
Version 1.0 (2019-02-28) submitted to Fundamenta Informaticae 1

Contents are subject to change

Expansion-based QBF Solving on Tree Decompositions

Günther Charwat∗

Institute of Logic and Computation

TU Wien

Favoritenstraße 9-11, 1040 Vienna, Austria

gcharwat@dbai.tuwien.ac.at

Stefan Woltran∗

Institute of Logic and Computation

TU Wien

Favoritenstraße 9-11, 1040 Vienna, Austria

woltran@dbai.tuwien.ac.at

Abstract. In recent years various approaches for quantified Boolean formula (QBF) solving have
been developed, including methods based on expansion, skolemization and search. Here, we
present a novel expansion-based solving technique that is motivated by concepts from the area of
parameterized complexity. Our approach relies on dynamic programming over the tree decom-
position of QBFs in prenex conjunctive normal form (PCNF). Hereby, binary decision diagrams
(BDDs) are used for compactly storing partial solutions. Towards efficiency in practice, we inte-
grate dependency schemes and develop dedicated heuristic strategies.

Our experimental evaluation reveals that our implementation is competitive to state-of-the-art
solvers on instances with one quantifier alternation. Furthermore, it performs particularly well on
instances up to a treewidth of approximately 80, even for more quantifier alternations. Results
indicate that our approach is orthogonal to existing techniques, with a large number of uniquely
solved instances.

Keywords: QBF, expansion, dynamic programming, QSAT, treewidth

Address for correspondence: gcharwat@dbai.tuwien.ac.at
∗This work was supported by the Austrian Science Fund (FWF): Y698.

2 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

1. Introduction

Quantified Boolean formulae (QBFs) extend propositional logic by explicit universal and existential
quantification over variables. They can be used to compactly encode many computationally hard
problems, which makes them amenable to application fields where highly complex tasks emerge,
e.g. formal verification, synthesis, and planning. In this work we consider the problem of deciding
satisfiability of QBFs (QSAT) which is, in general, PSPACE-complete [1]. We present an approach
that is motivated by results from the area of parameterized complexity: many computationally hard
problems are fixed-parameter tractable (fpt) [2], i.e., they can be solved in time f(p) · nO(1) where n
is the input size, p the parameter, and f a computable function. It is known that QSAT is fpt w.r.t. the
combined parameter quantifier alternations plus treewidth of the QBF instance (this follows from [3]),
but not w.r.t. treewidth alone [4].

Intuitively, treewidth captures the “tree-likeness” of a graph. It emerged from the observation
that computationally hard problems are usually easier to be solved on trees than they are on arbitrary
graphs. Treewidth is defined on tree decompositions (TDs). Our approach employs dynamic pro-
gramming (DP) over the TD of the primal graph of QBFs in prenex conjunctive normal form (PCNF).
Partial solutions of the DP are obtained via locally restricted expansion. The practical feasibility of this
approach rests on the following pillars. First, we make use of binary decision diagrams (BDDs) [5]
for compactly storing information in our dedicated data structure. Second, we consider structure in
the quantifier prefix by integrating dependency schemes (see, e.g., [6]) into our DP algorithm. Finally,
we introduce optimization techniques such as dynamic variable removal and TD selection based on
characteristics beyond treewidth. By design, our approach is expected suitable for QBF instances of
low-to-medium treewidth and a restricted number of quantifier alternations.

The presented algorithms are implemented in the QBF solver dynQBF1. We conduct an experi-
mental evaluation along the lines of the 2016 [7] and 20172 QBF competitions. In comparison with
state-of-the-art solvers, results show that our approach is particularly competitive on instances with
one quantifier alternation. Furthermore, the implementation performs well on instances that exhibit
a width of up to 80, even for instances with more quantifier alternations. Additionally, we observe
a large number of instances that is uniquely solved by dynQBF. These observations underline the
practical potential of parameterized algorithms in highly competitive domains and we believe that the
techniques used in our system (space efficient storage via BDDs, TD selection, etc.) will also prove
useful when efficient dynamic programming algorithms for other problems are to be implemented.

This article is structured as follows. In Section 2 we summarize QBF solving techniques and give a
special account to related work that considers treewidth. In Section 3 we formally introduce QBFs and
tree decompositions. Our core algorithm for QBF solving is presented in Section 4. Subsequently, the
algorithm is extended by dependency scheme integration. Towards efficiency in practice, in Section 5
we introduce algorithmic refinements and heuristic optimizations. Section 6 contains our experimental
analysis. Finally, correctness of our core algorithm is shown in Appendix A.

This article is a significantly extended version of a paper that appeared in the proceedings of the
RCRA’17 workshop [8].

1dynQBF is freely available at https://github.com/gcharwat/dynqbf/.
2See http://www.qbflib.org/qbfeval17.php.

G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions 3

2. Related Work

Approaches for QBF solving have been intensively investigated in the past 20 years. They are often-
times based on ideas that were originally developed for SAT solving, but extended with techniques to
handle quantification over variables. An overview is given in the survey article by Marin et al. [9].

In a nutshell, solving with expansion proceeds by successively eliminating variables via duplica-
tion of the (sub) formula, and replacing the eliminated variable once by true and once by false. Early
systems that apply this technique are QUBOS [10] and Quantor [11]. Expansion potentially yields an
exponential blow-up in the size of the formula. The solvers AReQS [12] and RAReQS [13] mitigate
this problem by applying counter-example guided refinement (CEGAR) [14]: here, the idea is to first
consider an abstract representation of the problem instance, and then to gradually refine the abstraction
until a solution is obtained. In our approach, which is also expansion-based, we decompose the input
instance in order to reduce space requirements during solving.

Search-based QBF solving is based on extensions of the well-known DPLL or CDCL algorithms
for SAT solving to handle quantification over variables [15, 16, 17]. CDCL is, for instance, imple-
mented in the QBF solver DepQBF [18]. DepQBF additionally analyzes (in)dependencies between
variables [19]. In our approach we also rely on dependency schemes to reduce computational effort
and memory consumption. Another search-based solver is GhostQ [20] which introduces ghost vari-
ables that help handle existential and universal variables symmetrically, and to efficiently propagate
information. There also exists a version of GhostQ that integrates CEGAR-based learning [13]. The
solver Qestos is based on ideas presented in [21]. It combines DPLL-based and expansion-based
solving techniques, and calls a SAT solver.

The concept most closely related to our approach was developed by Pan and Vardi [22] and im-
plemented in the QBDD system, which relies on BDDs. Variable elimination follows an elimination
ordering that also underlies the construction of the tree decomposition in our approach. However,
with our explicit approach of dynamic programming on tree decompositions, we gain additional flex-
ibility on the order in which variables are to be eliminated. Similarly, the early BDD-based solver
EBDDRES [23] implements an algorithm whose runtime is exponential only in the width of the used
elimination ordering. Similar to QBDD, elimination has to follow the variable ordering of the prefix.

Pulina and Taccella studied the relation of treewidth to (empirical) hardness of QBFs [24]. They
consider quantified treewidth that is a generalization of primal treewidth (i.e., the treewidth of the pri-
mal graph representation of the QBF matrix) by also integrating the variable ordering specified by the
QBF prefix (see also [25]). They show that reducing the quantified treewidth by preprocessing con-
sistently improves the performance of solvers [26], and incorporate the idea of quantified treewidth
reduction in the (incomplete) solver QuBIS [27]. The solver may either solve the instance, or return a
modified QBF whose quantified treewidth is (usually) not larger than the treewidth of the original in-
stance. The solver StruQS [28] dynamically decides between resolution and search during the solving
process. Resolution is applied when the treewidth (or an approximation thereof) is relatively small (or,
in particular, if the number of clauses resulting from the elimination of a variable is less than the num-
ber of clauses it originally occurred in), and search is used otherwise. An analysis of available QBF
instance characteristics, such as clause length, number of variables, but also quantified (tree)width is
given in [9].

4 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

3. Preliminaries

3.1. Quantified Boolean Formulae

As usual, a literal is a variable or its negation. A clause is a disjunction of literals. A Boolean formula
in conjunctive normal form (CNF) is a conjunction of clauses. We sometimes denote clauses as sets
of literals, and a formula in CNF as a set of clauses. Herein, we consider quantified Boolean formulae
(QBFs) in closed prenex CNF (PCNF) form.

Definition 3.1. In a PCNF QBF Q.ψ, Q is the quantifier prefix and ψ is a CNF formula, also called
the matrix. Q is of the form Q1X1Q2X2 . . . QkXk where Qi ∈ {∃,∀} for 1 ≤ i ≤ k, Qi 6= Qi+1

for 1 ≤ i < k, Qk = ∃ and X = {X1, . . . , Xk} is a partition over all variables in ψ. For a variable
x ∈ Xl (1 ≤ l ≤ k), l is the block of x, and k − l + 1 the depth of x.

We frequently use the following notation: Given a QBF Q.ψ with Q = Q1X1 . . . QkXk and an
index i with 1 ≤ i ≤ k, quantifierQ(i) = Qi gives the i-th quantifier. For a variable x, blockQ(x)
returns the block of x; depthQ(x) returns the depth of x in Q; and quantifierQ(x) = QblockQ(x) returns
the quantifier for x. Finally, for a clause c ∈ ψ, we denote by variablesψ(c) the variables occurring in
c. We will usually omit the subscripts whenever no ambiguity arises. For a variable x in a formula ψ,
we denote by ψ[x/·] with · ∈ {>,⊥} the assignment of true (respectively false) to x in ψ.

A PCNF QBF Q.ψ can be decided by expansion of all variables, where a subformula of the form
∃xψ′ in Q.ψ is expanded to ψ′[x/>] ∨ ψ′[x/⊥], and subformula ∀xψ′ is expanded to ψ′[x/>] ∧
ψ′[x/⊥]. Q.ψ is said to be satisfiable (or valid) if the formula resulting from expansion over all
variables equals to true.

Example 3.2. As our running example, we will consider the QBF Q.ψ with Q = ∃ab ∀cd ∃ef and
ψ = (a∨ c∨ e)∧ (¬a∨ b)∧ (¬b∨ f)∧ (d∨¬e), which is valid. For instance, with a/>, b/>, for any
assignment to c and d, there exists an assignment to e and f such that the formula evaluates to true.
Note that this example is designed for illustration purposes, hence simplifications (such as pure literal
elimination) are not considered.

3.2. Tree Decompositions and Treewidth

A tree decomposition (TD) [29] is a mapping from a graph to a tree, where each node in the tree
decomposition can contain several vertices of the original graph.

Definition 3.3. A tree decomposition of a graph G = (V,E) is a pair T = (S, bagT) where S =
(T, F) is a (rooted) tree with nodes T and edges F , and bagT : T → 2V assigns to each node a set of
vertices, such that:

1. For every vertex v ∈ V , there exists a node t ∈ T such that v ∈ bagT (t).

2. For every edge (v1, v2) ∈ E, there exists a node t ∈ T such that {v1, v2} ⊆ bagT (t).

3. For every vertex v ∈ V , the subtree of S induced by {t ∈ T | v ∈ bagT (t)} is connected.

G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions 5

G: a b f

c e d

T : a, c, et7

a, c, et4 a, c, et6

a, bt3

bt2

b, ft1

d, et5

Figure 1. Primal graph G and a possible TD T of G for the QBF in Example 3.2.

Intuitively, Condition 1 and 2 guarantee that the whole graph is covered by the tree decomposition,
and Condition 3 is the connectedness property, which, roughly speaking, states that a vertex cannot
“reappear” in unconnected parts (w.r.t. the bags). For a tree decomposition T = (S, bagT) with
S = (T, F) we sometimes write t ∈ T instead of t ∈ T to access a tree decomposition node.

