
Implementing Courcelle’s Theorem in a
Declarative Framework for Dynamic Programming

Bernhard Bliem?, Reinhard Pichler, and Stefan Woltran

Institute of Information Systems, TU Wien
{bliem, pichler, woltran}@dbai.tuwien.ac.at

Abstract. Many computationally hard problems become tractable if the graph
structure underlying the problem instance exhibits small treewidth. A recent ap-
proach to put this idea into practice is based on a declarative interface to Answer
Set Programming that allows us to specify dynamic programming over tree de-
compositions in this language, delegating the computation to dedicated solvers.
In this paper, we prove that this method can be applied to any problem whose
fixed-parameter tractability follows from Courcelle’s Theorem.

Keywords: Answer Set Programming, Tree Decomposition, Monadic Second-Order
Logic, Courcelle’s Theorem, Fixed-Parameter Tractability

1 Introduction

Many computationally hard problems become tractable if the graph structure underly-
ing the problem instance at hand exhibits certain properties [13, 15, 31]. An important
structural parameter of this kind is treewidth [33, 6, 7]. By using a seminal result due
to Courcelle [11] several fixed-parameter tractability (FPT) results have been proven in
the last decade. To turn such theoretical tractability results into efficient computation in
practice, two contrary approaches can be found in the literature (see also the excellent
survey [27]). Either the user designs a suitable dynamic programming algorithm that
works directly on tree decompositions of the instances (see, e.g., [31]), or a declara-
tive description of the problem in terms of monadic second-order logic (MSO) is used
with generic methods that automatically employ a fixed-parameter tractable algorithm
where the concepts of tree decomposition and dynamic programming are used “inside”,
i.e., hidden from the user (see, e.g., [14, 22] or the recent approach [24, 26]). The ob-
vious disadvantage of the first strategy is its purely procedural nature, thus a practical
implementation requires considerable programming effort. The second approach lacks
possibilities to incorporate domain-specific knowledge which is typically exploited in
tailor-made dynamic programming solutions to improve performance.

In order to combine the best of the two worlds, a recent approach employs An-
swer Set Programming (ASP) [8, 29, 19, 32, 30] in combination with a system called

? Corresponding author. Phone: +43-1-58801-740019. E-mail: bliem@dbai.tuwien.ac.at

2

D-FLAT1 [2, 4]. In this approach, it is possible to entirely describe the dynamic pro-
gramming algorithm by declarative means. D-FLAT heuristically generates a tree de-
composition of an input structure and provides the data structures that are propagated
during dynamic programming. The task of solving each subproblem is delegated to an
efficient ASP system that executes a problem-specific encoding. Such specifications
typically reflect the problem solving intuition due to the possibility of using a Guess
& Check technique, and the rich ASP language (including, e.g., aggregates) allows for
concise, easy-to-read encodings.

Originally, D-FLAT has only been applied to some sample problems lying in NP [4].
The experiments conducted in that work showed that, when the treewidth of the in-
stances is small, D-FLAT indeed outperforms state-of-the-art systems on several prob-
lems in NP. However, it has been left open if this approach is more generally applicable.
In this work, we present an extended version of the D-FLAT approach and prove that
this new method can indeed be used to solve any MSO-definable problem parameter-
ized by the treewidth in fixed-parameter linear time. We do so by showing how the
MSO model checking (MC) problem can be implemented in D-FLAT by following the
ideas presented in [24, 28]. We slightly modify the data structures used in these papers
(games and characteristic trees) to obtain what we call semantic trees, which allow the
concepts from [24, 28] to be implemented in D-FLAT with small modifications. Com-
plementing the practically oriented exposition of D-FLAT in [2, 4], the current work
gives a theoretical result: We present an ASP-based description of a dynamic program-
ming algorithm of the MSO MC problem via semantic trees and thus show the general
applicability of the D-FLAT method.

Technically, current ASP systems allow Turing machines to be simulated [18, 17],
which seems to suggest that our expressibility result is a trivial consequence. However,
Turing-completeness requires an unrestricted use of function symbols [9, 3], while we
consider a fragment of ASP where function symbols of positive arity may not be nested.
(In fact, the function symbols we employ serve only the purpose of convenient model-
ing, and we could easily adapt D-FLAT to eliminate function symbols at the expense
of a couple of additional predicates.) Therefore our contribution is more than just an
alternative implementation of the approach presented in [24]: We show in this work
that D-FLAT allows tree-decomposition-based dynamic programming algorithms to be
specified for all MSO-expressible problems, and to do so in a way that remains true to
the guess-and-check methodology presented in [4] by not resorting to unrestricted use
of function symbols. Due to this restriction on function symbols, the resulting programs
stay largely solver-independent as they lie in the standard (decidable) ASP language.
This is of particular interest because one of the aims of D-FLAT is to leave open the
possibility of interchanging the internally used ASP system.

This work is structured as follows. In Section 2 we define semantic trees, which are
the central concept in our approach to MSO MC, and show how they can be put to use
in combination with tree decompositions. In Section 3 we give a brief introduction to
Answer Set Programming and the D-FLAT system. Section 4 then shows how D-FLAT

1 Dynamic Programming Framework with Local Execution of ASP on Tree Decomposi-
tions. Available as free software at http://www.dbai.tuwien.ac.at/research/
project/dynasp/dflat/.

3

can be used for implementing our MSO MC algorithm. We conclude the paper with a
summary in Section 6.

The current paper is based on an extended abstract [5].

2 Semantic Trees and Tree Decompositions

In this section we present our approach to MSO MC based on semantic trees, which are
closely related to the game-theoretic techniques of [24] and the so-called characteristic
trees of [28]. We discuss the relationship of our method to these approaches in Section 5.
Here, we first recall some basic notions and then highlight our method.

2.1 MSO Model Checking via Semantic Trees

Let σ = {R1, . . . , RK} be a set of relation symbols. A finite structure A over σ (a “σ-
structure”, for short) is given by a finite domain dom(A) = A and relations RAi ⊆ Aα,
where α denotes the arity of Ri.

Many properties of finite structures can be expressed in MSO, which extends clas-
sical first-order logic by allowing quantification over sets of domain elements. In other
words, besides individual variables (which we denote by lower-case letters) we may
also use unary relational variables (which we denote by upper-case letters and also call
set variables) for quantification in MSO. The semantics of MSO generalizes the first-
order case in the obvious way. In particular, let S be a set variable, x be an individual
variable and I be an interpretation that assigns a set of domain elements I(S) to S and
a single domain element I(x) to x. Now the atom S(x) evaluates to true under I if
I(x) ∈ I(S) holds. We refer to [15] for a precise formal definition of MSO.

Example 1. Given a graph G = (V,E), the NP-complete INDEPENDENT DOMINAT-
ING SET problem asks if there is a set S ⊆ V such that S is both an independent and
a dominating set. Assuming a signature σ = {edge}, where edge is the binary edge
relation, this can be expressed by the following MSO formula.

∃S∀x∀y
(
¬(edge(x, y) ∧ S(x) ∧ S(y)) ∧ (¬S(x)→ ∃z (S(z) ∧ edge(z, x)))

)
As we will show in this paper, the fact that this problem is expressible in MSO entails
that the problem parameterized by the treewidth of the input graph can be solved using
D-FLAT in fixed-parameter linear time.

We study the MSO model checking problem (i.e., the problem of evaluating an MSO
sentence) over σ-structures. To simplify the presentation, we consider MSO sentences
φ in prenex normal form. The matrix of φ (i.e., the largest quantifier-free subformula)
is referred to as ψ. We denote the set variables in φ by Y1, . . . , Ym, and the individual
variables by z1, . . . , zk, such that the ith set or individual variable according to the
quantifier prefix is called Yi or zi, respectively. Note that an atom in φ can either be of
the form R(zi1 , . . . , ziα) for some R ∈ σ or of the form Yi(zj). We denote the set of
atoms occurring in φ by At(φ), and the number of quantifiers in φ by n.

4

An interpretation I of ψ overA is given by a tuple (C1, . . . , Cm) along with a tuple
(d1, . . . , dk), where Ci ⊆ dom(A) is the interpretation of set-variable Yi and di ∈
dom(A) is the interpretation of the individual variable zi. In a partial interpretation, we
may assign the special value undef to the individual variables zi in ψ. The truth value
I(R(zi1 , . . . , ziα)) in a partial interpretation I is defined in the obvious way: If some zij
is assigned the value undef in I , then I(R(zi1 , . . . , ziα)) = undef holds. Otherwise,
I(R(zi1 , . . . , ziα)) yields true or false exactly as for complete interpretations. Likewise,
I(Yi(zj)) = undef holds if I(zj) = undef , and otherwise the value of I(Yi(zj)) is the
same as for complete interpretations.

In order to systematically enumerate all possible interpretations for the quantifier-
free part ψ of φ and to represent the truth value of ψ in each of these interpretations, we
introduce the notion of semantic trees.

Definition 1. For an MSO formula φ and σ-structure A, we define the semantic tree
for φ andA as the following rooted, node-labeled tree with n+2 levels, where n is the
number of quantifiers in φ. We say that each node at depth i with 1 ≤ i ≤ n corresponds
to the ith variable in the quantifier prefix of φ.

The rank and label ` of each node N must satisfy the following conditions:

– The root has an empty label.
– Every node whose child nodes correspond to a set variable has |2dom(A)| child

nodes s.t. each subset of dom(A) occurs as the label of one of these child nodes.
– Each node whose child nodes correspond to an individual variable has |dom(A)|+
1 child nodes s.t. each element of dom(A)∪ {undef } occurs as the label of one of
these child nodes.

– For every nodeN at level n, we define IN as the partial assignment where the labels
along the path from the root to N are assigned to the variables s.t., for 1 ≤ i ≤ n,
the ith variable is set to the label of the ith node of that branch. Then every such
node N has exactly one child node, whose label is a pair (At+,At−), s.t. At+ and
At− are the sets of atoms in ψ that evaluate to true or, respectively, false in IN .

For an MSO formula φ and σ-structure A, we can use the corresponding seman-
tic tree S to get a naive MSO MC procedure: first delete any subtree of S rooted at a
node N with `(N) = undef ; then reduce the MSO MC problem to a Boolean circuit
evaluation problem by replacing each node whose children correspond to an existen-
tially quantified variable by ∨, each node whose children correspond to a universally
quantified variable by ∧, and replace the parents of the leaves by ∨.2 The leaf nodes
of the Boolean circuit are labeled > or ⊥ depending on the truth value of ψ in the
interpretation represented by this branch.

The correctness of this procedure follows from the game-theoretic notions in [24]:
Semantic trees can be seen as a special case of extended model checking games. Our
deletion of subtrees of S rooted at nodes labeled undef is analogous to procedure
convert from [24]. By Lemma 1 from [24], this results in the (non-extended) model
checking game over φ andA (i.e., a game where no position corresponding to a nullary

2 The parents of leaves always have exactly one child and could therefore equivalently be re-
placed by ∧ instead of ∨.

5

a b c

Fig. 1. A structure over the signature consisting of the binary edge predicate

∅ · · ·
...
{b, c}

a · · ·
b

a At+ = {S(x)} At− = {edge(x, y), S(y)}
b At+ = {S(x), S(y)} At− = {edge(x, y)}
c At+ = {edge(x, y), S(x), S(y)} At− = ∅
undef At+ = {S(x)} At− = ∅

c · · ·
undef · · ·

...
{a, b, c} · · ·

Fig. 2. Semantic tree for ∃S∀x∀y
(
edge(x, y)→ (S(x)↔ ¬S(y))

)
and the graph in Figure 1

symbol leaves that symbol uninterpreted). It is well known that this game evaluates
to either > or ⊥ (i.e., one of the players has a winning strategy) and that evaluating
the game yields > if and only if A |= φ (cf. [24]). This evaluation, corresponding to
the procedure eval from [24], can easily be seen to be equivalent to the evaluation of
Boolean circuits as described above.

