Complexity of Super-Coherence Problems in ASP
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Abstract. Adapting techniques from database theory in order to optimize An-
swer Set Programming (ASP) systems, and in particular the groundmga
nents of ASP systems, is an important topic in ASP. In recent years,de8et
method has received some interest in this setting, and a variant of it, D&
has been proposed for ASP. However, this technique has a caveaisket is not
correct (in the sense of being query-equivalent) for all ASP progrdn recent
work, a large fragment of ASP programs, referred tewgser-coherent programs
has been identified, for which DMS is correct. An open question remakthed
complex is it to determine whether a given program is super-coheraig?jlies-
tion turned out to be quite difficult to answer precisely. In this paper, wadty
prove that deciding whether a propositional program is super-cohisél: -
complete in the disjunctive case, while itig -complete for normal programs.
The hardness proofs are the difficult part in this endeavor: We pdoog charac-
terizing the reductions by the models and reduct models which the ASPapneg
should have, and then provide instantiations that meet the given speaifica

1 Introduction

Answer Set Programming\SP) is a powerful formalism for knowledge representation
and common sense reasoning [5]. Allowing disjunction ireradéads and nonmono-
tonic negation in bodiesASP can express every query belonging to the complexity
classx¥ (NPYP). Encouraged by the availability of efficient inference ieeg, such

as DLV [16], GnT [14], Cmodels [17], or ClaspD [8ASP has found several prac-
tical applications in various domains, including data gméion [15], semantic-based
information extraction [19, 20], e-tourism [23], workf@enanagement [24], and many
more. As a matter of fact, theseSP systems are continuously enhanced to support
novel optimization strategies, enabling them to be effeativer increasingly larger ap-
plication domains.

Frequently, optimization techniques are inspired by mashibat had been proposed
in other fields, for example database theory, satisfialstitying, or constraint satisfac-
tion. Among techniques adapted to ASP from database thdtagjc Sets [25, 4, 6]
have recently achieved a lot of attention. Following soméiezavork [13, 7], recently
an adapted method call@MS has been proposed f&SP in [3]. However, this tech-
nique has a caveat, because it is not correct (in the senséngf guery-equivalent) for
all ASP programs. In recent work [2, 1], a large fragment of ASP paags, referred



to assuper-coherent program@SP=°), has been identified, for which DMS can be
proved to be correct.

While our main motivation for studying SP*¢ stemmed from the applicability of
DMS, this class actually has many more important motivatiemdeed, it can be viewed
as the class ohon-constraining programsAdding extensional information to these
programs will always result in answer sets. One importaplization of this property
is for modular evaluation. For instance, when using thetsmli set theorem of [18], if a
top part of a split program is aliSP*¢ program, then any answer set of the bottom part
will give rise to at least one answer set of the full program-fesaletermining answer
set existence, there would be no need to evaluate the tap part

On a more abstract level, one of the main criticismsA&f (being voiced espe-
cially in database theory) is that there are programs whichat admit any answer set
(traditionally this has been considered a more serioud@mothan the related nondeter-
minism in the form of multiple answer sets, cf. [22]). Fronistherspective, programs
which guarantee coherence (existence of an answer setpbaweof interest for quite
some time. In particular, if one considers a fixed program andriable “database,”
one arrives naturally at the claa$Ps® when requiring existence of an answer set. This
also indicates that deciding super-coherence of programsated to some problems
from the area of equivalence checking in ASP [12, 10, 21].ikstance, when deciding
whether, for a given arbitrary prograf, there is a uniformly equivalent definite pos-
itive (or definite Horn) program, super-coherencefofs a necessary condition—this
is straightforward to see because definite Horn programs bzactly one answer set,
S0 a non-super-coherent program cannot be uniformly elguitvégo any definite Horn
program.

Since the property of being super-coherent is a semanticamatural question
arises: How difficult is it to decide whether a given prograsongs toASP¢? It turns
out that the precise complexity is rather difficult to esisthl Some bounds have been
given in [2], in particular showing decidability, but espaly hardness results seemed
quite hard to obtain.

In order to focus on the essentials of this problem, in thjspave deal with propo-
sitional programs and show the precise complexity (in tesfnsompleteness) for de-
ciding whether a given propositionAlSP program belongs taSP*. In Section 2 we
first define some terminology needed later on. In Section 3ormldlate the problem
that we analyze and state the results. The remainder of ther pantains the proofs —
in Section 4 for disjunctive programs and in Section 5 fommalrprograms — and in
Section 6 we briefly discuss the relation to equivalencelprob before concluding the
work in Section 7.