The width of T is defined as maxt∈T |bagT (t)| − 1. The treewidth w of a graph is the minimum
width over all its tree decompositions. Given a graph and an integer w, deciding whether the graph
has at most treewidth w is NP-complete [30]. However, the problem itself is fpt when w is considered
as parameter [31]. Additionally, there exist good polynomial-time heuristics for constructing TDs [32,
33]. Here we consider a special type of tree decompositions.

Definition 3.4. A tree decomposition T = ((T, F), bagT) is weakly normalized, if each t ∈ T is

• a leaf node (t has no children),

• an exchange node (t has exactly one child t1, such that bagT (t) 6= bagT (t1)); or

• a join node (t has children t1, . . . , tm such that m ≥ 2, and bagT (t) = bagT (t1) = · · · =
bagT (tm)).

Given a tree decomposition T = (S, bagT) with S = (T, F), for a node t ∈ T we denote
its set of children in S by childrenT (t). We specify firstChildT (t) and nextChildT (t) to iterate
over the children, and hasNextChildT (t) to check whether further children exist. The node type is
checked with isLeafT (t), isExchangeT (t) and isJoinT (t). For a node t with single child node t1,
changed bag contents are accessed by introducedT (t) = bagT (t) \ bagT (t1) and removedT (t) =
bagT (t1) \ bagT (t). isRootT (t) returns true if t has no parent node.

Our algorithm for QBF solving is based on a tree decomposition of the given QBF Q.ψ, which
is obtained from the graph Gψ = (V,E) where V are the variables occurring in ψ and each clause
in ψ forms a clique in Gψ, i.e. E = {(x, y) | x, y ∈ variablesψ(c), c ∈ ψ, x 6= y} (called primal
or Gaifman graph). Given a tree decomposition T = (S, bagT) of QBF Q.ψ, for t ∈ T we define
clausesT ,ψ(t) = {c ∈ ψ | variablesψ(c) ⊆ bagT (t)}. In the following we usually omit subscripts T
and ψ.

Example 3.5. Consider our running example with ψ = (a∨ c∨ e)∧ (¬a∨ b)∧ (¬b∨ f)∧ (d∨¬e).
Figure 1 shows the graph representation G of ψ, and T is a weakly-normalized TD for G of width 2.

6 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

4. Dynamic Programming-based QBF Solving

In a nutshell, the algorithm proceeds as follows. Given a QBF instanceQ.ψ, we heuristically construct
a weakly normalized tree decomposition T = (S, bagT) of the primal graph of ψ. Then, T is traversed
in post-order. For each t ∈ T we compute partial solution candidates and store them in a dedicated
data structure (called nested set of formulae (NSF), see below). In this context, partial means that the
data structure is restricted to variables occurring in bagT (t). Candidate refers to the fact that other
parts of the QBF might not yet be considered. Intuitively, during traversal of the tree decomposition for
variables that are introduced to the bag of the tree decomposition, we add the respective bag-induced
clauses to the formulae stored in the NSF. If a variable is removed from the bag it is assigned either >
or ⊥, representing the step of expansion in traditional expansion-based QBF solvers: the NSF keeps
track of the quantifier block the removed variable occurred in and stores different formulae resulting
from the variable assignment. At the root node, the whole instance was taken into account and the
problem is decided by finally evaluating the quantifiers.

4.1. Data structure

We define nested sets of formulae (NSFs) where the innermost sets contain reduced ordered binary
decision diagrams (BDDs) [5]. A BDD compactly represents Boolean formulae in form of a rooted
directed acyclic graph (DAG). For a fixed variable ordering, BDDs are canonical, i.e., equivalent
formulae are represented by the same BDD, a property that is vital to our approach. Nestings will be
used to differentiate between quantifier blocks, and BDDs store parts of the QBF matrix.

Definition 4.1. A nested set of formulae (NSF) of depth k is inductively defined over the depth of
nestings d with 0 ≤ d ≤ k: for d = 0, the NSF is a BDD; for 1 ≤ d ≤ k, the NSF is a set of NSFs of
depth d− 1.

For a QBF Q.ψ with Q = Q1X1 . . . QkXk and an NSF N of depth k, for any NSF M ap-
pearing somewhere in N we denote by depth(M) the depth of the nesting of M , blockQ(M) =
k − depth(M) + 1 is the block of M , and quantifierQ(M) = QblockQ(M) (for blockQ(M) ≤ k). We
define the procedure init(k, φ) that initializes an NSF of depth k, such that each set contains exactly
one NSF, and the innermost NSF represents the propositional formula φ. For instance, init(3,>) re-
turns {{{>}}}. Furthermore, for an NSF N we denote by N [B/B′] the replacement of each BDD B
in N by B′. For a BDD B, restriction of a variable v is denoted by B[v/>] or B[v/⊥]. Quantification
and standard logical operators are applied as usual.

Example 4.2. Suppose we are given an NSF N = {{{>,⊥}}, {{¬a ∨ b}, {⊥}, {a ∧ b}}}. In the
examples, we will illustrate nested sets as trees where leaves contain the formulae represented by the
BDDs. Figure 2 shows the tree representing N together with the one resulting from N [B/B ∧ c].

NSFs can be used to efficiently keep track of parts of the QBF (with respect to the TD), instead of
representing the whole QBF instance at once.

G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions 7

> ⊥ (¬a ∨ b) ⊥ a ∧ b c ⊥ (¬a ∨ b) ∧ c ⊥ a ∧ b ∧ c

Figure 2. Tree representation of example NSF N and N [B/B ∧ c] applied to N (each BDD B is replaced
with B ∧ c).

Definition 4.3. For a PCNF QBF Q.ψ with k quantifier blocks and a tree decomposition T of ψ, for
a node t ∈ T a nested set of formulae (NSF) Nt is of depth k and each BDD at depth 0 represents a
propositional formula over variables in bagT (t).

Internal elements of the NSF have quantifier semantics, as we will show later. Opposed to the
similar concept of quantifier trees [34], NSFs are defined as recursive sets in order to automatically
remove trivial redundancies. Furthermore, the depth is specified by the number of quantifiers, not by
the number of variables. We remark that although CNFs of bounded treewidth can be stored entirely
in a BDD of polynomial size, existential quantification can result in an exponential blowup [35]. Our
NSFs mitigate this by only storing parts of the QBF’s CNF in the BDDs.

4.2. Main Procedure

In the following we present our expansion based algorithm for deciding satisfiability of QBFs and
provide intuitive arguments for its correctness. The proof is given in Appendix A. Algorithm 1
illustrates the recursive procedure for the post-order traversal of the tree decomposition and computing
the partial solution candidates. It is called with the root node of the tree decomposition and returns an
NSF that represents the overall solution.

In leaf nodes, an NSF of depth k (i.e., the number of quantifier blocks in the QBF instance) is
initialized with the innermost set containing a BDD that represents the clauses associated with the
current node. In an exchange node, variables are removed as well as introduced (w.r.t. the contents
of the bag). Removed variables are handled by “splitting” the NSF. Procedure split(N, x) (see Al-
gorithm 2) implements a variant of locally restricted expansion: at the block of x in N , each NSF
M contained in N is replaced by two NSFs that distinguish between assignments of x to ⊥ and >.
Observe that all occurrences of x in the BDDs are removed. This guarantees that the size of each
BDD is bounded by the size of the bag. Furthermore, since (reduced ordered) BDDs are canonical
and due to set semantics of NSFs, the overall resulting NSF size is bounded by the size of the bag and
depth. Removal of variable x from the BDDs is admissible due to the connectedness property of the
tree decomposition: x will never reappear somewhere upwards the tree decomposition, and therefore
all clauses containing x were already considered. After splitting, the clauses associated with the cur-
rent node are added to the BDDs of the NSF via conjunction. In join nodes, NSFs computed in the
child nodes are successively combined by procedure join(N1, N2) (see Algorithm 3). The procedure
guarantees that the structure (nesting) of the NSFs to be joined is preserved. BDDs in the NSFs are
combined via conjunction, thus already considered information of both child nodes is preserved.

So far, quantifiers were not taken into account. In the basic algorithm they are only considered

8 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

Algorithm 1: solve(t)

Input : A tree decomposition node t
Output: An NSF with partial solution candidates for t

1 if isLeaf (t) then N := init(k, clauses(t))
2 if isExchange(t) then
3 N := solve(firstChild(t))
4 for x ∈ removed(t) do N := split(N, x)
5 N := N [B/B ∧ clauses(t)]
6 if isJoin(t) then
7 N := solve(firstChild(t))
8 while hasNextChild(t) do
9 M := solve(nextChild(t))

10 N := join(N,M)

11 end
12 if isRoot(t) then N := evaluateQ(t,N)
13 return N

Algorithm 2: split(N, x)

Input : An NSF N and a variable x
Output: An NSF split at block(x) w.r.t. assignments to x

if block(N) = block(x) then return {M [B/B[x/⊥]],M [B/B[x/>]] |M ∈ N}
else return {split(M,x) |M ∈ N}

Algorithm 3: join(N1, N2)

Input : NSFs N1 and N2 of same depth
Output: A joined NSF

if depth(N1) = 0 then return N1 ∧N2

else return {join(M1,M2) |M1 ∈ N1,M2 ∈ N2}

in the root node r of the tree decomposition, where the problem is decided by applying quantifier
elimination as shown in Algorithm 4. Our approach is similar to that described by Pan and Vardi [22],
but restricted to the bag contents and quantifiers are recursively evaluated over the nestings. Procedure
evaluateQ(r,N) combines the elements of the NSF by disjunction (for existential quantifiers) or
conjunction (for universal quantifiers), starting at the innermost NSFs. Thereby, variables contained
in the current bag are removed by quantified abstraction (i.e., they get existentially or universally
quantified). Thus, this procedure finally returns a single BDD B without variables. If B ≡ ⊥, the
QBF is invalid, otherwise it is valid.

G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions 9

Algorithm 4: evaluateQ(t,N)

Input : A tree decomposition node t and an NSF N
Output: A BDD B of N after evaluation of quantifiers

if depth(N) = 0 then B := N
else

X := {x | x ∈ bag(t) and block(x) = block(N)}
if quantifier(N) = ∃ then B := ∃X

∨
M∈N evaluateQ(t,M)

else B := ∀X
∧
M∈N evaluateQ(t,M)

return B

Example 4.4. Figure 3 shows the NSFs computed at the tree decomposition nodes of our running
example (without quantifier evaluation at the root node). In t1, an NSF of depth 3 is initialized with
(¬b ∨ f), i.e., the clause induced by bag(t1). In t2, variable f is removed. Hence the NSF is split at
block(f) = 3, once by setting f to ⊥ (left NSF branch) yielding ¬b, and once by > (right branch),
yielding >. In t3, clause (¬a ∨ b) is added to these BDDs via conjunction, giving {{{¬a ∧ ¬b, (¬a ∨
b)}}}. In t4, b is removed and c, e are introduced. The NSF is split at block(b) = 1. Additionally,
induced clause (a ∨ c ∨ e) is conjoined with the BDDs. The algorithm proceeds similarly for nodes
t5 and t6. In t7, the NSFs are joined. For instance, the leftmost branches in t4 and t6 are joined by
conjunction of ¬a∧ (c∨e) and ¬e∧ (a∨c), yielding ¬a∧¬e∧c. The second branch in t7 stems from
the leftmost branch in t4 joined with the right branch in t6. Joining proceeds for all branches in the
NSFs, thereby taking into account the nestings in the NSFs. Figure 4 shows the NSFN in root node t7
together with the BDDs obtained recursively when applying evaluateQ(t7, N). The procedure returns
>, as the QBF from Example 3.2 is valid.