Note that the concrete values of the labels at the internal nodes (i.e., the nodes
corresponding to set variables or individual variables) in a semantic tree are irrelevant.
Indeed, in this reduction to Boolean circuits, only the quantifier of each variable, the
tree structure of the semantic tree and the truth values (At+,At−) at the leaf nodes
matter.

Example 2. Consider the following MSO formula φ, which expresses the graph prop-
erty of bipartiteness.

∃S∀x∀y
(
edge(x, y)→ (S(x)↔ ¬S(y))

)
Let A be the structure depicted in Figure 1. The semantic tree for φ and A is shown in
Figure 2. Some subtrees of this semantic tree have been omitted.

To solve the MSO MC problem by a reduction to Boolean circuit evaluation as
described above, we first delete all subtrees rooted at a node labeled with “undef ”.
Then we replace the root by ∨ (as the first variable is existentially quantified), the nodes
at level 1 and 2 by ∧ (as the second and third variable is universally quantified) and the
nodes at level 3 by ∨. We replace the leaves by either > or ⊥ depending on the truth
value of edge(x, y) → (S(x) ↔ ¬S(y)) under the interpretation corresponding to the
respective branch. The first two of the depicted leaves are thus replaced by >, the third
one is replaced by ⊥ and the fourth one has been deleted as its parent node is labeled
with “undef”. Hence in the Boolean circuit the gate corresponding to the depicted node
at depth 3 labeled “c” evaluates to ⊥ and subsequently also its parent, which in turn
makes the gate corresponding to the node labeled “{b, c}” evaluate to ⊥. Indeed, every
gate corresponding to a node at depth 1 evaluates to ⊥, so the resulting Boolean circuit
evaluates to ⊥, which shows that A 6|= φ. This is the expected result since the graph
from Figure 1 is not bipartite.

6

2.2 Compressing Semantic Trees using Tree Decompositions

Of course, the MC procedure via semantic trees requires exponential time in the size of
A. In the following, we introduce a few concepts that will enable us to achieve a fixed-
parameter tractable (FPT) algorithm by compressing semantic trees in the presence of
a tree decomposition of A.

A tree decomposition of a structureA is a pair (T, χ) where T = (V,E) is a (rooted)
tree and χ : V → 2dom(A) maps nodes to so-called bags such that

(1) for every a ∈ dom(A), there is a t ∈ V with a ∈ χ(t),
(2) for every relation symbol Ri and every tuple (a1, . . . , aα) ∈ RAi there is a t ∈ V

with {a1, . . . , aα} ⊆ χ(t), and
(3) for every a ∈ dom(A), the set {t ∈ V | a ∈ χ(t)} induces a connected subtree of

T .

The latter is also known as the connectedness condition. The width of (T, χ) is defined
as maxt∈V (|χ(t)|) − 1. The treewidth of A is the minimum width over all its tree
decompositions. The notation t ∈ T expresses that t is a node of a tree decomposition
T . We write Tt andAt to denote the subtree of T rooted at t, and the substructure ofA
induced by the domain elements occurring in the bags of Tt, respectively. Furthermore,
we write χ(≥ t) to denote the union of all bags χ(s) such that s ∈ Tt. Moreover, let
χ(> t) denote χ(≥ t) \ χ(t).

By [23], we may assume that each node t ∈ T is of one of the following four types:
It is either a leaf node, an introduce node (having one child t′ with χ(t′) ⊂ χ(t) and
|χ(t) \ χ(t′)| = 1), a forget node (having one child t′ with χ(t′) ⊃ χ(t) and |χ(t′) \
χ(t)| = 1) or a join node (having two children t1, t2 with χ(t) = χ(t1) = χ(t2)).
Moreover, we may assume that the root of T has an empty bag. We can transform an
arbitrary tree decomposition into one having such a form in linear time.

We can obtain a decision procedure for A |= φ by computing the semantic tree for
every substructure At of A. At the root node r of the tree decomposition, we thus get
the semantic tree for the unrestricted structure A, which we can then use for checking
A |= φ by a reduction to the Boolean circuit evaluation problem. We now formally
define this semantic tree for a substructure At.

Definition 2. Consider an MSO formula φ and σ-structure A with tree decomposition
T . For t ∈ T , we say that St is the local semantic tree at t if St is the semantic tree of
the MSO formula φ and the induced substructure At of A.

Of course, using a tree decomposition to compute all local semantic trees is no bet-
ter than the naive method for MSO MC via semantic trees, but it is the basis of our
FPT algorithm for MSO MC. That is, we use it as a starting point for an algorithm that
decides A |= φ in time O(f(τ(T), φ) · ||T ||), where T is a tree decomposition of A,
τ(T) denotes the width of T and f is a function not depending on A. To this end, we
introduce a compression of the local semantic tree at each node t in the tree decomposi-
tion. This compression will enable us to compute, at each tree decomposition node, an
object whose size only depends on the formula and the input structure’s treewidth, but
not on the input structure’s size.

7

The compression of the local semantic tree at a node t ∈ T proceeds in two steps.
First, we restrict all labels specifying an interpretation of a variable to the domain ele-
ments present in χ(t):

– For every node corresponding to a set variable, the label B ⊆ dom(A) is replaced
by B ∩ χ(t).

– For every node corresponding to an individual variable, the label d is replaced by a
special symbol ? if d ∈ χ(> t), and left unchanged otherwise, i.e., if d ∈ χ(t) ∪
{undef , ?}.

Second, for any node that has two identical child subtrees, it suffices to retain only
one of them: Let N be a node in St and let N1, N2 be two distinct child nodes of N .
If the subtree rooted at N1 and the subtree rooted at N2 are identical, then we delete
N2 and the entire subtree rooted at N2 from St. This compression allows us to achieve
fixed-parameter tractability, and its correctness follows from Lemma 7 in [24].

To formalize the intuitions behind these steps for compressing local semantic trees,
we need the following notion of an s-tree, which resembles a semantic tree but is less
restrictive.

Definition 3. For an MSO formula φ, a σ-structureA with tree decomposition T and a
node t ∈ T , we define an s-tree at t as a node-labeled tree with n+ 2 levels as follows.
We say that each node at depth i with 1 ≤ i ≤ n corresponds to the ith variable in the
quantifier prefix of φ. The following conditions must be satisfied:

– The root has an empty label.
– Every node corresponding to a set variable has as label a subset of χ(t). Siblings

do not necessarily have distinct labels.
– Every node corresponding to an individual variable has as label one of the elements

of dom(A) ∪ {undef , ?}. The label ? may be shared by several siblings.
– Every leaf node has as label a pair (At+,At−) with At+,At− ⊆ At(φ) and
At+ ∩At− = ∅.

In order to allow only such s-trees that relate to a local semantic tree in the way laid
out by the compression steps above, we define the stricter notion of valid s-trees.

Definition 4. Consider an MSO formula φ and σ-structure A with tree decomposition
T and node t ∈ T along with the local semantic tree St. We call an s-tree C a valid
s-tree if no node in C has identical child subtrees and there exists a mapping µ from the
nodes of St to the nodes of C with the following properties:

1. µ maps every node in St to a node in C at the same level.
2. Suppose that some inner node N in St is mapped to the node µ(N) = N ′ in
C. Moreover, let {N1, . . . , Nα} denote the set of child nodes of N in St and let
{N ′1, . . . , N ′β} denote the set of child nodes of N ′ in C. Then µ maps every Ni to
some N ′j and every N ′j indeed occurs as the function value µ(Ni) of at least one
Ni.

3. The following relationships between the label of N and of µ(N) hold:
– If N corresponds to a set variable, then `(µ(N)) = `(N) ∩ χ(t).

8

{b}

{a, b, c}

Fig. 3. A tree decomposition of the structure from Figure 1. (For instructional purposes explained
in Example 3, the decomposition contains redundancies.)

∅ · · ·
...
{b}

? · · ·
b

? At+ = {S(x)} At− = {edge(x, y), S(y)}
b At+ = {S(x), S(y)} At− = {edge(x, y)}
? At+ = {edge(x, y), S(x), S(y)} At− = ∅
undef At+ = {S(x)} At− = ∅

? · · ·
undef · · ·

...
{b} · · ·

Fig. 4. A valid s-tree for the formula ∃S∀x∀y
(
edge(x, y) → (S(x) ↔ ¬S(y))

)
at the root of

the decomposition from Figure 3

– If N corresponds to an individual variable, then `(µ(N)) = `(N) holds if
`(µ(N)) ∈ χ(t) ∪ {undef }, and `(µ(N)) = ? otherwise.

– If N corresponds to a pair of atom sets, then `(µ(N)) = `(N).

Example 3. Figure 3 shows a tree decomposition of the structure from Figure 1.3 Fig-
ure 4 depics a valid s-tree at the root of this decomposition for the MSO formula
∃S∀x∀y

(
edge(x, y) → (S(x) ↔ ¬S(y))

)
. Although the labels ?, ∅ and {b} oc-

cur in multiple sibling nodes, the s-tree does not contain redundancies in the form of
identical sibling subtrees. We can construct the required function µ by mapping any
node from the semantic tree shown in Figure 2 (which is also the local semantic tree at
the root of the decomposition) to that node in Figure 4 that is at the same position in the
illustration.

Note that in this particular example the valid s-tree has no advantages to the respec-
tive local semantic tree in terms of size. In general, however, valid s-trees are signif-
icantly smaller than local semantic trees because (for a fixed formula) the size of the
former is bounded by the treewidth, whereas the size of the latter depends on the size
of the input structure. We will prove this fact in Theorem 1.

2.3 Computating Valid s-trees at Tree Decomposition Nodes

We now describe how to compute a valid s-tree at all nodes t ∈ T by a bottom-up
traversal of a given tree decomposition T . To this end, we treat the four node types
of a tree decomposition separately (i.e., leaf nodes, forget nodes, introduce nodes and
join nodes). For each of these types, we show how a valid s-tree can be constructed at

3 Strictly speaking, the root of this decomposition is redundant as its bag is a subset of its child’s
bag. The depicted tree decomposition is, however, legal and serves to illustrate the fact that ?
may stand for different forgotten vertices.

9

St Ct

St′ Ct′

µ(·)

µ(·)

µ′(·)

µ′(·)

Corr(·)

Corr(·)

O(·)

O(·)

Fig. 5. Proof strategy for the lemmas about constructing a valid s-tree Ct at a tree decomposition
node t with child t′

a decomposition node of the respective type, given a valid s-tree for each of the child
nodes. We do this by constructing an s-tree using the valid s-trees from the children and
then providing a mapping from the current decomposition node’s local semantic tree
to the constructed s-tree, as required by Definition 4. While the ideas underlying our
algorithms have already been introduced in [24], our contribution is to show how they
can be implemented using s-trees. In contrast to the more general games in [24], s-trees
lend themselves to be used in conjunction with D-FLAT. This will allow us to solve
MSO MC via D-FLAT, as we will show in Section 4.

This proof strategy is illustrated in Figure 5 for a node t having a sole child t′ with
a valid s-tree Ct′ . (The idea is the same for leaf or join nodes.) From Ct′ we construct Ct
depending on the type of t, as described in the respective lemma. Since Ct′ is valid, we
may assume that a mapping µ′ from the nodes of the local semantic tree St′ to Ct′ exists.
We use this fact for constructing a mapping µ from the nodes of the local semantic tree
St to Ct in order to show that Ct is valid as well. In the lemma for introduce nodes (and
similarly for join nodes), we make use of functions O(·) and Corr(·), which are also
depicted in the illustration, to indicate the “origins” of nodes in Ct and St, respectively.

