arguments for its correctness. The proof is given in Appendix A. Algorithm 1 illustrates the recursive procedure for the post-order traversal of the tree decomposition and computing the partial solution candidates. It is called with the root node of the tree decomposition and returns an NSF that represents the overall solution.

In leaf nodes, an NSF of depth k (i.e., the number of quantifier blocks in the QBF instance) is initialized with the innermost set containing a BDD that represents the clauses associated with the current node. In an exchange node, variables are removed as well as introduced (w.r.t. the contents of the bag). Removed variables are handled by "splitting" the NSF. Procedure $\operatorname{split}(N, x)$ (see Algorithm 2) implements a variant of locally restricted expansion: at the block of x in N, each NSF M contained in N is replaced by two NSFs that distinguish between assignments of x to \perp and \top. Observe that all occurrences of x in the BDDs are removed. This guarantees that the size of each BDD is bounded by the size of the bag. Furthermore, since (reduced ordered) BDDs are canonical and due to set semantics of NSFs, the overall resulting NSF size is bounded by the size of the bag and depth. Removal of variable x from the BDDs is admissible due to the connectedness property of the tree decomposition: x will never reappear somewhere upwards the tree decomposition, and therefore all clauses containing x were already considered. After splitting, the clauses associated with the current node are added to the BDDs of the NSF via conjunction. In join nodes, NSFs computed in the child nodes are successively combined by procedure $\operatorname{join}\left(N_{1}, N_{2}\right)$ (see Algorithm 3). The procedure guarantees that the structure (nesting) of the NSFs to be joined is preserved. BDDs in the NSFs are combined via conjunction, thus already considered information of both child nodes is preserved.

```
Algorithm 1: solve \((t)\)
    Input : A tree decomposition node \(t\)
    Output: An NSF with partial solution candidates for \(t\)
    if \(\operatorname{isLeaf}(t)\) then \(N:=\operatorname{init}(k, \operatorname{clauses}(t))\)
    if isExchange \((t)\) then
        \(N:=\operatorname{solve}(\) firstChild \((t))\)
        for \(x \in \operatorname{removed}(t)\) do \(N:=\operatorname{split}(N, x)\)
        \(N:=N[B / B \wedge \operatorname{clauses}(t)]\)
    if \(\operatorname{isJoin}(t)\) then
        \(N:=\operatorname{solve}(\) firstChild \((t))\)
        while hasNextChild ( \(t\) ) do
                \(M:=\operatorname{solve}(\operatorname{nextChild}(t))\)
                \(N:=\operatorname{join}(N, M)\)
        end
    if \(\operatorname{isRoot}(t)\) then \(N:=\) evaluate \(Q(t, N)\)
    return \(N\)
```

```
Algorithm 2: \(\operatorname{split}(N, x)\)
    Input : An NSF \(N\) and a variable \(x\)
    Output: An NSF split at block \((x)\) w.r.t. assignments to \(x\)
    if \(\operatorname{block}(N)=\operatorname{block}(x)\) then return \(\{M[B / B[x / \perp]], M[B / B[x / \top]] \mid M \in N\}\)
    else return \(\{\operatorname{split}(M, x) \mid M \in N\}\)
```

```
Algorithm 3: \(\operatorname{join}\left(N_{1}, N_{2}\right)\)
    Input : NSFs \(N_{1}\) and \(N_{2}\) of same depth
    Output: A joined NSF
    if \(\operatorname{depth}\left(N_{1}\right)=0\) then return \(N_{1} \wedge N_{2}\)
    else return \(\left\{\operatorname{join}\left(M_{1}, M_{2}\right) \mid M_{1} \in N_{1}, M_{2} \in N_{2}\right\}\)
```

So far, quantifiers were not taken into account. In the basic algorithm they are only considered in the root node r of the tree decomposition, where the problem is decided by applying quantifier elimination as shown in Algorithm 4. Our approach is similar to that described by Pan and Vardi [22], but restricted to the bag contents and quantifiers are recursively evaluated over the nestings. Procedure evaluate $Q(r, N)$ combines the elements of the NSF by disjunction (for existential quantifiers) or conjunction (for universal quantifiers), starting at the innermost NSFs. Thereby, variables contained in the current bag are removed by quantified abstraction (i.e., they get existentially or universally quantified). Thus, this procedure finally returns a single BDD B without variables. If $B \equiv \perp$, the QBF is invalid, otherwise it is valid.

```
Algorithm 4: evaluate \(Q(t, N)\)
    Input : A tree decomposition node \(t\) and an NSF \(N\)
    Output: A BDD \(B\) of \(N\) after evaluation of quantifiers
    if \(\operatorname{depth}(N)=0\) then \(B:=N\)
    else
        \(X:=\{x \mid x \in \operatorname{bag}(t)\) and \(\operatorname{block}(x)=\operatorname{block}(N)\}\)
        if quantifier \((N)=\exists\) then \(B:=\exists X \bigvee_{M \in N}\) evaluate \(Q(t, M)\)
        else \(B:=\forall X \bigwedge_{M \in N}\) evaluate \(Q(t, M)\)
    return \(B\)
```

Example 4.4. Figure 3 shows the NSFs computed at the tree decomposition nodes of our running example (without quantifier evaluation at the root node). In t_{1}, an NSF of depth 3 is initialized with $(\neg b \vee f)$, i.e., the clause induced by $\operatorname{bag}\left(t_{1}\right)$. In t_{2}, variable f is removed. Hence the NSF is split at block $(f)=3$, once by setting f to \perp (left NSF branch) yielding $\neg b$, and once by \top (right branch), yielding \top. In t_{3}, clause $(\neg a \vee b)$ is added to these BDDs via conjunction, giving $\{\{\{\neg a \wedge \neg b,(\neg a \vee$ $b)\}\}\}$. In t_{4}, b is removed and c, e are introduced. The NSF is split at $\operatorname{block}(b)=1$. Additionally, induced clause ($a \vee c \vee e$) is conjoined with the BDDs. The algorithm proceeds similarly for nodes t_{5} and t_{6}. In t_{7}, the NSFs are joined. For instance, the leftmost branches in t_{4} and t_{6} are joined by

Figure 3. NSFs at the decomposition nodes of the running example.

Figure 4. (Intermediate) results for evaluate $Q\left(t_{7}, N\right)$ executed on the NSF of root node t_{7}.
conjunction of $\neg a \wedge(c \vee e)$ and $\neg e \wedge(a \vee c)$, yielding $\neg a \wedge \neg e \wedge c$. The second branch in t_{7} stems from the leftmost branch in t_{4} joined with the right branch in t_{6}. Joining proceeds for all branches in the NSFs, thereby taking into account the nestings in the NSFs. Figure 4 shows the NSF N in root node t_{7} together with the BDDs obtained recursively when applying evaluate $Q\left(t_{7}, N\right)$. The procedure returns T, as the QBF from Example 3.2 is valid.

4.3. Dependency schemes

Quantifiers introduce dependencies between variables. Let x and y be variables of the QBF , and assume that y is dependent on x. Then, the assignment to y is dependent on the assignment to x [36] (i.e., reordering x and y in the prefix changes satisfiability). So far, when a variable is removed splitting is applied to distinguish between variable assignments. With this, even if x is removed before y, we implicitly keep track of these assignments in our NSF data structure. Hence, when y is removed later, its dependency on x is accounted for, and our algorithm remains sound. However, if all variables dependent on x were already removed, the distinction between assignments is not necessary. We considered several dependency schemes (for details, see e.g., [6]). Let $Q . \psi$ be a PCNF QBF with k quantifier blocks and x, y be variables of $Q . \psi$. Then $(x, y) \in D_{Q . \psi}^{S}$ w.r.t. dependency scheme $S \in\{$ naive, simple, standard $\}$ if:

1. naive: $\operatorname{block}(x)<k$;
2. simple: $\operatorname{block}(x)<\operatorname{block}(y)$; and
3. standard: $\operatorname{block}(x)<\operatorname{block}(y)$, quantifier $(x) \neq$ quantifier (y) and there is an X-path from x to y for some $X \subseteq\left\{z \mid z \in X_{i}, \operatorname{block}(x)<i \leq k\right.$, quantifier $\left.(z)=\exists\right\}$. An X-path is a sequence c_{1}, \ldots, c_{l} of clauses in ψ, s.t. $x \in c_{1}, y \in c_{l}$ and $c_{j} \cap c_{j+1} \cap X \neq \emptyset$ for $1 \leq j<l$ (see [37] for details).

We denote by dependent ${ }_{Q . \psi}^{S}(x)=\left\{y \mid(x, y) \in D_{Q . \psi}^{S}\right\}$ the set of variables that are dependent on x in $Q . \psi$ w.r.t. S. Towards our adapted algorithm, for a tree decomposition node t of \mathcal{T}, we recursively define by removedSub $\mathcal{T}_{\mathcal{T}}(t)=$ removed $_{\mathcal{T}}(t) \cup \bigcup_{t^{\prime} \in \text { children }_{\mathcal{T}}(t)} \operatorname{removedSu}_{\mathcal{T}}\left(t^{\prime}\right)$ the set of removed variables in the subtree of \mathcal{T} rooted at t. Let removedBelow $\mathcal{T}(t)=\operatorname{removedSub}_{\mathcal{T}}(t) \backslash$ removed $_{\mathcal{T}}(t)$ be the variables removed below t in \mathcal{T}. In Algorithm 1, $\operatorname{split}(M, x)$ is replaced with S-dependentSplit (t, N, x) (see Algorithm 5). If all variables dependent on x were already removed, x is removed by quantified abstraction. Otherwise, the standard $\operatorname{split}(N, x)$ procedure is called.

```
Algorithm 5: \(S\)-dependentSplit \((n, N, x)\)
    Input : Tree decomposition node \(n\), NSF \(N\), variable \(x\)
    Output: An NSF with abstracted or split \(x\)
    if dependent \({ }^{S}(x) \subseteq\) removedBelow \((n)\) then
        if quantifier \((x)=\exists\) then return \(N[B / \exists x B]\)
        if quantifier \((x)=\forall\) then return \(N[B / \forall x B]\)
    else return \(\operatorname{split}(N, x)\)
```

Example 4.5. The NSF at node t_{2} of Figure 3 reduces to $\{\{\{T\}\}\}$ (for all considered dependency schemes). Furthermore, we have $D_{Q \cdot \psi}^{\text {standard }}=\{(a, c),(a, d),(c, e),(d, e)\}$. Since dependent $(b)=$ $\left\}, b\right.$ can be existentially abstracted in t_{4}. However, in t_{6}, d must be split, since dependent $(d)=$ $\{e\} \nsubseteq$ removedBelow $\left(t_{6}\right)=\{ \}$.

We remark that for all considered dependency schemes variables at the innermost quantifier block can be removed by quantified abstraction. Hence our algorithms can be simplified, as the NSFs at depth 1 always only contain a single BDD. In particular, for 2-QBFs (i.e. instances of the form $\forall X_{1} \exists X_{2} . \psi$) the general NSF data structure could then be replaced by just a set of BDDs. Furthermore, we observed that in almost all $2-\mathrm{QBF}$ instances (used in Section 6) variables in the second quantifier block are dependent on those in the first block. In practice, for 2-QBFs we thus always apply the easily computable naive dependency scheme. For other instances standard turned out to be superior to simple and naive.

