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Abstract. The notion of secure sets is a rather new concept in the area
of graph theory. Applied to social network analysis, the goal is to iden-
tify groups of entities that can repel any attack or influence from the
outside. In this paper we tackle this problem by utilizing Answer Set
Programming (ASP). It is known that verifying whether a set is secure
in a graph is already co-NP-hard. Therefore, the problem of enumerat-
ing all secure sets is challenging for ASP and its systems. In particular,
encodings for this problem seem to require disjunction and also recursive
aggregates. Here, we provide such encodings and analyze their perfor-
mance using the Clingo system. Furthermore, we study several problem
variants, including multiple secure or insecure sets, and weighted graphs.
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1 Introduction

Studies of group behavior, social interactions and relationships are at the core
of social sciences. On a graph-theoretic level, these interactions can be modeled
as a social network, which is a graph where vertices represent entities (e.g.,
persons, actors or agents) and edges denote some relation among the entities
(e.g., acquaintanceship, influence or friendship). Social network analysis then
deals with the study of metrics and properties of the network. This includes
identification of “important” entities such as bridges or central vertices as well as
structural characteristics such as cliques, clusters or cohesive groups (see, e.g.,
[22, 27]).

Here, we consider secure sets, a relatively new concept that was introduced
by Brigham et al. [6]. Intuitively, a secure set is a group of entities that can
withstand any attack from the outside and, in particular, even all subsets of the
group can defend themselves against attacks. More precisely, the Secure Set
problem asks for a non-empty set of vertices S in a graph G such that for each
subset X ⊆ S, |N [X] ∩ S| ≥ |N [X] \ S| holds. Here, N [X] denotes the closed
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neighborhood of X in G, i.e., the set X together with all vertices adjacent to
some vertex in X. The concept of secure sets can be applied, for instance, in the
area of opinion research to analyse group behaviour and to identify insusceptible
peer groups, or in strategic settings where entities occupy spots on a map such
that they can defend themselves against any attack from neighbors. Identifying
secure sets is intractable; in particular it is known that already the verification
task of checking if a given set is secure in a given graph is co-NP-complete [21].

In this work we study secure sets as well as several problem variants, includ-
ing minimal secure sets and a partitioning of the graph into several secure or
insecure sets. Additionally, we consider weighted graphs. To allow for an effi-
cient and extensible programming model, we employ the declarative paradigm
of Answer Set Programming (ASP) [5], which has been shown to be very ef-
fective for tackling computationally complex problems [1, 24, 25]. Its Guess &
Check approach allows for easy specification and is often very efficient in solving
NP-complete problems in practice. By allowing also disjunctive logic programs,
ASP can even capture problems up to the second level of the polynomial hierar-
chy [10] like, for instance, Strategic Companies, Minimal Diagnosis or Complex
Optimization of Answer Sets [1].

Given the definition of Secure Set and the related complexity-theoretic
results, enumerating secure sets is a challenging task, even when applying ASP.
We identify the following obstacles toward a suitable ASP encoding:

– Since the verification problem is already co-NP-hard, encodings require the
full expressive power of ASP, in particular disjunction (unless NP = co-NP).

– Such encodings typically rely on a recursive schema (the so-called saturation
technique) for the verification part.

– From the definition of secure sets we can conclude that recursive aggregates
have to be employed [13].

Aggregates in ASP have been thoroughly investigated [13, 14, 20, 26]. Due to
various underlying semantics, the implementation of aggregates differs between
individual ASP systems. Moreover, for the sake of simplicity, some systems im-
pose restrictions on aggregates such that not everything that is syntactically
and semantically expressible can also be used in practice. Therefore, we give a
detailed account of how our desired encodings can be realized using Clingo 4,
one of the most prominent ASP systems.

Besides providing ASP-based implementations for Secure Set, we believe
that the developed encodings can also serve as fruitful benchmarks for ASP
systems. In particular, there exists a vast amount of benchmarks for problems
in NP, but problems at the second level of the polynomial hierarchy have not
been investigated to this extent (with some exceptions, such as [1], [4] or [18]).

To summarize, our main contributions are the following:

– We provide encodings for Secure Set and related problem variants, which
to the best of our knowledge have not been tackled with ASP yet. Our
encodings require the “full power” of ASP, i.e., disjunction (in combination
with the saturation technique) plus aggregates.
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– We state theoretical observations in the form of new characterizations for
secure sets and provide new complexity results for some of the problem
variants.

– We present several optimizations for our encodings and provide an experi-
mental analysis, thereby comparing the run-time performance of the encoded
variants.

This paper is structured as follows. Section 2 covers the required background
on secure sets and ASP. In Section 3 we present our ASP encodings for Se-
cure Set. Problem variants are discussed in Section 4. Experimental results for
the encodings are reported in Section 5. Section 6 concludes the paper with a
discussion of our results.

2 Preliminaries

In this section, we define the notions of secure sets and then give a brief introduc-
tion to ASP. Beside the basic ASP syntax and semantics we further describe the
concept of the saturation technique and the commonly used language extension
for aggregates.

2.1 Secure Sets

Let G = (V,E) be a simple graph with vertex set V and edge set E. The set of
vertices adjacent to a vertex v ∈ V , the open neighborhood of v, is denoted by
N(v). The closed neighborhood N [v] of a vertex v ∈ V is the open neighborhood
of v together with the vertex v itself, formallyN [v] = N(v)∪{v}. For a set S ⊆ V ,
N [S] =

⋃
v∈S N [v] defines the closed neighborhood of S, and N(S) = N [S]\S is

the open neighborhood of S.
A defensive alliance of G = (V,E) is a subset S ⊆ V such that for every x ∈ S

the inequality |N [x]∩S| ≥ |N [x]\S| is satisfied. For a better understanding, one
can think of the vertices of N [x]∩ S as the defenders of x and those of N [x] \ S
as the attackers of x. This means that for any vertex contained in a defensive
alliance there are at least as many defenders as there are attackers and so any
attack on a single vertex can be repelled.

A stronger notion is that of secure sets [6] where simultaneous attacks on
more than a single vertex have to be repelled. Formally, this is captured as
follows.

Definition 1. Given a graph G = (V,E), a non-empty set S ⊆ V is secure in
G if for all subsets X ⊆ S the following inequality holds.

|N [X] ∩ S| ≥ |N [X] \ S| (1)

On the contrary, we say that a non-empty set S ⊆ V is insecure in G in case
Inequality (1) is not satisfied for some X ⊆ S. Identifying secure sets is at the
core of all secure set problem variants that we will consider in this paper.
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2.2 Answer Set Programming

ASP [5] is a declarative language where a program Π is a finite set of rules

a1| . . . |ak ← b1, . . . , bm,not bm+1, . . . ,not bn.

where a1, . . . , ak, b1, . . . , bn are atoms. The constituents of a rule r ∈ Π are its
head h(r) = {a1, . . . , ak}, and its body consisting of b+(r) = {b1, . . . , bm} and
b−(r) = {bm+1, . . . , bn}. Intuitively, r states that if an answer set contains all of
b+(r) and none of b−(r), then it contains some element of h(r). An interpretation
I is a subset of atoms over the domain. I satisfies a rule r iff I ∩ h(r) 6= ∅ or
b−(r)∩I 6= ∅ or b+(r)\I 6= ∅. I is a model of a set of rules iff it satisfies each rule.
I is an answer set of a program Π iff it is a subset-minimal model of the program
ΠI = {h(r)← b+(r) | r ∈ Π, b−(r) ∩ I = ∅}, called the Gelfond-Lifschitz reduct
of Π with respect to I [19]. For a program Π we denote the set of its answer
sets by AS(Π).

ASP systems allow first-order atoms of the form p(t1, . . . , tl) where p is a
predicate of arity l ≥ 0 and each ti is either a variable or a constant. An atom
is ground if it is free of variables. For any program Π, let UΠ be the set of all
constants appearing in Π. For non-ground programs, the above semantics can
be utilized by first applying, to each rule r ∈ Π, all possible substitutions from
the variables in r to elements of UΠ .

The Saturation Technique. The saturation technique allows us to represent
problems on the second level of the polynomial hierarchy by encoding the co-NP-
check in ASP [11]. It relies on the fact that rule heads may contain disjunctions.
This way, all atoms that are subject to a guess can be jointly contained in an
answer set.