4.3. Dependency Schemes

Quantifiers introduce dependencies between variables. Let x and y be variables of the QBF, and
assume that y is dependent on x. Then, the assignment to y is dependent on the assignment to x
[36] (i.e., reordering x and y in the prefix changes satisfiability). So far, when a variable is removed
splitting is applied to distinguish between variable assignments. With this, even if x is removed before
y, we implicitly keep track of these assignments in our NSF data structure. Hence, when y is removed
later, its dependency on x is accounted for, and our algorithm remains sound. However, if all variables
dependent on x were already removed, the distinction between assignments is not necessary. We
considered several dependency schemes (for details, see e.g., [6]). Let Q.ψ be a PCNF QBF with
k quantifier blocks and x, y be variables of Q.ψ. Then (x, y) ∈ DS

Q.ψ w.r.t. dependency scheme
S ∈ {naive, simple, standard} if:

1. naive: block(x) < k;

2. simple: block(x) < block(y); and

3. standard: block(x) < block(y), quantifier(x) 6= quantifier(y) and there is an X-path from
x to y for some X ⊆ {z | z ∈ Xi, block(x) < i ≤ k, quantifier(z) = ∃}. An X-path is a

10 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

¬a ∧ ¬e ∧ c ¬a ∧ (c ∨ e) ⊥ ¬e ∧ (a ∨ c) ⊥ (a ∨ c ∨ e)

t7

¬a ∧ (c ∨ e) ⊥ (a ∨ c ∨ e)

t4

¬a ∧ ¬b (¬a ∨ b)

t3

¬b >

t2

(¬b ∨ f)

t1

¬e ∧ (a ∨ c) (a ∨ c ∨ e)

t6

(d ∨ ¬e)

t5

Figure 3. NSFs at the decomposition nodes of the running example.

>
⊥

¬a ∧ c

¬a ∧ ¬e ∧ c

¬a

¬a ∧ (c ∨ e)

a

a ∨ c

⊥ ¬e ∧ (a ∨ c)

>

⊥ (a ∨ c ∨ e)

∃
∀
∃

Figure 4. (Intermediate) results for evaluateQ(t7, N) executed on the NSF of root node t7.

sequence c1, . . . , cl of clauses in ψ, s.t. x ∈ c1, y ∈ cl and cj ∩ cj+1 ∩ X 6= ∅ for 1 ≤ j < l
(see [37] for details).

We denote by dependentSQ.ψ(x) = {y | (x, y) ∈ DS
Q.ψ} the set of variables that are dependent

on x in Q.ψ w.r.t. S. Towards our adapted algorithm, for a tree decomposition node t of T , we
recursively define by removedSubT (t) = removedT (t) ∪

⋃
t′∈childrenT (t) removedSubT (t

′) the set
of removed variables in the subtree of T rooted at t. Let removedBelowT (t) = removedSubT (t) \
removedT (t) be the variables removed below t in T . In Algorithm 1, split(M,x) is replaced with
S-dependentSplit(t,N, x) (see Algorithm 5). If all variables dependent on x were already removed,
x is removed by quantified abstraction. Otherwise, the standard split(N, x) procedure is called.

Example 4.5. The NSF at node t2 of Figure 3 reduces to {{{>}}} (for all considered dependency
schemes). Furthermore, we have Dstandard

Q.ψ = {(a, c), (a, d), (c, e), (d, e)}. Since dependent(b) =

G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions 11

Algorithm 5: S-dependentSplit(n,N, x)

Input : Tree decomposition node n, NSF N , variable x
Output: An NSF with abstracted or split x

if dependentS(x) ⊆ removedBelow(n) then
if quantifier(x) = ∃ then return N [B/∃xB]
if quantifier(x) = ∀ then return N [B/∀xB]

else return split(N, x)

{}, b can be existentially abstracted in t4. However, in t6, d must be split, since dependent(d) =
{e} 6⊆ removedBelow(t6) = {}.

We remark that for all considered dependency schemes variables at the innermost quantifier block
can be removed by quantified abstraction. Hence our algorithms can be simplified, as the NSFs
at depth 1 always only contain a single BDD. In particular, for 2-QBFs (i.e. instances of the form
∀X1∃X2.ψ) the general NSF data structure could then be replaced by just a set of BDDs. Further-
more, we observed that in almost all 2-QBF instances (used in Section 6) variables in the second
quantifier block are dependent on those in the first block. In practice, for 2-QBFs we thus always
apply the easily computable naive dependency scheme. For other instances standard turned out to be
superior to simple and naive.

5. Towards Efficiency in Practice

Here we discuss several refinements for our algorithm that are necessary in order to make it useful in
practice.

Clause splitting. Given a QBF Q.ψ, we construct a tree decomposition of width w for the primal
graph of ψ. Due to Conditions 2 and 3 of Definition 3.3, w ≥ maxc∈ψ|c| − 1 holds, i.e., the size
of the largest clause gives a lower bound for w. To reduce this bound, we apply clause splitting,
which is a standard technique implemented in many QBF solvers and preprocessors: a fresh variable
is added (once positively, once negatively) to the parts of a split clause, and quantified existentially
in the innermost quantifier block. Experiments preceding this work reveal that splitting clauses larger
than 30 yields good results, without introducing too many additional variables.

Tree decomposition selection. It was shown that tree decomposition characteristics besides width
play a crucial role in practice [38]. In 2-QBF instances usually most computational effort is required
for joining the NSFs. We consider the number of children in join nodes jNodes(T) which is given as

joinChildCount(T) =
∑

j∈jNodes(T)

|childrenT (j)|

12 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

Algorithm 6: removeRedundant(N)

Input : An NSF N
Output: An NSF without supersets

if depth(N) > 1 then
for M ∈ N do M := removeRedundant(M)
for M1,M2 ∈ N and M1 6=M2 do

if M1 ⊂M2 then N := N \ {M2}
end

else
for M1,M2 ∈ N and M1 6=M2 do

if quantifier(N) = ∃ and M1 ∨M2 =M1 then N := N \ {M2}
if quantifier(N) = ∀ and M1 ∧M2 =M1 then N := N \ {M2}

end
return N

Additionally, we consider the following tree decomposition characteristic. Variable dependencies
can be exploited more efficiently if the variables are removed in the TD from the innermost to the outer-
most quantifier block. For a tree decomposition node t and block b, let removedBelowBlockT ,Q(t, b) =
{r | r ∈ removedBelowT (t) and blockQ(r) < b}. Then,

removalBelow(T ,Q) =
∑
t∈T

∑
r∈removedT (t)

|removedBelowBlockT ,Q(t, block(r))|

We construct several tree decompositions (using the min-fill heuristics [33]) and then select the
one minimizing joinChildCount(T) (for 2-QBFs) or removalBelow(T ,Q) (for instances with more
quantifier blocks). We observe that 10 decompositions are sufficient to increase performance, despite
the additional effort in the decomposition step.

Redundant NSF removal. Two BDDs in the same nesting of an NSF are redundant if they are in a
subset relation w.r.t. the represented models (which is similar to subsumption checking [11]), or if two
NSFs in the same nesting are in a subset relation. Algorithm 6 gives the pseudo-code for removing
unnecessary elements3. Since the procedure includes a recursive comparison of all NSFs, checking for
redundant NSFs is expensive. Nevertheless, periodic checks are required to circumvent an explosion
in size in join nodes.

Example 5.1. Figure 5 shows an NSF N before and after removeRedundant(N). For instance, con-
sider the leftmost branch of the NSF at depth 1, i.e. N1 = {⊥,¬a}. Since quantifier(N1) = ∃
and ⊥ ∨ ¬a ≡ ¬a, ⊥ is removed. At depth 2, we subsequently have {{¬a}, {¬a, c}}. Since
{¬a} ⊆ {¬a, c}, {¬a, c} is removed.

3When dependency schemes are considered, the NSFs at depth 1 contain only a single BDD. Then, subset checking w.r.t.
models of the BDDs can be shifted by one block (nesting).

G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions 13

⊥ ¬a ¬a c a a ∨ c

∃
∀
∃

¬a a ∨ c

∃
∀
∃

Figure 5. Example NSF before (left) and after (right) compression.

Intermediate unsatisfiability checks. Procedure evaluateQ(t ,N) can be applied to any NSF dur-
ing the tree decomposition traversal. If it returns ⊥, the QBF is invalid. However, if it returns >, the
QBF might still be invalid due to clauses that are encountered later in the traversal. In our setting,
the overhead for these checks is negligible. Additionally, in order to remove unnecessary nestings,
evaluateQ(t ,N) can be adapted as follows: if the evaluation of quantifiers yields a BDD that repre-
sents ⊥ anywhere during the recursive NSF traversal, the respective NSF substructure is replaced by
an NSF of the same depth that only contains a single BDD ⊥.

Estimated NSF size (removal caching). For a node t of decomposition T , let sizeNSF (t) be the
number of BDDs in the NSF N computed at node t, and maxSizeBDD(t) be the size of the largest
BDD in N . The size of a BDD is determined by the number of nodes in the DAG of the BDD.
sizeNSF (t) can be kept small by delaying splitting of removed variables. Instead, the variable is stored
in a cache for later removal. However, this usually increases maxSizeBDD(t) (since the variable is
not removed from the BDDs), and the size of BDDs is no longer bounded by the bag size. Hence,
NSF and BDD sizes have to be carefully balanced.

BDD variable ordering. The size of a BDD can be worst-case exponential in the number of vari-
ables. Nontheless, in practice the size may be exponentially smaller, in particular in case a “good”
variable ordering is applied [39]. Since finding an optimal variable ordering is in general NP-hard [5],
BDD-internal heuristics for finding such a good ordering can be used. For our purposes, we initialize
the ordering with the occurrence of variables in the instance (which usually implies that the ordering
corresponds to that of the QBF prefix), and apply dynamic reordering during the computation via lazy
sifting [40].

Example 5.2. Solving-related optimizations in combination with dependency schemes are illustrated
in Figure 6. It shows the NSFs computed at the tree decomposition nodes with the following op-
timizations enabled: the naive dependency scheme is used (its application is marked in the figure
with Dnaive

Q.ψ), compression is applied by removing subset-related redundancies (marked with ⊂) and
unsatisfiable NSFs (identified during quantifier evaluation) are replaced with an NSF containing ⊥
(marked with evalQ). The elements removed due to our optimizations are denoted in gray and with
dashed lines. Naturally, these simplifications propagate to NSFs upwards in the tree decomposition
and thus their size is also reduced. Compared to Figure 3, observe that due to the naive dependency
scheme, the sets at depth 1 of the nestings only contain a single BDD. For instance, in t2 BDD ¬b
is not explicitly computed due to Dnaive

Q.ψ . Furthermore, by considering dependency scheme integra-

14 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

¬a ∧ ¬e ∧ c

evalQ : {{⊥}}

¬e ∧ (a ∨ c)

t7

¬a ∧ (c ∨ e) (a ∨ c ∨ e)

t4

(¬a ∨ b)

t3

¬b
Dnaive
Q.ψ

>

t2

(¬b ∨ f)

t1

¬e ∧ (a ∨ c) (a ∨ c ∨ e)

⊂
t6

(d ∨ ¬e)

t5

Figure 6. NSFs at the decomposition nodes of the running example, including optimizations (marked in gray,
with dashed lines).

tion, comparison of models in BDDs is shifted to NSFs of depth 2. Consider the NSF in t6. Origi-
nally, we have {{{¬e ∧ (a ∨ c)}, {(a ∨ c ∨ e)}}}. Since the quantifier at depth 2 is universal, and
(¬e∧ (a∨ c))∧ (a∨ c∨e) corresponds to (¬e∧ (a∨ c)), the right branch in this NSF can be removed,
yielding {{{¬e∧ (a∨ c)}}}. Now, consider node t7, and the NSF at level 2 on the left branch, which
is {{¬a∧¬e∧c}}. evaluateQ(t7, {{¬a∧¬e∧c}}) returns⊥, hence this NSF is replaced by {{⊥}}.