5. Towards efficiency in practice

Here we discuss several refinements for our algorithm that are necessary in order to make it useful in practice.

Clause splitting. Given a QBF $Q . \psi$, we construct a tree decomposition of width w for the primal graph of ψ. Due to Conditions 2 and 3 of Definition 3.3, $w \geq \max _{c \in \psi}|c|-1$ holds, i.e., the size of the largest clause gives a lower bound for w. To reduce this bound, we apply clause splitting, which is a standard technique implemented in many QBF solvers and preprocessors: a fresh variable is added (once positively, once negatively) to the parts of a split clause, and quantified existentially in the innermost quantifier block. Experiments preceding this work reveal that splitting clauses larger than 30 yields good results, without introducing too many additional variables.

Tree decomposition selection. It was shown that tree decomposition characteristics besides width play a crucial role in practice [38]. In 2-QBF instances usually most computational effort is required for joining the NSFs. We consider the number of children in join nodes $j \operatorname{Nodes}(\mathcal{T})$ which is given as

$$
j \operatorname{joinChildCount}(\mathcal{T})=\sum_{j \in j \operatorname{Nodes}(\mathcal{T})}\left|\operatorname{children}_{\mathcal{T}}(j)\right|
$$

```
Algorithm 6: removeRedundant \((N)\)
    Input : An NSF \(N\)
    Output: An NSF without supersets
    if \(\operatorname{depth}(N)>1\) then
        for \(M \in N\) do \(M:=\) removeRedundant( \(M\) )
        for \(M_{1}, M_{2} \in N\) and \(M_{1} \neq M_{2}\) do
            if \(M_{1} \subset M_{2}\) then \(N:=N \backslash\left\{M_{2}\right\}\)
        end
    else
        for \(M_{1}, M_{2} \in N\) and \(M_{1} \neq M_{2}\) do
            if quantifier \((N)=\exists\) and \(M_{1} \vee M_{2}=M_{1}\) then \(N:=N \backslash\left\{M_{2}\right\}\)
            if quantifier \((N)=\forall\) and \(M_{1} \wedge M_{2}=M_{1}\) then \(N:=N \backslash\left\{M_{2}\right\}\)
        end
    return \(N\)
```

Additionally, we consider the following tree decomposition characteristic. Variable dependencies can be exploited more efficiently if the variables are removed in the TD from the innermost to the outermost quantifier block. For a tree decomposition node t and block b, let removedBelowBlock $\mathcal{T}, Q(t, b)=$ $\left\{r \mid r \in \operatorname{removedBelow}_{\mathcal{T}}(t)\right.$ and block $\left._{\mathrm{Q}}(r)<b\right\}$. Then,

$$
\operatorname{removalBelow}(\mathcal{T}, \mathrm{Q})=\sum_{t \in T} \sum_{r \in \text { removed }_{\mathcal{T}}(t)} \mid \operatorname{removedBelowBlock}_{\mathcal{T}, \mathrm{Q}}(t, \text { block }(r)) \mid
$$

We construct several tree decompositions (using the min-fill heuristics [33]) and then select the one minimizing joinChildCount (\mathcal{T}) (for 2-QBFs) or $\operatorname{removalBelow}(\mathcal{T}, \mathrm{Q})$ (for instances with more quantifier blocks). We observe that 10 decompositions are sufficient to increase performance, despite the additional effort in the decomposition step.

Redundant NSF removal. Two BDDs in the same nesting of an NSF are redundant if they are in a subset relation w.r.t. the represented models (which is similar to subsumption checking [11]), or if two NSFs in the same nesting are in a subset relation. Algorithm 6 gives the pseudo-code for removing unnecessary elements ${ }^{3}$. Since the procedure includes a recursive comparison of all NSFs, checking for redundant NSFs is expensive. Nevertheless, periodic checks are required to circumvent an explosion in size in join nodes.

Example 5.1. Figure 5 shows an NSF N before and after removeRedundant (N). For instance, consider the leftmost branch of the NSF at depth 1, i.e. $N_{1}=\{\perp, \neg a\}$. Since quantifier $\left(N_{1}\right)=\exists$ and $\perp \vee \neg a \equiv \neg a, \perp$ is removed. At depth 2 , we subsequently have $\{\{\neg a\},\{\neg a, c\}\}$. Since $\{\neg a\} \subseteq\{\neg a, c\},\{\neg a, c\}$ is removed.

[^2]

Figure 5. Example NSF before (left) and after (right) compression.

Intermediate unsatisfiability checks. Procedure evaluate $Q(t, N)$ can be applied to any NSF during the tree decomposition traversal. If it returns \perp, the QBF is invalid. However, if it returns \top, the QBF might still be invalid due to clauses that are encountered later in the traversal. In our setting, the overhead for these checks is negligible. Additionally, in order to remove unnecessary nestings, evaluate $Q(t, N)$ can be adapted as follows: if the evaluation of quantifiers yields a BDD that represents \perp anywhere during the recursive NSF traversal, the respective NSF substructure is replaced by an NSF of the same depth that only contains a single BDD \perp.

Estimated NSF size (removal caching). For a node t of decomposition \mathcal{T}, let $\operatorname{sizeNSF}(t)$ be the number of BDDs in the NSF N computed at node t, and $\operatorname{maxSize} B D D(t)$ be the size of the largest BDD in N. The size of a BDD is determined by the number of nodes in the DAG of the BDD. size $N S F(t)$ can be kept small by delaying splitting of removed variables. Instead, the variable is stored in a cache for later removal. However, this usually increases $\operatorname{maxSize} B D D(t)$ (since the variable is not removed from the BDDs), and the size of BDDs is no longer bounded by the bag size. Hence, NSF and BDD sizes have to be carefully balanced.

BDD variable ordering. The size of a BDD can be worst-case exponential in the number of variables. Nontheless, in practice the size may be exponentially smaller, in particular in case a "good" variable ordering is applied [39]. Since finding an optimal variable ordering is in general NP-hard [5], BDD-internal heuristics for finding such a good ordering can be used. For our purposes, we initialize the ordering with the occurrence of variables in the instance (which usually implies that the ordering corresponds to that of the QBF prefix), and apply dynamic reordering during the computation via lazy sifting [40].

Example 5.2. Solving-related optimizations in combination with dependency schemes are illustrated in Figure 6. It shows the NSFs computed at the tree decomposition nodes with the following optimizations enabled: the naive dependency scheme is used (its application is marked in the figure with $D_{Q . \psi}^{\text {naive }}$), compression is applied by removing subset-related redundancies (marked with \subset) and unsatisfiable NSFs (identified during quantifier evaluation) are replaced with an NSF containing \perp (marked with evalQ). The elements removed due to our optimizations are denoted in gray and with dashed lines. Naturally, these simplifications propagate to NSFs upwards in the tree decomposition and thus their size is also reduced. Compared to Figure 3, observe that due to the naive dependency scheme, the sets at depth 1 of the nestings only contain a single BDD. For instance, in t_{2} BDD $\neg b$ is not explicitly computed due to $D_{Q . \psi}^{\text {naive }}$. Furthermore, by considering dependency scheme integra-

Figure 6. NSFs at the decomposition nodes of the running example, including optimizations (marked in gray, with dashed lines).
tion, comparison of models in BDDs is shifted to NSFs of depth 2 . Consider the NSF in t_{6}. Originally, we have $\{\{\{\neg e \wedge(a \vee c)\},\{(a \vee c \vee e)\}\}\}$. Since the quantifier at depth 2 is universal, and $(\neg e \wedge(a \vee c)) \wedge(a \vee c \vee e)$ corresponds to $(\neg e \wedge(a \vee c))$, the right branch in this NSF can be removed, yielding $\{\{\{\neg e \wedge(a \vee c)\}\}\}$. Now, consider node t_{7}, and the NSF at level 2 on the left branch, which is $\{\{\neg a \wedge \neg e \wedge c\}\}$. evaluate $Q\left(t_{7},\{\{\neg a \wedge \neg e \wedge c\}\}\right)$ returns \perp, hence this NSF is replaced by $\{\{\perp\}\}$.

6. Experimental evaluation

The presented algorithms are implemented in the $d y n Q B F$ system, which is freely available (including source code and binaries) at https://github.com/gcharwat/dynqbf. dynQBF relies on HTD [41] for tree decomposition construction, CUDD [40] for BDD management, and optionally DepQBF [19] for computing the standard dependency scheme.

We first study the impact of dependency schemes and optimizations as described in Sections 4.3 and 5. Then we compare dynQBF to state-of-the-art systems that successfully participated in the official 2016 and 2017 QBF competitions. All experiments were run once (per solver or configuration) on each instance using a fixed seed. Tests were performed on a single core of an Intel Xeon E5-2637 $(3.5 \mathrm{GHz})$ running Debian 8.3 , with a memory limit of 16 GB . For our analysis of optimizations we set the time limit to 6 minutes. In the system comparison each run was limited to 10 minutes.

6.1. Impact of optimizations

In this section we analyze the dynQBF-internal optimization strategies with respect to their effect on the number of solved instances and overall runtime. The goal is to illustrate the impact of optimizations and to identify approaches that may also be beneficial for tree decomposition-based algorithms in other problem domains. We considered the following two data sets: $2-Q B F$ ' 10 : This is the $2-\mathrm{QBF}$ data set ${ }^{4}$ used in the QBF Evaluation 2010, which consists of 200 instances. PCNF' 14 : This data set contains the PCNF instances ${ }^{5}$ of the QBF Gallery 2014 competition, comprising of 345 instances. We compare dynQBF (version v1.0.0-final) with variants where in each variant one particular optimization is disabled. The following configurations are considered.

- default: All optimizations are enabled, and configured as released in dynQBF 1.0.0-final.
- w/o TD selection: Tree decomposition selection is disabled (i.e., only one TD is constructed).
- w/o clause splitting: Splitting of clauses with more than 30 literals is disabled.
- naive dependency scheme (applies only to the PCNF'14 instances): the naive dependency scheme is applied instead of the standard dependency scheme.
- w/o variable reordering: Dynamic BDD variable reordering is disabled.
- w/o removal cache: The removal cache is disabled. Due to the concepts underlying dynQBF, the naive dependency scheme is used for all instances.
- single TD node: A trivial tree decomposition with a single node containing all variables is used.

Tables 1 and 2 summarize details on the instances under consideration. We report the average number of atoms, clauses, and the measured width for all instances, as well as for solved instances. For the latter also the number of instances solved is given. Furthermore, for the PCNF' 14 instances (Table 2) we report the average number of quantifier blocks. "All instances" is measured after clause

Table 1. 2-QBF' 10: dynQBF variants comparison details. For each configuration, the table shows the average number of atoms, clauses, and width for all 200 instances, and for the solved instances. \# gives the number of solved instances.

	All instances			Solved			
Configuration	atoms	clauses	width	\#	atoms	clauses	width
default	2552	8044	56	142	1984	6283	45
w/o TD selection	2552	8044	56	135	1902	7101	46
w/o cl. splitting	2535	8028	172	124	1818	5943	48
w/o var. reordering	2552	8044	56	84	1656	5717	28
w/o rem. cache	2552	8044	56	70	1109	3525	24
single TD node	2552	8044	2551	40	390	1236	389

[^3]Table 2. PCNF' 14: dynQBF variants comparison details. For each configuration, the table shows the average number of atoms, clauses, quantifier blocks, and width for all 305 instances, and for the solved instances. \# gives the number of solved instances.