Lemma 1. Consider an MSO formula φ, a σ-structure A with tree decomposition T ,
and a leaf node t ∈ T . Then the valid s-tree at t coincides with the local semantic tree
St at t.

Proof. For leaf nodes t of the tree decomposition T , we have χ(t) = χ(≥ t). It is easy
to see that St is also a valid s-tree: As the mapping µ required in Definition 4 we can
choose the identity function. Moreover, no node in St has identical child subtrees since
no two semantic tree nodes with common parent have identical labels.

10

Lemma 2. Consider an MSO formula φ, a σ-structure A with tree decomposition T ,
and a forget node t ∈ T whose child node is t′. Suppose that χ(t′) \ χ(t) = {b}. Then
a valid s-tree Ct at t is obtained from a valid s-tree Ct′ at t′ as follows:

1. For every node corresponding to a set variable, the label B ⊆ dom(A) is replaced
by the label B \ {b}.

2. For every node corresponding to an individual variable, the label d ∈ dom(A) is
left unchanged for d 6= b and replaced by ? if d = b.

3. Finally, we delete any subtree having an identical sibling subtree until all such
redundancies are eliminated.

Proof. Let St and St′ denote the local semantic trees at t and t′, respectively. For a
forget node t, we have χ(≥ t) = χ(≥ t′) and, therefore, St = St′ . Since Ct′ is a valid
s-tree at t′, there exists a mapping µ′ : N (St′) → N (Ct′) with the properties specified
in Definition 4. Now consider the s-tree C∗t at t, which is obtained from Ct′ by the steps
1 and 2 of this lemma. Clearly, these steps do not change the tree structure. In total,
we have N (St) = N (St′) and N (C∗t) = N (Ct′). Hence, µ′ can also be considered
as a mapping µ∗ : N (St) → N (C∗t). Moreover, it is easy to verify that µ∗ satisfies the
properties in Definition 4. Note that with any elimination of a duplicate in step 3, we
can adjust this mapping such that these properties remain intact: For the subtree that
is deleted in the redundancy elimination, there is an identical subtree in the remaining
s-tree. We adjust the mapping µ∗ such that any node in St that has been mapped to a
node in the deleted subtree is now mapped to the corresponding node in the remaining
s-tree.

For the s-tree Ct at t that results from steps 1–3, we can therefore construct a map-
ping µ satisfying the properties in Definition 4, and no node in Ct has identical child
subtrees, as redundancies have been eliminated exhaustively. Thus Ct is valid.

For an introduce node t with child t′, we first give an intuition of our procedure:
We obtain the valid s-tree Ct from Ct′ by copying subtrees of the valid s-tree Ct′ and
modifying the labels of the copies as follows. Every node N in Ct′ with `(N) ⊆ χ(t′)
gives rise to two nodes in Ct: one with unchanged label `(N) and one with label `(N)∪
{b}, where b is the introduced bag element. Similarly, every nodeN in Ct′ with `(N) =
undef gives rise to two nodes in Ct: one with unchanged label undef and one with label
b. Note that this corresponds to the intended meaning of the value undef , which is that
a value shall be assigned to this individual variable “outside” the current subtree of the
tree decomposition. For the adaptation of the truth values (At+,At−) at the leaf nodes
of Ct, the connectedness condition of tree decompositions is crucial. This is expressed
in detail in Figure 6.

Lemma 3. Consider an MSO formula φ, a σ-structure A with tree decomposition T ,
and an introduce node t ∈ T whose child node is t′. Suppose that χ(t) \ χ(t′) = {b}.
Then a valid s-tree Ct at t can be obtained from a valid s-tree Ct′ at t′ as described in
Figure 6. We thus construct Ct inductively from level 0 to level n + 1. Alongside every
node N in Ct, we define its “origin” O(N), i.e., the node in Ct′ which node N “stems
from”. In Figure 6 we specify how to compute the children of a node N in Ct from the
children of O(N) in Ct′ .

11

Inductive definition of Ct from Ct′ .
Define a valid s-tree Ct at t from a valid s-tree Ct′ at t′;
every node N in Ct is accompanied by its “origin” O(N) in Ct′ .
Initialization: For the root r of Ct, define O(r) = root of Ct′ .

Child nodes and origin (Ni, O(Ni)) of node N in Ct with origin O(N):

For nodes N whose children correspond to a set variable:
{(Ni, N

′
i) | N ′i is a child of O(N) with(

`(Ni) = `(N ′i) or (`(Ni) = `(N ′i) ∪ {b})
)
}

For nodes N whose children correspond to an individual variable:
{(Ni, N

′
i) | N ′i is a child of O(N) with(

(`(Ni) = `(N ′i)) or
(
`(Ni) = b and `(N ′i) = undef

))
}

For nodes N at level n:
Let IN denote the partial assignment at N ,
let N ′1 be the child of O(N), and let `(N ′1) = (At+,At−).
ThenN has a childN1 withO(N1) = N ′1 and with label `(N1) = (At+∗ ,At

−
∗) defined

as follows:

At+∗ = At+ ∪ {Yi(zj) | IN (zj) = b and b ∈ IN (Yi)} ∪
{R(zi1 , . . . , ziα) | IN (zij) = b for some ij

and IN (zij) 6= undef for all ij
and (IN (zi1), . . . , IN (ziα)) ∈ RA}

At−∗ = At− ∪ {Yi(zj) | IN (zj) = b and b 6∈ IN (Yi)} ∪
{R(zi1 , . . . , ziα) | IN (zj) = b for some ij

and IN (zj) 6= undef for all ij
and (IN (zi1), . . . , IN (ziα)) 6∈ RA}

Fig. 6. Valid s-tree at an introduce node

Proof. Let St and St′ denote the local semantic trees at t and t′, respectively. Recall
that we have χ(≥ t) = χ(≥ t′) ∪ {b}. To show that Ct is a valid s-tree it suffices to
construct a mapping µ : N (St)→ N (Ct) according to Definition 4. By assumption, the
corresponding mapping µ′ : N (St′)→ N (Ct′) exists.

Note that the “origin” function O(·) associates every node in Ct with a node in Ct′ .
Analogously, we now define a function Corr(·) which associates every node in St with
a “corresponding” node in St′ . Let N be a node in St and suppose that the labels of the
nodes corresponding to set variables along the path from the root toN are (C1, . . . , Cp),
and the labels of the nodes corresponding to individual variables along the path from
the root to N are (d1, . . . , dq). Then we set Corr(N) := N ′, where N ′ is the uniquely
defined node in St′ at the same level as N , s.t. the nodes corresponding to set variables
in the path from the root to N ′ have the labels (C1 \ {b}, . . . , Cp \ {b}), and the nodes
corresponding to an individual variable in the path from the root to N ′ have the labels
(d′1, . . . , d

′
q) with d′i := undef if di = b and d′i := di otherwise.

We are now ready to define a function µ : N (St) → N (Ct) that satisfies all condi-
tions of Definition 4. Let rS and rC denote the root of St and Ct, respectively. We start

12

the construction of µ by setting µ(rS) = rC and we proceed further by induction on
the level i in the trees St and Ct.

For every i ∈ {0, . . . , n − 1} we inspect every node NS ∈ N (St) at level i. Let
NC denote the node in N (Ct) with µ(NS) = NC . Now, for every child N ′S of NS , we
define µ(N ′S) := N ′C , where N ′C is chosen as follows:
N ′C is a child of NC , O(N ′C) = µ′(Corr(N ′S)), and the label `(N ′C) satisfies the
following conditions:

If the (i+ 1)th variable is a set variable: b ∈ `(N ′C) iff b ∈ `(N ′S).
If the (i+1)th variable is an individual variable: `(N ′C) = b if `(N ′S) = b; `(N ′C) =

undef if `(N ′S) = undef .
First we observe that µ is thus well-defined for every node NS ∈ N (St) at every level
1, . . . , n. Indeed, by the definition of the “origin” function O(·) in Figure 6, we have
that, for a given node NC ∈ N (Ct), there can be at most 2 child nodes N1, N2 of NC
with identical function values under O(·):

– ForNC whose children correspond to a set variable: A pair (N1, N2) of child nodes
of NC satisfies O(N1) = O(N2) if and only if `(N1) = `(N2) \ {b} or vice versa
holds.

– For NC whose children correspond to an individual variable: Exactly one pair
(N1, N2) of child nodes of NC satisfies O(N1) = O(N2), namely the pair of
nodes with `(N1) = undef and `(N2) = b or vice versa.

In other words, the identification of the parent NC of N ′C together with the above
case distinction over the label of `(N ′S) uniquely defines the node N ′C to which N ′S
is mapped by µ. Moreover, it is easy to check that µ fulfills all conditions from Defini-
tion 4 for the nodes at levels 1, . . . n.

We have defined µ for all nodes NS ∈ St at level n and, therefore implicitly also
for the nodes on level n+1, namely, µ(N ′S) = N ′C , where NS is the parent of N ′S , NC
is the parent of N ′C , and µ(NS) = NC . It remains to verify that the labels of N ′S and
N ′C indeed coincide.

We have to show that the computation of `(NC) from `(O(NC)) for nodes NC
at level n + 1 according to Figure 6 yields the correct result. To this end, we inspect
how `(NS) can be computed from `(Corr(NS)), where NS is at level n + 1: Let
I denote the truth assignment that is given by the labels (C1, . . . , Cm) of the nodes
corresponding to set variables along the path from the root of St toNS , as well as by the
labels (d1, . . . , dk) of the nodes corresponding to individual variables along that path.
Furthermore, let I ′ denote the truth assignment given by the labels (C1 \{b}, . . . , Cm \
{b}) of the nodes corresponding to set variables along the path from the root of St′
to Corr(NS), and by the labels (d′1, . . . , d

′
k) of the nodes corresponding to individual

variables, where d′i := undef if di = b and d′i := di otherwise.
Suppose an atom R(zi1 , . . . , ziα) is true in I . Then dij ∈ χ(≥ t) holds for all j and
(di1 , . . . , diα) ∈ RA. We distinguish the following cases:

1. If dij ∈ χ(≥ t) \ {b} for all j then R(zi1 , . . . , ziα) is already true in I ′.
2. If dij = b for at least one j then, by the definition of tree decompositions, we

actually have dij ∈ χ(t) for all j. Moreover, by the definition of Corr(·), the truth
value of R(zi1 , . . . , ziα) in I ′ is undefined.

13

Suppose an atom R(zi1 , . . . , ziα) is false in I . Then dij ∈ χ(≥ t) for all j and
(di1 , . . . , diα) 6∈ RA. We distinguish the following cases:

1. If dij ∈ χ(≥ t) \ {b} for all j then R(zi1 , . . . , ziα) is already false in I ′.
2. If dij = b for at least one j then the truth value of this atom is undefined in I ′.

Suppose an atom Yi(zj) is true in I . Then dj ∈ χ(≥ t) and dj ∈ Ci. We distinguish
the following cases:

1. If dj ∈ χ(≥ t) \ {b} then Yi(zj) is already true in I ′.
2. If dj = b then the truth value of Yi(zj) is undefined in I ′.

Suppose an atom Yi(zj) is false in I . Then dj ∈ χ(≥ t) and dj 6∈ Ci. We distinguish
the following cases:

1. If dj ∈ χ(≥ t) \ {b} then Yi(zj) is already false in I ′.
2. If dj = b then the truth value of this atom is undefined in I ′.