The idea for employing this step to compute solutions for problems on the
second level of the polynomial hierarchy is the following. First of all, we guess
a solution candidate for which we want to know if all possibilities of it being
in fact no valid solution fail. Therefore, at the same time we also guess (using
disjunction) a potential witness for the solution candidate being invalid. If this
second guess indeed does not yield such a witness, we derive a designated atom
that causes all atoms in the disjunction for guessing witnesses to be set to true.
By doing so, all models not amounting to a witness are “saturated” with all the
atoms in this disjunction. So, if a valid solution has been guessed, all guesses of
potential witnesses thus collapse to a unique maximal answer set. On the other
hand, if we have managed to guess a witness, we kill the solution candidate
by means of a constraint. Invalid solution candidates are then discarded by the
minimal model semantics because each model of the program that does not
encode a witness is saturated and is thus not a minimal model of the reduct.
For more details, we refer the reader to [11].

A concept that is often applied in combination with saturation is that of
a “loop” (see, e.g., [12]). A loop allows to avoid (unstratified) default negation
on the saturated parts of the program by “iterating” over the witnesses to be
checked.
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Aggregates. In the following we give an overview on the semantics of aggre-
gates. In order to cope with simple arithmetic operations the basic ASP lan-
guage is commonly extended by aggregate functions (cf. the ASP-Core-2 input
language [7] and, e.g., [13]).

Syntax. An aggregate element e is of the form

t1, . . . , tm : l1, . . . , ln

where t1, . . . , tm are terms (denoted by Term(e)) and l1, . . . , ln are atoms, (de-
noted by Conj(e)). An aggregate atom has the form

#aggr{e1; . . . ; en} ≺ t

where #aggr, called an aggregate function, is one of {#count, #sum, #max, #min},
e1, . . . , en are aggregate elements, ≺ ∈ {<,≤, >,≥,=, 6=} is an aggregate relation
and t is a term. ASP programs under this extension allow aggregate atoms in
rule bodies.

In a given program Π an aggregate atom #aggr{e1; . . . ; en} ≺ t is called
recursive if it involves a cyclic dependency, i.e., if it contains an aggregate element
e with an atom a ∈ Conj(e) and there is a rule r with an atom b ∈ h(r) such
that a and b cannot be stratified, i.e., there is no unique ordering for the rules
involving a and b w.r.t. their evaluation. Otherwise it is called non-recursive.

Example 1. The program

Π : {p(1)← #sum{X : p(X)} > 0}.

contains a recursive aggregate since the atom p(1) in the head of the rule depends
on an aggregate atom involving p(1). 4

Semantics. Aggregate functions are evaluated with respect to an interpretation
I. A straightforward semantics for aggregates was proposed by Dell’Armi et
al. [8] and Faber et al. [13]. In the following we describe the semantics for the
ground case. The valuation of an aggregate element e = 〈t1, . . . , tm : l1, . . . , ln〉
is defined by

I(e) =

{
t1 if I |= Conj(e)
0 otherwise,

i.e., the projection of Term(e) on the first term, if Conj(e) evaluates to true
under I, and 0 otherwise. An aggregate function #aggr{e1; . . . ; en} is now simply
evaluated as the application of the function denoted by #aggr on

⋃n
i=1 I(ei). If⋃n

i=1 I(ei) is not in the domain of #aggr, then I(#aggr{e1; . . . ; en}) = ⊥. Based
on these definitions, #aggr{e1; . . . ; en} ≺ t ∈ I holds iff

(i) I(#aggr{e1; . . . ; en}) 6= ⊥ and
(ii) I(#aggr{e1; . . . ; en}) ≺ t holds.

5



Note that when aggregates are involved, the reduct of a program Π under an
interpretation I is obtained by deleting the rules in which a body literal is false.
For programs restricted to the basic ASP language, the semantics when using
this notion of a reduct is equivalent to the semantics using the Gelfond-Lifschitz
reduct [13].

Example 2. Consider the program

Π = {q ← #sum{1 : q} = 1.},

and interpretations {}, {q}, for which we obtain:

Π{} = ∅, Π{q} = Π

Under the subset-minimal model semantics, {} is the only answer set of Π, since
{q} is not minimal and thus not a valid answer set. 4

In contrast, a different way of defining the semantics of aggregates, which is
implemented in, e.g., Clingo, is by translating them to another formula which is
evaluated instead. Ferraris and Lifschitz proposed such a translation to evaluate
so-called weight constraints [16], which can also be used to define the semantics
of aggregates [14, 20]. In a nutshell, the aggregate is translated to a conjunction
of implications reflecting the intuitive meaning of the aggregate.

It has been shown that both semantics are equivalent when positive programs
are considered [15]. This result suggests that we can provide an encoding that
can equivalently be run with DLV and Clingo. However, the current version
of DLV (Dec 16, 2012) [3] does not support negative numbers and the WASP
system (Jun 12, 2013) [2], which utilizes a modified version of DLV, does not
support recursive aggregates. We therefore restrict ourselves to a realization
using Clingo (4.4.0) [17].

Finally, as this method will be used afterwards in our encodings, we also want
to highlight the fact that aggregates, in case they occur in the head of a rule,
allow to model choices in a more natural way than by guessing all combinations
and restricting via additional constraints. In fact, this kind of rule is commonly
referred to as a choice rule. For instance, the rule

1 {q(X) : p(X)}.

models the fact that at least one X that is in the extension of the predicate p/1
must also occur in the extension of the predicate q/1.

3 Solving the Secure Set Problem with ASP

In this section we show how the Secure Set problem can be solved by means
of ASP. In particular, for a graph G, our goal is to enumerate all secure sets of
G. The presented encodings are fixed, which means that they are independent
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of the concrete input instance. For an input graph G = (V,E) we define its
corresponding representation in ASP as a program ΠG where

ΠG = {vertex(v) | v ∈ V } ∪ {edge(u, v), edge(v, u) | {u, v} ∈ E}.

As the definition of secure sets suggests, recursive aggregates are required to
cope with the co-NP-hard task of verifying whether a guessed set of vertices is
secure. In what follows, we give three proposals for such encodings. The main
obstacle here is to get the recursive aggregates to work. In Clingo, it is required
that the value the outcome of the aggregate is compared to is fixed, and moreover
that predicates used in negative terms of aggregates have to stem from “outside”
the saturation.

3.1 Loop Encoding

In order to fulfill the requirements above, we give a slightly different characteri-
zation of secure sets:

Lemma 1. Let G = (V,E) be a graph. A non-empty set S ⊆ V is secure in G
iff for all X ⊆ S

|N [X] ∩ S|+ |(N [S] \N [X]) \ S| − |N [S] \ S| ≥ 0.

Proof. Recall that a non-empty set S is secure iff for all X ⊆ S

|N [X] ∩ S| ≥ |N [X] \ S|.

We now add |(N [S] \N [X]) \ S| to both sides. Note that J = (N [S] \N [X]) \ S
and J ′ = (N [X]\S) are obviously disjoint and that J ∪J ′ = N [S]\S. It follows
that |J |+ |J ′| = |N [S] \ S| and thus we obtain

|N [X] ∩ S|+ |(N [S] \N [X]) \ S| ≥ |N [S] \ S|

yielding the desired result. ut

Note that this characterization has a subtraction involved (|N [S] \ S|) but
this number is independent from X, the set which has to be dealt with in the
saturation part of the encoding.

In the following we present the ASP encoding for enumerating all secure
sets of a given graph G using the concept of loops. To this extent, we require
a total order over the vertices in G. We will use this to “loop” over all vertices,
and to check whether certain conditions are fulfilled. We assume that the order
is given by a positive logic program Π< where predicates inf/1, succ/2 and
sup/1 specify the infimum, successor relation and supremum of the vertices,
respectively. Note that (variants of) Π< occasionally reappear in literature, see,
for example, [9].
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Encoding 1: Secure Set - Loop Encoding (Πloop)

1{inS(V ) : vertex(V )}. (1)
outS(V )← vertex(V ),not inS(V ). (2)

attackSet(V )← inS(U), edge(U, V ), outS(V ). (3)
inX(V ) | outX(V )← inS(V ). (4)

defendSet(V )← inX(V ). (5)
defendSet(V )← inX(U), edge(U, V ), inS(V ). (6)

okupto(U, V )← vertex(U), inf(V ), outX(V ). (7)
okupto(U, V )← vertex(U), inf(V ), outS(V ). (8)
okupto(U, V )← vertex(U), inf(V ), inX(V ),not edge(U, V ). (9)

okupto(U,W )← okupto(U, V ), succ(V,W ), outX(W ). (10)
okupto(U,W )← okupto(U, V ), succ(V,W ), outS(W ). (11)
okupto(U,W )← okupto(U, V ), succ(V,W ), inX(W ),not edge(U,W ). (12)

ok(U)← okupto(U, V ), sup(V ). (13)

inactAtt(U)← ok(U), outS(U), edge(U, V ), inS(V ). (14)

defended← #sum{1, V, pos : defendSet(V );

1, V, pos : inactAtt(V );

−1, V, neg : attackSet(V )} ≥ 0.