	All instances					Solved				
Configuration	atoms	clauses	blocks	width	$\#$	atoms	clauses	blocks	width	
default	21457	78019	14.7	167	92	3819	11062	12.8	45	
w/o cl. splitting	21147	77710	14.7	312	92	3855	10913	12.8	48	
w/o TD selection	21457	78019	14.7	194	90	3910	11345	12.9	47	
naive dep. scheme	21457	78019	14.7	167	67	5476	14728	5.7	51	
w/o var. reordering	21457	78019	14.7	167	61	3937	12501	18.9	40	
w/o rem. cache	21457	78019	14.7	167	24	6107	17918	8.5	34	
single TD node	21457	78019	14.7	21456	15	635	2124	24.1	634	

splitting (if applied). Furthermore, we remark that the average width is aggregated only over instances that could be decomposed within the time limit.

Figures 7 and 8 contain cactus plots of the obtained results: for each configuration, solved instances are sorted by the required runtime.

Figure 7. 2-QBF' 10: dynQBF variants comparison. The cactus plot shows dynQBF with all optimizations enabled (default), and single features disabled.

Analysis. We highlight here the most important observations from the obtained data. w/o TD selection: Despite optimizing removedBelow for instances with more than one quantifier alternation (and joinChildCount for the other instances), in the PCNF' 14 data set we also observed an overall reduction in width when tree decomposition selection is enabled.

Figure 8. PCNF' 14: dynQBF variants comparison. The cactus plot shows dynQBF with all optimizations enabled (default), and single features disabled.
w/o clause splitting: In both data sets, clause splitting only marginally increases the average number of atoms and clauses. However, the average width is drastically reduced in both cases. For the 2-QBF' 10 data set we observe that clause splitting has a larger impact on the overall performance, while in the PCNF' 14 data set the performance is almost the same.
naive dependency scheme: In the PCNF' 14 data set, 65 out of 67 instances were also solved in the default configuration. One can see that integration of the standard dependency scheme improves the performance on instances with a larger number of quantifier blocks.
w/o variable reordering: From the results it becomes apparent that dynamic variable reordering is an important ingredient for keeping the BDDs compact, despite the additional computational effort for reordering. While we observe again a high average number of quantifier blocks for solved instances in the PCNF' 14 data set, 54 out of 61 instances where also solved in the default configuration.
w/o removal cache: Without caching variables have to be removed immediately from the BDDs, potentially yielding larger NSFs (despite smaller BDDs). Additionally, for the PCNF' 14 instances, the naive dependency scheme is applied (due to implementation restrictions), which could, as a side effect, explain the lower average number of quantifier blocks in solved instances. Overall, from results it becomes immanent that removal caching is beneficial for performance in our implementation.
single TD node: The large number of variables to be handled at once (which is also reflected by the reported width) explains the low number of solved instances in this setting. The BDD of the NSF computed at the single tree decomposition node stores the whole QBF matrix before the variables are removed by quantified abstraction. Results show that our decomposition-based approach is clearly beneficial to simple expansion (as applied when only using a single tree decomposition node). Besides that, interestingly, in the PCNF' 14 data set we measure an average of 24.1 quantifier blocks for solved instances. However, all of these instances were also solved in the default configuration.

6.2. System comparison

We conducted experiments along the lines of the official 2016 and 2017 QBF competitions (QBFEval'16 [7], QBFEval' 17 (http://www.qbflib. org/qbfeval17.php)). We considered systems that participated in the respective competition based on public availability and good ranking in the competition. Instances under consideration are from the 2-QBF and PCNF competition tracks. Since preprocessing oftentimes influences performance, we evaluated the plain systems (i.e., without explicit, pipelined preprocessing) both on the original instances as well as on the instances resulting from preprocessing with Bloqqer 37 [42]. Additionally, we studied the impact of width on the performance of the solvers.

In the following, we report on the number of solved, solved valid (T) and invalid (\perp) instances. The stated time is the accumulated user time in thousands of seconds (K), including a penalty of 10 minutes per instance that is not solved. Additionally, we give the number of instances uniquely solved by a single system (U). dynQBF was run with one random, fixed seed. However, the performance is influenced by the heuristically constructed tree decomposition. To gain an insight into the potential of our current implementation, we also provide a virtual best dynQBF analysis over 10 seeds (each running for up to 10 minutes). Best of 10 (Bol0) reports the number of instances solved in any of the 10 runs, as well as the minimum time required, and average of 10 (Ao10) reports the average case.

6.2.1. QBFEval'16 Benchmark setting

In this setting we compare the following systems: the 2-QBF solver AReQS (20160702) [12]; the search-based solvers DepQBF 5.0.1 [19] and GhostQ (CEGAR 2016) [13]; the expansion-based system RAReQS 1.1 [13]; CAQE 2 [43] that relies on variable level-based decomposition; as well as Questo 1.0 [44] and QSTS (2016) [45] that use SAT solvers. dynQBF is tested in version 1.0.0. We consider the 305 2-QBF' 16^{6} and 825 PCNF' 16^{7} competition instances.

2-QBF'16. Table 3 shows that in this setting our system is competitive on 2-QBF instances. Regarding the original instances, only the 2-QBF solver AReQS performed better. When considering 10 different seeds, Bol0 indicates that there is still potential for our feature-based tree decomposition selection. With preprocessing, 130 out of 305 instances were directly solved by Bloqqer. Qesto and RAReQS benefited the most from preprocessing. Overall, dynQBF is particularly strong on valid instances. Additionally, we report on a large number of uniquely solved instances. For the original data set, they mostly stem from QBF encodings for ranking functions ("rankfunc*"). Interestingly, after preprocessing we observed that 43 instances from the area of formal verification ("stmt*") were uniquely solved.

To study the influence of treewidth on solving, we considered the 175 preprocessed instances that were not solved directly by Bloqqer. Since computing the exact treewidth is infeasible, we used HTD [41] to heuristically obtain an over-approximation. In Table 4, the data set is partitioned based on the computed width w. Here, the influence of the width on the performance of dynQBF becomes apparent.

[^4]Table 3. 2-QBF' 16: System comparison for the original (left) and preprocessed (right) instances.

2-QBF' 16 (original)				2-QBF' 16 (preprocessed)			
System	Solved Time	T	$\perp \mathrm{U}$	System	Solved Time	T	$\perp \mathrm{U}$
AReQS	181 79K	126	550	Qesto	23650 K	160	760
dynQBF	170 86K	140	3013	RAReQS	232 51K	161	71
GhostQ	156 98K	108	480	dynQBF	22153 K	172	4943
DepQBF	120 116K	55	6511	DepQBF	221 56K	143	781
QSTS	97 132K	60	378	QSTS	220 58K	162	582
Qesto	78 140K	47	312	CAQE	204 65K	153	510
RAReQS	70 142K	44	260	AReQS	202 66K	141	610
CAQE	57 151K	35	221	GhostQ	151 95K	123	280
dynQBF Bo10	203 68K	154	49	dynQBF Bo10	225 49K	172	53
dynQBF Aol0	169.9 86K	41.5		dynQBF Aol0	221.253 K	71.0	

Table 4. 2-QBF' 16 (preprocessed, non-trivial): Influence of width w on the system performance.

$w \leq 80$		(86 instances)	$w>80(89$ instances)		
System	Solved	Time	System	Solved	Time
dynQBF	79	6 K	RAReQS	69	17 K
DepQBF	41	28 K	QSTS	69	18 K
Qesto	39	31 K	Qesto	67	19 K
RAReQS	33	34 K	DepQBF	50	28 K
CAQE	28	36 K	AReQS	47	28 K
AReQS	25	38 K	CAQE	46	29 K
QSTS	21	40 K	dynQBF	12	47 K
GhostQ	9	47 K	GhostQ	12	49 K

PCNF'16. Results for the PCNF' 16 data set are summarized in Table 5. The obtained data confirms that dynQBF is indeed sensitive to the number of quantifier blocks (k). For the original instances we measured an average k of 17, and 14.8 for instances solved by dynQBF. 75 instances have 2 (or less) quantifier blocks, of which dynQBF solved the most instances (55). Of the 391 instances with $k=3$, dynQBF solved 142 instances, while the best solver here is GhostQ with 299 instances. Of the 359 instances with $k>3$, dynQBF solved 168 instances, but GhostQ solved 256 instances. With preprocessing, 341 instances were solved by Bloqqer. Interestingly, all solvers except GhostQ benefited from preprocessing. Regarding the impact of quantifiers on the performance of dynQBF we obtained a similar picture as for the original instances. Overall, we again observed several instances uniquely solved by dynQBF. As in the 2-QBF setting, we considered the width w of the preprocessed, non-trivial instances. Table 6 again shows that dynQBF performed well on instances where $w \leq 80$: here, k is 4.9 for all instances on average, and 3.7 for instances solved by dynQBF.

Table 5. PCNF'16: System comparison for the original (left) and preprocessed (right) instances.

Original				Preprocessed			
System	Solved Time	T	$\perp \mathrm{U}$	System	Solved Time	T	$\perp \mathrm{U}$
GhostQ	592 153K	300	29214	RAReQS	633 126K	301	33214
QSTS	548 173K	276	27213	Qesto	618 134K	298	3201
DepQBF	436242 K	188	24814	DepQBF	596144 K	296	3007
CAQE	399 268K	182	217	QSTS	592 149K	294	2983
Qesto	368 287K	159	209	CAQE	589 155K	295	2941
dynQBF	365 291K	184	18114	GhostQ	571 161K	293	2781
RAReQS	338 299K	129	209	dynQBF	494 203K	239	25521
dynQBF Bol0	421 259K	212	209	dynQBF Bol0	515 193K	249	266
dynQBF Aol0	365.5 292K	84.6	80.9	dynQBF Ao10	494.8 202K	39.1	55.7

Table 6. PCNF' 16 (preprocessed, non-trivial): Influence of width w on the system performance.

$w \leq 80$		$(182$ instances $)$	$w>80$		
System	Solved	Time	System	Solved	Time
RAReQS	137	28 K	RAReQS	155	98 K
dynQBF	134	32 K	Qesto	148	100 K
Qesto	129	34 K	DepQBF	131	108 K
DepQBF	124	36 K	CAQE	129	114 K
QSTS	123	37 K	QSTS	128	112 K
CAQE	119	40 K	GhostQ	112	120 K
GhostQ	118	41 K	dynQBF	19	171 K

6.2.2. QBFEval' 17 Benchmark setting

To evaluate whether dynQBF performs similarly in further settings, and to compare how it competes with most recent QBF solvers, we additionally conducted experiments along the lines of the 2017 QBF competition. In this evaluation we considered the following systems, with potentially updated binaries compared to the 2016 competition. In case no version information is available, the download date is given in brackets: For QSTS 2016 [45] and RAReQS 1.1 [13] the same binaries were used as in the QBFEval' 16 comparison. For GhostQ (CEGAR, 2017-07-26) [13], CAQE 2017 [43] and DepQBF 6.03 [19] updated binaries were available. Additionally, we considered AIGSolve (2017-09-27) [46] which is based on And-Inverter-Graphs; QELL (2017-09-28) [47] that implements clause learning and relies on SAT solving techniques; and Qute (2017-09-26) [48] that is based on dependency learning. dynQBF is tested in version 1.0.2. Compared to version 1.0.0 as used in the 2016 comparison, it includes minor improvements and optimized default parameters. The 2-QBF' 17 dataset contains 384 instances, and the PCNF' 17 dataset comprises of 523 instances ${ }^{8}$.