6. Experimental Evaluation

The presented algorithms are implemented in the dynQBF system, which is freely available (in-
cluding source code and binaries) at https://github.com/gcharwat/dynqbf. dynQBF relies on
HTD [41] for tree decomposition construction, CUDD [40] for BDD management, and optionally
DepQBF [19] for computing the standard dependency scheme.

We first study the impact of dependency schemes and optimizations as described in Sections 4.3
and 5. Then we compare dynQBF to state-of-the-art systems that successfully participated in the
official 2016 and 2017 QBF competitions. All experiments were run once (per solver or configuration)
on each instance using a fixed seed. Tests were performed on a single core of an Intel Xeon E5-2637
(3.5GHz) running Debian 8.3, with a memory limit of 16 GB. For our analysis of optimizations we
set the time limit to 6 minutes. In the system comparison each run was limited to 10 minutes.

G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions 15

All instances Solved
Configuration atoms clauses width # atoms clauses width
default 2552 8044 56 142 1984 6283 45
w/o TD selection 2552 8044 56 135 1902 7101 46
w/o cl. splitting 2535 8028 172 124 1818 5943 48
w/o var. reordering 2552 8044 56 84 1656 5717 28
w/o rem. cache 2552 8044 56 70 1109 3525 24
single TD node 2552 8044 2551 40 390 1236 389

Table 1. 2-QBF’10: dynQBF variants comparison details. For each configuration, the table shows the average
number of atoms, clauses, and width for all 200 instances, and for the solved instances. # gives the number of
solved instances.

All instances Solved
Configuration atoms clauses blocks width # atoms clauses blocks width
default 21457 78019 14.7 167 92 3819 11062 12.8 45
w/o cl. splitting 21147 77710 14.7 312 92 3855 10913 12.8 48
w/o TD selection 21457 78019 14.7 194 90 3910 11345 12.9 47
naive dep. scheme 21457 78019 14.7 167 67 5476 14728 5.7 51
w/o var. reordering 21457 78019 14.7 167 61 3937 12501 18.9 40
w/o rem. cache 21457 78019 14.7 167 24 6107 17918 8.5 34
single TD node 21457 78019 14.7 21456 15 635 2124 24.1 634

Table 2. PCNF’14: dynQBF variants comparison details. For each configuration, the table shows the average
number of atoms, clauses, quantifier blocks, and width for all 305 instances, and for the solved instances. # gives
the number of solved instances.

6.1. Impact of Optimizations

In this section we analyze the dynQBF-internal optimization strategies with respect to their effect on
the number of solved instances and overall runtime. The goal is to illustrate the impact of optimizations
and to identify approaches that may also be beneficial for tree decomposition-based algorithms in
other problem domains. We considered the following two data sets: 2-QBF’10: This is the 2-QBF
data set4 used in the QBF Evaluation 2010, which consists of 200 instances. PCNF’14: This data set
contains the PCNF instances5 of the QBF Gallery 2014 competition, comprising of 345 instances. We
compare dynQBF (version v1.0.0-final) with variants where in each variant one particular optimization
is disabled. The following configurations are considered.

• default: All optimizations are enabled, and configured as released in dynQBF 1.0.0-final.

• w/o TD selection: Tree decomposition selection is disabled (i.e., only one TD is constructed).

4Available at http://www.qbflib.org/TS2010/2QBF.tar.gz
5Available at http://www.kr.tuwien.ac.at/events/qbfgallery2013/benchmarks/eval2012r2.tar.7z.

16 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

0 30 60 90 120 150

0
10

0
20

0
30

0
40

0
50

0
60

0

Instances solved

Ti
m

e
(s

ec
)

default
w/o TD selection
w/o clause splitting
w/o variable reordering
w/o removal cache
single TD node

Figure 7. 2-QBF’10: dynQBF variants comparison. The cactus plot shows dynQBF with all optimizations
enabled (default), and single features disabled.

• w/o clause splitting: Splitting of clauses with more than 30 literals is disabled.

• naive dependency scheme (applies only to the PCNF’14 instances): the naive dependency
scheme is applied instead of the standard dependency scheme.

• w/o variable reordering: Dynamic BDD variable reordering is disabled.

• w/o removal cache: The removal cache is disabled. Due to the concepts underlying dynQBF,
the naive dependency scheme is used for all instances.

• single TD node: A trivial tree decomposition with a single node containing all variables is used.

Tables 1 and 2 summarize details on the instances under consideration. We report the average
number of atoms, clauses, and the measured width for all instances, as well as for solved instances.
For the latter also the number of instances solved is given. Furthermore, for the PCNF’14 instances
(Table 2) we report the average number of quantifier blocks. “All instances” is measured after clause
splitting (if applied). Furthermore, we remark that the average width is aggregated only over instances
that could be decomposed within the time limit.

Figures 7 and 8 contain cactus plots of the obtained results: for each configuration, solved in-
stances are sorted by the required runtime.

Analysis. We highlight here the most important observations from the obtained data.

w/o TD selection: Despite optimizing removedBelow for instances with more than one quantifier al-
ternation (and joinChildCount for the other instances), in the PCNF’14 data set we also observed an
overall reduction in width when tree decomposition selection is enabled.

G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions 17

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0
60

0

Instances solved

Ti
m

e
(s

ec
)

default
w/o clause splitting
w/o TD selection
naive dep. scheme
w/o variable reordering
w/o removal cache
single TD node

Figure 8. PCNF’14: dynQBF variants comparison. The cactus plot shows dynQBF with all optimizations
enabled (default), and single features disabled.

w/o clause splitting: In both data sets, clause splitting only marginally increases the average number of
atoms and clauses. However, the average width is drastically reduced in both cases. For the 2-QBF’10
data set we observe that clause splitting has a larger impact on the overall performance, while in the
PCNF’14 data set the performance is almost the same.

naive dependency scheme: In the PCNF’14 data set, 65 out of 67 instances were also solved in the
default configuration. One can see that integration of the standard dependency scheme improves the
performance on instances with a larger number of quantifier blocks.

w/o variable reordering: From the results it becomes apparent that dynamic variable reordering is an
important ingredient for keeping the BDDs compact, despite the additional computational effort for
reordering. While we observe again a high average number of quantifier blocks for solved instances
in the PCNF’14 data set, 54 out of 61 instances where also solved in the default configuration.

w/o removal cache: Without caching variables have to be removed immediately from the BDDs,
potentially yielding larger NSFs (despite smaller BDDs). Additionally, for the PCNF’14 instances,
the naive dependency scheme is applied (due to implementation restrictions), which could, as a side
effect, explain the lower average number of quantifier blocks in solved instances. Overall, from results
it becomes immanent that removal caching is beneficial for performance in our implementation.

single TD node: The large number of variables to be handled at once (which is also reflected by the
reported width) explains the low number of solved instances in this setting. The BDD of the NSF
computed at the single tree decomposition node stores the whole QBF matrix before the variables
are removed by quantified abstraction. Results show that our decomposition-based approach is clearly
beneficial to simple expansion (as applied when only using a single tree decomposition node). Besides
that, interestingly, in the PCNF’14 data set we measure an average of 24.1 quantifier blocks for solved
instances. However, all of these instances were also solved in the default configuration.

18 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

6.2. System Comparison

We conducted experiments along the lines of the official 2016 and 2017 QBF competitions (QBFE-
val’16 [7], QBFEval’17 (http://www.qbflib.org/qbfeval17.php)). We considered systems that
participated in the respective competition based on public availability and good ranking in the com-
petition. Instances under consideration are from the 2-QBF and PCNF competition tracks. Since pre-
processing oftentimes influences performance, we evaluated the plain systems (i.e., without explicit,
pipelined preprocessing) both on the original instances as well as on the instances resulting from pre-
processing with Bloqqer 37 [42]. Additionally, we studied the impact of width on the performance of
the solvers.

In the following, we report on the number of solved, solved valid (>) and invalid (⊥) instances.
The stated time is the accumulated user time in thousands of seconds (K), including a penalty of 10
minutes per instance that is not solved. Additionally, we give the number of instances uniquely solved
by a single system (U). dynQBF was run with one random, fixed seed. However, the performance is
influenced by the heuristically constructed tree decomposition. To gain an insight into the potential
of our current implementation, we also provide a virtual best dynQBF analysis over 10 seeds (each
running for up to 10 minutes). Best of 10 (Bo10) reports the number of instances solved in any of the
10 runs, as well as the minimum time required, and average of 10 (Ao10) reports the average case.

6.2.1. QBFEval’16 Benchmark Setting

In this setting we compare the following systems: the 2-QBF solver AReQS (20160702) [12]; the
search-based solvers DepQBF 5.0.1 [19] and GhostQ (CEGAR 2016) [13]; the expansion-based sys-
tem RAReQS 1.1 [13]; CAQE 2 [43] that relies on variable level-based decomposition; as well as
Questo 1.0 [44] and QSTS (2016) [45] that use SAT solvers. dynQBF is tested in version 1.0.0. We
consider the 305 2-QBF’166 and 825 PCNF’167 competition instances.

2-QBF’16. Table 3 shows that in this setting our system is competitive on 2-QBF instances. Re-
garding the original instances, only the 2-QBF solver AReQS performed better. When considering
10 different seeds, Bo10 indicates that there is still potential for our feature-based tree decomposition
selection. With preprocessing, 130 out of 305 instances were directly solved by Bloqqer. Qesto and
RAReQS benefited the most from preprocessing. Overall, dynQBF is particularly strong on valid
instances. Additionally, we report on a large number of uniquely solved instances. For the original
data set, they mostly stem from QBF encodings for ranking functions (“rankfunc*”). Interestingly,
after preprocessing we observed that 43 instances from the area of formal verification (“stmt*”) were
uniquely solved.

To study the influence of treewidth on solving, we considered the 175 preprocessed instances
that were not solved directly by Bloqqer. Since computing the exact treewidth is infeasible, we used
HTD [41] to heuristically obtain an over-approximation. In Table 4, the data set is partitioned based
on the computed width w. Here, the influence of the width on the performance of dynQBF becomes
apparent.
6Available at http://www.qbflib.org/TS2016/Dataset_3.tar.gz.
7Available at http://www.qbflib.org/TS2016/Dataset_1.tar.gz.

G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions 19

Table 3. 2-QBF’16: System comparison for the original (left) and preprocessed (right) instances.