To check that the sets At+∗ and At−∗ in Figure 6 have the correct values, we have to
inspect the various cases above:

– An atom R(zi1 , . . . , ziα) is true in I if either (case 1 above) it is already true in I ′

or (case 2 above) dj = b for some j, dij ∈ χ(t) for all j, and (di1 , . . . , diα) ∈ RA.
Since dij ∈ χ(t) for all j, this is correctly checked in the computation of At+∗ in
Figure 6.

– An atom R(zi1 , . . . , ziα) is false in I if either (case 1 above) it is already false in
I ′ or (case 2 above) dij = b for some j and (di1 , . . . , diα) 6∈ RA. For the purpose
of checking (di1 , . . . , diα) 6∈ RA in Figure 6, we may treat ? in any position j′

like an ordinary domain element. Of course, the test (IN (zi1), . . . , IN (ziα)) 6∈ RA
in Figure 6 is guaranteed to succeed whenever IN (zij′) = ? for some j′. This is
the correct behavior since ? stands for some value dij′ ∈ χ(> t). Thus, in the
computation of At−∗ in Figure 6, we check correctly if R(zi1 , . . . , ziα) is false in I .
Note that, by the definition of valid s-trees, At− may contain atomsR(zi1 , . . . , ziα)
which were undefined in I ′. Of course, this can only be the case if all previously
undefined variables of such an atom are now interpreted as b in I . Recall that ?
stands for a domain value in χ(> t). But then, by the connectedness condition,
the tree decomposition T cannot have a node whose bag jointly contains all the
elements I(zi1), . . . , I(ziα). In other words, such an atom must have the truth value
false in I . Hence, again it is correct to have all these atoms in At−∗ .

– An atom Yi(zj) is true in I if either (case 1 above) it is already true in I ′ or we have
dj = b and b ∈ Ci. These conditions are correctly checked in the computation of
At+∗ in Figure 6.

– An atom Yi(zj) is false in I if either (case 1 above) it is already false in I ′ or we
have dj = b and b 6∈ Ci. These conditions are correctly checked in the computation
of At−∗ in Figure 6.

– An atom R(zi1 , . . . , ziα) or Yi(zj) is undefined in I if it was undefined in I ′ and if
its truth value is not set to either true or false in one of the cases analyzed above.
Hence, in Figure 6, we correctly let all atoms undefined that are neither included in
At+∗ nor in At−∗ .

14

To conclude, At+∗ and At−∗ in Figure 6 indeed correctly identify the sets of atoms from
φ that are either true or false in I . We have thus established the existence of a mapping
µ as required by Definition 4. Furthermore, at introduce nodes no redundancies in the
form of identical sibling subtrees can arise because Ct′ does not contain any and it can
easily be seen that none of our modifications to construct Ct introduce redundancies.
This proves that Ct is valid.

Now we give the intuition of our procedure for a join node t with child nodes t1
and t2. By definition of join nodes, we have χ(t) = χ(t1) = χ(t2). The nodes of Ct
are obtained by combining “compatible” nodes of Ct1 and Ct2 . A node N1 in Ct1 and
a node N2 in Ct2 are compatible if either they correspond to the same set variable and
`(N1) = `(N2), or they correspond to the same individual variable and the following
holds: Either (a) `(N1) = `(N2) and `(Ni) 6= ? or (b) one of `(N1), `(N2) is undef .
In case (a), the node N in Ct resulting from combining N1 and N2 simply gets the label
`(N) = `(N1) = `(N2). In case (b), the label of the resulting node N is set to `(Ni)
with `(Ni) 6= undef . Note that in (a), it is important to exclude the combination of
nodes N1 and N2 with `(N1) = `(N2) = ?. This is due to the intended meaning of ?,
which stands for some domain element in the subtree below t in the tree decomposition
s.t. this value no longer occurs in the bag of t. Hence, the two occurrences of ? in Ct1
and Ct2 stand for different values. The label (At+,At−) at a leaf node of Ct is obtained
as follows. We set At+ to the union of the true atoms in the corresponding nodes of
Ct1 and Ct2 . The set of false atoms At− consists of the union of the false atoms in the
corresponding nodes of Ct1 and Ct2 , but it may also contain atoms R(zi1 , . . . , ziα) that
were neither true nor false in either of these nodes. This is the case if our combination
of compatible nodes in Ct1 and Ct2 leads to no zij having the value undef anymore.
This is formalized in Figure 7.

Lemma 4. Consider an MSO formula φ, a σ-structure A with tree decomposition T ,
and a join node t ∈ T whose child nodes are t1 and t2. Then a valid s-tree Ct at t can be
obtained from valid s-trees Ct1 at t1 and Ct2 at t2 as described in Figure 7: We construct
Ct inductively from level 0 to level n + 1. Alongside every node N in Ct, we define its
“origins” (O1(N), O2(N)), i.e., a node O1(N) in Ct1 and a node O2(N) in Ct2 , s.t.
node N “stems from” O1(N) and O2(N). In Figure 7 we specify how to compute the
children of a node N in Ct from the children of O1(N) in Ct1 and O2(N) in Ct2 .

Proof. The proof proceeds by the same steps as the proof of Lemma 3. Let St, St1
and St2 denote the local semantic tree at t, t1 and t2, respectively. Recall that we have
χ(t) = χ(t1) = χ(t2). To show that Ct is a valid s-tree it suffices to construct a mapping
µ : N (St) → N (Ct) according to Definition 4. By Definition 4, we know that the
corresponding mappings µ1 : N (St1)→ N (Ct1) and µ2 : N (St2)→ N (Ct2) exist.

Note that the “origin” functionsO1 andO2 associate every node in Ct with a node in
Ct1 and a node in Ct2 , respectively. Analogously, we now define functions Corr1(·) and
Corr2(·) which associate every node in St with “corresponding” nodes in St1 and St2 ,
respectively. LetN be a node in St and suppose that the labels of the nodes correspond-
ing to set variables along the path from the root toN are (C1, . . . , Cp), and the labels of
the nodes corresponding to individual variables along that path are (d1, . . . , dq). Then
we set Corr1(N) := N1 and Corr2(N) := N2, where N1 and N2 are the uniquely

15

Inductive definition of Ct from Ct1 and Ct2 .
Define a valid s-tree Ct at t from valid s-trees Ct1 at t1 and Ct2 at t2; every node N in
Ct is accompanied by its “origins” O1(N) in Ct1 and O2(N) in Ct2 .

Initialization: For the root r of Ct, defineO1(r) = root of Ct1 andO2(r) = root of Ct2 .

Child nodes and origins (N ′, O1(N
′), O2(N

′)) of node N in Ct with origin O1(N) in
Ct1 and O2(N)) in Ct2 :

For nodes N whose children correspond to a set variable:
{(N ′, O1(N

′), O2(N
′)) | there exist N1 child of O1(N) and N2 child of O2(N) with

`(N1) = `(N2), s.t. O1(N
′) = N1 and O2(N

′) = N2 and `(N ′) = `(N1)}

For nodes N whose children correspond to an individual variable:
{(N ′, O1(N

′), O2(N
′)) | there exist N1 child of O1(N) and N2 child of O2(N) with

`(N1) = `(N2) but `(N1) 6= ?, or
`(N1) = undef or `(N2) = undef , s.t.
O1(N

′) = N1 and O2(N
′) = N2 with

`(N ′) = `(N1) if `(N1) 6= undef and `(N ′) = `(N2) otherwise}.

For nodes N at level n:
Let IN denote the partial assignment at N and let N1 = O1(N) with child N ′1 and
N2 = O2(N) with child N ′2;
moreover, let `(N ′1) = (At+1 ,At

−
1) and `(N ′2) = (At+2 ,At

−
2);

then N has a child N ′ with label `(N ′) = (At+∗ ,At
−
∗), s.t.

At+∗ = At+1 ∪At+2 and
At−∗ = At−1 ∪At−2 ∪
{R(zi1 , . . . , ziα) | `(zij) 6= undef for all ij

and R(zi1 , . . . , ziα) /∈ At+∗ }

Fig. 7. Valid s-tree at a join node

defined nodes in St1 and St2 , respectively, at the same level as N , s.t. the nodes corre-
sponding to set variables in the paths from the respective root to N1 as well as N2 have
the labels (C1, . . . , Cp); furthermore, the nodes corresponding to individual variables in
the path from the root to N1 have the labels (d′1, . . . , d

′
q), and the nodes corresponding

to individual variables in the path from the root to N2 have the labels (d′′1 , . . . , d
′′
q) s.t.

if di ∈ χ(t) ∪ {undef } then d′i := di and d′′i := di,
if di ∈ χ(> t1) then d′i := di and d′′i := undef , and
if di ∈ χ(> t2) then d′′i := di and d′i := undef .

We are now ready to define a function µ : N (St)→ N (Ct) and we show that it satisfies
all conditions of Definition 4. Let rS and rC denote the roots of St and Ct, respec-
tively. We start the construction of µ by setting µ(rS) = rC and we proceed further by
induction on the level i in the trees St and Ct.

For every i ∈ {0, . . . , n − 1} we inspect every node NS ∈ N (St) at level i. Let
NC denote the node in N (Ct) with µ(NS) = NC . Now, for every child N ′S of NS , we
define µ(N ′) := N ′C , where N ′C is chosen as follows: N ′C is a child of NC , O1(N

′
C) =

µ1(Corr1(N
′
S)), and O2(N

′
C) = µ2(Corr2(N

′
S)). Note that µ is thus well-defined for

every node NS ∈ N (St) at every level 1, . . . , n since, by the definition of the “origin”

16

functions O1(·) and O2(·) in Figure 7, the node N ′C is uniquely defined by the parent
NC of N ′C and the “origin” nodes O1(N

′
C) and O2(N

′
C).

We have defined µ for all nodes NS ∈ St at level n and, therefore implicitly also
for the nodes on level n+1, namely, µ(N ′S) = N ′C , where NS is the parent of N ′S , NC
is the parent of N ′C , and µ(NS) = NC . It remains to verify that the labels of N ′S and
N ′C indeed coincide.

We have to show that the computation of `(NC) from `(O1(NC)) and `(O2(NC))
for nodes NC at level n + 1 according to Figure 7 yields the correct result. To this
end, we inspect how `(NS) can be computed from `(Corr1(NS)) and `(Corr2(NS)),
where NS is at level n+1: Let I denote the truth assignment that is given by the labels
(C1, . . . , Cm) of the nodes corresponding to set variables along the path from the root
of St toNS , as well as by the labels (d1, . . . , dk) of the nodes corresponding to individ-
ual variables along that path. Furthermore, let I1 and I2 denote the truth assignments
given by the labels (C ′1, . . . , C

′
m) and (C ′′1 , . . . , C

′′
m) of the nodes corresponding to set

variables along the path from the roots of St1 and St2 to Corr1(NS) and Corr2(NS),
respectively, and the labels (d′1, . . . , d

′
k) and (d′′1 , . . . , d

′′
k) of the nodes corresponding

to individual variables along the respective path. Recall that by the above definition of
Corr1(·) and Corr2(·), the sets C ′i, C

′′
i satisfy the conditions C ′i := Ci ∩ χ(≥ t1)

and C ′′i := Ci ∩ χ(≥ t2). Moreover, the domain elements d′i, d
′′
i satisfy the following

conditions:
If di ∈ χ(t) ∪ {undef }, then d′i := di and d′′i := di
If di ∈ χ(> t1), then d′i := di and d′′i := undef , and
If di ∈ χ(> t2), then d′′i := di and d′i := undef .