[^5]Table 7. 2-QBF' 17: System comparison for the original (left) and preprocessed (right) instances.

2-QBF' 17 (original)				2-QBF' 17 (preprocessed)		
System	Solved Time	T	$\perp \mathrm{U}$	System	Solved Time T	$\perp \mathrm{U}$
GhostQ	243 93K	138	10525	CAQE	231 100K 140	91
AIGSolve	204 116K	141	6322	QELL	231 104K 136	953
dynQBF	115 169K	80	352	QSTS	231 105K 151	80
QELL	102 175K	40	62	RAReQS	224 105K 135	892
QSTS	79 192K	37	42	dynQBF	199 115K 136	6339
DepQBF	74 191K	21	53	DepQBF	188 123K 108	80
CAQE	56 200K	15	41	AIGSolve	158 139K 106	52
RAReQS	56 200K	26	30	Qute	157 137K 91	66
Qute	20219 K	4	16	GhostQ	143149 K 93	$50 \quad 0$
dynQBF Bol0	159 147K		55	dynQBF Bol0	209 107K 139	70
dynQBF Aol0	114.8 169K	82.2	32.6	dynQBF Aol0	198.9 115K 134	

2-QBF'17. Table 7 summarizes our results for the QBFEval' 17 instances. The updated version of GhostQ performed particularly well on the original dataset. One reason may be that GhostQ implements internal preprocessing: the 2017 version features reverse engineering of the PlaistedGreenbaum transformation in order to reconstruct structure. The latter is often applied in order to transform instances to PCNF [49]. The second-ranked solver AIGSolve internally implements standard techniques for QBF preprocessing, such as unit propagation, subsumption checking, for-all reduction and equivalence reduction [46], which is obviously beneficial for solving. Regarding the preprocessed dataset, Bloqqer directly solved 120 out of 384 instances. Except for GhostQ and AIGSolve, all compared solvers benefited from preprocessing by Bloqqer. It may be the case that those two systems are tailored towards their own preprocessing, and that required structural information is

Table 8. 2-QBF' 17 (preprocessed, non-trivial): Influence of width w on the system performance.

$w \leq 80$		$(82$ instances $)$			$w>80(182$ instances $)$		
System	Solved	Time	System	Solved	Time		
dynQBF	65	13 K	QSTS	100	62 K		
CAQE	28	34 K	QELL	85	66 K		
QELL	26	37 K	RAReQS	84	65 K		
DepQBF	23	37 K	CAQE	83	66 K		
RAReQS	20	40 K	DepQBF	45	86 K		
Qute	17	40 K	AIGSolve	26	95 K		
AIGSolve	12	43 K	GhostQ	20	101 K		
QSTS	11	43 K	Qute	20	98 K		
GhostQ	3	48 K	dynQBF	14	102 K		

Table 9. PCNF' 17: System comparison for the original (left) and preprocessed (right) instances.

PCNF' 17 (original)			PCNF' 17 (preprocessed)		
System	Solved Time	T \perp U	System	Solved Time	T \perp U
AIGSolve	245178 K	7517039	RAReQS	241180 K	691725
QELL	188 210K	53135	CAQE	231 185K	76155
GhostQ	183 214K	6611711	QELL	230184 K	67163
CAQE	160 227K	381223	AIGSolve	208 197K	6414421
RAReQS	156228 K	28128	QSTS	195 204K	56139
QSTS	140 235K	33107	DepQBF	173 218K	61112
DepQBF	135 240K	$40 \quad 9513$	GhostQ	153 228K	5895
Qute	91 263K	1279	Qute	140 233K	40100
dynQBF	62 281K	$\begin{array}{llll}31 & 31 & 2\end{array}$	dynQBF	137 236K	518620
dynQBF Bo10	88 270K	4345	dynQBF Bo10	154 226K	5896
dynQBF Aol0	61.7 281K	30.830 .9	dynQBF Ao10	135.3 236K	5.484 .9

disguised by Bloqqer. Similar to our results for the QBFEval' 16 benchmark setting, dynQBF performed very well on 2-QBF instances. Additionally, for the preprocessed instances we again report a very large number of uniquely solved instances. Finally, Table 8 confirms the impact of width on the solving performance of dynQBF.

PCNF'17. Results for the PCNF' 17 dataset are given in Table 7. Overall dynQBF solved less instances than the best-performing systems that participated in QBFEval'17. On the original instances, the average number of quantifier blocks (k) is 27.2 (showing an increase compared to PCNF' 16 , where $\operatorname{avg}(k)=17$). The 62 instances solved by dynQBF have an average k of 7.2. Preprocessing by Bloqqer directly solved 74 instances. The remaining instances have 9.8 blocks on average. Here, instances

Table 10. PCNF' 17 (preprocessed, non-trivial): Influence of width w on the system performance.

$w \leq 80$		$(110$ instances)	$w>80$		
System	Solved	Time	System	Solved	Time
CAQE	49	38 K	RAReQS	122	139 K
dynQBF	47	41 K	QELL	110	144 K
QELL	46	41 K	CAQE	108	147 K
RAReQS	45	41 K	QSTS	93	154 K
AIGSolve	45	42 K	AIGSolve	89	155 K
GhostQ	29	50 K	DepQBF	71	168 K
DepQBF	28	50 K	GhostQ	50	177 K
QSTS	28	50 K	Qute	43	179 K
Qute	23	53 K	dynQBF	16	195 K

solved by dynQBF comprise of 8.2 quantifier blocks on average. For the preprocessed dataset, similar to the PCNF' 16 setting, we observed that several instances are uniquely solved by dynQBF. Our analysis with respect to width (see Table 10) confirms that dynQBF again performs well on instances of low-to-medium width.

Official QBFEval'17 results. Besides the benchmark results reported in this section, we remark that dynQBF additionally participated in the official QBFEval' 17 competition. There it was submitted in combination with preprocessors Bloqqer [42] and HQSPre [50]. In the official 2-QBF' 17 track, dynQBF (plus preprocessing) was ranked 8 out of 29 participants, and in the PCNF' 17 track it achieved the 13th place out of 30 participants (see http://www.qbflib.org/event_page.php?year=2017).

7. Conclusion

In this work we presented an alternative approach for QBF solving. Our algorithm is inspired by concepts from parameterized complexity, yielding a new expansion-based solver technique that mitigates space explosion by dynamic programming over the tree decomposition and by using BDDs. We showed how dependency schemes can be used within our algorithm, and discussed entry points for heuristic optimizations of our technique. We studied the impact of optimizations on our core algorithm and conducted a thorough experimental analysis along the lines of QBFEval' 16 and QBFEval'17. The latter shows that our approach is competitive for 2-QBF instances, an observation that is underpinned by a recent study on the impact of quantifier alternations [51]. Furthermore, dynQBF is competitive on instances of width up to 80 (even for more quantifier blocks). Additionally, we showed that the behavior of our system is indeed different from the diverse field of existing techniques. Seen in a broader context, our results clearly demonstrate the potential of parameterized algorithms for problems beyond NP in practice, in particular when combined with BDDs.

One important aspect of future work is the development of dedicated preprocessing techniques. While Bloqqer already improves the performance of dynQBF, we believe that our approach could greatly benefit from treewidth-tailored preprocessing, as well as from techniques that take structural aspects of the tree decomposition into account. Since our approach is very sensitive to the tree decomposition used, machine learning techniques (see, for instance, [38]) could be applied to automatically choose a suitable tree decomposition based on the given QBF instance. Regarding solving, more restrictive dependency schemes could improve performance on instances with more than two quantifier blocks. Additionally, we need a better understanding of the relation between different variable orderings in the BDDs and the shape of the used tree decomposition.

Finally, we believe that dynQBF would be a valuable addition to QBF portfolio solving. There, the width of the heuristically computed TD or the number of quantifier alternations could be used to decide which solver shall be used. Towards this, in the recent QBFEval' 18 competition dynQBF participated as part of Pre-DynDep. On instances that exhibit low-to-medium treewidth, dynQBF is called for solving. Otherwise, DepQBF is used. In the 2-QBF' 18 track the system achieved the 3rd place out of 23 solver configurations ${ }^{9}$.