2-QBF’16 (original)
System Solved Time > ⊥ U
AReQS 181 79K 126 55 0
dynQBF 170 86K 140 30 13
GhostQ 156 98K 108 48 0
DepQBF 120 116K 55 65 11
QSTS 97 132K 60 37 8
Qesto 78 140K 47 31 2
RAReQS 70 142K 44 26 0
CAQE 57 151K 35 22 1
dynQBF Bo10 203 68K 154 49
dynQBF Ao10 169.9 86K 141.5 28.4

2-QBF’16 (preprocessed)
System Solved Time > ⊥ U
Qesto 236 50K 160 76 0
RAReQS 232 51K 161 71 1
dynQBF 221 53K 172 49 43
DepQBF 221 56K 143 78 1
QSTS 220 58K 162 58 2
CAQE 204 65K 153 51 0
AReQS 202 66K 141 61 0
GhostQ 151 95K 123 28 0
dynQBF Bo10 225 49K 172 53
dynQBF Ao10 221.2 53K 171.0 50.2

Table 4. 2-QBF’16 (preprocessed, non-trivial): Influence of width w on the system performance.

w ≤ 80 (86 instances) w > 80 (89 instances)
System Solved Time System Solved Time
dynQBF 79 6K RAReQS 69 17K
DepQBF 41 28K QSTS 69 18K
Qesto 39 31K Qesto 67 19K
RAReQS 33 34K DepQBF 50 28K
CAQE 28 36K AReQS 47 28K
AReQS 25 38K CAQE 46 29K
QSTS 21 40K dynQBF 12 47K
GhostQ 9 47K GhostQ 12 49K

PCNF’16. Results for the PCNF’16 data set are summarized in Table 5. The obtained data confirms
that dynQBF is indeed sensitive to the number of quantifier blocks (k). For the original instances
we measured an average k of 17, and 14.8 for instances solved by dynQBF. 75 instances have 2
(or less) quantifier blocks, of which dynQBF solved the most instances (55). Of the 391 instances
with k = 3, dynQBF solved 142 instances, while the best solver here is GhostQ with 299 instances.
Of the 359 instances with k > 3, dynQBF solved 168 instances, but GhostQ solved 256 instances.
With preprocessing, 341 instances were solved by Bloqqer. Interestingly, all solvers except GhostQ
benefited from preprocessing. Regarding the impact of quantifiers on the performance of dynQBF we
obtained a similar picture as for the original instances. Overall, we again observed several instances
uniquely solved by dynQBF. As in the 2-QBF setting, we considered the width w of the preprocessed,
non-trivial instances. Table 6 again shows that dynQBF performed well on instances where w ≤ 80:
here, k is 4.9 for all instances on average, and 3.7 for instances solved by dynQBF.

20 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

Table 5. PCNF’16: System comparison for the original (left) and preprocessed (right) instances.

Original
System Solved Time > ⊥ U
GhostQ 592 153K 300 292 14
QSTS 548 173K 276 272 13
DepQBF 436 242K 188 248 14
CAQE 399 268K 182 217 0
Qesto 368 287K 159 209 3
dynQBF 365 291K 184 181 14
RAReQS 338 299K 129 209 8
dynQBF Bo10 421 259K 212 209
dynQBF Ao10 365.5 292K 184.6 180.9

Preprocessed
System Solved Time > ⊥ U
RAReQS 633 126K 301 332 14
Qesto 618 134K 298 320 1
DepQBF 596 144K 296 300 7
QSTS 592 149K 294 298 3
CAQE 589 155K 295 294 1
GhostQ 571 161K 293 278 1
dynQBF 494 203K 239 255 21
dynQBF Bo10 515 193K 249 266
dynQBF Ao10 494.8 202K 239.1 255.7

Table 6. PCNF’16 (preprocessed, non-trivial): Influence of width w on the system performance.

w ≤ 80 (182 instances) w > 80 (302 instances)
System Solved Time System Solved Time
RAReQS 137 28K RAReQS 155 98K
dynQBF 134 32K Qesto 148 100K
Qesto 129 34K DepQBF 131 108K
DepQBF 124 36K CAQE 129 114K
QSTS 123 37K QSTS 128 112K
CAQE 119 40K GhostQ 112 120K
GhostQ 118 41K dynQBF 19 171K

6.2.2. QBFEval’17 Benchmark Setting

To evaluate whether dynQBF performs similarly in further settings, and to compare how it competes
with most recent QBF solvers, we additionally conducted experiments along the lines of the 2017
QBF competition. In this evaluation we considered the following systems, with potentially updated
binaries compared to the 2016 competition. In case no version information is available, the download
date is given in brackets: For QSTS 2016 [45] and RAReQS 1.1 [13] the same binaries were used
as in the QBFEval’16 comparison. For GhostQ (CEGAR, 2017-07-26) [13], CAQE 2017 [43] and
DepQBF 6.03 [19] updated binaries were available. Additionally, we considered AIGSolve (2017-
09-27) [46] which is based on And-Inverter-Graphs; QELL (2017-09-28) [47] that implements clause
learning and relies on SAT solving techniques; and Qute (2017-09-26) [48] that is based on depen-
dency learning. dynQBF is tested in version 1.0.2. Compared to version 1.0.0 as used in the 2016
comparison, it includes minor improvements and optimized default parameters. The 2-QBF’17 dataset
contains 384 instances, and the PCNF’17 dataset comprises of 523 instances8.

8Both datasets are available at http://www.qbflib.org/eval17.zip.

G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions 21

Table 7. 2-QBF’17: System comparison for the original (left) and preprocessed (right) instances.

2-QBF’17 (original)
System Solved Time > ⊥ U
GhostQ 243 93K 138 105 25
AIGSolve 204 116K 141 63 22
dynQBF 115 169K 80 35 2
QELL 102 175K 40 62 1
QSTS 79 192K 37 42 2
DepQBF 74 191K 21 53 3
CAQE 56 200K 15 41 4
RAReQS 56 200K 26 30 0
Qute 20 219K 4 16 0
dynQBF Bo10 159 147K 104 55
dynQBF Ao10 114.8 169K 82.2 32.6

2-QBF’17 (preprocessed)
System Solved Time > ⊥ U
CAQE 231 100K 140 91 1
QELL 231 104K 136 95 3
QSTS 231 105K 151 80 8
RAReQS 224 105K 135 89 2
dynQBF 199 115K 136 63 39
DepQBF 188 123K 108 80 0
AIGSolve 158 139K 106 52 2
Qute 157 137K 91 66 1
GhostQ 143 149K 93 50 0
dynQBF Bo10 209 107K 139 70
dynQBF Ao10 198.9 115K 134 64.9

Table 8. 2-QBF’17 (preprocessed, non-trivial): Influence of width w on the system performance.

w ≤ 80 (82 instances) w > 80 (182 instances)
System Solved Time System Solved Time
dynQBF 65 13K QSTS 100 62K
CAQE 28 34K QELL 85 66K
QELL 26 37K RAReQS 84 65K
DepQBF 23 37K CAQE 83 66K
RAReQS 20 40K DepQBF 45 86K
Qute 17 40K AIGSolve 26 95K
AIGSolve 12 43K GhostQ 20 101K
QSTS 11 43K Qute 20 98K
GhostQ 3 48K dynQBF 14 102K

2-QBF’17. Table 7 summarizes our results for the QBFEval’17 instances. The updated version
of GhostQ performed particularly well on the original dataset. One reason may be that GhostQ
implements internal preprocessing: the 2017 version features reverse engineering of the Plaisted-
Greenbaum transformation in order to reconstruct structure. The latter is often applied in order to
transform instances to PCNF [49]. The second-ranked solver AIGSolve internally implements stan-
dard techniques for QBF preprocessing, such as unit propagation, subsumption checking, for-all re-
duction and equivalence reduction [46], which is obviously beneficial for solving. Regarding the
preprocessed dataset, Bloqqer directly solved 120 out of 384 instances. Except for GhostQ and AIG-
Solve, all compared solvers benefited from preprocessing by Bloqqer. It may be the case that those
two systems are tailored towards their own preprocessing, and that required structural information is
disguised by Bloqqer. Similar to our results for the QBFEval’16 benchmark setting, dynQBF per-

22 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

Table 9. PCNF’17: System comparison for the original (left) and preprocessed (right) instances.

PCNF’17 (original)
System Solved Time > ⊥ U
AIGSolve 245 178K 75 170 39
QELL 188 210K 53 135 1
GhostQ 183 214K 66 117 11
CAQE 160 227K 38 122 3
RAReQS 156 228K 28 128 3
QSTS 140 235K 33 107 1
DepQBF 135 240K 40 95 13
Qute 91 263K 12 79 0
dynQBF 62 281K 31 31 2
dynQBF Bo10 88 270K 43 45
dynQBF Ao10 61.7 281K 30.8 30.9

PCNF’17 (preprocessed)
System Solved Time > ⊥ U
RAReQS 241 180K 69 172 5
CAQE 231 185K 76 155 4
QELL 230 184K 67 163 1
AIGSolve 208 197K 64 144 21
QSTS 195 204K 56 139 5
DepQBF 173 218K 61 112 4
GhostQ 153 228K 58 95 0
Qute 140 233K 40 100 1
dynQBF 137 236K 51 86 20
dynQBF Bo10 154 226K 58 96
dynQBF Ao10 135.3 236K 50.4 84.9

Table 10. PCNF’17 (preprocessed, non-trivial): Influence of width w on the system performance.

w ≤ 80 (110 instances) w > 80 (339 instances)
System Solved Time System Solved Time
CAQE 49 38K RAReQS 122 139K
dynQBF 47 41K QELL 110 144K
QELL 46 41K CAQE 108 147K
RAReQS 45 41K QSTS 93 154K
AIGSolve 45 42K AIGSolve 89 155K
GhostQ 29 50K DepQBF 71 168K
DepQBF 28 50K GhostQ 50 177K
QSTS 28 50K Qute 43 179K
Qute 23 53K dynQBF 16 195K

formed very well on 2-QBF instances. Additionally, for the preprocessed instances we again report a
very large number of uniquely solved instances. Finally, Table 8 confirms the impact of width on the
solving performance of dynQBF.

PCNF’17. Results for the PCNF’17 dataset are given in Table 7. Overall dynQBF solved less in-
stances than the best-performing systems that participated in QBFEval’17. On the original instances,
the average number of quantifier blocks (k) is 27.2 (showing an increase compared to PCNF’16, where
avg(k) = 17). The 62 instances solved by dynQBF have an average k of 7.2. Preprocessing by Blo-
qqer directly solved 74 instances. The remaining instances have 9.8 blocks on average. Here, instances
solved by dynQBF comprise of 8.2 quantifier blocks on average. For the preprocessed dataset, sim-

G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions 23

ilar to the PCNF’16 setting, we observed that several instances are uniquely solved by dynQBF. Our
analysis with respect to width (see Table 10) confirms that dynQBF again performs well on instances
of low-to-medium width.

Official QBFEval’17 results. Besides the benchmark results reported in this section, we remark that
dynQBF additionally participated in the official QBFEval’17 competition. There it was submitted in
combination with preprocessors Bloqqer [42] and HQSPre [50]. In the official 2-QBF’17 track, dyn-
QBF (plus preprocessing) was ranked 8 out of 29 participants, and in the PCNF’17 track it achieved the
13th place out of 30 participants (see http://www.qbflib.org/event_page.php?year=2017).

7. Conclusion

In this work we presented an alternative approach for QBF solving. Our algorithm is inspired by
concepts from parameterized complexity, yielding a new expansion-based solver technique that miti-
gates space explosion by dynamic programming over the tree decomposition and by using BDDs. We
showed how dependency schemes can be used within our algorithm, and discussed entry points for
heuristic optimizations of our technique. We studied the impact of optimizations on our core algorithm
and conducted a thorough experimental analysis along the lines of QBFEval’16 and QBFEval’17. The
latter shows that our approach is competitive for 2-QBF instances, an observation that is underpinned
by a recent study on the impact of quantifier alternations [51]. Furthermore, dynQBF is competitive
on instances of width up to 80 (even for more quantifier blocks). Additionally, we showed that the be-
havior of our system is indeed different from the diverse field of existing techniques. Seen in a broader
context, our results clearly demonstrate the potential of parameterized algorithms for problems beyond
NP in practice, in particular when combined with BDDs.