(15)

inX(V )← defended, inS(V ). (16)
outX(V )← defended, inS(V ). (17)

← not defended. (18)

Our loop encoding, Πloop, is depicted in Encoding 1. In rule 1, a non-empty
set S ⊆ V , denoted by inS/1, is guessed. Furthermore, predicate outS/1 rep-
resents the vertices in V \S (rule 2). Vertices denoted by attackSet/1 are in
N [S]\S (rule 3). We then guess all sets X ⊆ S, marked with inX/1, and the
other vertices (in S\X) are given by outX/1 (rule 4). Predicate defendSet/1
specifies the set N [X] ∩ S (rules 5–6).

Rules 7–14 define the set (N [S]\N [X])\S, that is, the set of inactive attack-
ers. Intuitively, an inactive attacker is an attacker (i.e., a vertex in N [S]\S)
that is not adjacent to any vertex in X. In order to obtain the set of inactive
attackers (without using default negation on saturation-dependent atoms), we
have to loop. To be more precise, to determine for a vertex u ∈ V whether
u ∈ (N [S]\N [X]) holds, we “loop” over all vertices v ∈ V and check if one of the
following conditions holds: (a) v ∈ S\X (rules 7,10); (b) v ∈ V \S (rules 8,11);
or (c) v ∈ X, {u, v} /∈ E (rules 9,12). Finally, the predicate inactAtt/1 denotes
the set of inactive attackers (rule 14).

The set X ⊆ S is defended if X satisfies the inequality given in Lemma 1
(rule 15). In case defended/0 is obtained, we saturate by setting all vertices in S
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to both inX/1 and outX/1 (rules 16–17); On the other hand, if X is not defended
against the attackers, the answer set is removed (rule 18). In that case, due to the
minimal model semantics, no answer set containing S is returned. Specifically,
in case any X ⊆ S cannot be defended, S is not secure and is therefore not
returned as a solution.

The relation between secure sets of a graph G and the answer sets of the loop
encoding is captured in the following proposition. The proof of Proposition 1 is
given in Appendix A.

Proposition 1. Let G be a graph and S be the collection of secure sets in G.
Furthermore, let A = AS(ΠG∪Π<∪Πloop). Then, for every S ∈ S, there exists
an A ∈ A such that {v | inS(v) ∈ A} = S. Furthermore, for every A ∈ A it
holds that {v | inS(v) ∈ A} ∈ S. Finally, |S| = |A|.

Example 3. Figure 1 shows an example graph Gex with currently selected sets
S = {a, b, c, f} and X = {c}. The figure illustrates the corresponding defend
set N [X] ∩ S = {b, c}, attack set N [S]\S = {d, e, g, h} and the set of inactive
attackers (N [S]\N [X])\S = {e, g}. Since |{b, c}| + |{e, g}| − |{d, e, g, h}| = 2 +
2 − 4 = 0 ≥ 0 holds, X is defended. For S to be secure, all X ⊆ S have to be
defended. ForX = {c, f}, we haveN [X]∩S = {b, c, f},N [S]\S = {d, e, g, h} and
(N [S]\N [X])\S = {}. Here, |{b, c, f}|+ |{}|− |{d, e, g, h}| = 3+0−4 = −1 6≥ 0,
and therefore S is not secure. 4

a b c d

e f g h i

inS (S)

defendSet (N [X] ∩ S) inX (X)

attackSet
(N [S]\S)

inactAtt ((N [S]\N [X])\S)

Fig. 1: Example graph Gex with S = {a, b, c, f} and X = {c}.

3.2 Loop Encoding with Restriction to Border Vertices

Lemma 1 can be strengthened by defining secure sets based on their border :

Definition 2. Let G = (V,E) and S ⊆ V . The border b(S) of S is b(S) = {x |
{x, y} ∈ E, x ∈ S, y /∈ S}, i.e., the set of all vertices in S which are adjacent to
at least one vertex y /∈ S.
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Lemma 2. Let G = (V,E) be a graph. A non-empty set S ⊆ V with border b(S)
is secure in G iff for all X ⊆ b(S)

|N [X] ∩ S|+ |(N [S] \N [X]) \ S| − |N [S] \ S| ≥ 0.

Proof. Given a secure set S, since b(S) ⊆ S, the “only if” direction follows
directly from Lemma 1. As for the other direction: Since the only negative part
of the inequality (|N [S] \ S|) is independent of all x ∈ S\b(S), checking the
inequality for all X ⊆ b(S) suffices to verify that S is secure. ut

Encoding 2: Secure Set - Border Loop Encoding (Πborder−loop)

1{inS(V ) : vertex(V )}. (1)
outS(V )← vertex(V ),not inS(V ). (2)

attackSet(V )← inS(U), edge(U, V ), outS(V ). (3)
border(U)← inS(U), outS(V ), edge(U, V ). (4)

inX(V ) | outX(V )← border(V ). (5)
outX(V )← inS(V ),not border(V ). (6)

defendSet(V )← inX(V ). (7)
defendSet(V )← inX(U), edge(U, V ), inS(V ). (8)

okupto(U, V )← vertex(U), inf(V ), outX(V ). (9)
okupto(U, V )← vertex(U), inf(V ), outS(V ). (10)
okupto(U, V )← vertex(U), inf(V ), inX(V ),not edge(U, V ). (11)

okupto(U,W )← okupto(U, V ), succ(V,W ), outX(W ). (12)
okupto(U,W )← okupto(U, V ), succ(V,W ), outS(W ). (13)
okupto(U,W )← okupto(U, V ), succ(V,W ), inX(W ),not edge(U,W ). (14)

ok(U)← okupto(U, V ), sup(V ). (15)

inactAtt(U)← ok(U), outS(U), edge(U, V ), inS(V ). (16)

defended← #sum{1, V, pos : defendSet(V );

1, V, pos : inactAtt(V );

−1, V, neg : attackSet(V )} ≥ 0.

(17)

inX(V )← defended, inS(V ). (18)
outX(V )← defended, inS(V ). (19)

← not defended. (20)

Regarding an appropriate ASP encoding, Lemma 2 allows us to restrict
the guess on X ⊆ b(S) where b(S) ⊆ S holds. We adapt Πloop to addition-
ally take into account the border of S. In particular, it is sufficient to add
a rule that gives the border, and to modify the guess of X accordingly. In
Encoding 2 (Πborder−loop) we again guess non-empty sets S ⊆ V and obtain
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attackSet/1 (rules 1–3). Predicate border/1 represents the set b(S) (rule 4).
Following Lemma 2, it suffices to guess sets X ⊆ b(S) (rule 5). Furthermore,
vertices in S\b(S) are marked with outX/1 (rule 6). The remaining parts of
Πborder−loop correspond to the rules in Πloop.

We capture the relation between secure sets and answer sets in the following
proposition. Note that the correctness of Proposition 2 can be shown similarly
to the proof of Proposition 1 given in Appendix A.

Proposition 2. Let G be a graph and S be the collection of secure sets in G.
Furthermore, let A = AS(ΠG∪Π<∪Πborder−loop). Then, for every S ∈ S, there
exists an A ∈ A such that {v | inS(v) ∈ A} = S. Furthermore, for every A ∈ A
it holds that {v | inS(v) ∈ A} ∈ S. Finally, |S| = |A|.

3.3 Alternative Secure Set Characterization

In order to avoid the loop from above, we provide an alternative characterization
for secure sets, which to the best of our knowledge has not appeared in the
literature yet. The intuition is to guess instead of the set X ⊆ S a partition of
the attack set N [S]\S into active and inactive attackers, and then check whether
for such a partition a suitable set X exists.

Definition 3. Let G = (V,E) and S ⊆ V . We call any subset B ⊆ N [S] \ S a
partial boundary of S and identify by χ(B) = {X ⊆ S | (N [X] \ S) = B} the
subsets of S that cover B. B is called a valid partial boundary if χ(B) 6= ∅.

Lemma 3. Let G = (V,E) and S ⊆ V with S 6= ∅. Then S is secure in G iff
for all valid partial boundaries B of S and all X ∈ χ(B), |N [X] ∩ S| ≥ |B|.

Proof. “If” direction: Suppose S is not secure. Then there exists X ⊆ S, such
that |N [X] ∩ S| < |N [X] \ S|. Let B = N [X] \ S. We show that B is indeed a
valid partial boundary. Obviously, B ⊆ (N [S] \ S). Furthermore, X ∈ χ(B) and
by assumption |N [X] ∩ S| < |B|. “Only if” direction: Suppose there is a valid
partial boundary B and an X ∈ χ(B) such that |N [X]∩S| < |B|. By definition
X ⊆ S and B = N [X] \ S. Then S is not secure. ut

We can strengthen the result as follows.