2 Preliminaries

In this paper we consider propositional programs, so an atisna member of a count-
able set/. A literal is either an atonp (a positive literal), or an atom preceded by the
negation as failuresymbolnot (a negative literal). Aule r is of the form

pr VooV Dpq1, ...y G5, NOLGig1, oo, NOL Gy,



wherepy, ..., pn, @1, --., gm areatomsand > 0, m > 5 > 0. The disjunctiorp; Vv

.-+ V py is theheadof r, while the conjunction, ..., g;, not gj+1, ..., not gm is
thebodyof r. Moreover,H () denotes the set of head atoms, wii#le-) denotes the set
of body literals. We also usB™(r) and B~ (r) for denoting the set of atoms appearing
in positive and negative body literals, respectively, am¢) for the setd (r)UB™ (r)U
B~ (r). Arule r is normal (or disjunction-free) ifH ()| = 1 or |[H(r)| = 0 (in this
caser is also referred to as eonstrain), positive (or negation-free) iB~(r) = 0, a
factif both B(r) = @ and|H (r)| = 1.

A program P is a finite set of rules; if all rules in it are positive (resprmal),
then P is a positive (resp. normal) program. Odd-cycle-free amdtified programs
constitute two other interesting classes of programs. Amat appearing in the head
of a ruler dependson each atony that belongs taB(r); if ¢ belongs toB*(r), p
depends positively on, otherwise negatively. A program without constraint®dki-
cycle-freeif there is no cycle of dependencies involving an odd numijaregative
dependencies, while it stratifiedif each cycle of dependencies involves only positive
dependencies. Programs containing constraints have keked by the definition of
odd-cycle-free and stratified programs. In fact, constsaintrinsically introduce odd-
cycles in programs as a constraint of the form

a1, - 45, nOtQj+17 ceey nthm
can be replaced by the following equivalent rule:
Co<q1, -y qj, NOL Qjt1, .., NOt ¢, NOL co,

whereco is a fresh atom (i.e., an atom that does not occur elsewhéehe iprogram).

Given a programP, let At(P) denote the set of atoms that occur in it, that is, let
At(P) = U,¢p At(r). Aninterpretation for a programp is a subset ofit(P). An
atomp is true w.r.t. an interpretatiohif p € I; otherwise, it is false. A negative literal
not pis true w.r.t.7 if and only if p is false w.r.t.. The body of a rule is true w.r.t.[ if
and only if all the body literals of are true w.r.t7, that s, if and only ifB*(r) C I and
B~ (r)nI = 0. Aninterpretation/ satisfiesa ruler € P if at least one atom it ()
is true w.r.t.I whenever the body of is true w.r.t.I. An interpretation/ is amodelof
a programpP if I satisfies all the rules .

Given an interpretation for a programpP, the reduct of° w.r.t. I, denoted byP’, is
obtained by deleting fron® all the rulesr with B~ (r) N I # (), and then by removing
all the negative literals from the remaining rules. The satioa of a progran® is given
by the setd.S(P) of the answer sets dP, where an interpretatiof/ is an answer set
for P if and only if M is a subset-minimal model @?*/ .

In the subsequent sections, we will use the following prigethat the models and
models of reducts of programs satisfy (see, e.g. [9, 12]):

(P1) for any disjunctive prograr® and interpretationg C J C K, if I satisfiesP”,
then! also satisfie®”;

(P2) for any normal progran®? and interpretationg, J C K, if I andJ both satisfy
PX then alsqI N J) satisfiesP.



We now introduce super-coherent ASP prografiSK*® programs), the main class
of programs studied in this paper.

Definition 1 (ASP=c programs [1, 2]). A programP is super-coherernif, for every set
of factsF, AS(P U F) # (). Let ASP*° denote the set of all super-coherent programs.

Note thatASP*¢ programs include all odd-cycle-free programs (and theeeétso
all stratified programs). Indeed, every odd-cycle-freegpmmn admits at least one an-
swer set and remains odd-cycle-free even if an arbitrargfdatts is added to its rules.
On the other hand, there are programs having odd-cycleat@an ASP*¢, cf. [2].

3 Problem Statement and Main Theorems

In this paper, we study the complexity of the following nafysroblem.