Suppose an atom R(zi1 , . . . , ziα) is true in I . Then dij ∈ χ(≥ t) holds for all j and
(di1 , . . . , diα) ∈ RA. We distinguish the following cases:

1. If dij ∈ χ(t) for all j, then also dij ∈ χ(≥ t1) and dij ∈ χ(≥ t2) for all j. Hence,
R(zi1 , . . . , ziα) is already true in both I1 and I2.

2. If dij ∈ χ(> t1) for at least one j then, by the definition of tree decompositions,
we actually have dij ∈ χ(≥ t1) for all j. Hence, R(zi1 , . . . , ziα) is already true in
I1. On the other hand, by the definition of Corr1(·) and Corr2(·), R(zi1 , . . . , ziα)
is undefined in I2.

3. The case dij ∈ χ(> t2) for at least one j is symmetric to case 2 above.

Suppose an atom R(zi1 , . . . , ziα) is false in I . Then dij ∈ χ(≥ t) for all j and
(di1 , . . . , diα) 6∈ RA. We distinguish the following cases:

1. If dij ∈ χ(t) for all j, then also dij ∈ χ(≥ t1) and dij ∈ χ(≥ t2) for all j. Hence,
R(zi1 , . . . , ziα) is already false in both I1 and I2.

2. If dij ∈ χ(≥ t1) for all j and dij′ ∈ χ(> t1) for some j′, then R(zi1 , . . . , ziα) is
false in I1 and undefined in I2.

3. The case dij ∈ χ(≥ t2) for all j and dij′ ∈ χ(> t2) for some j′ is symmetric to
case 2 above.

4. If dij ∈ χ(> t1) for some j and dij′ ∈ χ(> t2) for some j′, then R(zi1 , . . . , ziα)
is undefined in both I1 and I2.

17

Suppose an atom Yi(zj) is true in I . Then dj ∈ χ(≥ t) and dj ∈ Ci. We distinguish
the following cases:

1. If dj ∈ χ(t), then we also have dj ∈ χ(≥ t1) and dj ∈ χ(≥ t2). Hence, Yi(zj) is
already true in both I1 and I2.

2. If dj ∈ χ(> t1), then we claim that dj ∈ C ′i. Indeed, by the definition of tree
decompositions, from dj ∈ χ(> t1) it follows that dj 6∈ χ(≥ t2). Hence, from
dj ∈ Ci and Ci = C ′i ∪ C ′′i we conclude that dj ∈ C ′i. But then Yi(zj) is already
true in I1. On the other hand, Yi(zj) is undefined in I2.

3. The case dj ∈ χ(> t2) is symmetric to case 2 above.

Suppose an atom Yi(zj) is false in I . Then dj ∈ χ(≥ t) and dj 6∈ Ci. We distinguish
the following cases

1. If dj ∈ χ(t), then we also have dj ∈ χ(≥ t1) and dj ∈ χ(≥ t2). Hence, Yi(zj) is
already false in both I1 and I2.

2. If dj ∈ χ(> t1), then Yi(zj) is false in I1 and undefined in I2.
3. The case dj ∈ χ(> t2) is symmetric to case 2 above.

To check that the sets At+∗ and At−∗ in Figure 7 have the correct values, we have to
inspect the various cases above:

– An atom R(zi1 , . . . , ziα) is true in I if either it is already true in I1 (cases 1
and 2 above) or in I2 (cases 1 and 3 above). In Figure 7 we thus correctly put
R(zi1 , . . . , ziα) into At+∗ .

– An atom R(zi1 , . . . , ziα) is false in I if it is false in both I1 and I2 (case 1 above),
or it is false in one of {I1, I2} and undefined in the other (cases 2 and 3 above).
These cases are correctly checked in the computation of At−∗ in Figure 7.
Now consider those atoms that are false in I and whose truth value was undefined
in I1 and I2 (case 4 above). Those atoms are correctly added to the set At−∗ in
Figure 7 because the set

{R(zi1 , . . . , ziα) | `(zij) 6= undef for all ij and R(zi1 , . . . , ziα) /∈ At+∗ }

consists only of those atoms as well as atoms that are false in I1 or I2.
– An atom Yi(zj) is true in I if either (cases 1 and 2 above) it is true in I1 or (cases

1 and 3 above) it is true in I2. In Figure 7 we thus correctly put Yi(zj) into At+∗ .
– An atom Yi(zj) is false in I if either (cases 1 and 2 above) it is false in I1 or (cases

1 and 3 above) it is false in I2 In Figure 7 we thus correctly put Yi(zj) into At−∗ .
– An atom R(zi1 , . . . , ziα) or Yi(zj) is undefined in I if it was undefined in both
I1 and I2 and if its truth value is not set to either true or false in one of the cases
analyzed above. Hence, in Figure 7, we correctly let all atoms undefined that are
neither included in At+∗ nor in At−∗ .

To conclude, At+∗ and At−∗ in Figure 7 indeed correctly identify the sets of atoms from
φ that are true or, respectively, false in I

18

2.4 MSO Model Checking via s-trees

Given a finite structure A with a tree decomposition T and an MSO sentence φ, our
MC procedure works in two steps: First, in a bottom-up traversal of T , we compute an
s-tree at every node in T . Then we evaluate φ over A by reducing the s-tree at the root
node r of T to a Boolean circuit. Fixed-parameter linearity (w.r.t. the treewidth) of this
algorithm is obtained as follows:

Theorem 1. For the MSO model checking problem A |= φ, let T be a tree decom-
position of A. Then we can compute a valid s-tree Ct at every node t in T in overall
time O(f(τ(T), φ) · ||T ||). Here, τ(T) denotes the width of T and f is a function not
depending on A.

Proof. In a bottom-up traversal of T we proceed as described in Lemmas 1 – 4. To
prove an upper bound on the complexity of the computation at each node, we prove an
upper bound on the size of valid s-trees. It is then easy to see that the computation of
a valid s-tree Ct at every node t ∈ T can be done within the time bound stated in the
theorem.

We can easily prove by an induction argument that the number of nodes in an s-tree
is bounded by a tower of exponentials whose height corresponds to the quantifier rank n
of φ. For a node corresponding to an individual variable, the number of possible labels
is bounded by w+3 (w+1 bag elements plus undef and ?). For a node corresponding
to a set variable, this number is 2w+1. Supposing w.l.o.g. that w > 0, the number of
possible labels of an inner node is then bounded by 2w+1. A node at level n − 1 can
therefore have up to 2w+1 · 3||φ|| children, as each atom can either be in At+, At− or
neither. At level n− 2, a node can have at most 2w+1 · 22w+1·3||φ|| children.
By iterating these ideas, we can compute an upper bound on the number of child nodes
of nodes at levels n − 3, . . . , 1, 0. We thus get an expression which is a tower of ex-
ponentials whose height corresponds to the quantifier rank of φ. But of course, the
expression does not depend on the size of structure A. The size of the valid s-tree is
thus also O(g(τ(T), φ)) for some function g that depends on the width of T and φ but
not on A.
Now suppose a naive implementation of the computations described in Lemmas 1 – 4:
We iterate in (nested) loops over the nodes of the s-tree at the child node(s) of t. Also for
the reduction of the resulting s-tree at t, we simply proceed in (nested) loops. Clearly,
the complexity of all these operations depends solely on τ(T) and φ but not on A.

3 ASP and D-FLAT

In this section, we give brief introductions to Answer Set Programming (ASP) [8] and
the D-FLAT system [2, 1, 4]. We thus set the stage for presenting our main result, i.e.,
that D-FLAT possesses enough expressive power for solving any MSO-definable prob-
lem parameterized by the treewidth in fixed-parameter linear time.

ASP is a declarative language where a program Π is a set of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn.

19

The constituents of a rule r ∈ Π are h(r) = {a1, . . . , ak}, b+(r) = {b1, . . . , bm} and
b−(r) = {bm+1, . . . , bn}. Intuitively, r states that if an answer set contains all of b+(r)
and none of b−(r), then it contains some element of h(r). A set of atoms I satisfies a
rule r if I ∩h(r) 6= ∅ or b−(r)∩ I 6= ∅ or b+(r) \ I 6= ∅. I is a model of a set of rules if
it satisfies each rule. I is an answer set of a program Π if it is a subset-minimal model
of the program ΠI = {h(r)← b+(r) | r ∈ Π, b−(r) ∩ I = ∅} [20].

ASP programs can be viewed as succinctly representing problem solving specifi-
cations following the Guess & Check principle. A “guess” can, for example, be per-
formed using disjunctive rules which non-deterministically open up the search space.
Constraints (i.e., rules r with h(r) = ∅), on the other hand, amount to a “check” by
imposing restrictions that solutions must obey.

In this paper, we use the language of the grounder Gringo [17, 18] (version 4) where
programs may contain variables that are instantiated by all ground terms (elements of
the Herbrand universe, i.e., constants and compound terms containing function sym-
bols) before a solver computes answer sets according to the propositional semantics
stated above.

Example 4. The following ASP program solves the INDEPENDENT DOMINATING SET
problem for graphs that are given as facts using the predicates vertex and edge.

1{ in(X) : vertex(X) }.
2← edge(X,Y), in(X;Y).
3dominated(X) ← in(Y), edge(Y,X).
4← vertex(X), not in(X), not dominated(X).

Let (V,E) denote the input graph and recall that a set S ⊆ V is an independent domi-
nating set of (V,E) iff E ∩ S2 = ∅ and for each x ∈ V either x ∈ S or there is some
y ∈ S with (y, x) ∈ E. Note that this program not only solves the decision variant of
the problem, which is NP-complete, but also allows for solution enumeration.

Informally, the first rule states that in is to be guessed to comprise any subset of V .
The colon controls the instantiation of the variable X such that it is only instantiated
with arguments of vertex from the input. The rule in line 2 – where in(X;Y) is
shorthand for in(X), in(Y) – checks the independence property. Lines 3 and 4
finally ensure that each vertex not in the guessed set is adjacent to some vertex in this
set.

In order to take advantage of this Guess & Check approach in a decomposed setting,
we make use of the D-FLAT system [2, 1, 4]. To perform dynamic programming on tree
decompositions, D-FLAT needs data structures to propagate the partial solutions. To
this end, it equips each node t in a tree decomposition T of an input structure A with
a so-called i-tree. By this we mean a tree where each node is associated with a set
of ground terms called items. D-FLAT executes a user-supplied ASP program at each
node t ∈ T (feeding it in particular the i-trees of children of t as input) and parses the
answer sets to construct the i-tree of t. This procedure is depicted in Figure 8. To keep
track of its origin, each i-tree node N is associated with a set of extension pointers,
i.e., tuples referencing i-tree nodes from the child nodes of t that have given rise to
N . For instance, if t has k children, the set of extension pointers of N consists of
tuples (N1, . . . , Nk), where each Nj is an i-tree node of the jth child of t. This allows

20

Store i-tree ASP call

Parse
instance

Decompose Done?
no

yes

Visit next
node in

post-order

Materialize
solution

Fig. 8. Control flow in D-FLAT

us to obtain complete solutions by combining the item sets reachable by recursively
following extension pointers. (This is very similar to the “origin” function that we used
in Lemmas 3 and 4 to associate an s-tree node with the nodes it stems from.) These
notions can be formalized as follows.