Definition 4. Let G = (V,E) and S ⊆ V , and B ⊆ N [S] \ S. Moreover, let
b(S) be the border of S. Then χ′(B) = {X ⊆ b(S) | (N [X] \ S) = B}.

Lemma 4. Let G = (V,E) and S ⊆ V with S 6= ∅. Then S is secure in G iff
for all valid partial boundaries B and all X ∈ χ′(B), |N [X] ∩ S| ≥ |B| holds.

Proof. The “only if” direction follows directly from Lemma 3 and the fact that
χ′(B) ⊆ χ(B) for all partial boundaries B of S. For the other direction note that
|N [X] ∩ S| ≥ |B| holds for X ∈ χ(B) \ χ′(B) since for each Y ∈ χ(B) there is
an Y ′ ∈ χ′(B) with Y ′ ⊆ Y and that in this case |N [Y ] ∩ S| ≥ |N [Y ′] ∩ S|. ut

11



The main advantage of this definition is that we have for each relevantX ⊆ S,
i.e., for each X ⊆ b(S), the set (N [S] \ N [X]) \ S directly given via N [S] \ B
where B is some partial boundary of S with X ∈ χ(B).

In Encoding 3 we again first guess S (rules 1–2), and obtain the (directed)
edges from S to N [X]\S, denoted by borderEdge/2, as well as the attackSet/1
(rules 3–4). Next, the partial boundaries B ⊆ N [S]\S, or active attackers (de-
noted by actAtt/1), are guessed (rule 5). In order to obtain the sets X where
χ′(B) = {X ⊆ b(S) | (N [X] \ S) = B}, χ′ 6= ∅ holds, each vertex in B must
be adjacent to at least one vertex in X ⊆ b(s), denoted by inX/1 (rule 6). Fur-
thermore, if there is a vertex v ∈ N [X]\S with v /∈ B, then we can set X to
be defended, since X /∈ χ′(B) but X ∈ χ′(B′) with B ⊂ B′ (rule 7). Note that
this is required to be able to saturate. Rules 8–10 of Πalt correspond to rules
7, 8 and 17 of Πborder−loop, i.e., they define the defend set and check whether
the inequality given in Lemma 2 holds. Analogous to Πloop and Πborder−loop, we
saturate on the guessed inX/1, actAtt/1 and inactAtt/1 predicates.

Due to Lemma 4, we thus obtain the secure sets.

Proposition 3. Let G be a graph and S be the collection of secure sets in G.
Furthermore, let A = AS(ΠG ∪ Πalt). Then, for every S ∈ S, there exists an
A ∈ A such that {v | inS(v) ∈ A} = S. Furthermore, for every A ∈ A it holds
that {v | inS(v) ∈ A} ∈ S. Finally, |S| = |A|.

Encoding 3: Secure Set - Alternative Encoding (Πalt)

1{inS(V ) : vertex(V )}. (1)
outS(V )← vertex(V ),not inS(V ). (2)

borderEdge(U, V )← inS(U), outS(V ), edge(U, V ). (3)
attackSet(V )← borderEdge(U, V ). (4)

actAtt(V ) | inactAtt(V )← attackSet(V ). (5)
inX(U) : borderEdge(U, V )← actAtt(V ), outS(V ). (6)

defended← inactAtt(U), inX(V ), edge(U, V ). (7)

defendSet(V )← inX(V ). (8)
defendSet(V )← inX(U), edge(U, V ), inS(V ). (9)

defended← #sum{1, V, pos : defendSet(V );

1, V, pos : inactAtt(V );

−1, V, neg : attackSet(V )} ≥ 0.

(10)

inX(V )← defended, inS(V ). (11)
actAtt(V )← defended, attackSet(V ). (12)

inactAtt(V )← defended, attackSet(V ). (13)
← not defended. (14)

12



3.4 Using a #Count-Aggregate as an Alternative to #Sum

The encodings presented so far rely on the #sum-aggregate for checking whether
a setX is defended (seeΠloop rule 15,Πborder−loop rule 17, andΠalt rule 10). The
#sum-aggregate is required because the size of the attack set is subtracted from
the combined size of the defend and inactive attacker sets. By adding |V | to both
sides of the inequality in Lemma 2, and since |V | − |N [S]\S| = |V \(N [S]\S)|,
we get rid of the negative part in the inequality. Thus, it is possible to use the
#count-aggregate by replacing the respective rule with the following:

size(N)← N = #count{V : vertex(V )}.
defended← #count{V, pos : defendSet(V );

V, pos : inactAtt(V );

V, neg : vertex(V ),not attackSet(V )} ≥ N, size(N).

Note that default negation is allowed here, since attackSet/1 is independent of
the saturation. Furthermore, instead of adding |V |, |N [S]\S| could also simply
be shifted to the right side of the inequality. However, this drastically increases
the size of the grounding.

3.5 Search Space Pruning

In order to improve the performance of our encodings, it is desirable to define
“strengthening” constraints. Here, we define constraints that kill insecure sets
S ⊆ V , independent of the guess for X ⊆ S. A vertex v ∈ S cannot be defended
if |N(v)∩ S| < b|N(v)|/2c, or, in other words, less than half of its neighbors are
in S. In that case S cannot be secure. In ASP, this is represented as follows:

deg(V,D)← vertex(V ), D = #count{U : edge(U, V )}.
← inS(V ), deg(V,D),#count{U : edge(U, V ), inS(U)} < D/2.

Note that degree deg/2 can be computed during grounding (i.e., it is independent
of any guess). Furthermore, ASP implements integer arithmetic, therefore D/2
always corresponds to b|N(v)|/2c.

4 Secure Set Problem Variants

In this section we consider several extensions of the Secure Set problem. At its
core, they are based on the notion of a set being secure as given in Definition 1.
First, we briefly illustrate how ASP can be applied in order to obtain minimal
secure sets (Minimum Secure Set problem). Then, we consider variants where
the graph is partitioned into several secure sets (Secure Set Equilibrium
problem) or secure and insecure sets (Secure-Insecure Set Partitioning
problem). Finally, in the Weighted Secure Set problem vertices additionally
get assigned weights.
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4.1 Minimum Secure Set Problem

In certain settings it might be desirable to obtain only minimal sets of entities
that are secure, i.e., that can repel any attack from the outside. Consider, for
example, a social network, modeled as a simple graph, where entities (e.g., per-
sons, agents, ...) are represented as vertices and possible influence of entities on
other entities is modeled in form of edges. With the notion of minimal security
we can identify small groups of entities that are resistant to any influence from
the outside. We capture this formally as follows.

Definition 5. Given a graph G = (V,E), a non-empty set S ⊆ V is minimal-
secure in G iff it is secure in G and there exists no (non-empty) secure set
S′ ⊆ V in G with |S′| < |S|.

In order to solve the corresponding Minimum Secure Set problem by means
of ASP, it is sufficient to add the program

Πmin = {#minimize{1, X, inS : inS(X), vertex(X)}}.

to the previously presented encodings. With this, only cardinality-minimal se-
cure sets are obtained, i.e., the answer sets with a minimal number of inS/1
occurrences are returned. We make this explicit in the following proposition.

Proposition 4. Let G be a graph and S be the collection of minimal-secure sets
in G. Furthermore, let A = {ΠG ∪ Πmin ∪ Π} where Π ∈ {Π< ∪ Πloop, Π< ∪
Πborder−loop, Πalt}. Then, for every S ∈ S, there exists an A ∈ A such that
{v | inS(v) ∈ A} = S. Furthermore, for every A ∈ A it holds that {v | inS(v) ∈
A} ∈ S. Finally, |S| = |A|.

4.2 Secure Set Equilibrium Problem

In the Secure Set Equilibrium problem we are looking for a partition of the
graph’s vertices into several subsets, such that each subset is secure. Consider,
for example, a strategic game where each player can occupy spots on a map.
Players aim at selecting spots in such a way that they are capable of defending
themselves against any attack from their neighbors. In case every player can
repel any attacks from other players, we have a secure set equilibrium. Formally,
we define the problem as follows.

Definition 6. Given a graph G = (V,E) and an integer s with s ≥ 2, a secure
set equilibrium is a partition of G into s non-empty sets E = {S1, . . . , Ss} such
that every S ∈ E is secure in G.

First, we show that the corresponding verification problem is co-NP-complete.
This result (together with the definition of secure sets) suggests that we again
require the full power of ASP (disjunction and aggregates) to solve Secure Set
Equilibrium, i.e., to enumerate the secure set equilibria of a graph.