— Given a progran®, is P super-coherent, i.e. doesS(P U F') # () hold for any set
F of facts.

We will study the complexity for this problem for the case fjdnctive logic pro-
grams and non-disjunctive (normal) logic programs. We fieste a look at a similar
problem, which turns out to be rather trivial to decide.

Proposition 1. The problem of deciding whether, for a given disjunctivegpam P,
there is a sef” of facts such thatl.S(P U F') # () is NP-completeNP-hardness holds
already for normal programs.

Proof. We start by observing that therefissuch thatd.S(P U F) # () if and only if P

has at least one classical model. Indeed/ifs a model ofP, thenP U M hasM as its
answer set. On the other handHAthas no model, then no addition of fadtawill yield

an answer set faP U F. It is well known that deciding whether a program has at least
one (classical) model INP-complete for both disjunctive and normal programs.d

In contrast, the complexity for deciding super-coheresaiiprisingly high, which
we shall show next. To start, we give a straight-forward oleg@n.

Proposition 2. A programP is super-coherent if and only if for each F6tC A¢(P),
AS(PUF) # 0.

Proof. The only-if direction is by definition. For the if-directiptet I’ be any set of
facts. F' can be partitioned intéd” = F N At(P) andF” = F \ F’. By assumption,
P U F’ is coherent. Lef\/ be an answer set @? U F’. We shall show thad/ U F"' is

an answer setaP U F = PU F’ U F”. This is in fact a consequence of the splitting
set theorem [18], as the atomshiY are only defined by facts not occurringihu F’.

O

Our main results are as follows. The proofs are containekdrstibsequent sections.

Theorem 1. The problem of deciding super-coherence for disjunctieg@ms is/7. -
complete.

Theorem 2. The problem of deciding super-coherence for normal prograsni. -
complete.



4 Proof of Theorem 1

Membership follows by the following straight-forward natdrministic algorithm for
the complementary problem, i.e. given a progr&yndoes there exist a sét of facts
such thatdS(P U F') = (): we guess a sdtf C At(P) and checkAS(P U F) = () via

an oracle-call. Restricting the guess4¢(P) can be done by Proposition 2. Checking
AS(P U F) = is known to be in/T{" [11]. This shows/7Z'-membership.

For the hardness we reduce thg -complete problem of deciding whether QBFs
of the formVX3YVZ¢ are true to the problem of super-coherence. Without loss of
generality, we can consideérto be in DNF and, indeedy # (0, Y # 0, andZ # (. We
also assume that each disjunct@tontains at least one variable frakh, one fromY
and one fronZ. More precisely, we shall construct for each such @B&programPg
such thatp is true iff Py is super-coherent. Before showing how to actually construc
Py from & in polynomial time, we give the required properties foy. We then show
that for programd’; satisfying these properties, the desired relatibis(true iff Py is
super-coherent) holds, and finally we provide the constnaif Ps.

Definition 2. Let® = VX3YVZ¢ be a QBF with¢ in DNF. We call any progran?
satisfying the following properties@&-reduction

1. Pisgivenoveratomg = X UY UZUX UY U Z U {u,v,w}, where all atoms
in setsS = {3 | s € S} and{u, v, w} are fresh and mutually disjoint;
2. P has the following models:
-U
— foreach] C X,J CY,

M[ILJ|=TUu(X\)UJU Y \J)UZUZU{u,v}

and

MLJ=TuX\HuJUuY\JHUuZuZU{v,wk;
3. foreachl C X, .J C Y, the modef$of the reductP™!!-/] are M|I, .J] and

Ol =T1UX\1);

4. foreachl C X, J C Y, the models of the reduét™'l"-/] are M’[I, .J] and
— foreachK C Z suchthatl U J U K [~ ¢,

N[I,J,K]=TU(X\I)UJU Y \J)UKU((Z\K)U{v};

5. the models of the redugt’ are given only by the models already mentioned above,
i.e.Uitself, M[I,J], M'[I,J], andO|I], foreachl C X, J CY,andN|[I, J, K]
foreach] C X, JCY,K C Z,suchthatl U.J UK [~ ¢.

% Here and below, for a redué™ we only list models of the fornV C M, since those are the
relevant ones for our purposes. Recall that= M is always a model oP™ in caseM is a
model of P.