Definition 5. Let T be a tree decomposition and let t ∈ T . The i-tree of t is a triple
(St, Xt, Yt) where St is a rooted tree. When it is clear from the context, we some-
times use the term “i-tree” to denote only St instead of (St, Xt, Yt). The function Xt

assigns to each i-tree node N ∈ St an item set, where each item is some arbitrary
string. Let t1, . . . , tk ∈ T be the child nodes of t and let N be an i-tree node in St.
Then Yt is a function that assigns to N a non-empty set of tuples called extension
pointers such that the following properties hold. If N,N1, . . . , Nk are the root nodes
of St, St1 , . . . , Stk , respectively, then Yt(N) = {(N1, . . . , Nk)}. If N has a parent N ′

then for each (N1, . . . , Nk) ∈ Yt(N) there is some (N ′1, . . . , N
′
k) ∈ Yt(N ′) such that

each Ni is a child of N ′i in Sti , and for each (N ′1, . . . , N
′
k) ∈ Yt(N

′) there is some
(N1, . . . , Nk) ∈ Yt(N) such that each Ni is a child of N ′i in Sti .

Note that all nodes in an i-tree at a leaf of a tree decomposition have exactly one
extension pointer, namely the empty tuple. Furthermore, for any tree decomposition
node t with children t1, . . . , tk, the root node N of St also has exactly one extension
pointer, namely (N1, . . . , Nk), where any Ni is the root of Sti . The construction of
complete solutions by following extension pointers can be formalized as follows.

Definition 6. Let T be a tree decomposition and (St, Xt, Yt) be the i-tree at a node
t ∈ T . Moreover, let t1, . . . , tk ∈ T be the child nodes of t. We inductively de-
fine the set of extensions of an i-tree node N ∈ St as Z(N) = {{N} ∪ A | A ∈⋃

(N1,...,Nk)∈Yt(N){A1 ∪ · · · ∪Ak | Ai ∈ Z(Ni) for all 1 ≤ i ≤ k}}.

Example 5. For the INDEPENDENT DOMINATING SET problem, we can use i-trees to
represent partial solutions in the following way: At each node t ∈ T , where T is a tree
decomposition of the input, we store an i-tree of height 1 such that the root item set
remains empty and each leaf item set stores the status of elements of the current bag
χ(t). We can store the status of a vertex v ∈ χ(t) by means of the following items: If
the vertex v has been guessed to be contained in the partial solution, we store an item
in(v). If there is a vertex w ∈ χ(t) such that w dominates v (i.e., w is “in” and there
is an edge from w to v), then we store an item dominated(v). Otherwise, we do not
store an item containing v.

Formally, let t1, . . . , tk be the children of t in T . First we define the root of St to be
a node N such that Xt(N) = ∅ and Yt(N) = {(N1, . . . , Nk)}, where each Ni is the

21

root of Sti . Now for any node Ni ∈ ti, let Ii(Ni) = {v ∈ χ(ti) | in(v) ∈ Xti(Ni)}
and Di(Ni) = {v ∈ χ(ti) | dominated(v) ∈ Xti(Ni)}. For any I ⊆ χ(t) and D ⊆
χ(t) \ I , we say that a tuple of leaves (N1, . . . , Nk) from St1 , . . . , Stk , respectively, is
compatible with I andD if Ii(Ni)∩χ(t) = I∩χ(ti) andD = D1(N1)∪· · ·∪Dk(Nk)∪
{v ∈ χ(t) | w ∈ I and there is an edge (w, v)}. Then we add to the root of St a child
N such that Xt(N) = {in(v) | v ∈ I} ∪ {dominated(v) | v ∈ D} and Yt(N) is
the set of tuples (N1, . . . , Nk) such that each Ni is a leaf in Sti and (N1, . . . , Nk) is
compatible with I and D.

By using extension pointers that associate each i-tree node with predecessor nodes
from the i-trees at the children of t in this way, we can combine the information in
the item sets that we can reach recursively via extension pointers. This way, we obtain
a partial solution where each vertex occurring in a bag of the subtree rooted at t is
assigned a status as described above. When t is the root, the extensions of the leaves
of St therefore encode exactly the complete solutions because the bags in the subtree
rooted at t comprise all vertices of the input graph.

As input to the user’s problem-specific ASP program, D-FLAT declares the follow-
ing facts.

– final if the current node t ∈ T is the root of T .
– current(v) for any v ∈ χ(t).
– If t has a child t′, introduced(v) or removed(v) for any v ∈ χ(t) \ χ(t′) or
v ∈ χ(t′) \ χ(t), respectively.

– root(r) if t has a child whose i-tree is rooted at r.
– sub(N,N ′) for any pair of nodes N,N ′ in a child’s i-tree, if N ′ is a child of N .
– childItem(N, i) if the item set of node N from a child’s i-tree contains the

element i.

Finally, D-FLAT also provides the input structure as a collection of ground facts.
The answer sets of the user’s ASP program together with this input specify the i-tree

of the current tree decomposition node. Each answer set describes a branch in the i-tree.
Atoms of the following form are relevant for this:

– length(l) declares that the branch consists of l + 1 nodes.
– extend(d, j) causes that j is added to the extension pointers of the node at depth
d of the branch.

– item(d, i) states that the node at depth d of the branch contains i in its item set.

These are the main predicates that allow D-FLAT to construct an i-tree at each
tree decomposition node. Once it has computed such a tree at each node, it remains
to decide the problem. D-FLAT does this by inspecting the i-tree at the root of the
tree decomposition: In analogy to Alternating Turing Machines [10], D-FLAT maps
each inner node of this i-tree to either “or” or “and”, and each leaf to either “accept”
or “reject”. The mapping in D-FLAT, however, is partial: Sometimes it only becomes
clear at some later point in the tree decomposition which status an i-tree node should be
mapped to. In order to specify this mapping, atoms of the following form are recognized
by D-FLAT in the answer sets:

22

– If an atom or(i) or and(i) is present in an answer set, then we map node at depth
i of the branch specified by that answer set to “or” or “and”, respectively.

– If an atom accept or reject is present in an answer set, then we map the leaf
of the branch specified by that answer set to “accept” or “reject”, respectively.

With this mapping, D-FLAT can propagate acceptance statuses from the leaves to the
root of the i-tree. Before that, however, in case the current decomposition node is the
root, D-FLAT first prunes all subtrees of this i-tree that are rooted at a node not mapped
to any of those statuses.

After mapping i-tree nodes to statuses “or”, “and”, “accept” or “reject” in this man-
ner (and deleting nodes with undefined status if the current decomposition node is the
root), D-FLAT propagates acceptance statuses from the leaves to the root of the i-tree
in the following way. We call an i-tree node accepting if it has either been mapped to
“accept”, or it has been mapped to “or” and some child is accepting, or it has been
mapped to “and” and all children are accepting. On the other hand, we call an i-tree
node rejecting if it has either been mapped to “reject”, or it has been mapped to “or”
and all children are rejecting, or it has been mapped to “and” and some child is rejecting.
Nodes that are neither accepting nor rejecting are said to have an undefined acceptance
status. After an i-tree has been computed and acceptance statuses have been propagated,
D-FLAT prunes subtrees from the i-tree that have been found to be rejecting in order
to avoid unnecessary computations. For a given D-FLAT encoding, we now say that
D-FLAT accepts an input structureA with tree decomposition T if the i-tree at the root
of T has an accepting root node.

Example 6. For INDEPENDENT DOMINATING SET, the relevant part of an answer set
could look like this:

{length(1),or(0),accept,
extend(0, n1),extend(1, n2),item(1,in(v1)),item(1,dominated(v2))}

This answer set would lead to a branch of length 1 in the i-tree such that the leaf contains
the two specified items. The root and leaf would have as predecessors n1 and n2 (nodes
from the child i-tree), respectively. The accept atom indicates that this i-tree node,
together with its predecessors reachable via extension pointers, witnesses a solution. It
will cause the i-tree root, which is mapped to “or”, to be accepting.

All atoms using extend, item, or and and with the same depth argument, as
well as accept and reject, constitute what we call a node specification. To de-
termine where branches diverge, D-FLAT uses the following recursive condition: Two
node specifications (potentially from different answer sets) coincide (i.e., describe the
same i-tree node) iff

(1) they are at the same depth in the i-tree,
(2) their item sets, extension pointers and statuses (“and”, “or”, “accept” or “reject”)

are equal, and
(3) both are at depth 0, or their parent node specifications coincide.

23

In this way, an i-tree is obtained from the answer sets. It might however contain sibling
subtrees that are equal w.r.t. item sets and statuses. If so, one of the subtrees is discarded
and the extension pointers associated to its nodes are added to the extension pointers of
the corresponding nodes in the remaining subtree. D-FLAT exhaustively performs this
action to eliminate redundancies.

Example 7. Listing 1.1 shows a D-FLAT encoding for INDEPENDENT DOMINATING
SET. All i-tree branches have height 1 and the roots are “or” nodes (due to line 1); the
item sets of the roots are always empty and item sets at leaves contain items involving
the function symbols in and dominated. Note that lines 7–10 resemble the program
from Example 4, while the rest of the program is required for appropriately extending
and combining partial solutions from child nodes.

Suppose D-FLAT is currently processing a forget node.4 Then there is one child
i-tree. For illustration, assume it consists of two branches whose respective leaf item
sets are ∅ and {in(a),dominated(b)}. This i-tree is provided to the program in List-
ing 1.1 by means of the following input facts:
root(r). sub(r,s1). sub(r,s2).
childItem(s2,in(a)). childItem(s2,dominated(b)).

Each answer set of the program corresponds to a branch in the new i-tree, and each
branch extends one branch from the child i-tree. The root of the new i-tree therefore
always extends the root of the child i-tree (line 2). Which branch is extended is guessed
in line 3. Lines 5 and 6 derive which vertices are “in” or “dominated” according to this
guess, and line 10 enforces the dominance condition. Note that it is not until a vertex is
removed that it can be established to violate this condition, since as long as a vertex is
not removed potential neighbors dominating it could still be introduced. So, if a vertex
called c has been removed, then the constraint in line 10 would eliminate the answer set
extending branch “s2”, since c is neither “in” nor “dominated”. Note that we require the
root of the tree decomposition to have an empty bag, so by the time the root is reached
all vertices have been considered by this constraint. Lines 11 and 12 fill the leaf item
set with only those items that apply to vertices still in the current bag. (This ensures
that the maximum size of an i-tree only depends on the decomposition width.) So if the
branch with leaf “s2” is extended and vertex a is forgotten, these lines cause that the
answer set specifies the item dominated(b), but not in(a).

In introduce nodes, line 7 guesses whether the introduced vertex is “in” the partial
solution or not. Line 8 enforces the independence condition and line 9 determines dom-
inated vertices. Line 4 ensures that in join nodes a pair of branches is only extended if
these branches agree on which of the common vertices are “in”.

Finally, line 13 ensures that, if the currently processed node is the tree decompo-
sition’s root, the leaf is mapped to “accept”, leading to D-FLAT accepting the input if
there are any answer sets at the tree decomposition’s root. Note that any of these answer
sets contains the atom accept. This is correct because invalid solution candidates are
eliminated in lines 8 and 10 and thus do not produce answer sets.

4 It should be noted that D-FLAT works on all tree decompositions, not only the so-called nor-
malized ones, as used in this paper, that require each node to be a leaf, introduce, forget or join
node.

24

1length(1). or(0).
2extend(0,R) ← root(R).
31 { extend(1,S) : sub(R,S) } 1 ← extend(0,R).
4← extend(1,S;1,T), childItem(S,in(X)),

not childItem(T,in(X)).
5in(X) ← extend(1,S), childItem(S,in(X)).
6dominated(X) ← extend(1,S), childItem(S,dominated(X)).
7{ in(X) : introduced(X) }.
8← edge(X,Y), in(X;Y).
9dominated(X) ← in(Y), edge(Y,X).
10← removed(X), not in(X), not dominated(X).
11item(1,in(X)) ← current(X), in(X).
12item(1,dominated(X)) ← current(X), dominated(X).
13accept ← final.