The verification problem for Secure Set Equilibrium asks whether for a
given graph G = (V,E) and a partition E over V into s sets, is E a secure set
equilibrium in G? We will now show that the following proposition holds.
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Proposition 5. Secure Set Equilibrium Verification is co-NP-complete.

Proof. In order to show co-NP membership, we consider the complement prob-
lem of Secure Set Equilibrium Verification. Given a graph G = (V,E)
and a partition E over V into s sets, is there a set S ∈ E that is insecure? It is
easy to see that this problem is in NP. It suffices to guess a set S ∈ E and a set
X ⊆ S and to check whether |N [X] ∩ S| < |N [X] \ S| holds in G. This check is
feasible in polynomial time.

For proving hardness, we assume that s = 2, but the result can be generalized
to any (fixed) s ≥ 2. We provide a reduction from Secure Set Verification,
which was shown to be co-NP-complete [21]1. This problem is defined as follows:
Given a graph G = (V,E) and a non-empty set S with S ⊆ V , is S secure in G?

Let G = (V,E) be a graph and S be a non-empty set S ⊆ V . We construct a
graph G′S = (V ′S , E

′
S) as follows. For each vertex x ∈ V \S we introduce a set V ′x

of fresh vertices with |V ′x| = |N [x] ∩ S|. Furthermore, let E′x = {{x, y} | y ∈ V ′x}
be the set of edges that connect x with the vertices in V ′x. Finally, let a be a
fresh vertex. Then, V ′S = V ∪

⋃
x∈V \S V

′
x ∪ {a} and E′S = E ∪

⋃
x∈V \S E

′
x. This

construction of G′S is feasible in polynomial time with at most |S| · (|V |−|S|)+1
additional vertices. We now show that given a graph G = (V,E) and a non-
empty set S ⊆ V , S is secure in G iff E = {S, T} with T = V ′S\S is a secure set
equilibrium in G′S = (V ′S , E

′
S).

⇐ Suppose that E = {S, T} is a secure set equilibrium in G′S . Let N [X]
(N ′S [X]) be the closed neighborhood of a set X in G (G′S). By assumption, for
allX ⊆ S we have |N ′S [X]∩S| ≥ |N ′S [X]\S| in G′S . Furthermore, by construction
N ′S [X] = N [X] holds. Hence, S is also secure in G.
⇒ Now suppose that S is secure in G. By the same argument as above, S

is secure in G′S . It remains to show that T is secure in G′S . Since a ∈ T , T is
non-empty. Furthermore, to be secure, for each X ⊆ T the inequality

|N ′S [X] ∩ T | ≥ |N ′S [X] \ T |

must hold. By construction of G′S , for the left side we have |N ′S [X] ∩ T | ≥ |X ∪⋃
x∈X V

′
x|. Since X and all V ′x are disjoint, |X ∪

⋃
x∈X V

′
x| = |X|+

∑
x∈X |V ′x| =

|X|+
∑
x∈X |N [x]∩S|. For the right side of the inequality we have |N ′S [X]\T | =

|N ′S [X]∩S)| = |N [X]∩S|. Overall, we have |X|+
∑
x∈X |N [x]∩S| ≥ |N [X]∩S|

which obviously holds for all X ⊆ T . Hence, T is secure and E is a secure set
equilibrium in G′S . ut

The encoding for enumerating the secure set equilibria is depicted in Πequ

(Encoding 4). Here, the sets E are identified as input facts sec(X) where 1 ≤ X ≤
s, contained in a program Πs. Observe that this encoding closely resembles Πalt.
In a nutshell, the arity of predicates is adapted in order to distinguish between
different sets in E . Rules 1 to 3 construct a disjoint partition of all vertices into
s sets. Here, inS(S, V ) denotes that vertex V is contained in set S ∈ E . Note
that rule 2, which ensures non-emptiness of sets in E , could be equivalently
1 Note that in [21] the problem is called Is Secure.
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expressed as a constraint with #count-aggregate. Vertices not contained in S
are represented by the binary predicate outS/2. Most importantly, observe that
predicate defended/1 in rules 8 and 11 is parameterized by the set the currently
considered vertex is assigned to. Then, the constraint in rule 15 (together with
the saturation applied in rules 12 to 14) guarantees that an answer set is only
returned iff all sets in E are secure. This is captured in the following proposition.

Proposition 6. Let G be a graph and s be an integer with s ≥ 2. Furthermore,
let S be the collection of secure set equilibria in G containing s secure sets, and
let A = AS(ΠG ∪ Πs ∪ Πequ). Then, for every E ∈ S, there exists an A ∈ A
such that {{v | inS(X, v) ∈ A} | 1 ≤ X ≤ s} = E. Furthermore, for every A ∈ A
it holds that {{v | inS(X, v) ∈ A} | 1 ≤ X ≤ s} ∈ S.

Encoding 4: Secure Set Equilibrium (Πequ)

1{inS(S, V ) : sec(S)}1← vertex(V ). (1)
← sec(S),not inS(S, V ) : vertex(V ). (2)

outS(S, V )← vertex(V ), sec(S),not inS(S, V ). (3)

borderEdge(S,U, V )← inS(S,U), outS(S, V ), edge(U, V ). (4)
attackSet(S, V )← borderEdge(S,U, V ). (5)

actAtt(S, V ) | inactAtt(S, V )← attackSet(S, V ). (6)
inX(S,U) : borderEdge(S,U, V )← actAtt(S, V ), outS(S, V ). (7)

defended(S)← inactAtt(S,U), inX(S, V ), edge(U, V ). (8)

defendSet(S, V )← inX(S, V ). (9)
defendSet(S, V )← inX(S,U), edge(U, V ), inS(S, V ). (10)

defended(S)← sec(S),

#sum{1, V, pos : defendSet(S, V );

1, V, pos : inactAtt(S, V );

− 1, V, neg : attackSet(S, V)} ≥ 0.

(11)

inX(S, V )← defended(S), inS(S, V ). (12)
actAtt(S, V )← defended(S), attackSet(S, V ). (13)

inactAtt(S, V )← defended(S), attackSet(S, V ). (14)
← sec(S),not defended(S). (15)

Symmetry breaking. Observe that in Proposition 6, |S| = |A| does not hold.
Since secure sets in Πequ are identified by some ID X, 1 ≤ X ≤ s, results
contain symmetric solutions that differ only in permutations of secure set IDs.
To overcome this problem, the encoding is refined as follows.
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setAllowed(1, V )← inf(V ).

setAllowed(S, V )← setAllowed(S,U), succ(U, V ).

setAllowed(S + 1, V )← inS(S,U), succ(U, V ), sec(S + 1).

As in program Πloop, we assume that a lexicographical order over all vertices
is given by inf/1 and succ/2 by the program Π<. The smallest vertex must be
contained in set 1, denoted by setAllowed/2 (rule 1). Following the successor
relationship, subsequent vertices can be contained in sets to which some preced-
ing vertex has already been assigned (rule 2), or they may be added to the next
unoccupied set (rule 3). Finally, the assignment of vertices to some set in E , given
in Πequ, rule 1, is changed to 1{inS(S, V ) : setAllowed(S, V )}1← vertex(V ).

4.3 Secure-Insecure Set Partitioning Problem

A natural extension to the problems discussed in the previous sections is to
distinguish between sets of vertices that are secure, and such that are insecure.
This can be captured as follows.

Definition 7. Given a graph G = (V,E) and integers s and i with s, i ≥ 1,
a secure-insecure set partitioning is a partitioning of G into s + i non-empty
sets P = {S, I} with S = {S1, . . . , Ss} and I = {I1, . . . , Ii}. Furthermore, every
S ∈ S is secure and every I ∈ I is insecure in G.

It is easy to see that Secure-Insecure Set Partitioning Verification
(Given a graph G = (V,E) and a partition P = {S, I} of V , is P an secure-
insecure set partition?) is co-NP-hard.

Proposition 7. Secure-Insecure Set Partitioning Verification is co-
NP-hard.

Proof (sketch). We again show this by reduction from Secure Set Veri-
fication. Let G = (V,E) be a graph and S ⊆ V . We construct a graph
G′S = (V ′S , E

′
S) and a set S′ ⊆ V ′S as follows. Let a, b, c be fresh vertices. Then,

V ′S = V ∪ {a, b, c}, E′S = E ∪ {{a, b}, {a, c}} and S′ = S ∪ {b, c}. Now assume a
partition P = {S′, I ′} of G′S with I ′ = V ′S\S′. It is easy to see that S is secure
in G iff S′ is secure in G′S . Furthermore, a ∈ I ′ and a is not defended. Hence, I ′
is always insecure in G′S . ut

In ASP, we identify secure sets by input facts sec(X) with 1 ≤ X ≤ s, and
denote insecure sets by insec(Y ) with s + 1 ≤ Y ≤ s + i. Furthermore, with
predicate set/1 we give all sets in P. Let Πs,i be the program that contains the
respective input facts.