We just note at this point that the models of the redB€tgiven in Item 5 are not
specified for particular purposes, but are required to altove realization via disjunc-
tive programs. In fact, these models are just an effect qfgnty (P1) mentioned in Sec-
tion 2. However, before showing a program satisfying theprties of ab-reduction
we first show the rationale behind the concepfateductions.

Lemma 1. For any QBF® = VX3YVZ¢ with ¢ in DNF, a é-reduction is super-
coherent iff® is true.

Proof. Suppose thap is false. Hence, there exists anC X such that, foralll C Y,
there is aKy C Z withZ U J U Ky [~ ¢. Now let P be any®-reduction andF; =
ZU(X \ Z). We show thatdS(P U Fr) = 0, thusP is not super-coherent. Lt be a
model of P U Fz. SinceP is a®-reduction, the only candidates fan areU, M[Z, J],
andM’'[Z, J], whereJ C Y. Indeed, for eacl # Z, M|[I, J] andM'[I, J] cannot be
models of P U Fr becauseFr € M|I, J], resp.Fr £ M'[I, J]. We now discuss the
potential candidates:

— M = U: Then, for instance)M|[Z, J] C U is a model of P U Fr)™ = PM U Fr
foranyJ C Y. Thus,M ¢ AS(P U Fr).

- M = M|[Z,J] for someJ C Y. Then, by the properties d@-reductionsOI[Z] C
M is amodel of P U Fr)M = PM U Fr. Thus, M ¢ AS(P U Fr).

- M = M'[Z,J] for someJ C Y. By the initial assumption, there existdg C Z
with Z U J U Ky = ¢. Then, by the properties df-reductionsN[Z, J, K] C M
is a model ofP™. Thus,M ¢ AS(P U Fr).

Suppose thab is true. It is sufficient to show that for eadh C U, AS(P U F) # 0.
We have the following cases:

If {s,5} C F forsomes € X UY or{u,w} C F. ThenU € AS(P U F) since
U is a model ofP U F and each potential modall c U of the reductP? (see the
properties ofp-reductions) does not satisty C M; thus each such/ is not model of
PUUF=(PUF)Y.

Otherwise, we havé” C M[I,JJor F C M'[I,J] forsomel C X, J CY.In
caseF' C M|[I,J] andF ¢ O[I], we observe thad I, J] € AS(P U F) sinceO[I]
is the only model of the redud@™!-/1, Thus for each such there cannot be a model
M c M[I,J)of PMUJIUF = (PUF)MIIL As well, in case” € M'[I, J], where
w € F, M'[I, J] can be shown to be an answer sefot) F'. Indeed, in this case no
M c M'[I,J] is a model ofPM' /] becauséb is true.

It remains to consider the cageC O[I] for eachl C X. We show that\/’[I, J]
is an answer set aP U F', for someJ C Y. Sinced is true, we know that, for each
I C X, there exists &; C Y such that, foralk C Z, I U J; UK [ ¢. As can
be verified by the properties @-reductions, then there is no model C M’[I, J;]
of PM'II.71] Consequently, there is also no such model®fU F)M'I1:/1], and thus
M'[I,J;) € AS(PUF). m

It remains to show that for any QBF of the desired formp-aeduction can be
obtained in polynomial time (w.r.t. the size @). For the construction below, let us
denote a negated atamrin the propositional part of the QBF asa.



Definition 3. For any QBF® = VX3YVZ¢ with¢ = \/I_; i1 A+ Alim, @ DNF
(i.e., a disjunction of conjunctions over literals), we defi

Pp={aVIT+; u+ 2,7, w+a,T; x+u,w, T+<uw|ze XU (1)
YVy< v uey, 0 vy, 7y uws

T u,w, vy, vg|lyeYiu (2
{zVZ <+ v; u z,not w; u< Z,not w; v z; v+ Z;

2wy T W 2w 2w wVu— 2,22 € 20U 3)
{wvVus1ii1,.. .., lim, |1 <i<n} 4)
{v + w; v+ u; v+ not u}. (5)

Obviously, the program from above definition can be congtaién polynomial
time in the size of the reduced QBF. To conclude the proof acdorem 1 it is thus
sufficient to show the following relation.

Lemma 2. For any QBF® = VX3YVZ¢, the programPy is a @-reduction.