[^6]
References

[1] Stockmeyer LJ, Meyer AR. Word problems requiring exponential time (preliminary report). In: Proc. TOC. ACM, 1973 pp. 1-9.
[2] Downey RG, Fellows MR. Parameterized Complexity. Monographs in Computer Science. Springer, 1999.
[3] Chen H. Quantified constraint satisfaction and bounded treewidth. In: Proc. ECAI. IOS Press, 2004 pp. 161-165. URL http://dblp.uni-trier.de/rec/bib/conf/ecai/Chen04.
[4] Atserias A, Oliva S. Bounded-width QBF is PSPACE-complete. J. Comput. Syst. Sci., 2014. 80(7):14151429. URL http://dblp.uni-trier.de/rec/bib/journals/jcss/Atserias014.
[5] Bryant RE. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers, 1986. 100(8):677-691.
[6] Slivovsky F, Szeider S. Computing resolution-path dependencies in linear time. In: Proc. SAT, volume 7317 of LNCS. Springer, 2012 pp. 58-71. doi:10.1007/978-3-642-31612-8_6.
[7] Pulina L. The ninth QBF solvers evaluation - preliminary report. In: Proc. QBF, volume 1719 of CEUR Workshop Proceedings. CEUR-WS.org, 2016 pp. 1-13. URL http://dblp.uni-trier.de/rec/bib/ conf/sat/Pulina16.
[8] Charwat G, Woltran S. Expansion-based QBF solving on tree decompositions. In: Proc. RCRA, volume 2011 of CEUR Workshop Proceedings. CEUR-WS.org, 2017 pp. 16-26.
[9] Marin P, Narizzano M, Pulina L, Tacchella A, Giunchiglia E. An empirical perspective on ten years of QBF solving. In: Proc. RCRA, volume 1451 of CEUR Workshop Proceedings. CEUR-WS.org, 2015 pp. 62-75. URL http://dblp.uni-trier.de/rec/bib/conf/aiia/MarinNPTG15.
[10] Ayari A, Basin DA. QUBOS: Deciding quantified Boolean logic using propositional satisfiability solvers. In: Proc. FMCAD, volume 2517 of LNCS. Springer, 2002 pp. 187-201. doi:10.1007/3-540-36126-X_12.
[11] Biere A. Resolve and expand. In: Proc. SAT, volume 3542 of $L N C S$. Springer, 2004 pp. 59-70. URL http://dblp.uni-trier.de/rec/bib/conf/sat/Biere04.
[12] Janota M, Marques-Silva J. Abstraction-based algorithm for 2QBF. In: Proc. SAT, volume 6695 of $L N C S$. Springer, 2011 pp. 230-244. URL http://dblp.uni-trier.de/rec/bib/conf/sat/JanotaS11.
[13] Janota M, Klieber W, Marques-Silva J, Clarke EM. Solving QBF with counterexample guided refinement. In: Proc. SAT, volume 7317 of LNCS. Springer, 2012 pp. 114-128. doi:10.1007/978-3-642-31612-8_10.
[14] Clarke EM, Grumberg O, Jha S, Lu Y, Veith H. Counterexample-guided abstraction refinement for symbolic model checking. J. ACM, 2003. 50(5):752-794. doi:10.1145/876638.876643.
[15] Cadoli M, Giovanardi A, Schaerf M. An algorithm to evaluate quantified Boolean formulae. In: Proc. IAAI. AAAI Press / The MIT Press, 1998 pp. 262-267. URL http://dblp.uni-trier.de/rec/bib/ conf/aaai/CadoliGS98.
[16] Zhang L, Malik S. Towards a symmetric treatment of satisfaction and conflicts in quantified Boolean formula evaluation. In: Proc. CP, volume 2470 of $L N C S$. Springer, 2002 pp. 200-215. URL http:// dblp.uni-trier.de/rec/bib/conf/cp/ZhangM02.
[17] Giunchiglia E, Narizzano M, Tacchella A. Clause/term resolution and learning in the evaluation of quantified Boolean formulas. J. Artif. Intell. Res., 2006. 26:371-416. doi:10.1613/jair.1959.
[18] Lonsing F, Biere A. DepQBF: A dependency-aware QBF solver. J. SAT, 2010. 7(2-3):71-76. URL http://dblp.uni-trier.de/rec/bib/journals/jsat/LonsingB10.
[19] Lonsing F, Bacchus F, Biere A, Egly U, Seidl M. Enhancing search-based QBF solving by dynamic blocked clause elimination. In: Proc. LPAR, volume 9450 of LNCS. Springer, 2015 pp. 418-433. doi:10.1007/978-3-662-48899-7_29.
[20] Klieber W, Sapra S, Gao S, Clarke EM. A Non-prenex, non-clausal QBF solver with game-state learning. In: Proc. SAT, volume 6175 of LNCS. Springer, 2010 pp. 128-142. doi:10.1007/978-3-642-14186-7_12.
[21] Bjørner N, Janota M, Klieber W. On conflicts and strategies in QBF. In: Proc. LPAR. EasyChair, 2015 pp. 28-41. URL http://dblp.uni-trier.de/rec/bib/conf/lpar/BjornerJK15.
[22] Pan G, Vardi MY. Symbolic decision procedures for QBF. In: Proc. CP, volume 3258 of LNCS. Springer, 2004 pp. 453-467. doi:10.1007/978-3-540-30201-8_34.
[23] Jussila T, Sinz C, Biere A. Extended resolution proofs for symbolic SAT solving with quantification. In: Proc. SAT, volume 4121 of LNCS. Springer, 2006 pp. 54-60. doi:10.1007/11814948_8.
[24] Pulina L, Tacchella A. Hard QBF encodings made easy: Dream or reality? In: Proc. AI*IA, volume 5883 of LNCS. Springer, 2009 pp. 31-41. doi:10.1007/978-3-642-10291-2_4.
[25] Chen H, Dalmau V. From pebble games to tractability: An ambidextrous consistency algorithm for quantified constraint satisfaction. In: Proc. CSL, volume 3634 of $L N C S$. Springer, 2005 pp. 232-247. doi:10.1007/11538363_17.
[26] Pulina L, Tacchella A. An empirical study of QBF encodings: From treewidth estimation to useful preprocessing. Fundam. Inform., 2010. 102(3-4):391-427. doi:10.3233/FI-2010-312.
[27] Pulina L, Tacchella A. QuBIS: An (in)complete solver for quantified Boolean formulas. In: Proc. MICAI, volume 5317 of LNCS. Springer, 2008 pp. 34-43. doi:10.1007/978-3-540-88636-5_3.
[28] Pulina L, Tacchella A. A structural approach to reasoning with quantified Boolean formulas. In: Proc. IJCAI. AAAI Press, 2009 pp. 596-602. URL http://dblp.uni-trier.de/rec/bib/conf/ijcai/ PulinaT09.
[29] Robertson N, Seymour PD. Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B, 1984. 36(1):4964. doi:10.1016/0095-8956(84)90013-3.
[30] Arnborg S, Corneil DG, Proskurowski A. Complexity of finding embeddings in a k-tree. SIAM J. Algebra. Discr. Meth., 1987. 8:277-284. doi:10.1137/0608024.
[31] Bodlaender HL. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Coтрит., 1996. 25(6):1305-1317. doi:10.1137/S0097539793251219.
[32] Bodlaender HL, Koster AMCA. Treewidth computations I. Upper bounds. Inf. Comput., 2010. 208(3):259-275. doi:10.1016/j.ic.2009.03.008.
[33] Dechter R. Constraint Processing. Morgan Kaufmann, 2003.
[34] Benedetti M. Quantifier trees for QBFs. In: Proc. SAT, volume 3569 of LNCS. Springer, 2005 pp. 378385. doi:10.1007/11499107_28.
[35] Ferrara A, Pan G, Vardi MY. Treewidth in verification: Local vs. global. In: Proc. LPAR, volume 3835 of LNCS. Springer, 2005 pp. 489-503. doi:10.1007/11591191_34.
[36] Samer M, Szeider S. Backdoor sets of quantified Boolean formulas. J. Autom. Reasoning, 2009. 42(1):7797. doi:10.1007/s10817-008-9114-5.
[37] Lonsing F, Biere A. A compact representation for syntactic dependencies in QBFs. In: Proc. SAT, volume 5584 of LNCS. Springer, 2009 pp. 398-411.
[38] Abseher M, Musliu N, Woltran S. Improving the efficiency of dynamic programming on tree decompositions via machine learning. J. Artif. Intell. Res., 2017. 58:829-858. doi:10.1007/978-3-642-02777-2_37.
[39] Friedman SJ, Supowit KJ. Finding the optimal variable ordering for binary decision diagrams. In: Proc. DAC. ACM, 1987 pp. 348-356.
[40] Somenzi F. CU Decision Diagram package release 3.0.0. Department of Electrical and Computer Engineering, University of Colorado at Boulder, 2015. URL http://vlsi.colorado. edu/~fabio/CUDD.
[41] Abseher M, Musliu N, Woltran S. htd - A free, open-source framework for tree decompositions and beyond. Technical Report DBAI-TR-2016-96, TU Wien, 2016.
[42] Biere A, Lonsing F, Seidl M. Blocked clause elimination for QBF. In: Proc. CADE, volume 6803 of LNCS. Springer, 2011 pp. 101-115. doi:10.1007/978-3-642-22438-6_10.
[43] Rabe MN, Tentrup L. CAQE: A certifying QBF solver. In: Proc. FMCAD. IEEE, 2015 pp. 136-143. URL http://dblp.uni-trier.de/rec/bib/conf/fmcad/RabeT15.
[44] Janota M, Marques-Silva J. Solving QBF by clause selection. In: Proc. IJCAI. AAAI Press, 2015 pp. 325-331. URL http://dblp.uni-trier.de/rec/bib/conf/ijcai/JanotaM15.
[45] Bogaerts B, Janhunen T, Tasharrofi S. Solving QBF instances with nested SAT solvers. In: Proc. Beyond NP, volume WS-16-05 of AAAI Workshops. AAAI Press, 2016. URL http://dblp.uni-trier.de/ rec/bib/conf/aaai/0001JT16.
[46] Scholl C, Pigorsch F. The QBF solver AIGSolve. In: Proc. QBF, volume 1719 of CEUR Workshop Proceedings. CEUR-WS.org, 2016 pp. 55-62. URL http://dblp.uni-trier.de/rec/bib/conf/sat/ SchollP16.
[47] Tu K, Hsu T, Jiang JR. QELL: QBF reasoning with extended clause learning and levelized SAT solving. In: Proc. SAT, volume 9340 of LNCS. Springer, 2015 pp. 343-359. doi:10.1007/978-3-319-24318-4_25.
[48] Peitl T, Slivovsky F, Szeider S. Dependency learning for QBF. In: Proc. SAT, volume 10491 of LNCS. Springer, 2017 pp. 298-313. doi:10.1007/978-3-319-66263-3_19.
[49] Goultiaeva A, Bacchus F. Recovering and utilizing partial duality in QBF. In: Proc. SAT, volume 7962 of LNCS. Springer, 2013 pp. 83-99. doi:10.1007/978-3-642-39071-5_8.
[50] Wimmer R, Reimer S, Marin P, Becker B. HQSpre - An effective preprocessor for QBF and DQBF. In: Proc. TACAS, volume 10205 of $L N C S .2017$ pp. 373-390. doi:10.1007/978-3-662-54577-5_21.
[51] Lonsing F, Egly U. Evaluating QBF Solvers: Quantifier Alternations Matter. In: Proc. CP, volume 11008 of LNCS. Springer, 2018 pp. 276-294. doi:10.1007/978-3-319-98334-9_19.

A. Proof

Here we show the correctness of Algorithm 1 for deciding QSAT by dynamic programming over tree decompositions. At its core, the proof is based on induction over the tree decomposition by showing the correspondence of NSFs to expansion trees. First, in addition to Definition 3.1, we equivalently define closed PCNF QBFs without quantifier blocks as follows:

Definition A.1. In a PCNF QBF Q. ψ, Q is the quantifier prefix and ψ is a CNF formula, also called the matrix. Q is of the form $Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{m} x_{m}$ where $Q_{i} \in\{\exists, \forall\}$ for $1 \leq i \leq m, Q_{m}=\exists$ and ψ is a formula over variables $X=\left\{x_{1}, \ldots, x_{m}\right\}$. We say that a variable x_{i} is at position i in the QBF.

We remark that such a QBF can be easily transformed into one with k quantifier blocks, where subsequent quantifiers $Q_{j} x_{j} \ldots Q_{k} x_{k}(1 \leq j<k \leq m)$ with $Q_{j}=\cdots=Q_{k}$ are merged into a single block $Q X$ where $Q=Q_{j}$ and $X=\left\{x_{j}, \ldots, x_{k}\right\}$. In the following we will use both syntactic notations interchangeably.

Expansion of a PCNF QBF can be represented in form of an expansion tree.
Definition A.2. Let Q. ψ with $\mathrm{Q}=Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{m} x_{m}$ be a closed PCNF QBF over variables $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{o}\right\} \subseteq X$ be the set of variables to be expanded on. An expansion tree $E(\mathrm{Q} \cdot \psi, Y)=(V, C$, ass $)$ is a rooted tree with nodes V, arcs C and assignments ass : $C \rightarrow\{\top, \perp, *\}$ (here, $*$ denotes that a variable is not assigned a truth value). Each internal node $v \in V$ at a level i in the tree (for $1 \leq i \leq m$) represents the variable at the same position in Q, denoted by $\operatorname{var}(v)=x_{i}$. Node v is associated with a connective, where $\operatorname{conn}(v)=\wedge$ if $Q_{i}=\forall$ and $\operatorname{conn}(v)=\vee$ if $Q_{i}=\exists$. The respective block in the quantifier prefix is denoted by block (v). Each leaf node is associated with the propositional formula ψ.