One important aspect of future work is the development of dedicated preprocessing techniques.
While Bloqqer already improves the performance of dynQBF, we believe that our approach could
greatly benefit from treewidth-tailored preprocessing, as well as from techniques that take structural
aspects of the tree decomposition into account. Since our approach is very sensitive to the tree decom-
position used, machine learning techniques (see, for instance, [38]) could be applied to automatically
choose a suitable tree decomposition based on the given QBF instance. Regarding solving, more
restrictive dependency schemes could improve performance on instances with more than two quan-
tifier blocks. Additionally, we need a better understanding of the relation between different variable
orderings in the BDDs and the shape of the used tree decomposition.

Finally, we believe that dynQBF would be a valuable addition to QBF portfolio solving. There,
the width of the heuristically computed TD or the number of quantifier alternations could be used
to decide which solver shall be used. Towards this, in the recent QBFEval’18 competition dynQBF
participated as part of Pre-DynDep. On instances that exhibit low-to-medium treewidth, dynQBF is
called for solving. Otherwise, DepQBF is used. In the 2-QBF’18 track the system achieved the 3rd
place out of 23 solver configurations9.

9See http://www.qbflib.org/eval18.html for preliminary results.

24 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

References

[1] Stockmeyer LJ, Meyer AR. Word problems requiring exponential time (preliminary report). In: Proc.
TOC. ACM, 1973 pp. 1–9.

[2] Downey RG, Fellows MR. Parameterized Complexity. Monographs in Computer Science. Springer, 1999.

[3] Chen H. Quantified constraint satisfaction and bounded treewidth. In: Proc. ECAI. IOS Press, 2004 pp.
161–165.

[4] Atserias A, Oliva S. Bounded-width QBF is PSPACE-complete. J. Comput. Syst. Sci., 2014. 80(7):1415–
1429.

[5] Bryant RE. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers,
1986. 100(8):677–691.

[6] Slivovsky F, Szeider S. Computing resolution-path dependencies in linear time. In: Proc. SAT, volume
7317 of LNCS. Springer, 2012 pp. 58–71.

[7] Pulina L. The ninth QBF solvers evaluation - preliminary report. In: Proc. QBF, volume 1719 of CEUR
Workshop Proceedings. CEUR-WS.org, 2016 pp. 1–13.

[8] Charwat G, Woltran S. Expansion-based QBF solving on tree decompositions. In: Proc. RCRA, volume
2011 of CEUR Workshop Proceedings. CEUR-WS.org, 2017 pp. 16–26.

[9] Marin P, Narizzano M, Pulina L, Tacchella A, Giunchiglia E. An empirical perspective on ten years of
QBF solving. In: Proc. RCRA, volume 1451 of CEUR Workshop Proceedings. CEUR-WS.org, 2015 pp.
62–75.

[10] Ayari A, Basin DA. QUBOS: Deciding quantified Boolean logic using propositional satisfiability solvers.
In: Proc. FMCAD, volume 2517 of LNCS. Springer, 2002 pp. 187–201.

[11] Biere A. Resolve and expand. In: Proc. SAT, volume 3542 of LNCS. Springer, 2004 pp. 59–70.

[12] Janota M, Marques-Silva J. Abstraction-based algorithm for 2QBF. In: Proc. SAT, volume 6695 of LNCS.
Springer, 2011 pp. 230–244.

[13] Janota M, Klieber W, Marques-Silva J, Clarke EM. Solving QBF with counterexample guided refinement.
In: Proc. SAT, volume 7317 of LNCS. Springer, 2012 pp. 114–128.

[14] Clarke EM, Grumberg O, Jha S, Lu Y, Veith H. Counterexample-guided abstraction refinement for sym-
bolic model checking. J. ACM, 2003. 50(5):752–794.

[15] Cadoli M, Giovanardi A, Schaerf M. An algorithm to evaluate quantified Boolean formulae. In: Proc.
IAAI. AAAI Press / The MIT Press, 1998 pp. 262–267.

[16] Zhang L, Malik S. Towards a symmetric treatment of satisfaction and conflicts in quantified Boolean
formula evaluation. In: Proc. CP, volume 2470 of LNCS. Springer, 2002 pp. 200–215.

[17] Giunchiglia E, Narizzano M, Tacchella A. Clause/term resolution and learning in the evaluation of quan-
tified Boolean formulas. J. Artif. Intell. Res., 2006. 26:371–416.

[18] Lonsing F, Biere A. DepQBF: A dependency-aware QBF solver. J. SAT, 2010. 7(2-3):71–76.

[19] Lonsing F, Bacchus F, Biere A, Egly U, Seidl M. Enhancing search-based QBF solving by dynamic
blocked clause elimination. In: Proc. LPAR, volume 9450 of LNCS. Springer, 2015 pp. 418–433.

G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions 25

[20] Klieber W, Sapra S, Gao S, Clarke EM. A Non-prenex, non-clausal QBF solver with game-state learning.
In: Proc. SAT, volume 6175 of LNCS. Springer, 2010 pp. 128–142.

[21] Bjørner N, Janota M, Klieber W. On conflicts and strategies in QBF. In: Proc. LPAR. EasyChair, 2015
pp. 28–41.

[22] Pan G, Vardi MY. Symbolic decision procedures for QBF. In: Proc. CP, volume 3258 of LNCS. Springer,
2004 pp. 453–467.

[23] Jussila T, Sinz C, Biere A. Extended resolution proofs for symbolic SAT solving with quantification. In:
Proc. SAT, volume 4121 of LNCS. Springer, 2006 pp. 54–60.

[24] Pulina L, Tacchella A. Hard QBF encodings made easy: Dream or reality? In: Proc. AI*IA, volume 5883
of LNCS. Springer, 2009 pp. 31–41.

[25] Chen H, Dalmau V. From pebble games to tractability: An ambidextrous consistency algorithm for quan-
tified constraint satisfaction. In: Proc. CSL, volume 3634 of LNCS. Springer, 2005 pp. 232–247.

[26] Pulina L, Tacchella A. An empirical study of QBF encodings: From treewidth estimation to useful pre-
processing. Fundam. Inform., 2010. 102(3-4):391–427.

[27] Pulina L, Tacchella A. QuBIS: An (in)complete solver for quantified Boolean formulas. In: Proc. MICAI,
volume 5317 of LNCS. Springer, 2008 pp. 34–43.

[28] Pulina L, Tacchella A. A structural approach to reasoning with quantified Boolean formulas. In: Proc.
IJCAI. AAAI Press, 2009 pp. 596–602.

[29] Robertson N, Seymour PD. Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B, 1984. 36(1):49–
64.

[30] Arnborg S, Corneil DG, Proskurowski A. Complexity of finding embeddings in a k-tree. SIAM J. Algebra.
Discr. Meth., 1987. 8:277–284.

[31] Bodlaender HL. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J.
Comput., 1996. 25(6):1305–1317.

[32] Bodlaender HL, Koster AMCA. Treewidth computations I. Upper bounds. Inf. Comput., 2010.
208(3):259–275.

[33] Dechter R. Constraint Processing. Morgan Kaufmann, 2003.

[34] Benedetti M. Quantifier trees for QBFs. In: Proc. SAT, volume 3569 of LNCS. Springer, 2005 pp. 378–
385.

[35] Ferrara A, Pan G, Vardi MY. Treewidth in verification: Local vs. global. In: Proc. LPAR, volume 3835 of
LNCS. Springer, 2005 pp. 489–503.

[36] Samer M, Szeider S. Backdoor sets of quantified Boolean formulas. J. Autom. Reasoning, 2009. 42(1):77–
97.

[37] Lonsing F, Biere A. A compact representation for syntactic dependencies in QBFs. In: Proc. SAT, volume
5584 of LNCS. Springer, 2009 pp. 398–411.

[38] Abseher M, Musliu N, Woltran S. Improving the efficiency of dynamic programming on tree decomposi-
tions via machine learning. J. Artif. Intell. Res., 2017. 58:829–858.

[39] Friedman SJ, Supowit KJ. Finding the optimal variable ordering for binary decision diagrams. In: Proc.
DAC. ACM, 1987 pp. 348–356.

26 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

[40] Somenzi F. CU Decision Diagram package release 3.0.0. Department of Electrical and Computer Engi-
neering, University of Colorado at Boulder, 2015.

[41] Abseher M, Musliu N, Woltran S. htd – A free, open-source framework for tree decompositions and
beyond. Technical Report DBAI-TR-2016-96, TU Wien, 2016.

[42] Biere A, Lonsing F, Seidl M. Blocked clause elimination for QBF. In: Proc. CADE, volume 6803 of
LNCS. Springer, 2011 pp. 101–115.

[43] Rabe MN, Tentrup L. CAQE: A certifying QBF solver. In: Proc. FMCAD. IEEE, 2015 pp. 136–143.

[44] Janota M, Marques-Silva J. Solving QBF by clause selection. In: Proc. IJCAI. AAAI Press, 2015 pp.
325–331.

[45] Bogaerts B, Janhunen T, Tasharrofi S. Solving QBF instances with nested SAT solvers. In: Proc. Beyond
NP, volume WS-16-05 of AAAI Workshops. AAAI Press, 2016 .

[46] Scholl C, Pigorsch F. The QBF solver AIGSolve. In: Proc. QBF, volume 1719 of CEUR Workshop
Proceedings. CEUR-WS.org, 2016 pp. 55–62.

[47] Tu K, Hsu T, Jiang JR. QELL: QBF reasoning with extended clause learning and levelized SAT solving.
In: Proc. SAT, volume 9340 of LNCS. Springer, 2015 pp. 343–359.

[48] Peitl T, Slivovsky F, Szeider S. Dependency learning for QBF. In: Proc. SAT, volume 10491 of LNCS.
Springer, 2017 pp. 298–313.

[49] Goultiaeva A, Bacchus F. Recovering and utilizing partial duality in QBF. In: Proc. SAT, volume 7962 of
LNCS. Springer, 2013 pp. 83–99.

[50] Wimmer R, Reimer S, Marin P, Becker B. HQSpre - An effective preprocessor for QBF and DQBF. In:
Proc. TACAS, volume 10205 of LNCS. 2017 pp. 373–390.

[51] Lonsing F, Egly U. Evaluating QBF Solvers: Quantifier Alternations Matter. In: Proc. CP, volume 11008
of LNCS. Springer, 2018 pp. 276–294.

A. Proof

Here we show the correctness of Algorithm 1 for deciding QSAT by dynamic programming over tree
decompositions. At its core, the proof is based on induction over the tree decomposition by showing
the correspondence of NSFs to expansion trees. First, in addition to Definition 3.1, we equivalently
define closed PCNF QBFs without quantifier blocks as follows:

Definition A.1. In a PCNF QBF Q.ψ, Q is the quantifier prefix and ψ is a CNF formula, also called
the matrix. Q is of the form Q1x1Q2x2 . . . Qmxm where Qi ∈ {∃, ∀} for 1 ≤ i ≤ m, Qm = ∃ and ψ
is a formula over variables X = {x1, . . . , xm}. We say that a variable xi is at position i in the QBF.

We remark that such a QBF can be easily transformed into one with k quantifier blocks, where
subsequent quantifiers Qjxj . . . Qkxk (1 ≤ j < k ≤ m) with Qj = · · · = Qk are merged into a
single block QX where Q = Qj and X = {xj , . . . , xk}. In the following we will use both syntactic
notations interchangeably.