Proof. Obviously, At(Pg) contains the atoms as required in 1) of Definition 2. We
continue to show 2). To see thitis a model ofPs is obvious. We next show that the
remaining models\/ are all of the formM I, J] or M'[I, J]. First we havev € M
because of the rules «— v andv «+ not u in (5). In casew € M, Z U Z C M by

the rules in (3). In case ¢ M, we haveK U (Z \ K) C M for someK C Z, since

v € M and by (3). But then, since ¢ M, v € M holds (rulesu « z, not w resp.

u + Z,not w). Hence, also her& U Z C M. In both cases, we observe that by (1)
and (2),/ U(X\U)UJU(Y\J) C M, forsomel C X andJ C Y. This yields
the desired models\/[I, J], M'[I, J]. It can be checked that no other model exists by
showing that forNv- ¢ M[I, J], resp.N & M'[I, J], N = U follows.

We next show that, for eachC X andJ C Y, PMIZ.71 and PM'[1:7] possess the
required models. Let us start by showing tbaf] is a model of P71, In fact, it can
be observed that all of the rules of the fornv Z < in (1) are satisfied because either
z or 7 belong toO[I], while all of the other rules ilP* (/'] are satisfied because of a
false body literal. We also note that each strict subséx[éf does not satisfy some rule
of the formz V Z «, and thus it is not a model @?*[Z-7], Similarly, any interpretation
W such thatO[I] ¢ W ¢ M[I,J] does not satisfy some rule iR (/7] (note that
rules of the formu «+ z andu « z occur inPMI:7l becausev ¢ M|, J]; such rules
are obtained by rules in (3)).

Let us now consideP™'["-7] and letW C M’[I,.J] be one of its models. We
shall show that eitheW = M'[I, J], or W = N|[I, J, K| for someK C Z such that
TUJUZ [~ ¢. Note thatv is a fact inP'[I-7] hencev must belong tdV. By (1)
and (2), sincew € W andW C M'[I, J], we can conclude that all of the atoms in
Tu(X\I)uJU(Y\J) belong toW. Consider now the atorw. If w belongs to
W, by the rules in (3) we conclude that all of the atom<Zitu Z belong tolV, and
thusW = M’[1, J]. Otherwise, ifw ¢ W, by the rules of the form vV z < v in (3),
there must be a séf C Z such that U(Z \ K) is contained if¥. Note that no other
atoms inZ UZ can belong tdV because of the last rule in (3). Hen®®,= N[/, J, K].
Moreover,w ¢ W andu ¢ W imply that! U J U K [~ ¢ holds because of (4).




Finally, one can show tha®? does not yield additional models as those which are
already present by other models. U&t C U be a model ofPV. By (1), O[I] € W
must hold for somd C X. Consider now the atom. If v ¢ W, we conclude that the
model W is actuallyO[I]. We can thus consider the other case,d.es W. By (2),
JU (Y \ J) C W must hold for som& C Y. Consider now the atom. If v € W, we
haveZ U Z C W because of (3). If no other atom belongsitg thenW = M|I, J]
holds. Otherwise, if any other atom belongsiig it can be checked thal’ must be
equal toU. We can then consider the case in whiclk W, and the atomw. Again, we
have two possibilities. liv belongs tolV, by (3) we conclude that all of the atoms in
Z\UZ belong toW, and thus eitheW = M'[I,.J] or W = U. Otherwise, ifw ¢ W, by
the rules of the form 'z <+ v in (3), there mustbe a sé&f C Z suchthatk U(Z \ K)
is contained 4. Note that no other atoms ii U Z can belong tdV because of the
last rule in (3). HencelV = N|I, J, K]. Moreover, because of (4); ¢ W andu ¢ W
imply that7 U J U K [~ ¢ holds. a

Note that the program from Definition 3 does not contain qaists. As a conse-
quence, thdIF-hardness result presented in this section also holds iflyeamnsider
disjunctiveASP programs without constraints.

5 Proof of Theorem 2

Membership follows by the straight-forward nondeterntioialgorithm for the com-
plementary problem presented in the previous section. We hast to note that a
co — NP oracle can be used for checking the consistency of a norrogkam. Thus,
IIFY-membership is established.