The tree contains $m+1$ levels and has the following structure. For an internal node $v \in V$:

- If $\operatorname{var}(v) \notin Y, v$ has a single child v^{\prime} (i.e., $\left.\left(v, v^{\prime}\right) \in C\right)$ and $\operatorname{ass}\left(\left(v, v^{\prime}\right)\right)=*$.
- If $\operatorname{var}(v) \in Y, v$ has two children v^{\prime} and $v^{\prime \prime}$ (i.e., $\left(v, v^{\prime}\right),\left(v, v^{\prime \prime}\right) \in C$), and $\operatorname{ass}\left(\left(v, v^{\prime}\right)\right)=\top$ and $\operatorname{ass}\left(\left(v, v^{\prime \prime}\right)\right)=\perp$.

Let v_{m+1} be a leaf node and $v_{1}, \ldots, v_{m}, v_{m+1}$ be the unique path from root node v_{1} to v_{m+1} in the tree. For $1 \leq i \leq m$, if $\operatorname{ass}\left(\left(v_{i}, v_{i+1}\right)\right)=\top(\perp)$ this represents the assignment $\left[\operatorname{var}\left(v_{i}\right) / \top\right]$ $\left(\left[\operatorname{var}\left(v_{i}\right) / \perp\right]\right.$). We denote by $\left[Y / v_{m+1}\right]$ the assignment of all variables in Y with respect to v_{m+1}.

An expansion tree is evaluated as follows.
Definition A.3. Let Q. ψ be a closed PCNF QBF over variables X and $E(\mathrm{Q} . \psi, X)=(V, C$, ass $)$ be the expansion tree of the QBF where all variables are expanded. The evaluation eval $(E(\mathrm{Q} \cdot \psi, X))$ is defined as the result of recursively applying evaluation function $e(v)$ on nodes $v \in V$:

- If v is a leaf node, $e(v)=\psi[X / v]$;
- Otherwise, v has two children v^{\prime} and $v^{\prime \prime}$, and $e(v)=e\left(v^{\prime}\right) \cdot e\left(v^{\prime \prime}\right)$ where $\cdot=\operatorname{conn}(v)$.

The following proposition follows directly from the semantics of QBFs.
Proposition A.4. A closed PCNF QBF formula Q. ψ over variables X can be decided by constructing its corresponding expansion tree $E(\mathrm{Q} \cdot \psi, X)$ and applying $\operatorname{eval}(E(\mathrm{Q} \cdot \psi, X))$.

For reasonably-sized QBFs , constructing and evaluating $E(\mathrm{Q} \cdot \psi, X)$ at once is infeasible in practice. Thus, we first define expansion trees in the context of tree decompositions. Then, we show how expansion trees can be represented equivalently by NSFs, whose size is exponential only in the
number of quantifier blocks and the treewidth of the QBF matrix. Recall Definition 3.3 of tree decompositions and Definition 3.4 of weakly normalized tree decompositions. Towards readability, we prove the correctness of our algorithm on normalized tree decompositions.

Definition A.5. A tree decomposition $\mathcal{T}=\left((T, F), b a g_{\mathcal{T}}\right)$ is normalized, if \mathcal{T} is weakly normalized and each exchange node $t \in T$ with child node t_{1} is either

- an introduction node where $b a g_{\mathcal{T}}\left(t_{1}\right) \subset b a g_{\mathcal{T}}(t)$ and $\left|b a g_{\mathcal{T}}(t) \backslash b a g_{\mathcal{T}}\left(t_{1}\right)\right|=1$; or
- a removal node where $b a g_{\mathcal{T}}(t) \subset b a g_{\mathcal{T}}\left(t_{1}\right)$ and $\left|b a g_{\mathcal{T}}\left(t_{1}\right) \backslash b a g_{\mathcal{T}}(t)\right|=1$.

Furthermore, for root node r in $\mathcal{T}, \operatorname{bag}_{\mathcal{T}}(r)=\{ \}$.
A weakly-normalized tree decomposition can easily be transformed into a normalized one by replacing exchange nodes with a sequence of removal and introduction nodes. For a QBF and tree decomposition \mathcal{T}, we associate with each node in \mathcal{T} a corresponding local expansion tree.

Definition A.6. Let Q. ψ be a closed PCNF QBF and \mathcal{T} be a tree decomposition of ψ. For a tree decomposition node t, its associated local expansion tree $E_{\leq t}$ is defined as $E\left(\mathrm{Q} \cdot \psi_{\leq t}, Y_{\leq t}\right)$, where

- $\psi_{\leq t}$ are the clauses in ψ induced by the bag contents of the subtree rooted at t.
- $Y_{\leq t}$ are all variables removed in the subtree rooted at t.

Obviously, at the root r of the tree decomposition, the local expansion tree $E_{\leq r}$ corresponds to $E(\mathrm{Q} \cdot \psi, X)$, and the original QBF instance can be evaluated. Here we use NSFs to only represent information that is necessary for evaluating the QBF (recall also Definition 4.3). The relation of an expansion tree to an NSF that contains all necessary information is captured as follows.

Definition A.7. Let Q. ψ be a closed PCNF QBF, \mathcal{T} be a tree decomposition of ψ and $t \in \mathcal{T}$ be a tree decomposition node. Furthermore, let $E_{\leq t}=E\left(\psi_{\leq t}, Y_{\leq t}\right)$ be the local expansion tree for t. A nested set of formulae N_{t} is called a valid NSF (for Q. ψ in t w.r.t. \mathcal{T}) if there exists a mapping α from the nodes in $E_{\leq t}$ to the nestings in N_{t} that satisfies the following properties:

1. α maps every internal node v in $E_{\leq t}$ to a nesting n in N_{t} such that $\operatorname{block}(v)=\operatorname{block}(n)$. Suppose there is some internal node v in $E_{\leq t}$ that is mapped to $\alpha(v)=n$ in N_{t}. Let v^{\prime} be a child node of v.

- If block $(v)=\operatorname{block}\left(v^{\prime}\right), \alpha\left(v^{\prime}\right)=n$ (i.e., v and v^{\prime} map to the same nesting in N_{t}).
- Otherwise, $\alpha\left(v^{\prime}\right)=n^{\prime}$ where $n^{\prime} \in n$.

2. If v in $E_{\leq t}$ is a leaf node, $\psi_{\leq t}\left[Y_{\leq t} / v\right] \equiv \alpha(v)$ (the formula resulting from assigning the truth values is equivalent to the BDD mapped to by α).
3. Each element in N_{t} is mapped to by α (the mapping is surjective).

Towards readability we overload the notation and sometimes simply write $\alpha: E \rightarrow N$ to denote a mapping of nodes in an expansion tree E to nestings in an NSF N.

The idea is now to compute valid NSFs at each tree decomposition node by dynamic programming. Then, at the root node r of the tree decomposition, this yields NSF N_{r}. Provided that if N_{r} is valid, instead of computing and evaluating $E_{\leq r}, N_{r}$ can be evaluated by recursively applying the connectives associated with the nestings on the elements of the nestings to decide satisfiability of the instance:

Proposition A.8. Let Q. ψ be a closed PCNF QBF over variables X and \mathcal{T} be a tree decomposition of ψ with root node r. Furthermore, let N_{r} be a valid NSF in r. Then, $\operatorname{eval}(E(\mathrm{Q} \cdot \psi, X)) \equiv$ evaluate $Q\left(r, N_{r}\right)$ (recall the definition of evaluate $Q(t, N)$ in Algorithm 4).

Proof:

Since N_{r} is valid, there exists a mapping $\alpha: E(\mathrm{Q} \cdot \psi, X) \rightarrow N_{r}$ satisfying the properties of Definition A.7. We now show correctness by induction over the structure of the expansion tree.

- Let v be a leaf node in $E(\mathrm{Q} \cdot \psi, X)$. Then $e(v)=\psi[X / v]$ (recall Definition A.3). By Condition 2 of Definition A.7, $\psi[X / v] \equiv \alpha(v)$. Since evaluate $Q(r, \alpha(v))=\alpha(v), e(v) \equiv$ evaluate $Q(r, \alpha(v))$.
- Let v_{s} be an internal node in $E(\mathrm{Q} \cdot \psi, X)$ such that $\operatorname{block}\left(v_{s}\right) \neq \operatorname{block}\left(v_{p}\right)$ where v_{p} is the parent of v_{s} in $E(\mathrm{Q} \cdot \psi, X)$ (if any). Let $V=\left\{v_{s}\right\} \cup\left\{v_{1}, \ldots, v_{i}\right\}$ be the subset-maximal set such that v_{1}, \ldots, v_{i} are the descendants of v_{s} in $E(\mathrm{Q} \cdot \psi, X)$ with $\operatorname{block}\left(v_{s}\right)=\operatorname{block}\left(v_{1}\right)=\cdots=$ $\operatorname{block}\left(v_{i}\right)$. By Condition 1 of Definition A.7, $\alpha\left(v_{s}\right)=\alpha\left(v_{1}\right)=\cdots=\alpha\left(v_{i}\right)$.
We now show that $e\left(v_{s}\right) \equiv$ evaluate $Q\left(r, \alpha\left(v_{s}\right)\right)$. Let $V^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{j}^{\prime}\right\}$ be the adjacent children of nodes V in $E(\mathrm{Q} . \psi, X)$ where $\operatorname{block}\left(v^{\prime}\right) \neq \operatorname{block}\left(v_{s}\right)$ for all $v^{\prime} \in V^{\prime}$.
We have $\operatorname{conn}\left(v_{s}\right)=\operatorname{conn}\left(v_{1}\right)=\cdots=\operatorname{conn}\left(v_{i}\right)$. Let us assume that $\operatorname{conn}\left(v_{s}\right)=\wedge$ (the following argument holds analogously for $\operatorname{conn}\left(v_{s}\right)=\vee$). Since \wedge is associative and commutative, we have $e\left(v_{s}\right) \equiv \bigwedge_{v^{\prime} \in V^{\prime}}\left(e\left(v^{\prime}\right)\right)$, which, by induction hypothesis, is equivalent to $\bigwedge_{v^{\prime} \in V^{\prime}}\left(\right.$ evaluate $\left.Q\left(\alpha\left(v^{\prime}\right)\right)\right)$. By Condition 1 (Item 2) of Definition A.7, for each $v^{\prime} \in V^{\prime}$ we have $\alpha\left(v^{\prime}\right) \in \alpha\left(v_{s}\right)$, and by Condition 3 there is no $n^{\prime} \in \alpha\left(v_{s}\right)$ s.t. $\alpha^{-1}\left(n^{\prime}\right) \cap V^{\prime}=\emptyset$. Thus, $\bigwedge_{v^{\prime} \in V^{\prime}}\left(\right.$ evaluate $\left.Q\left(\alpha\left(v^{\prime}\right)\right)\right) \equiv \bigwedge_{n^{\prime} \in \alpha\left(v_{s}\right)}\left(\right.$ evaluate $\left.Q\left(n^{\prime}\right)\right)$. Since the bag of root node r is empty, this corresponds to evaluate $Q\left(r, \alpha\left(v_{s}\right)\right)$ and we have $e\left(v_{s}\right) \equiv \operatorname{evaluate} Q\left(r, \alpha\left(v_{s}\right)\right)$.

Overall, for root node r it therefore holds that eval $(E(\mathrm{Q} \cdot \psi, X)) \equiv$ evaluate $Q\left(r, N_{r}\right)$.
It remains to prove that the NSF at the root node is indeed a valid NSF. We show this by induction over the node types of the tree decomposition.