To solve the Secure-Insecure Set Partitioning problem, it is sufficient
to adapt Encoding 4 as follows. In Encoding 5, rules 1–14 consider both secure
and insecure sets of the partition. Rule 15 (together with saturation rules 12–14)
guarantees that sets in S are secure. For sets in I, rule 16 removes all answer
sets where X ⊆ I with I ∈ I is defended.
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Proposition 8. Let G be a graph and s and i be integers with s, i ≥ 1. Further-
more, let S be the collection of secure-insecure set partitionings in G, where
for each P ∈ S we have P = {SP , IP} where SP with |SP | = s denotes
the secure sets and IP with |IP | = i denotes the insecure sets. Moreover, let
A = AS(ΠG ∪Πs,i ∪Πsec−insec).

Then, for every P = {SP , IP} ∈ S, there exists an A ∈ A such that {{v |
inS(X, v) ∈ A} | 1 ≤ X ≤ s} = SP and {{v | inS(Y, v) ∈ A} | s < Y ≤
s + i} = IP . Furthermore, for every A ∈ A there exists a P ∈ S such that
{{v | inS(X, v) ∈ A} | 1 ≤ X ≤ s} = SP and {{v | inS(Y, v) ∈ A} | s < Y ≤
s+ i} = IP .

Encoding 5: Secure-Insecure Set Partitioning (Πsec−insec)

1{inS(P, V ) : set(P )}1← vertex(V ). (1)
← set(P ),not inS(P, V ) : vertex(V ). (2)

outS(P, V )← vertex(V ), set(P ),not inS(P, V ). (3)

borderEdge(P,U, V )← inS(P,U), outS(P, V ), edge(U, V ). (4)
attackSet(P, V )← borderEdge(P,U, V ). (5)

actAtt(P, V ) | inactAtt(P, V )← attackSet(P, V ). (6)
inX(P,U) : borderEdge(P,U, V )← actAtt(P, V ), outS(P, V ). (7)

defended(P )← inactAtt(P,U), inX(P, V ), edge(U, V ). (8)

defendSet(P, V )← inX(P, V ). (9)
defendSet(P, V )← inX(P,U), edge(U, V ), inS(P, V ). (10)

defended(P )← set(P ),

#sum{1, V, pos : defendSet(P, V );

1, V, pos : inactAtt(P, V );

− 1, V, neg : attackSet(P, V)} ≥ 0.

(11)

inX(P, V )← defended(P ), inS(P, V ). (12)
actAtt(P, V )← defended(P ), attackSet(P, V ). (13)

inactAtt(P, V )← defended(P ), attackSet(P, V ). (14)
← sec(S),not defended(S). (15)
← insec(I), defended(I). (16)

Note that this ASP program in general returns several answer sets for the
same assignment of vertices to sets in P. This is due to the fact that there may
be some X ′, X ′′ ⊆ I for I ∈ I with X ′ 6= X ′′, where both X ′ and X ′′ are
not defended. In order to obtain a single answer set for each secure-insecure
set partition, the ASP solver Clingo supports projection to atoms inS/2 (via
command-line parameter –project). Symmetry breaking can be applied in a
similar way as for Secure Set Equilibrium, but one has to distinguish between
secure and insecure sets appropriately.
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4.4 Weighted Secure Set Problem

In the Weighted Secure Set problem each vertex is associated with a positive
weight. This weight can be regarded as the “influence” or “power” of a vertex in
the graph. For instance, the weighted graph could be a model of a social network
with both powerful and easily persuadable entities, or a map where spots are of
different strategic importance. We adapt Definition 1 to cover weighted graphs.

Definition 8. Given a graph G = (V,E) and a function w : V → N+ that
assigns to each vertex a weight, a non-empty set S ⊆ V is weighted-secure in G
iff for each subset X ⊆ S the following inequality holds.∑

u∈N [X]∩S

w(u) ≥
∑

v∈N [X]\S

w(v)

Again, we first study the complexity of the corresponding verification prob-
lem, i.e., given a weighted graph G = (V,E) with weights w(v) for all v ∈ V and
a set S ⊆ V , is S weighted-secure in G?

Proposition 9. Weighted Secure Set Verification is co-NP-complete.

Proof (sketch). Membership can be shown by an algorithm that checks whether
the inequality in Definition 8 holds for X ⊆ S where the check is feasible in
polynomial time. Hardness is obtained by reduction from Secure Set Verifi-
cation where we assign w(v) = 1 to all v ∈ V . ut

To solve this problem with ASP, we specify the additional input by facts
w(V,W ), where each vertex gets assigned a weight. Then, it is sufficient to adapt
the #sum-aggregate to also consider weights.

defended← #sum{W,V, pos : defendSet(V ), w(V,W );

W,V, pos : inactAtt(V ), w(V,W );

−W,V, neg : attackSet(V ), w(V,W )} ≥ 0.

Note that the #count-aggregate as advocated in Section 3.4 can no longer be
used here. However, the previously presented problem variants can be adapted
in a straight-forward way to additionally support weights.

5 Experimental Results

In this section we present the results of our performance analysis. In detail, we
compare the efficiency of the Loop Encoding (Encoding 1), the Border Loop
Encoding (Encoding 2) and our Alternative Encoding (Encoding 3) for both
enumerating all secure sets and for enumerating all minimum secure sets.

Furthermore we investigate the runtime behavior of our encodings for the two
novel problem statements Secure Set Equilibrium and Secure-Insecure
Set Partitioning.
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For all the encodings under investigation we use the search-space pruning
approach described above to increase performance. Since our experiments did not
show a significant difference in the runtime between using the #count-aggregate
instead of the #sum-aggregate we omit a separate discussion of the counting
alternative.

5.1 Benchmark Setup

We evaluate our encodings based on a set of graphs (generated using the Erdös-
Rényi random graph model) of different sizes n between 12 and 20 vertices. The
graphs were generated using a fixed edge probability p (i.e., the probability of
adding an edge between a pair of vertices). In our tests, we investigated the
influence of the edge probability for a range between 20 and 100 percent. This
allows us to analyze the impact of the size of the input graph and the impact
of the graph density on the overall performance of our encodings separately.
For each edge probability and for each graph size, 25 instances were generated
and tested. The benchmark results were obtained using a machine with two
Intel Xeon E5345 @ 2.33GHz processors and 48 GB RAM running Debian 7.7
(wheezy). Each test run, using Clingo 4.4.0 [17], was limited to a single core and
128 MB RAM with a time limit of 15 minutes. Due to the fact that preliminary
tests showed no significant variance between the results of repeatedly executed
experiments, we only used one test run for each instance and encoding to obtain
the computation times needed to solve the various problem variants.

5.2 Benchmark Discussion for Secure Set

In this part of the paper we will discuss the performance characteristics of the
Encodings 1 - 3 and analyze the similarities and differences of the encoding
variants both in terms of runtime and grounding effort.

Performance comparison of the different encodings. When interpreting Figure 2,
one can see that the original loop encoding and the loop encoding with restriction
to the border vertices are almost equally efficient while the alternative encoding
outperforms them in every case. We assume that the reason why the restriction to
border vertices does not show a significant performance improvement is the fact
that rules 4-6 of Encoding 2 introduce a kind of indirection that mitigates the
desired performance gain. In contrast to this, the strengths of the alternative
encoding (where, like in Encoding 1, only the border vertices are considered
within the subset check) are visible over the whole range of instances under
investigation and we assume that this also holds for larger graphs.

Influence of the graph size on computation time. Figures 2a and 2c show the
program’s runtime in the presence of different graph sizes. In particular note the
exponential explosion of the computation time in relation to the graph size for
both problem variants. Already for 22 vertices the time limit of 15 minutes was
exceeded by almost every instance. For the optimization problem, the variation
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Fig. 2: Performance results for Encodings 1 - 3.

in runtime is much higher as the structure of the graph instance plays an im-
portant role (see also the discussion of the influence of the edge probability on
the program runtime right below). Figures 2a and 2c only cover the experiments
for instances of edge probability 0.5, but these observations also apply to other
edge probabilities which are not depicted here.

Influence of the edge probability on computation time. Figures 2b and 2d illus-
trate the strong dependency of the computation time on the edge probability
for a fixed graph size of 20 vertices. We assume that this can be explained by
the fact that “small” solutions (i.e., secure sets which contain a small number of
vertices) become less likely when the degree of connectedness increases. Inter-
estingly, the optimization encodings are much more sensitive to changes in the
edge probability than the enumeration variant. This is because the solver does
not have to check any larger candidates for secure sets in the encodings of the
optimization problem after a solution of smaller size has been found, while it
still has to check the whole search space when solving the enumeration variant.
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Fig. 3: Grounding results for Encodings 1 - 3.