For the hardness we reduce tfig¢ -complete problem of deciding whether QBFs of
the formv X 3Y ¢ are true to the problem of super-coherence. Without lossérality,
we can considep to be in CNF and, indeedy # 0, andY # §. We also assume that
each clause ab contains at least one variable frakhand one front”. More precisely,
we shall adapt the notion @-reduction to normal programs. In particular, we have to
take into account a fundamental difference between disgenand normal programs:
while disjunctive programs allow for using disjunctive ealfor guessing a subset of
atoms, such a guess can be achieved only by means of unstratggation within a
normal program. For example, one atom in a{sety} can be guessed by means of the
following disjunctive rulex v y <. Within a normal program, the same result can be
obtained by means of the following rules:+ not y andy < not x. However, these
last rules would be deleted in the reduced program assdaidtk a model containing
botha andy, which would allow for an arbitrary subset éf, y} to be part of a model
of the reduct. More generally speaking, we have to take PtpE2), as introduced
in Section 2, into account. This makes the following defamta bit more cumbersome
compared to Definition 2.

Definition 4. Let & = VX3Y ¢ be a QBF with¢ in CNF. We call any progranP
satisfying the following properties@&-norm-reduction



1. P is given over atom#/ = X UY U X UY U {v,w}, where all atoms in sets
S ={5]|s € S}and{v,w} are fresh and mutually disjoint;
2. P has the following models:
— for eachJ C Y, and for each/* suchthat/ U (Y \ J) C J* C Y UY

OlJ* =X uXuJ*u{v,w};

— foreachl C X,

M[I] =TU(X\I)U{v};
— foreachl C X, J CY,suchthatl U J | ¢,

N[IJ =TU(X\HUuJU (Y \J)U{w};

3. the only models of a redu&™!!! are M[I] and M|[I] \ {v}; the only model of a
reductPN7lis NI, J);
4. each model of a reductP®!’"! satisfies the following properties:
(a) for eachy € Y such thaty € O[J*] andy ¢ O[J*], if w € M, theny € M,
(b) for eachy € Y such thaty € O[J*] andy ¢ O[J*], if w € M, theny € M,
(c) if(YUY)N M # 0, thenw € M;
(d) ifthereis a clausé; 1 vV - -+ V l; ,n, Of ¢ such that{l; 1,....1; m,} € M, then
v e M,
(e) if there is anz € X such that{z,z} C M, or there is ay € Y such that
{y,y} € M, or {v,w} C M, then it must hold thak U X U {v,w} C M.

Lemma 3. For any QBF® = VX 3Y ¢ with ¢ in CNF, a®-norm-reduction is super-
coherent iffd is true.

Proof. Suppose thap is false. Hence, there exists AnC X such that, forall/ C Y,
ZUJ £ ¢. Now, let P be any®-norm-reduction and’z = ZU (X \ Z). We show that
AS(P U Fr) = 0, thusP is not super-coherent. Le! be a model of? U Fz. Since
P is ad-norm-reduction, the only candidates {d are O[J*] for someJ C Y and
J*suchthat/ U (Y \ J) C J* CY UY, M[Z], andN|[Z, J'], whereJ’ C Y satisfies
ZUJ [ ¢. However, from our assumption (forall C Y, Z U J [~ ¢), no such
NI[Z, J'] exists. Thus, it remains to consid@f.J*] and M [Z]. By the properties of-
norm-reductions)[Z]\ {v} is a model ofPM*], and hencé/[Z]\ {v} is also a model
of PMEIUF; = (PUF7)MIE, Thus,M|[Z] is not an answer set @U Fz. On the other
hand, it can be checked tha£[Z] \ {v} is a model ofP°V"1 U Fr = (P U F7)OU"]
foranyO[J*]. Thus,AS(P U Fr) = 0 holds.

Suppose thab is true. It is sufficient to show that, for ea¢ghC U, AS(P U F') # 0.
We have the following cases:

FCIU(X\I)U{v}forsomel C X:If v € F, thenM[I] is the unique model
of PMUIUF = (PUF)MU and thusM|[I] € AS(PUF). Otherwise, ifv ¢ F, since
& is true, there exists 4 C Y such that/ U J = ¢. Thus,N|[I, J] € AS(PUF).

TU(X\I)CF C N[I,J]forsomel C X andJ C Y such thatl U J = ¢:
In this caseN|[I, J] is a model ofP U F' and, by the properties @-norm-reductions,
N[I, J]is also the unique model @'/l y F = (Pu F)NILJL,




TU(X\I)C F CNI[I,J]forsomel C X andJ C Y suchthatl UJ [~ ¢:
We shall show thaO[J] is an answer set aP U F' in this case. LetM be a model
of PPIU F = (PU F)°Vl SinceTu (X \I) ¢ F C NI[I,J], eitherw € F
or (YUY)NF # (. Clearly, F C M and sow € M in the first case. Note that
w € M holds also in the second case because of property 4(c). &basconsequence
of properties 4(a) and 4(by,uU (Y \ J) € M holds. Sincel U J [~ ¢ and because of
property 4(d)p € M holds. Finally, sincdv, w} C M and because of property 4(e),
X UX C M holds and, thus)M = O[I].