Lemma A.9. Let Q. ψ be a closed PCNF QBF with k quantifier blocks, \mathcal{T} be a tree decomposition of ψ and $t \in \mathcal{T}$ be a leaf node. Then, N_{t} as constructed in Algorithm 1 (Line 1) is a valid NSF.

Proof:

Figure 9 illustrates the proof strategy for leaf nodes. The local expansion tree $E_{\leq t}$ is specified as $E\left(\psi_{t}, \emptyset\right)$ (i.e., $\psi_{\leq t}=\psi_{t}$ and no variables are yet removed), which yields a single path $v_{1}, \ldots, v_{m}, v_{m+1}$.

Figure 9. Scematic proof concept for leaf nodes.

By Algorithm $1, N_{t}$ is a nesting of depth k, where each nesting contains exactly one element, and the innermost element is a BDD $B_{t}=\psi_{t}$.

We can construct a mapping $\alpha: E_{\leq t} \rightarrow N_{t}$ that satisfies the properties of Definition A.7: let j (with $1 \leq j \leq k$) be a quantifier block. Each node v in $E_{\leq t}$ where $\operatorname{block}(v)=j$ maps to the single nesting n in N_{t} where $\operatorname{block}(n)=j$. Additionally, we can specify α to map the single leaf v_{m+1} in $E_{\leq t}$ to the innermost nesting in N_{t}, since $\psi_{\leq t}\left[\emptyset / v_{m+1}\right] \equiv \psi_{t}$.

Lemma A.10. Let Q. ψ be a closed PCNF QBF with k quantifier blocks, \mathcal{T} be a tree decomposition of $\psi, t \in \mathcal{T}$ be a introduction node with child node t^{\prime} and let N_{t} be obtained from a valid NSF $N_{t^{\prime}}$ in the child node by $N_{t}=N_{t^{\prime}}\left[B / B \wedge \psi_{t}\right]$ (see also Algorithm 1, Line 5). Then, also N_{t} is a valid NSF.

Proof:

Our proof strategy is illustrated in Figure 10. Let $E_{\leq t}=E\left(\psi_{\leq t}, Y_{\leq t}\right)$ and $E_{\leq t^{\prime}}=E\left(\psi_{\leq t^{\prime}}, Y_{\leq t^{\prime}}\right)$ be the local expansion trees at t and t^{\prime}. By assumption, $N_{t^{\prime}}$ is a valid NSF in t^{\prime}. We have to show that N_{t}, obtained by $N_{t}=N_{t^{\prime}}\left[B / B \wedge \psi_{t}\right]$ is a valid NSF in t. By induction hypothesis, we know that there exists a mapping $\alpha^{\prime}: E_{\leq t^{\prime}} \rightarrow N_{t^{\prime}}$ that satisfies the conditions of Definition A.7.

For now, let N_{t}^{*} be the NSF resulting from $N_{t^{\prime}}$ by applying the introduction procedure, but without set semantics (i.e., duplicates are not removed in N_{t}^{*}). First, we show that we can construct a mapping $\alpha^{*}: E_{\leq t} \rightarrow N_{t}^{*}$ that satisfies the conditions of Definition A.7. Observe that the tree structure in $E_{\leq t}$ and $E_{\leq t^{\prime}}$ is the same since $Y_{\leq t}=Y_{\leq t^{\prime}}$ (no variable is removed in t). Also, the structure of nestings in $N_{t^{\prime}}$ and N_{t}^{*} is preserved when applying $N_{t}^{*}=N_{t^{\prime}}\left[B / B \wedge \psi_{t}\right]$. Hence, for α^{*} we can directly reuse mapping α^{\prime}. It remains to show that for all leaf nodes v in $E_{\leq t}$ it holds that $\psi_{\leq t}\left[Y_{\leq t} / v\right] \equiv \alpha^{*}(v)$. We have that $\psi_{\leq t}\left[Y_{\leq t} / v\right]$ is equivalent to $\left(\psi_{\leq t^{\prime}} \wedge \psi_{t}\right)\left[Y_{\leq t^{\prime}} / v^{\prime}\right]$, which corresponds to $\psi_{\leq t^{\prime}}\left[Y_{\leq t}^{\prime} / v^{\prime}\right] \wedge \psi_{t}$ since $\left[Y_{\leq t^{\prime}} / v^{\prime}\right]$ only assigns variables that are already removed and can thus not occur in ψ_{t} (recall the connectedness condition of tree decompositions as stated in Definition 3.3). Now, $\psi_{\leq t^{\prime}}\left[Y_{\leq t^{\prime}} / v^{\prime}\right] \wedge$ $\psi_{t}=\alpha^{\prime}\left(v^{\prime}\right) \wedge \psi_{t}$ which exactly corresponds to the construction of innermost elements in N_{t} by our introduction procedure. Overall, α^{*} satisfies the required properties.

Figure 10. Scematic proof concept for introduction nodes.

Finally, from α^{*} we can construct a mapping $\alpha: E_{\leq t} \rightarrow N_{t}$ where duplicate elements in N_{t}^{*} are removed due to set semantics in N_{t}, and for such elements α maps to the single remaining nesting. Then, α satisfies all conditions of Definition A. 7 and N_{t} is indeed a valid NSF.

Lemma A.11. Let $Q . \psi$ be a closed PCNF QBF with k quantifier blocks, \mathcal{T} be a tree decomposition of $\psi, t \in \mathcal{T}$ be a removal node with child node t^{\prime} and let N_{t} be obtained from a valid NSF $N_{t^{\prime}}$ as specified in Algorithm 1 (Line 4). Then, also N_{t} is a valid NSF.

Proof:

Figure 11 illustrates our proof strategy for removal nodes. Let r be the removed variable. Furthermore, $E_{\leq t}=E\left(\psi_{\leq t}, Y_{\leq t}\right)=\left(V_{\leq t}, C_{\leq t}, a s s_{\leq t}\right)$ and $E_{\leq t^{\prime}}=E\left(\psi_{\leq t^{\prime}}, Y_{\leq t^{\prime}}\right)=\left(V_{\leq t^{\prime}}, C_{\leq t^{\prime}}, a s s_{\leq t^{\prime}}\right)$ are the local expansion trees at t and t^{\prime}. We have $\psi_{\leq t}=\psi_{\leq t^{\prime}}$ and $Y_{\leq t}=Y_{\leq t^{\prime}} \cup\{r\}$. We first define a mapping β from nodes in $E_{\leq t}$ to nodes in $E_{\leq t^{\prime}}$ (denoted by $\beta: V_{\leq t} \rightarrow V_{\leq t^{\prime}}$):

- Let $v \in V_{\leq t}$ and $v^{\prime} \in V_{\leq t^{\prime}}$ be the root nodes in $E_{\leq t}$ and $E_{\leq t^{\prime}}$. Then, $\beta(v)=v^{\prime}$.
- For $\left(v, v_{c}\right) \in C_{\leq t}$ where $\operatorname{var}(v) \neq r$, we have $\beta\left(v_{c}\right)=v_{c}^{\prime}$ s.t. $\beta(v)=v^{\prime}$ with $\left(v^{\prime}, v_{c}^{\prime}\right) \in C_{\leq t^{\prime}}$ and $\operatorname{ass}_{\leq t}\left(\left(v, v_{c}\right)\right)=a s s_{\leq t^{\prime}}\left(\left(v^{\prime}, v_{c}^{\prime}\right)\right)$.
- For $\left(v, v_{c}\right) \in C_{\leq t}$ where $\operatorname{var}(v)=r$, we have $\beta\left(v_{c}\right)=v_{c}^{\prime}$ s.t. $\beta(v)=v^{\prime}$ with $\left(v^{\prime}, v_{c}^{\prime}\right) \in C_{\leq t^{\prime}}$.

For the valid NSF $N_{t^{\prime}}$, we know that there exists a mapping $\alpha^{\prime}: E_{\leq t^{\prime}} \rightarrow N_{t^{\prime}}$ (satisfying the properties of Definition A.7). We now show that there exists a mapping $\alpha: E_{\leq t} \rightarrow N_{t}$, such that N_{t}, obtained from $N_{t^{\prime}}$ via the removal procedure as specified in Algorithm 4, is a valid NSF.

Figure 11. Scematic proof concept for removal nodes.

Towards this, let N_{t}^{*} be the NSF resulting from $N_{t^{\prime}}$ when applying the removal procedure, but without set semantics (i.e., duplicates are not removed). We store a mapping γ^{*} that gives for each nesting in N_{t}^{*} the nesting in $N_{t^{\prime}}$ it originated from. Recall Algorithm 4 for the removal of variables. Let n^{*} be a nesting in N_{t}^{*} and n^{\prime} be a nesting in $N_{t^{\prime}}$.

- If n^{*} is obtained from n^{\prime} by $n^{*}=\operatorname{split}\left(n^{\prime}, r\right), n^{*}=n^{\prime}[B / B[r / \perp]]$, or $n^{*}=n^{\prime}[B / B[r / T]]$, then $\gamma^{*}\left(n^{*}\right)=n^{\prime}$.

Now we specify a mapping $\alpha^{*}: E_{\leq t} \rightarrow N_{t}^{*}$ as follows.

- Let v and n^{*} be the root nodes in $E_{\leq t}$ and N_{t}^{*}. Then $\alpha^{*}(v)=n^{*}$.
- Let v_{c} be a child node of some node v in $E_{\leq t}$.
- If v_{c} is an internal node and $\operatorname{block}\left(v_{c}\right)=\operatorname{block}(v)$ then $\alpha^{*}\left(v_{c}\right)=\alpha^{*}(v)$
- otherwise $\alpha^{*}\left(v_{c}\right)=m^{*}$ s.t. $m^{*} \in \alpha^{*}(v)$ and $\alpha^{\prime}\left(\beta\left(v_{c}\right)\right)=\gamma^{*}\left(m^{*}\right)$
- If v in $E_{\leq t}$ is a leaf node, if r is assigned $\top(\perp)$ on the path from the root to v, then $\alpha^{*}(v)$ is the BDD resulting from assigning r to $\top(\perp)$ in the removal procedure.

We now show that α^{*} satisfies the properties as specified in Definition A.7. Obviously, nesting of blocks as required by Condition 1 is preserved due to the recursive definition of α^{*} with respect to blocks. Mapping α^{*} preserves the internal structure of nestings w.r.t. blocks and levels. In particular, the mapping is defined for all nodes in $E_{\leq t}$, and all nestings in N_{t}^{*} are mapped to by α^{*}.

Figure 12. Scematic proof concept for join nodes.

We now show that for all leaves v in $E_{\leq t}$ it holds that $\psi_{\leq t}\left[Y_{\leq t} / v\right] \equiv \alpha^{*}(v)$. Let $\cdot \in\{T, \perp\}$ be the assignment of r in the context of v. We have $\psi_{\leq t}\left[Y_{\leq t} / v\right] \equiv \psi_{\leq t^{\prime}}\left[Y_{\leq t^{\prime}} / \beta(v)\right][r / \cdot]$. By induction hypothesis, we know that $\psi_{\leq t^{\prime}}\left[Y_{\leq t^{\prime}} / \beta(v)\right] \equiv \alpha^{\prime}(\beta(v))$. Thus, $\psi_{\leq t}\left[Y_{\leq t} / v\right] \equiv \alpha^{\prime}(\beta(v))[r / \cdot]$. Since $\alpha^{\prime}(\beta(v))=\gamma^{*}\left(\alpha^{*}(v)\right)$ (by specification of α^{*}), and $\gamma^{*}\left(\alpha^{*}(v)\right)[r / \cdot]=\alpha^{*}(v)$ (by our algorithm) we have $\psi_{\leq t}\left[Y_{\leq t} / v\right] \equiv \alpha^{*}(v)$. Finally, from α^{*} we can construct a mapping $\alpha: E_{\leq t} \rightarrow N_{t}$ such that elements in N_{t}^{*} that coincide due to set semantics in N_{t}, α maps to the single remaining nesting. α then satisfies all conditions of Definition A. 7 and N_{t} is a valid NSF.