Expansion of a PCNF QBF can be represented in form of an expansion tree.

G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions 27

Definition A.2. Let Q.ψ with Q = Q1x1Q2x2 . . . Qmxm be a closed PCNF QBF over variables
X = {x1, . . . , xm} and Y = {y1, . . . , yo} ⊆ X be the set of variables to be expanded on. An
expansion tree E(Q.ψ, Y) = (V,C, ass) is a rooted tree with nodes V , arcs C and assignments
ass : C → {>,⊥, ∗} (here, ∗ denotes that a variable is not assigned a truth value). Each internal
node v ∈ V at a level i in the tree (for 1 ≤ i ≤ m) represents the variable at the same position in Q,
denoted by var(v) = xi. Node v is associated with a connective, where conn(v) = ∧ if Qi = ∀ and
conn(v) = ∨ if Qi = ∃. The respective block in the quantifier prefix is denoted by block(v). Each
leaf node is associated with the propositional formula ψ.

The tree contains m+ 1 levels and has the following structure. For an internal node v ∈ V :

• If var(v) 6∈ Y , v has a single child v′ (i.e., (v, v′) ∈ C) and ass((v, v′)) = ∗.

• If var(v) ∈ Y , v has two children v′ and v′′ (i.e., (v, v′), (v, v′′) ∈ C), and ass((v, v′)) = >
and ass((v, v′′)) = ⊥.

Let vm+1 be a leaf node and v1, . . . , vm, vm+1 be the unique path from root node v1 to vm+1 in
the tree. For 1 ≤ i ≤ m, if ass((vi, vi+1)) = > (⊥) this represents the assignment [var(vi)/>]
([var(vi)/⊥]). We denote by [Y/vm+1] the assignment of all variables in Y with respect to vm+1.

An expansion tree is evaluated as follows.

Definition A.3. Let Q.ψ be a closed PCNF QBF over variables X and E(Q.ψ,X) = (V,C, ass) be
the expansion tree of the QBF where all variables are expanded. The evaluation eval(E(Q.ψ,X)) is
defined as the result of recursively applying evaluation function e(v) on nodes v ∈ V :

• If v is a leaf node, e(v) = ψ[X/v];

• Otherwise, v has two children v′ and v′′, and e(v) = e(v′) · e(v′′) where · = conn(v).

The following proposition follows directly from the semantics of QBFs.

Proposition A.4. A closed PCNF QBF formula Q.ψ over variablesX can be decided by constructing
its corresponding expansion tree E(Q.ψ,X) and applying eval(E(Q.ψ,X)).

For reasonably-sized QBFs, constructing and evaluating E(Q.ψ,X) at once is infeasible in prac-
tice. Thus, we first define expansion trees in the context of tree decompositions. Then, we show
how expansion trees can be represented equivalently by NSFs, whose size is exponential only in the
number of quantifier blocks and the treewidth of the QBF matrix. Recall Definition 3.3 of tree de-
compositions and Definition 3.4 of weakly normalized tree decompositions. Towards readability, we
prove the correctness of our algorithm on normalized tree decompositions.

Definition A.5. A tree decomposition T = ((T, F), bagT) is normalized, if T is weakly normalized
and each exchange node t ∈ T with child node t1 is either

• an introduction node where bagT (t1) ⊂ bagT (t) and |bagT (t) \ bagT (t1)| = 1; or

• a removal node where bagT (t) ⊂ bagT (t1) and |bagT (t1) \ bagT (t)| = 1.

28 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

Furthermore, for root node r in T , bagT (r) = {}.

A weakly-normalized tree decomposition can easily be transformed into a normalized one by
replacing exchange nodes with a sequence of removal and introduction nodes. For a QBF and tree
decomposition T , we associate with each node in T a corresponding local expansion tree.

Definition A.6. Let Q.ψ be a closed PCNF QBF and T be a tree decomposition of ψ. For a tree
decomposition node t, its associated local expansion tree E≤t is defined as E(Q.ψ≤t, Y≤t), where

• ψ≤t are the clauses in ψ induced by the bag contents of the subtree rooted at t.

• Y≤t are all variables removed in the subtree rooted at t.

Obviously, at the root r of the tree decomposition, the local expansion tree E≤r corresponds to
E(Q.ψ,X), and the original QBF instance can be evaluated. Here we use NSFs to only represent
information that is necessary for evaluating the QBF (recall also Definition 4.3). The relation of an
expansion tree to an NSF that contains all necessary information is captured as follows.

Definition A.7. Let Q.ψ be a closed PCNF QBF, T be a tree decomposition of ψ and t ∈ T be a tree
decomposition node. Furthermore, let E≤t = E(ψ≤t, Y≤t) be the local expansion tree for t. A nested
set of formulae Nt is called a valid NSF (for Q.ψ in t w.r.t. T) if there exists a mapping α from the
nodes in E≤t to the nestings in Nt that satisfies the following properties:

1. α maps every internal node v in E≤t to a nesting n in Nt such that block(v) = block(n).
Suppose there is some internal node v in E≤t that is mapped to α(v) = n in Nt. Let v′ be a
child node of v.

• If block(v) = block(v′), α(v′) = n (i.e., v and v′ map to the same nesting in Nt).

• Otherwise, α(v′) = n′ where n′ ∈ n.

2. If v in E≤t is a leaf node, ψ≤t[Y≤t/v] ≡ α(v) (the formula resulting from assigning the truth
values is equivalent to the BDD mapped to by α).

3. Each element in Nt is mapped to by α (the mapping is surjective).

Towards readability we overload the notation and sometimes simply write α : E → N to denote a
mapping of nodes in an expansion tree E to nestings in an NSF N .

The idea is now to compute valid NSFs at each tree decomposition node by dynamic programming.
Then, at the root node r of the tree decomposition, this yields NSF Nr. Provided that if Nr is valid,
instead of computing and evaluatingE≤r,Nr can be evaluated by recursively applying the connectives
associated with the nestings on the elements of the nestings to decide satisfiability of the instance:

Proposition A.8. Let Q.ψ be a closed PCNF QBF over variables X and T be a tree decomposi-
tion of ψ with root node r. Furthermore, let Nr be a valid NSF in r. Then, eval(E(Q.ψ,X)) ≡
evaluateQ(r,Nr) (recall the definition of evaluateQ(t,N) in Algorithm 4).

G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions 29

ψ≤t

∗

∗

Bt

α

Q1

Q2

. . .

Qk

E≤t Nt

Figure 9. Scematic proof concept for leaf nodes.

Proof:
Since Nr is valid, there exists a mapping α : E(Q.ψ,X) → Nr satisfying the properties of Defini-
tion A.7. We now show correctness by induction over the structure of the expansion tree.

• Let v be a leaf node in E(Q.ψ,X). Then e(v) = ψ[X/v] (recall Definition A.3). By Con-
dition 2 of Definition A.7, ψ[X/v] ≡ α(v). Since evaluateQ(r, α(v)) = α(v), e(v) ≡
evaluateQ(r, α(v)).

• Let vs be an internal node in E(Q.ψ,X) such that block(vs) 6= block(vp) where vp is the parent
of vs in E(Q.ψ,X) (if any). Let V = {vs} ∪ {v1, . . . , vi} be the subset-maximal set such
that v1, . . . , vi are the descendants of vs in E(Q.ψ,X) with block(vs) = block(v1) = · · · =
block(vi). By Condition 1 of Definition A.7, α(vs) = α(v1) = · · · = α(vi).

We now show that e(vs) ≡ evaluateQ(r, α(vs)). Let V ′ = {v′1, . . . , v′j} be the adjacent chil-
dren of nodes V in E(Q.ψ,X) where block(v′) 6= block(vs) for all v′ ∈ V ′.
We have conn(vs) = conn(v1) = · · · = conn(vi). Let us assume that conn(vs) = ∧ (the
following argument holds analogously for conn(vs) = ∨). Since ∧ is associative and com-
mutative, we have e(vs) ≡

∧
v′∈V ′(e(v

′)), which, by induction hypothesis, is equivalent to∧
v′∈V ′(evaluateQ(α(v′))). By Condition 1 (Item 2) of Definition A.7, for each v′ ∈ V ′

we have α(v′) ∈ α(vs), and by Condition 3 there is no n′ ∈ α(vs) s.t. α−1(n′) ∩ V ′ = ∅.
Thus,

∧
v′∈V ′(evaluateQ(α(v′))) ≡

∧
n′∈α(vs)(evaluateQ(n′)). Since the bag of root node r

is empty, this corresponds to evaluateQ(r, α(vs)) and we have e(vs) ≡ evaluateQ(r, α(vs)).

Overall, for root node r it therefore holds that eval(E(Q.ψ,X)) ≡ evaluateQ(r,Nr). ut

It remains to prove that the NSF at the root node is indeed a valid NSF. We show this by induction
over the node types of the tree decomposition.

Lemma A.9. Let Q.ψ be a closed PCNF QBF with k quantifier blocks, T be a tree decomposition of
ψ and t ∈ T be a leaf node. Then, Nt as constructed in Algorithm 1 (Line 1) is a valid NSF.

30 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

ψ≤t . . .

⊥

. . .

>

Bt′ ∧ ψt . . .

. . .

. . .

α

Q1

. . .

E≤t Nt

ψ≤t′ . . .

⊥

. . .

>

Bt′ . . .

. . .

. . .

α′

Q1

. . .

E≤t′ Nt′

Figure 10. Scematic proof concept for introduction nodes.

Proof:
Figure 9 illustrates the proof strategy for leaf nodes. The local expansion tree E≤t is specified as
E(ψt, ∅) (i.e., ψ≤t = ψt and no variables are yet removed), which yields a single path v1, . . . , vm, vm+1.
By Algorithm 1, Nt is a nesting of depth k, where each nesting contains exactly one element, and the
innermost element is a BDD Bt = ψt.

We can construct a mapping α : E≤t → Nt that satisfies the properties of Definition A.7: let j
(with 1 ≤ j ≤ k) be a quantifier block. Each node v in E≤t where block(v) = j maps to the single
nesting n in Nt where block(n) = j. Additionally, we can specify α to map the single leaf vm+1 in
E≤t to the innermost nesting in Nt, since ψ≤t[∅/vm+1] ≡ ψt. ut

Lemma A.10. Let Q.ψ be a closed PCNF QBF with k quantifier blocks, T be a tree decomposition
of ψ, t ∈ T be a introduction node with child node t′ and let Nt be obtained from a valid NSF Nt′ in
the child node by Nt = Nt′ [B/B ∧ ψt] (see also Algorithm 1, Line 5). Then, also Nt is a valid NSF.

Proof:
Our proof strategy is illustrated in Figure 10. Let E≤t = E(ψ≤t, Y≤t) and E≤t′ = E(ψ≤t′ , Y≤t′) be
the local expansion trees at t and t′. By assumption, Nt′ is a valid NSF in t′. We have to show that Nt,
obtained by Nt = Nt′ [B/B ∧ ψt] is a valid NSF in t. By induction hypothesis, we know that there
exists a mapping α′ : E≤t′ → Nt′ that satisfies the conditions of Definition A.7.

For now, letN∗t be the NSF resulting fromNt′ by applying the introduction procedure, but without
set semantics (i.e., duplicates are not removed in N∗t). First, we show that we can construct a mapping

G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions 31

ψ≤t . . .

⊥

. . .

>

Bt′ [r/⊥] . . . Bt′ [r/>] . . .

. . .

Q1

. . .