Listing 1.1. Computing independent dominating sets with D-FLAT

4 MSO Model Checking on Tree Decompositions with ASP

We now present a D-FLAT encoding solving MSO MC in the style of the approach from
Section 2 in order to show that D-FLAT allows us to solve any MSO-definable problem
in linear time for bounded treewidth. The basic idea is to use i-trees for representing
s-trees and proceed like in Lemmas 1 – 4 for the bottom-up computation.

In the following, let A and T denote the input structure and one of its tree decom-
positions, respectively. For the sake of readability, we only consider the case where A
is a graph, given by the predicates vertex and edge. As in Section 2, we assume
the MSO formula φ, for which we would like to know whether A |= φ holds, to be in
prenex normal form. Here we additionally assume that its matrix is in CNF. Our en-
coding can, however, be easily generalized. Much could be done to improve the MSO
model checker that emerges from this work; but this is outside the scope of this paper,
as we focus on the general applicability of D-FLAT.

The formula φ is specified in ASP as follows. If the quantifier rank is r, then the fact
length(r+1) is declared. (This will cause each i-tree branch to consist of r+2 nodes.)
Each individual variable x or set variable X bound by the ith quantifier is declared by a
fact of the form iVar(i, x) or sVar(i,X), respectively.5 Facts of the form pos(c, a)
or neg(c, a) respectively denote that the atom a occurs positively or negatively in the
clause c. The atoms appearing as the second argument to pos and neg are represented
as terms of the form in(x,X) (denoting the atom x ∈ X) or edge(x, y) (denoting the
atom that expresses membership in the edge relation). For convenience, we supply a
fact clause(c) for each clause c, atom(a) for each atom a occurring in some clause,
and var(i, x) for each individual or set variable x bound by the ith quantifier. Finally,
we still need to declare which quantifiers are existential and which are universal. For

5 Note that we write X here as a capital letter, as it is customary to do so for set variables.
However, in the ASP language we would in fact use a fresh lower-case letter, as we represent
the names of both individual and set variables as constant symbols in ASP, which may not start
with a capital letter.

25

this, we supply the facts or(i − 1) or and(i − 1) if the ith quantifier binds a set
variable existentially or universally, respectively. If the ith quantifier binds an individual
variable x existentially or universally, we supply the rules or(i− 1)← assign(x,)
or and(i−1)← assign(x,), respectively. These rule bodies cause D-FLAT to only
map the respective i-tree nodes to “or” or “and” if the corresponding individual variable
has been defined. This will allow D-FLAT to delete all subtrees rooted in a node that
leaves an individual variable undefined (as required for the final evaluation of the MSO
formula via reduction to a Boolean circuit as described in Section 2).

Let t be the current node during a bottom-up traversal of a tree decomposition T of
the input graph A. The i-tree at t shall represent a valid s-tree (cf. Definitions 3 and 4).
In particular, an item set of an i-tree node shall encode the label of the respective s-tree
node. With each i-tree branch b we can thus associate a (partial) interpretation Ib of the
variables in φ. Ib assigns ? to variables with values not in χ(t), but we can extend it
to all possible assignments I+b without ? values by following the extension pointers of
nodes in b. As we assume the matrix of φ to be in CNF, in the leaf of b we simply keep
track of the clauses that have been satisfied by I+b so far.

We only use items of the following form: assign(x, nn) denotes that Ib(x) = ?;
assign(x, v) with v ∈ χ(t) denotes that Ib(x) = v; assign(X, v) denotes that
v ∈ Ib(X); true(a) or false(a), which only occur in leaf item sets, respectively
indicate that the atom a is true or false under I+b . For any individual variable x, the
absence of any assign item whose first argument is x means that x is still undefined.

Listing 1.2 shows the ASP encoding that is to be executed at each node t ∈ T
to construct an i-tree representing Ct, the valid s-tree at t. As input, the encoding is
provided with a set of rules describing φ as well as T together with the i-trees from the
children of t.

Theorem 2. An MSO MC instance A |= φ is positive iff D-FLAT, when executed on
Listing 1.2 together with φ (represented in ASP as a set of rules as described above),
accepts input A.

Proof (Sketch). Let A be the input graph with a tree decomposition T , let t ∈ T be the
node currently processed by D-FLAT during the bottom-up traversal, and let Ct denote
the s-tree at t after executing the encoding at t. Again, St denotes the local semantic
tree at t, while S is the semantic tree for φ and A. We first show that Ct is always
constructed as desired according to the proof of Theorem 1. Then we show that from Ct
we can always construct St, which coincides with S at the root of T . The computation
of Ct depends on the type of t.

(1) If t is a leaf, we guess a valid (partial) variable assignment without any ? values
(lines 5 and 9) and declare the appropriate item sets (line 28). Additionally, we add the
atoms that are true/false under the assignment (cf. rules deriving true/false) into
the leaf item set (lines 29 and 30). Eventually, D-FLAT’s processing of the resulting
answer sets (see Section 3) yields an i-tree representing St, which coincides with Ct.

(2) If t is an introduce node with child t′, we guess a predecessor branch in the i-tree
of t′ (lines 2 and 3) whose assignment is preserved (line 6) and non-deterministically ex-
tended (lines 5 and 9). Already determined truth values of atoms are preserved (lines 13
and 14). Again, atoms that become true/false are determined and the appropriate item
sets are filled.

26

1% Guess a b ra n ch f o r each c h i l d i−t r e e

2extend(0,R) ← root(R).
31 { extend(L+1,S) : sub(R,S) } 1 ← extend(L,R), sub(R,_).
4% P r e s e r v e and e x t e n d a s s i g n m e n t

5{ assign(X,V) : var(_,X) } ← introduced(V).
6assign(X,V) ← extend(_,S), childItem(S,assign(X,V)),

not removed(V).
7assign(X,_nn) ← extend(L,S), childItem(S,assign(X,V)),

removed(V), iVar(L,X).
8% Only j o i n c o m p a t i b l e b r a n c h e s ; t h e r e s u l t i n g a s s i g n m e n t must be v a l i d

9← iVar(L,X), assign(X,V;X,W), V 6= W.
10← extend(L,S;L,T), S 6= T,

childItem(S,assign(X,_nn);T,assign(X,_nn)).
11← extend(L,S;L,T), var(L,X), vertex(V),

childItem(S,assign(X,V)), not childItem(T,assign(X,V)).
12% T r u t h v a l u e s o f atoms

13true (X) ← extend(_,S), childItem(S,true (X)).
14false(X) ← extend(_,S), childItem(S,false(X)).
15true (edge(X,Y)) ← atom(edge(X,Y)), assign(X,V;Y,W), edge(V,W).
16false(edge(X,Y)) ← atom(edge(X,Y)), not true(edge(X,Y)),

assign(X,V;Y,W), not edge(V,W).
17true (in(X,Y)) ← atom(in(X,Y)), assign(X,V), assign(Y,V).
18false(in(X,Y)) ← atom(in(X,Y)), assign(X,V), vertex(V), not

assign(Y,V).
19% T r u t h v a l u e s o f c l a u s e s

20possiblyTrue(C) ← pos(C,A), not false(A).
21possiblyTrue(C) ← neg(C,A), not true (A).
22reject ← clause(C), not possiblyTrue(C).
23trueClause(C) ← pos(C,A), true(A).
24trueClause(C) ← neg(C,A), false(A).
25notAllTrue ← clause(C), not trueClause(C).
26accept ← not notAllTrue.
27% D e c l a r e r e s u l t i n g i t em s e t s

28item(L,assign(X,V)) ← var(L,X), assign(X,V).
29item(L,true (X)) ← length(L), true (X).
30item(L,false(X)) ← length(L), false(X).

Listing 1.2. MSO model checking with D-FLAT

27

(3) If t is a forget node, we also guess a predecessor branch. We retain each assign
item unless it involves the removed vertex (line 6), and we set the value of each individ-
ual variable that was assigned this vertex to ? (line 7). Truth values of atoms are retained
from the predecessor branch, as no additional atoms become true or false according to
Lemma 2, The declaration of the item sets proceeds as before. This yields an i-tree
where the removed vertex is eliminated from the interpretation of each set variable, and
individual variables previously set to that value are now assigned ?.

(4) If t is a join node with children t1 and t2, χ(t) = χ(t1) = χ(t2) holds. Here,
we guess a pair of predecessor branches (lines 2 and 3). We generate Ct by combining
“compatible” branches b1 and b2 from Ct1 and Ct2 , respectively. The notion of compat-
ibility is the same as in the proof of Lemma 4, and enforced in lines 10 and 11. Thus
the two assignments corresponding to b1 and b2 can simply be unified to yield the as-
signment of the new branch b (line 6). The sets of true/false atoms under the assignment
of b now consists of the union of the true/false atoms in b1 and the ones in b2 (lines 13
and 14). In addition, atoms can become false due to line 16. This is in accordance with
Lemma 4.

Finally, we show that A |= φ holds iff D-FLAT accepts the input. It is not difficult
to see that the cases (1) – (4) implement the computation steps that we used in our
proofs of Lemmas 1 – 4. The i-tree of any t ∈ T can be used to construct St by
means of the extension pointers, as can be seen by induction. Furthermore, the atoms
evaluating to true/false under the interpretation corresponding to a branch of St are
exactly those in the respective leaf item set. If t is the root of T , we obtain S in this way.
D-FLAT’s propagation of acceptance statuses according to lines 19 – 26 (cf. Section 3)
corresponds to the evaluation of the Boolean circuit obtained from S. It is easy to see
that the propagation leads to the same result as the Boolean circuit evaluation in S
because the i-tree at the root of T is valid. If this propagation finally leads to acceptance,
D-FLAT accepts the input; otherwise it rejects.

Given an input structure A whose treewidth is below some fixed integer, one can con-
struct a tree decomposition of A in linear time. The total runtime for deciding A |= φ
for fixed φ is then linear, since the tree decomposition has linear size and the search
space in each ASP call is bounded by a constant.

5 Similar Approaches

Our semantic-tree-based MSO MC approach can be considered as a special case of the
game-theoretic approach in [24]. Semantic trees are a classical tool for systematically
enumerating truth assignments. Their use goes back to the early days of automated the-
orem proving [25]. The reason for our modifications of the approach from [24] is that
the resulting semantic-tree-based procedure can be implemented in a rather straightfor-
ward way via D-FLAT as we have shown in Section 4. In this section, we first discuss
the main differences between our semantic-tree-based approach and the more general
game-theoretic approach. Then we explain why the latter is not so well suited for im-
plementation via D-FLAT.

The main restriction we impose in this work is that we assume MSO formulas to
be in prenex normal form, while [24] requires only negation normal form. In general,

28

transforming a formula to prenex normal form incurs an increase in the quantifier rank.
However, for the purpose of the present work this is acceptable, as we are only interested
in an expressibility result here and not in practical efficiency. This restriction allows
us to deal with simpler objects during the dynamic programming, which makes the
proofs easier and allows for an implementation with D-FLAT, as we will point out in
the following.

An extended model checking (EMC) game, as defined in [24], can be represented
as a tree where each node represents a position in the game and each edge is a move
between positions. EMC games reflect the structure of the formula: Each position cor-
responds to a subexpression of the formula, and the depth of a node in the game tree
is the depth of the respective subformula in the formula tree. Now consider the special
case that the formula under consideration is in prenex normal form with quantifier rank
n. In this case, each game tree node at depth d ≤ n represents a position where the first
d variables are interpreted. Analogously, each semantic tree node at depth d represents
an interpretation of the first d variables. In this way, EMC games are the game-theoretic
counterpart of semantic trees.