Lemma A.12. Let $Q . \psi$ be a closed PCNF QBF with k quantifier blocks, \mathcal{T} be a tree decomposition of $\psi, t \in \mathcal{T}$ be a join node with child nodes t^{\prime} and $t^{\prime \prime}$ and let N_{t} be the NSF obtained from valid NSFs $N_{t^{\prime}}$ and $N_{t^{\prime \prime}}$ as specified in Algorithm 1, Line 10. Then, also N_{t} is a valid NSF.

Proof:

Figure 12 illustrates our proof strategy for join nodes. $E_{\leq t}=E\left(\psi_{\leq t}, Y_{\leq t}\right)=\left(V_{\leq t}, C_{\leq t}, a s s \leq t\right)$, $E_{\leq t^{\prime}}=E\left(\psi_{\leq t^{\prime}}, Y_{\leq t^{\prime}}\right)=\left(V_{\leq t^{\prime}}, C_{\leq t^{\prime}}, a s s_{\leq t^{\prime}}\right)$ and $E_{\leq t^{\prime \prime}}=E\left(\psi_{\leq t^{\prime \prime}}, Y_{\leq t^{\prime \prime}}\right)=\left(V_{\leq t^{\prime \prime}}, C_{\leq t^{\prime \prime}}, a s s_{\leq t^{\prime \prime}}\right)$ are the local expansion trees in $t, \overline{t^{\prime}}$ and $t^{\prime \prime}$ respectively. We have $Y_{\leq t}=Y_{\leq t^{\prime}} \cup Y_{\leq t^{\prime \prime}}$. Due to the connectedness property of tree decompositions we know that $Y_{\leq t^{\prime}} \cap Y_{\leq t^{\prime \prime}}=\{ \}$. In other words, a variable associated with a node contained in $Y_{\leq t}$ is expanded in $E_{\leq t^{\prime}}$ or $E_{\leq t^{\prime \prime}}$, but not in both. Hence we can define a mapping $\beta: V_{\leq t} \rightarrow V_{\leq t^{\prime}} \times V_{\leq t^{\prime \prime}}$ that relates nodes in $E_{\leq t}$ to pairs of nodes in $E_{\leq t^{\prime}}$ and $E_{\leq t^{\prime \prime}}$ as follows:

- Let $v \in V_{\leq t}, v^{\prime} \in V_{\leq t^{\prime}}$ and $v^{\prime \prime} \in V_{\leq t^{\prime \prime}}$ be the root nodes in $E_{\leq t}, E_{\leq t^{\prime}}$ and $E_{\leq t^{\prime \prime}}$. Then, $\beta(v)=\left(v^{\prime}, v^{\prime \prime}\right)$.
- For $\left(v, v_{c}\right) \in C_{\leq t}$, we have $\beta\left(v_{c}\right)=\left(v_{c}^{\prime}, v_{c}^{\prime \prime}\right)$ such that $\beta(v)=\left(v^{\prime}, v^{\prime \prime}\right)$ with $\left(v^{\prime}, v_{c}^{\prime}\right) \in C_{\leq t^{\prime}}$ and $\left(v^{\prime \prime}, v_{c}^{\prime \prime}\right) \in C_{\leq t^{\prime \prime}}$, and:
- If $\operatorname{ass}_{\leq t}\left(\left(v, v_{c}\right)\right)=\top$ then $\operatorname{ass}_{\leq t^{\prime}}\left(\left(v^{\prime}, v_{c}^{\prime}\right)\right)=\top$ or $\operatorname{ass}_{\leq t^{\prime \prime}}\left(\left(v^{\prime \prime}, v_{c}^{\prime \prime}\right)\right)=\top$.
- If $\operatorname{ass}_{\leq t}\left(\left(v, v_{c}\right)\right)=\perp$ then $\operatorname{ass}_{\leq t^{\prime}}\left(\left(v^{\prime}, v_{c}^{\prime}\right)\right)=\perp$ or $\operatorname{ass}_{\leq t^{\prime \prime}}\left(\left(v^{\prime \prime}, v_{c}^{\prime \prime}\right)\right)=\perp$.

Since $N_{t^{\prime}}$ and $N_{t^{\prime \prime}}$ are valid NSFs (by induction hypothesis), we know that there exist mappings $\alpha^{\prime}: E_{\leq t^{\prime}} \rightarrow N_{t^{\prime}}$ and $\alpha^{\prime \prime}: E_{\leq t^{\prime \prime}} \rightarrow N_{t^{\prime \prime}}$ satisfying the conditions in Definition A.7. We now show that there exists a mapping $\alpha: E_{\leq t} \rightarrow N_{t}$ s.t. N_{t}, obtained by the joining procedure as given in Algorithm 10, is a valid NSF.

Similar to before, first let N_{t}^{*} be the NSF resulting from joining $N_{t^{\prime}}$ and $N_{t^{\prime \prime}}$, but without set semantics (i.e., duplicates are not removed). We store a mapping γ^{*} that gives for each nesting in N_{t}^{*} the pair of nestings in $N_{t^{\prime}}$ and $N_{t^{\prime \prime}}$ it originated from. Recall Algorithm 10 for joining NSFs. Let n^{*} be a nesting in N_{t}^{*}, n^{\prime} a nesting in $N_{t^{\prime}}$ and $n^{\prime \prime}$ a nesting in $N_{t^{\prime \prime}}$.

- If n^{*} is obtained from n^{\prime} and $n^{\prime \prime}$ by $n^{*}=j o i n\left(n^{\prime}, n^{\prime \prime}\right)$, then $\gamma^{*}\left(n^{*}\right)=\left(n^{\prime}, n^{\prime \prime}\right)$.

Now we specify a mapping $\alpha^{*}: E_{\leq t} \rightarrow N_{t}^{*}$ as follows.

- Let v and n^{*} be the root nodes in $E_{\leq t}$ and N_{t}^{*}. Then $\alpha^{*}(v)=n^{*}$.
- Let v_{c} be a child node of some node v in $E_{\leq t}$.
- If v_{c} is an internal node and $\operatorname{block}\left(v_{c}\right)=\operatorname{block}(v)$ then $\alpha^{*}\left(v_{c}\right)=\alpha^{*}(v)$
- otherwise $\alpha^{*}\left(v_{c}\right)=m^{*}$ s.t. $m^{*} \in \alpha^{*}(v)$. Furthermore, let $\beta\left(v_{c}\right)=\left(v_{c}^{\prime}, v_{c}^{\prime \prime}\right)$ and $\gamma^{*}\left(m^{*}\right)=$ ($m^{\prime}, m^{\prime \prime}$). Then $\alpha^{\prime}\left(v_{c}^{\prime}\right)=m^{\prime}$ and $\alpha^{\prime \prime}\left(v_{c}^{\prime \prime}\right)=m^{\prime \prime}$ must hold.

We now show that α^{*} satisfies the properties as specified in Definition A.7.
Obviously, the specification of α^{*} retains nesting of blocks as required by Condition 1. Furthermore, the mapping is defined for all nodes in $E_{\leq t}$, and all nestings in N_{t}^{*} are mapped to by α^{*} (Condition 3). Now, let v be a leaf node in $E_{\leq t}$. We show that $\psi_{\leq t}\left[Y_{\leq t} / v\right] \equiv \alpha^{*}(v)$ (Condition 2). Let $\beta(v)=\left(v^{\prime}, v^{\prime \prime}\right)$. We have $\psi_{\leq t}\left[Y_{\leq t} / v\right] \equiv \psi_{\leq t^{\prime}}\left[Y_{\leq t^{\prime}} / \beta\left(v^{\prime}\right)\right] \wedge \psi_{\leq t^{\prime \prime}}\left[Y_{\leq t^{\prime \prime}} / \beta\left(v^{\prime \prime}\right)\right]$ (since $\psi_{\leq t}=\psi_{\leq t^{\prime}} \wedge \psi_{\leq t^{\prime \prime}}$ and $Y_{\leq t^{\prime}} \cap Y_{\leq t^{\prime \prime}}=\{ \}$ due to the connectedness condition). By induction hypothesis, $\psi_{\leq t^{\prime}}\left[Y_{\leq t^{\prime}} / \bar{\beta}\left(v^{\prime}\right)\right] \equiv \alpha^{\prime}\left(v^{\prime}\right)$ and $\psi_{\leq t^{\prime \prime}}\left[Y_{\leq t^{\prime \prime}} / \beta\left(v^{\prime \prime}\right)\right] \equiv \alpha^{\prime}\left(v^{\prime \prime}\right)$. Let $\gamma^{*}\left(\alpha^{*}(v)\right)=\left(m^{\prime}, m^{\prime \prime}\right)$. By definition of our algorithm, $\alpha^{*}(v)=m^{\prime} \wedge m^{\prime \prime}$. By construction of $\alpha^{*}, m^{\prime}=\alpha^{\prime}\left(v^{\prime}\right)$ and $m^{\prime}=\alpha^{\prime}\left(v^{\prime}\right)$. Overall, $\psi_{\leq t}\left[Y_{\leq t} / v\right] \equiv \alpha^{*}(v)$.

Similar to before, from α^{*} we can construct a mapping $\alpha: E_{\leq t} \rightarrow N_{t}$ such that for elements in N_{t}^{*} that coincide due to set semantics, α maps to the single remaining nesting in N_{t}. Mapping α then satisfies all conditions of Definition A. 7 and N_{t} is a valid NSF.

[^0]: *This work was supported by the Austrian Science Fund (FWF): Y698.
 ${ }^{\dagger}$ Address for correspondence: Institute of Logic and Computation, TU Wien, Favoritenstraße 9-11, 1040 Vienna, Austria.

[^1]: ${ }^{1}$ dynQBF is freely available at https://github.com/gcharwat/dynqbf/.
 ${ }^{2}$ See http://www.qbflib.org/qbfeval17.php.

[^2]: ${ }^{3}$ When dependency schemes are considered, the NSFs at depth 1 contain only a single BDD. Then, subset checking w.r.t. models of the BDDs can be shifted by one block (nesting).

[^3]: ${ }^{4}$ Available at http://www.qbflib.org/TS2010/2QBF.tar.gz
 ${ }^{5}$ Available at http://www.kr.tuwien.ac.at/events/qbfgallery2013/benchmarks/eval2012r2.tar.7z.

[^4]: ${ }^{6}$ Available at http://www.qbflib.org/TS2016/Dataset_3.tar.gz.
 ${ }^{7}$ Available at http://www.qbflib.org/TS2016/Dataset_1.tar.gz.

[^5]: ${ }^{8}$ Both datasets are available at http://www.qbflib.org/eval17.zip.

[^6]: ${ }^{9}$ See http://www.qbflib.org/eval18.html for preliminary results.