Finally, note that for p = 1 all generated instances represent the same graph
(i.e. a clique), which explains the very small difference in runtime.

Influence of the graph size on grounding size. Figures 3a and 3b illustrate the
grounding effort for our encodings in relation to the graph size and the edge
probability. The actual values shown in the figures correspond to the number of
lines in DIMACS format which Clingo outputs using the flag –mode=gringo for
each of the input instances.

It is no surprise that the size of the grounding grows exponentially with
the size of the input, but it is interesting to see that the grounding size of the
alternative encoding grows much faster than for the other encodings when the
edge probability increases although there is no loop involved. This circumstance
is most likely caused by the fact that the alternative encoding offers for each
vertex three possibilities to choose from within the saturation (namely actAtt,
inactAtt and inX), while for the encodings incorporating a loop, there are just
two choices (inX and outX) incorporated in the saturation. Note that the time
spent for grounding never exceeded half a second per instance, implying that the
grounding step is no bottleneck in the cases we investigated.

5.3 Benchmark Discussion for Secure Set Equilibrium

In Figures 4a and 4b we present the results of our experimental evaluation for
the problem Secure Set Equilibrium (Encoding 4) with two secure sets in
the default variant (D) and in the variant with symmetry breaking optimization
(S). Both figures underline the fact that our approach for symmetry breaking
indeed pays off.

Even more interesting is the effect of the edge probability on the runtime of
our encodings: Between 20% and 60% we observe a slight decline in the diagram
with its valley at the box-plot covering the results for 40% edge probability which
seems strange at the first glance.
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Fig. 4: Performance results for Secure Set Equilibrium. Variants: D -
"Default Encoding", S - "Encoding with Symmetry Breaking Optimization"

An explanation for this behavior is that for sparse and dense graphs, there
are often many solutions. For instance, a clique or a graph consisting only of
isolated vertices has lots of trivial solutions. Partitioning the graph into two sets
of size n/2 suffices in both cases.2 However, other graphs, in which the edges
are distributed more randomly, might have much less solutions or even have no
solutions at all and thus can be solved faster.

5.4 Benchmark Discussion for Secure-Insecure Set
Partitioning

Figures 5a and 5b illustrate the influence of graph size and edge probability on
the runtime needed to enumerate all solutions for the Secure-Insecure Set
Partitioning problem with one secure and one insecure set.

At the first glance, the runtime behavior seems to be almost identical to
those dependencies we observed when analyzing the performance characteristics
of our encodings for the Secure Set problem. But on closer inspection one can
see that the impact of the edge probability on the runtime is much higher for
the Secure-Insecure Set Partitioning. This becomes even more apparent
as the instance representing a clique containing 20 vertices could not be solved
within the time limit of 15 minutes for this problem while there was no timeout
even for cliques when considering our encodings for Secure Set.

We assume that the increased solving effort is caused by the fact that the
same secure-insecure set partition could appear in multiple answer sets and that
also the use of projection cannot mitigate the increased effort for computing the
additional answer sets.
2 Indeed, for cliques, n has to be even to ensure that there are any solutions for the

Secure Set Equilibrium with two secure sets, because in any other case one of
the sets would have more attackers than defenders.
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Fig. 5: Performance results for Secure-Insecure Set Partitioning.

6 Conclusion

In this paper we have studied the problem of finding secure sets in graphs. We
have presented some alternative characterizations of secure sets that we put to
work in an ASP-based implementation.

From an ASP modeling point of view, finding secure sets in graphs is an
interesting problem as it requires disjunction as well as aggregates. It is therefore
an attractive candidate for testing the performance of ASP systems that allow
solving of problems harder than NP. In this work we have presented different
encodings that we believe to be useful for benchmarking ASP systems in the
future. This is of particular interest because so far problems harder than NP are
underrepresented among common collections of benchmark problems.

Recursive aggregates have posed a challenge in writing encodings for the
Secure Set problem. Our work witnesses that even some natural problems
seem to require relatively involved tricks in order to properly encode the required
arithmetics by means of aggregates in ASP. Moreover, current restrictions in the
DLV solver prevented us from gathering experimental data for this system.

Our experiments show a strong dependency of the execution time on the
graph size and the edge probability for all of our encodings, and the problem of
enumerating all secure sets in a graph is shown to be very challenging for today’s
ASP solvers even for relatively small instances. Our encoding that refrains from
looping over vertices (Encoding 3) outperforms our other encodings in all cases
and is therefore assumed to be a good starting point for further investigations.

We also showed the extensibility of this encoding by providing several new
problem variants based on the original definition of Secure Set and the exper-
iments we conducted for these variants underline the need for efficient solvers
with enough expressive power to capture recursive aggregates as needed for all
the problems we discussed in our work.
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We hope that in future versions of ASP systems restrictions with respect
to (recursive) aggregates are alleviated allowing further research on the secure
set problem as well as on similar problems requiring the full power of ASP.
In future work, we want to perform further analyses for such problems, which
should include other ASP systems (such as DLV) in order to obtain a more
comprehensive picture of how ASP can cope with them.
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A Proof of Proposition 1

Let G = (V,E) be a graph and Π = ΠG ∪Π< ∪Πloop. W.l.o.g., let the vertices
of V be denoted by integers 1, . . . , n according to the order specified by Π<. In
the following, when we say that an interpretation satisfies a non-ground rule r,
we mean it satisfies all ground instantiations of r over 1, . . . , n. Furthermore,
for any interpretation I and i-ary predicate p, we write Ip to denote the set of
atoms I ∩ {p(v1, . . . , vi) | v1, . . . , vi ∈ V }.

By definition of answer sets, we can restrict our attention to interpretations
being a subset of the Herbrand-base of Π, which consists of all ground predicates
obtained from the predicate symbols in Π and domain elements (i.e., the vertices
V in G).

We prove the assertion of the theorem as follows:

1. We show that for every non-empty secure set S in G, there is an answer set
of Π.

2. We show that for every answer set of Π there is a non-empty secure set in
G.

3. We show that there are as many secure sets in G as there are answer sets in
Π.

(1) Let S be a non-empty secure set in G. We construct the following interpre-
tation:

A = {vertex(v) | v ∈ V } ∪ {edge(u, v), edge(v, u) | {u, v} ∈ E}
∪ {inf(1), sup(n)} ∪ {succ(i, i+ 1) | 0 < i < n}
∪ {inS(v), inX(v), outX(v), defendSet(v) | v ∈ S}
∪ {outS(v) | v ∈ V \ S}
∪ {attackSet(v), inactAtt(v) | v ∈ N(S)}
∪ {okupto(u, v) | (u, v) ∈ V 2}
∪ {ok(u) | u ∈ V }
∪ {defended}

We first show that A is a model of Π. The rules originating from ΠG and Π<

are all satisfied by construction of A; as S is non-empty, rule 1 of Πloop is sat-
isfied; rule 2 is satisfied because for any v ∈ V either inS(v) ∈ A or outS(v) ∈
A. For rule 3, let u, v ∈ V and consider the ground rule attackSet(v) ←
inS(u), edge(u, v), outS(v). If u ∈ S, v /∈ S and (u, v) ∈ E, the body is sat-
isfied by A by definition, but so is the head, since then v ∈ N(S) and thus
attackSet(v) ∈ A. Otherwise, the body is not satisfied by A, and thus the rule
is satisfied by A. Rule 4 is satisfied by A since for each v ∈ S, inX(v) ∈ A and
outX(v) ∈ A. Rules 5 and 6 are satisfied by A, since AdefendSet = AinX. Rules
7–12: A contains any instantiation of okupto/2, forming the heads of the rules.
Thus all ground instances of these rules are trivially satisfied by A. Similarly for
rule 13, A contains any instantiation of ok/1. Rule 14 is treated analogously to
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Rule 3. Rule 15 is trivially satisfied by A since defended ∈ A. For rules 16 and
17, we oberve that AinS = AinX = AoutX. Finally, A falsifies the body of rule 18,
because defended ∈ A.