Even under the restriction to prenex normal form, there are, however, also notable
differences between EMC games and semantic trees: Semantic trees only store variable
assignments and, at their leaves, which atoms evaluate to true and which to false, while
EMC games reflects the full structure of the formula. In particular, the positions in an
EMC game at depth at least n correspond to logical connectives and atomic formulas
according to the representation of the matrix as a formula tree. A semantic tree node at
depth n, on the other hand, has exactly one child that stores the true as well as the false
atoms from the formula. Hence the structure of semantic trees does not depend on the
matrix of the formula.

It is easy to see, however, that evaluating a semantic tree by reduction to a Boolean
circuit (cf. Section 2) ultimately yields the same result as evaluating the corresponding
EMC game: In our reduction to Boolean circuit evaluation we first replaced each leaf
of the semantic tree by > or ⊥ depending on the truth value of the matrix according
to the truth values of the atoms stored in that leaf. Similarly, the EMC game position
that represents the same interpretation evaluates to > if this interpretation satisfies the
matrix and to⊥ otherwise, as shown in Lemma 1 of [24] (which states that EMC games
can easily be converted to MC games, of which it is well known that this property
holds). Hence our Boolean circuit evaluation proceeds exactly like the evaluation of
EMC games, due to Algorithm 1 of [24].

The considerations so far indicate that semantic trees are essentially just an alterna-
tive representation of EMC games that is possible due to our restriction to prenex nor-
mal form. In the dynamic programming steps, D-FLAT manipulates (representations
of) valid s-trees, the “decomposition-aware” variant of semantic trees, as described in
Section 4. It is here that the motivation for our simplifications becomes evident.

Valid s-trees again have EMC games as their game-theoretic counterpart. However,
in an s-tree, individual variables can be assigned the special value ?, which stands for
any forgotten vertex. In contrast, EMC games do not use a special value in place of for-
gotten vertices. Instead, when a vertex is forgotten, at first it remains in the EMC game
that is being manipulated in the dynamic programming of [24]. However, the resulting

29

EMC game is subsequently reduced via Algorithm 3 in [24]. In this reduction, for any
two “equivalent” subgames reachable from any position, only one of these subgames is
retained. Two subgames are equivalent (cf. Definition 5 in [24]) if there is a bijection
between their positions such that each pair of corresponding positions is “equivalent”,
and two positions are equivalent if, informally speaking, for each bag element the vari-
ables being assigned this element are the same in both positions. Note that this notion
of equivalence only considers bag elements but does not concern forgotten vertices.
Therefore, if two subgames only differ with regard to forgotten vertices, they are still
equivalent and Algorithm 3 in [24] removes one of them.

Hence the dynamic programming for EMC games ensures that the sizes of the
games that are being computed stays bounded by some function that depends only on
the treewidth and the formula size (cf. Lemma 9 in [24]). This reduction is based on
an isomorphism criterion that only takes elements of the current bag into account. As
D-FLAT is constructed in such a way that it only removes redundancies if two subtrees
are isomorphic and the corresponding item sets are equal (cf. Section 4), it does not
disregard information about forgotten vertices. Forgetting information is the duty of the
user-specified ASP encoding (in our case Listing 1.2). If, for instance, an i-tree node
has two children N1, N2 corresponding to the same individual variable z such that N1

assigns a forgotten vertex to z and N2 assigns a different forgotten vertex to z, then
D-FLAT will never discard N1 or N2. This is why in our approach we set the value
of an individual variable to ? if this variable has been assigned a vertex that does not
appear in the current bag. In this way, the equality-based procedure for removing redun-
dancies in D-FLAT can perform a task analogous to the reduction procedure for EMC
games.

A related way to eliminate redundancies by means of an equality test instead of an
isomorphism test was presented in [28], which deals with an FPT algorithm for MSO
MC on graphs of bounded rankwidth. That paper introduces characteristic trees, whose
structure is very much like semantic trees. The nodes along a path from a characteristic
tree’s root to one of its leaves also represent assignments to the variables in the same
order as the variables occur in the formula. Unlike the approaches based on semantic
trees or EMC games, the characteristic-tree-based approach does not perform partial
evaluation of the formula (i.e., discarding a subtree of an s-tree or a subgame of an EMC
game as soon as the truth value of the corresponding subformula can be established).
Another difference between characteristic trees and semantic trees lies in the fact that
characteristic trees store not the actual value of a variable once it is assigned but integers
that represent equivalence classes over the assigned variables. This is done in order to
keep the sizes of the characteristic trees bounded by a function of the rankwidth. The
usage of integers that represent equivalence classes plays a similar role to the usage of
? in this paper. Again, our semantic-tree-based approach is simpler at the price of being
less general. However, as we have explained above, for the purpose of the current paper
our relatively restricted notions are sufficient.

30

6 Conclusion

There is vivid interest in turning theoretical tractability results obtained via Courcelle’s
Theorem into concrete computation that is feasible in practice [27]. In this paper, we
have shown that the ASP-based D-FLAT approach is one candidate for reaching this
goal, having provided a realization of a suitable dynamic programming algorithm for
the MSO model checking problem.

Since MSO model checking is often impractical despite bounded treewidth [16],
it is advisable to implement problem-specific algorithms. Experiments reported in [4]
suggest that D-FLAT is a promising means to do so. In contrast to recent MSO-based
systems [24, 26] where the problem is expressed in a monolithic way, D-FLAT allows
the user to define the dynamic programming algorithm on a tree decomposition via
ASP. Like in the Datalog approach [21], this admits a declarative specification while
still being able to take advantage of domain knowledge. However, the approach in [21]
aims at a single call to a Datalog engine, thus the very restrictive language of monadic
Datalog is required to guarantee linear running times. Therefore, encoding the dynamic
programming algorithm at hand is rather tedious (for instance, to handle set operations)
making this approach less practical. In contrast, D-FLAT calls an ASP-solver in each
node of the tree decomposition. This not only ensures the linear running times (assum-
ing that D-FLAT encodings only use information from the current bag) but also allows
one to take advantage of a richer modeling language, reducing the actual effort for the
user.

The declarative language provided by D-FLAT leads to implementations of algo-
rithms that leverage bounded treewidth in a natural way, as the examples in Section 3
and [2, 1, 4] show. In the current paper, we have shown that these were not just lucky
coincidences – D-FLAT is indeed applicable to any MSO-definable problem.

Our approach via s-trees follows the ideas of the approaches based on extended
MC games in [24] and on characteristic trees in [28]. We adapted these concepts by
introducing s-trees in order to provide a data structure that lends itself to be used in
conjunction with D-FLAT. Compared to solvers like [24, 26], which require just a for-
mulization of the problem in MSO, D-FLAT has the advantage that the user can perform
optimizations by incorporating problem-specific knowledge while still remaining on a
rather high level of declarativity. Indeed, several such optimizations would be possible
for our implementation of MSO MC described in this paper – however, we aimed only
at providing an expressibility result rather than implementing an efficient competitor to
dedicated MSO solvers.

Future work in particular includes a comparison of the ASP-based D-FLAT ap-
proach with the LISP-based Autograph approach [12] regarding both the range of the-
oretical applicability and practical efficiency. Autograph allows to specify the prob-
lem at hand as a formula, which it then translates to combinations of (pre-defined) fly-
automata. Furthermore, we plan to compare the performance of D-FLAT to the Sequoia
system, which implements the approach in [24, 26].

31

Acknowledgments

This work is supported by the Austrian Science Fund (FWF) projects P25518, P25607
and Y698.

References

1. Abseher, M., Bliem, B., Charwat, G., Dusberger, F., Hecher, M., Woltran, S.: D-FLAT:
Progress report. Tech. Rep. DBAI-TR-2014-86, Vienna University of Technology (2014)

2. Abseher, M., Bliem, B., Charwat, G., Dusberger, F., Hecher, M., Woltran, S.: The D-FLAT
system for dynamic programming on tree decompositions. In: Proc. JELIA. pp. 558–572
(2014)

3. Alviano, M., Calimeri, F., Faber, W., Ianni, G., Leone, N.: Function symbols in ASP:
Overview and perspectives. In: Nonmonotonic Reasoning – Essays Celebrating Its 30th An-
niversary, pp. 1–24. College Publications, London (2011)

4. Bliem, B., Morak, M., Woltran, S.: D-FLAT: Declarative problem solving using tree decom-
positions and answer-set programming. TPLP 12(4-5), 445–464 (2012)

5. Bliem, B., Pichler, R., Woltran, S.: Declarative dynamic programming as an alternative real-
ization of Courcelle’s theorem. In: Proc. IPEC. pp. 28–40 (2013)

6. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1-2), 1–22 (1993)
7. Bodlaender, H.L.: Discovering treewidth. In: Proc. SOFSEM. LNCS, vol. 3381, pp. 1–16.

Springer (2005)
8. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun.

ACM 54(12), 92–103 (2011)
9. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: Theory and

implementation. In: Proc. ICLP. LNCS, vol. 5366, pp. 407–424. Springer (2008)
10. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)
11. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite

graphs. Inf. Comput. 85(1), 12–75 (1990)
12. Courcelle, B., Durand, I.: Computations by fly-automata beyond monadic second-order

logic. CoRR abs/1305.7120 (2013)
13. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Sci-

ence, Springer (1999)
14. Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. J. ACM 49(6),

716–752 (2002)
15. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Sci-

ence, Springer (2006)
16. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revis-

ited. Ann. Pure Appl. Logic 130(1-3), 3–31 (2004)
17. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Syn-

thesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Pub-
lishers (2012)

18. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.:
Potassco: The potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)

19. Gelfond, M., Leone, N.: Logic programming and knowledge representation – the A-Prolog
perspective. Artif. Intell. 138(1-2), 3–38 (2002)

20. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3/4), 365–386 (1991)

32

21. Gottlob, G., Pichler, R., Wei, F.: Monadic datalog over finite structures of bounded treewidth.
ACM Trans. Comput. Log. 12(1) (2010)

22. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. Int. J. Found.
Comput. Sci. 13(4), 571–586 (2002)

23. Kloks, T.: Treewidth: Computations and Approximations, LNCS, vol. 842. Springer (1994)
24. Kneis, J., Langer, A., Rossmanith, P.: Courcelle’s theorem – a game-theoretic approach.

Discrete Optimization 8(4), 568–594 (2011)
25. Kowalski, R.A., Hayes, P.J.: Semantic trees in automated theorem proving. In: Machine In-

telligence, vol. 4, pp. 87–101. Edinburgh University Press (1969)
26. Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Evaluation of an MSO-solver. In: Proc.

ALENEX. pp. 55–63. SIAM / Omnipress (2012)
27. Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Practical algorithms for MSO model-

checking on tree-decomposable graphs. Computer Science Review 13-14, 39–74 (2014)
28. Langer, A., Rossmanith, P., Sikdar, S.: Linear-time algorithms for graphs of bounded

rankwidth: A fresh look using game theory - (extended abstract). In: Proc. TAMC. LNCS,
vol. 6648, pp. 505–516. Springer (2011)

29. Lifschitz, V.: What is answer set programming? In: Proc. AAAI. pp. 1594–1597. AAAI Press
(2008)

30. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: The Logic Programming Paradigm: A 25-Year Perspective, pp. 375–398.
Springer (1999)

31. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Math-
ematics And Its Applications, Oxford University Press (2006)

32. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell. 25(3-4), 241–273 (1999)

33. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B
36(1), 49–64 (1984)