E≤t Nt

ψ≤t′

∗

Bt′ . . .

. . .

. . .

Q1

. . .

E≤t′ Nt′

β
α′

γ

α

Figure 11. Scematic proof concept for removal nodes.

α∗ : E≤t → N∗t that satisfies the conditions of Definition A.7. Observe that the tree structure in E≤t
and E≤t′ is the same since Y≤t = Y≤t′ (no variable is removed in t). Also, the structure of nestings in
Nt′ and N∗t is preserved when applying N∗t = Nt′ [B/B ∧ ψt]. Hence, for α∗ we can directly reuse
mapping α′. It remains to show that for all leaf nodes v in E≤t it holds that ψ≤t[Y≤t/v] ≡ α∗(v). We
have that ψ≤t[Y≤t/v] is equivalent to (ψ≤t′ ∧ ψt)[Y≤t′/v′], which corresponds to ψ≤t′ [Y ′≤t/v

′] ∧ ψt
since [Y≤t′/v

′] only assigns variables that are already removed and can thus not occur in ψt (recall
the connectedness condition of tree decompositions as stated in Definition 3.3). Now, ψ≤t′ [Y≤t′/v′]∧
ψt = α′(v′) ∧ ψt which exactly corresponds to the construction of innermost elements in Nt by our
introduction procedure. Overall, α∗ satisfies the required properties.

Finally, from α∗ we can construct a mapping α : E≤t → Nt where duplicate elements in N∗t are
removed due to set semantics in Nt, and for such elements α maps to the single remaining nesting.
Then, α satisfies all conditions of Definition A.7 and Nt is indeed a valid NSF. ut

Lemma A.11. Let Q.ψ be a closed PCNF QBF with k quantifier blocks, T be a tree decomposition
of ψ, t ∈ T be a removal node with child node t′ and let Nt be obtained from a valid NSF Nt′ as
specified in Algorithm 1 (Line 4). Then, also Nt is a valid NSF.

Proof:
Figure 11 illustrates our proof strategy for removal nodes. Let r be the removed variable. Furthermore,
E≤t = E(ψ≤t, Y≤t) = (V≤t, C≤t, ass≤t) and E≤t′ = E(ψ≤t′ , Y≤t′) = (V≤t′ , C≤t′ , ass≤t′) are the

32 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

local expansion trees at t and t′. We have ψ≤t = ψ≤t′ and Y≤t = Y≤t′∪{r}. We first define a mapping
β from nodes in E≤t to nodes in E≤t′ (denoted by β : V≤t → V≤t′):

• Let v ∈ V≤t and v′ ∈ V≤t′ be the root nodes in E≤t and E≤t′ . Then, β(v) = v′.

• For (v, vc) ∈ C≤t where var(v) 6= r, we have β(vc) = v′c s.t. β(v) = v′ with (v′, v′c) ∈ C≤t′
and ass≤t((v, vc)) = ass≤t′((v

′, v′c)).

• For (v, vc) ∈ C≤t where var(v) = r, we have β(vc) = v′c s.t. β(v) = v′ with (v′, v′c) ∈ C≤t′ .

For the valid NSF Nt′ , we know that there exists a mapping α′ : E≤t′ → Nt′ (satisfying the
properties of Definition A.7). We now show that there exists a mapping α : E≤t → Nt, such that Nt,
obtained from Nt′ via the removal procedure as specified in Algorithm 4, is a valid NSF.

Towards this, let N∗t be the NSF resulting from Nt′ when applying the removal procedure, but
without set semantics (i.e., duplicates are not removed). We store a mapping γ∗ that gives for each
nesting in N∗t the nesting in Nt′ it originated from. Recall Algorithm 4 for the removal of variables.
Let n∗ be a nesting in N∗t and n′ be a nesting in Nt′ .

• If n∗ is obtained from n′ by n∗ = split(n′, r), n∗ = n′[B/B[r/⊥]], or n∗ = n′[B/B[r/>]],
then γ∗(n∗) = n′.

Now we specify a mapping α∗ : E≤t → N∗t as follows.

• Let v and n∗ be the root nodes in E≤t and N∗t . Then α∗(v) = n∗.

• Let vc be a child node of some node v in E≤t.

– If vc is an internal node and block(vc) = block(v) then α∗(vc) = α∗(v)

– otherwise α∗(vc) = m∗ s.t. m∗ ∈ α∗(v) and α′(β(vc)) = γ∗(m∗)

• If v in E≤t is a leaf node, if r is assigned > (⊥) on the path from the root to v, then α∗(v) is the
BDD resulting from assigning r to > (⊥) in the removal procedure.

We now show that α∗ satisfies the properties as specified in Definition A.7. Obviously, nesting of
blocks as required by Condition 1 is preserved due to the recursive definition of α∗ with respect to
blocks. Mapping α∗ preserves the internal structure of nestings w.r.t. blocks and levels. In particular,
the mapping is defined for all nodes in E≤t, and all nestings in N∗t are mapped to by α∗.

We now show that for all leaves v in E≤t it holds that ψ≤t[Y≤t/v] ≡ α∗(v). Let · ∈ {>,⊥} be
the assignment of r in the context of v. We have ψ≤t[Y≤t/v] ≡ ψ≤t′ [Y≤t′/β(v)][r/·]. By induction
hypothesis, we know that ψ≤t′ [Y≤t′/β(v)] ≡ α′(β(v)). Thus, ψ≤t[Y≤t/v] ≡ α′(β(v))[r/·]. Since
α′(β(v)) = γ∗(α∗(v)) (by specification of α∗), and γ∗(α∗(v))[r/·] = α∗(v) (by our algorithm) we
have ψ≤t[Y≤t/v] ≡ α∗(v). Finally, from α∗ we can construct a mapping α : E≤t → Nt such that
elements in N∗t that coincide due to set semantics in Nt, α maps to the single remaining nesting. α
then satisfies all conditions of Definition A.7 and Nt is a valid NSF. ut

Lemma A.12. Let Q.ψ be a closed PCNF QBF with k quantifier blocks, T be a tree decomposition
of ψ, t ∈ T be a join node with child nodes t′ and t′′ and let Nt be the NSF obtained from valid NSFs
Nt′ and Nt′′ as specified in Algorithm 1, Line 10. Then, also Nt is a valid NSF.

G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions 33

ψ≤t . . .

⊥

. . .

>

Bt′ ∧Bt′′ . . .

. . .

. . .

Q1

. . .

E≤t Nt

ψ≤t′ . . .

⊥

ψ≤t′ . . .

>

ψ≤t′′ . . .

∗

Bt′ . . .

. . .

. . . Bt′′ . . .

. . .

Q1

. . .

E≤t′ E≤t′′ Nt′ Nt′′
β

α′ α′′

γ

α

Figure 12. Scematic proof concept for join nodes.

Proof:
Figure 12 illustrates our proof strategy for join nodes. E≤t = E(ψ≤t, Y≤t) = (V≤t, C≤t, ass≤t),
E≤t′ = E(ψ≤t′ , Y≤t′) = (V≤t′ , C≤t′ , ass≤t′) and E≤t′′ = E(ψ≤t′′ , Y≤t′′) = (V≤t′′ , C≤t′′ , ass≤t′′)
are the local expansion trees in t, t′ and t′′ respectively. We have Y≤t = Y≤t′ ∪ Y≤t′′ . Due to the
connectedness property of tree decompositions we know that Y≤t′ ∩ Y≤t′′ = {}. In other words, a
variable associated with a node contained in Y≤t is expanded in E≤t′ or E≤t′′ , but not in both. Hence
we can define a mapping β : V≤t → V≤t′ × V≤t′′ that relates nodes in E≤t to pairs of nodes in E≤t′
and E≤t′′ as follows:

• Let v ∈ V≤t, v′ ∈ V≤t′ and v′′ ∈ V≤t′′ be the root nodes in E≤t, E≤t′ and E≤t′′ . Then,
β(v) = (v′, v′′).

• For (v, vc) ∈ C≤t, we have β(vc) = (v′c, v
′′
c) such that β(v) = (v′, v′′) with (v′, v′c) ∈ C≤t′ and

(v′′, v′′c) ∈ C≤t′′ , and:

– If ass≤t((v, vc)) = > then ass≤t′((v
′, v′c)) = > or ass≤t′′((v

′′, v′′c)) = >.

– If ass≤t((v, vc)) = ⊥ then ass≤t′((v
′, v′c)) = ⊥ or ass≤t′′((v

′′, v′′c)) = ⊥.

Since Nt′ and Nt′′ are valid NSFs (by induction hypothesis), we know that there exist mappings
α′ : E≤t′ → Nt′ and α′′ : E≤t′′ → Nt′′ satisfying the conditions in Definition A.7. We now show

34 G. Charwat, S. Woltran / Expansion-based QBF Solving on Tree Decompositions

that there exists a mapping α : E≤t → Nt s.t. Nt, obtained by the joining procedure as given in
Algorithm 10, is a valid NSF.

Similar to before, first let N∗t be the NSF resulting from joining Nt′ and Nt′′ , but without set
semantics (i.e., duplicates are not removed). We store a mapping γ∗ that gives for each nesting in N∗t
the pair of nestings in Nt′ and Nt′′ it originated from. Recall Algorithm 10 for joining NSFs. Let n∗

be a nesting in N∗t , n′ a nesting in Nt′ and n′′ a nesting in Nt′′ .

• If n∗ is obtained from n′ and n′′ by n∗ = join(n′, n′′), then γ∗(n∗) = (n′, n′′).

Now we specify a mapping α∗ : E≤t → N∗t as follows.

• Let v and n∗ be the root nodes in E≤t and N∗t . Then α∗(v) = n∗.

• Let vc be a child node of some node v in E≤t.

– If vc is an internal node and block(vc) = block(v) then α∗(vc) = α∗(v)

– otherwiseα∗(vc) = m∗ s.t. m∗ ∈ α∗(v). Furthermore, let β(vc) = (v′c, v
′′
c) and γ∗(m∗) =

(m′,m′′). Then α′(v′c) = m′ and α′′(v′′c) = m′′ must hold.

We now show that α∗ satisfies the properties as specified in Definition A.7.
Obviously, the specification of α∗ retains nesting of blocks as required by Condition 1. Fur-

thermore, the mapping is defined for all nodes in E≤t, and all nestings in N∗t are mapped to by
α∗ (Condition 3). Now, let v be a leaf node in E≤t. We show that ψ≤t[Y≤t/v] ≡ α∗(v) (Condi-
tion 2). Let β(v) = (v′, v′′). We have ψ≤t[Y≤t/v] ≡ ψ≤t′ [Y≤t′/β(v

′)] ∧ ψ≤t′′ [Y≤t′′/β(v′′)] (since
ψ≤t = ψ≤t′ ∧ ψ≤t′′ and Y≤t′ ∩ Y≤t′′ = {} due to the connectedness condition). By induction hypoth-
esis, ψ≤t′ [Y≤t′/β(v′)] ≡ α′(v′) and ψ≤t′′ [Y≤t′′/β(v′′)] ≡ α′(v′′). Let γ∗(α∗(v)) = (m′,m′′). By
definition of our algorithm, α∗(v) = m′ ∧m′′. By construction of α∗, m′ = α′(v′) and m′ = α′(v′).
Overall, ψ≤t[Y≤t/v] ≡ α∗(v).

Similar to before, from α∗ we can construct a mapping α : E≤t → Nt such that for elements in
N∗t that coincide due to set semantics, α maps to the single remaining nesting in Nt. Mapping α then
satisfies all conditions of Definition A.7 and Nt is a valid NSF. ut