In order to show that A is answer set of Π, it remains to prove that for
each B ⊂ A it holds that B 6|= gr(Π)A. Suppose to the contrary that there is
some B ⊂ A with B |= gr(Π)A. As B |= gr(ΠG ∪ Π<)

A, Ap = Bp holds for
p ∈ {vertex, edge, inf, sup, succ}. Due to the semantics of choice rules [23],
rule 1 ensures that AinS = BinS holds. Moreover, AoutS = BoutS follows from
rule 2. As the extensions of the predicates in the body of rule 3 are the same under
A and B, rule 3 enforces AattackSet = BattackSet. If defended ∈ B, then rules 16
and 17 cause AinX = BinX and AoutX = BoutX. This allows us to conclude Ap = Bp
for p ∈ {defendSet, okupto, ok, inactAtt} due to rules 5–14. But then B = A,
contradicting our assumption that B ⊂ A. We conclude that defended /∈ B.
As B satisfies rule 15, it hence falsifies the body, so |BdefendSet| + |BinactAtt| <
|BattackSet|.

Let X = {v ∈ V | inX(v) ∈ B}, which is a subset of S due to rule 4. Due
to rules 5 and 6, N [X] ∩ S ⊆ {v ∈ V | defendSet(v) ∈ B}. It can be shown by
induction that (N [S]\N [X])\S ⊆ {u ∈ V | inactAtt(u) ∈ B} due to rules 7–14:
We first show that V \N [X] ⊆ {u ∈ V | ok(u) ∈ B}. Let u ∈ X be some arbitrary
vertex. For v = 1, due to rules 7–9, we get okupto(u, 1) if 1 6∈ X, or if 1 ∈ X
and v 6∈ N(u). For v ∈ {2, . . . , n} we have: Assume that okupto(u, v − 1) ∈ B.
Then, due to rules 10-12, we have okupto(u, v) ∈ B if v 6∈ X or jointly v ∈ X
and v 6∈ N(u). Due to rule 13, ok(u) ∈ B if for all v ∈ V we have that v 6∈ X, or
v ∈ X and v 6∈ N(u) holds. Hence, V \N [X] ⊆ {u ∈ V | ok(u) ∈ B}. Finally, by
rule 14, we have inactAtt(u) ∈ B if ok(u) ∈ B and u ∈ N [S] \ S. Restricting
vertices to V \ N [X], for the left side, we have (V \ N [X]) ∩ (N [S] \ S) =
(N [S] \N [X]) \ S, the right side is {u ∈ V | ok(u) ∈ B} ∩ (N [S] \ S) ⊆ {u ∈ V |
inactAtt(u) ∈ B}. Hence, (N [S] \ N [X]) \ S ⊆ {u ∈ V | inactAtt(u) ∈ B}.
Therefore |N [X] ∩ S| + |(N [S] \ N [X]) \ S| ≤ |BdefendSet| + |BinactAtt|. But
we have seen that |BdefendSet| + |BinactAtt| < |BattackSet| and, due to rule 3,
N [S] \ S = {v ∈ V | attackSet(v) ∈ B} holds. So we conclude that |N [X] ∩
S|+ |(N [S] \N [X]) \ S| < |N [S] \ S|, which contradicts our assumption that S
is secure cf. Lemma 1. Therefore A is an answer set of Π.

(2) Let A be an answer set of Π and let S = {v | inS(v) ∈ A}. First we observe
that A must have the following form in order to be an answer set of Π: As A
satisfies ΠG and Π<, it must hold that Avertex = {vertex(v) | v ∈ V }, Aedge =
{edge(u, v), edge(v, u) | {u, v} ∈ E}, Ainf = {inf(1)}, Asup = {sup(n)}, and
Asucc = {succ(i, i + 1) | 0 < i < n}. In Πloop, rule 1 ensures that S 6= ∅,
and rule 2 causes that AoutS = {outS(v) | v ∈ V \ S}. Rule 3 then yields
attackSet(u) ∈ A for each u ∈ N(S). It must hold that defended ∈ A due
to rule 18. Then rules 16–17 cause that, for any v ∈ V , inX(v) and outX(v)
must be in A whenever v ∈ S, and neither of these atoms is in A if v /∈ S
due to rules 3 and 16–17. This in turn entails that okupto(u, v) ∈ A for any
u, v ∈ V due to rules 7–12, which enforces ok(u) ∈ A for all u ∈ V . Rules 14
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then yields inactAtt(u) ∈ A for each u ∈ N(S). For any v ∈ V , rules 5–6 entail
defendSet(v) ∈ A whenever v ∈ S.

We now show that the non-empty set S is secure in G by contradiction:
Suppose it is not; by Lemma 1 there is a set X ⊆ S with |N [X] ∩ S|+ |(N [S] \
N [X]) \ S| < |N [S] \ S|. We construct an interpretation B as follows:

B = {vertex(v) | v ∈ V } ∪ {edge(u, v), edge(v, u) | {u, v} ∈ E}
∪ {inf(1), sup(n)} ∪ {succ(i, i+ 1) | 0 < i < n}
∪ {inS(v) | v ∈ S} ∪ {outS(v) | v ∈ V \ S}
∪ {inX(v) | v ∈ X} ∪ {outX(v) | v ∈ S \X}
∪ {attackSet(v) | v ∈ N(S)}
∪ {defendSet(v) | v ∈ N [X] ∩ S}
∪ {okupto(u, v) | (u, v) ∈ V 2, {1, . . . , v} ⊆ (V \X) ∪ (X \N(u))}
∪ {ok(u) | u ∈ V, X ∩N(u) = ∅}
∪ {inactAtt(u) | u ∈ N(S) \N(X)}

By this construction of B and our observations on the form of A, it is easy
to see that B ⊂ A. It remains to be shown that B is a model of gr(Π)A. As
Ap = Bp for p ∈ {vertex, edge, inf, sup, succ}, B is a model of gr(ΠG∪Π<)

A.
Due to AinS = BinS and AoutS = BoutS, rules 1 and 2 in the reduct are satisfied.
By rule 3 and construction of S, {v ∈ V | attackSet(v) ∈ A} = N(S), so B
satisfies rule 3 in the reduct. Similarly, by rules 5–6 and construction of S and X,
{v ∈ V | defendSet(v) ∈ A} = N [X] ∩ S, so B satisfies rules 5–6 in the reduct.
Rule 4 is obviously satisfied by B in the reduct as either inX(v) or outX(v) is
in B for any v ∈ S. To show that B satisfies rules 7–9 in the reduct, consider
an arbitrary u ∈ V . For any v ∈ {2, . . . , n}, inf(v) /∈ B, so these rules are all
satisfied; so consider v = 1. If v /∈ X, then okupto(u, v) ∈ B and rules 7–8 in the
reduct are satisfied; otherwise okupto(u, v) is in B by construction iff v /∈ N(u),
which entails that B satisfies either the head of rule 9 in the reduct or it falsifies
the negative body. In this way, it can be shown using induction (similarly as
before) that B satisfies also rules 10–12 in the reduct. Rule 13 is also satisfied by
B in the reduct: Whenever okupto(u, n) ∈ B, by construction ok(u) is also in B
because {1, . . . , n} ⊆ (V \X)∪(X\N(u)) holds iff V = (V \X)∪(X\N(u)), which
is equivalent to X ∩ N(u) = ∅. As for rule 14, consider arbitrary u, v ∈ V and
suppose inS(v), outS(u), edge(u, v) and ok(u) are all in B. Then we know v ∈ S,
u /∈ S and u ∈ N(v) (which together entail u ∈ N(S)), and finally X ∩N(u) = ∅
(which entails u /∈ N(X)). By construction of B, inactAtt(u) ∈ B follows from
u ∈ N(S) and u /∈ N(X), so B satisfies rule 14 in the reduct. We constructed
B such that |BdefendSet|+ |BinactAtt| = |N [X] ∩ S|+ |(N [S] \N [X]) \ S|, which
is by assumption less than |N [S] \ S| = |BattackSet|, so B satisfies rule 15 in the
reduct. Finally, B satisfies rules 16–17 in the reduct because defended /∈ B, and
rule 18 has no counterpart in the reduct as defended ∈ S. We have thus shown
that A is not the least model of gr(ΠG ∪ Π< ∪ Πloop)

A, which contradicts A
being an answer set of Π. So S is secure in G.
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(3) To show the one-to-one correspondence between non-empty secure sets in
G and answer sets of Π, observe that in (1) the constructed answer sets are
different for distinct secure sets. On the other hand, suppose that there are two
different answer sets of Π. They cannot differ in the extensions of vertex/1,
edge/2, inf/1, sup/1 and succ/2, as then they would not satisfy ΠG or Π<.
They must both contain defended, as otherwise they would not satisfy rule 18.
If the two answer sets agree on the extension of inS/1, then, as we have seen in
(2), they must both agree on the extensions of all other predicates, contradicting
the assumption that the answer sets are distinct. But if they differ in inS/1, our
construction in (2) yields different secure sets. So there are as many non-empty
secure sets in G as answer sets of Π.
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