In all other cases, eithdr, w} C F, or there is anc € X such that{z,z} C F,
or there is ay € Y such thaf{y,5} C F. We shall show that in such cases there is an
O[J*] which is an answer set d? U F. Let O[J*] be such that/* = Fn (Y UY)
and letM be a model ofP°lY"1 U F = (P U F)°l "] such thatM € O[.J*]. We shall
show thatO[J*] C M holds, which would imply tha©[J*] = M is an answer set of
P U F. Clearly, F C M holds. By property 4(e)X U X U {v,w} C M holds. Thus,
by property 4(a) and because € M, it holds thaty € M for eachy € Y such that
y € O[J*] andy ¢ O[J*]. Similarly, by property 4(b) and becausec M, it holds that
y € M for eachy € Y such thaty € O[J*] andy ¢ O[J*]. Moreover, for ally € YV
such that{y, 5} C O[J*], it holds that{y, 5} C F C M. ThereforeQ[J*] C M holds
and, consequently)[J*] € AS(PU F). O

Definition 5. For any QBF® = VX3Y ¢ with¢p = A, l;1 V-V 1; 1, in CNF, we
define

Ng ={x <+ notT; T+ notx |z e X}U (6)
{y < notg,w; g+ noty,w; w+y; w+7y |yeY}U @)
{z+vw; 22,7, 2+ 9,7 | z€ XUX U{v,w},

reX,yeY}u (8)
vl lim | 1<i<n}uU 9)
{w + not v}. (10)

Again, the program from the above definition can be constrict polynomial time
in the size of the reduced QBF. To conclude the proof, it is thufficient to show the
following relation.

Lemma 4. For any QBF® = VX3Y ¢ with ¢ in CNF, the programVg is a $-norm-
reduction.

Proof. We shall first show thalvg has the requested models. Liétbe a model ofVg.
Let us consider the atomsandw. Because of the rule < not v in (10), three cases
are possible:

1. {v,w} € M. Thus,X U X C M holds because of (8). Moreover, there exists
J C Y suchthat/ U (Y \ J) C M because of (7). Note that any other atontin
could belong ta\/. These are the modef3[.J*].

2. v e M andw ¢ M. Thus, there exists C X such that U (X \ I) C M because
of (6). Moreover, no atoms ilv U Y belong toM because of (7) and ¢ M by
assumption. Thus\f = M|I] in this case.




3. v ¢ M andw € M. Thus, there exist C X andJ C Y suchthafU(X \ I) C M
andJ U (Y \ J) € M because of (6) and (7). Hence, in this cdde= N|[I, J|
and, because of (9), it holds thatU J | ¢.

Let us consider a redud®!!] and one of its modeld/ C M][I]. First of all,
note thatPM ! contains a fact for each atom inJ (X \ T). Thus,7 U (X \I) € M
holds. Note also that, since each clause @bntains at least one variable frar all
of the rules of (9) have at least one false body literal. Heetther M/ = M][I] or
M = MII]\ {v}, as required byp-norm-reductions.

For a reductPN!-7 such thatf U .J = ¢ it is enough to note tha®™[/-/] contains
a fact for each atom oWV I, J].

Let us consider a redu@®(’"] and one of its model3/ C O[.J*]. The first obser-
vation is that for eacly € Y such thaty € O[J*] andy ¢ O[J*], the reductP®l/’]
contains a rule of the form <+ w (obtained by some rule in (7)). Similarly, for each
y € Y such thaj € O[J*] andy ¢ O[J*], the reductP®[’"! contains a rule of the
formy < w (obtained by some rule in (7)). Henc®, must satisfy properties 4(a) and
4(b) of &-norm-reductions. Property 4(c) is a consequence of (@penty 4(d) follows
from (9) and, finally, property 4(e) must hold because of (8). ]

Note that the program from Definition 5 does not contain aaists. As a conse-
quence, thdIY-hardness result presented in this section also holds ifnlyecmnsider
normal ASP programs without constraints.

6 Some Implications

In [21] the following problem has been studied under the n&améorm equivalence
with projection:”

Given two programg” and@, and two setsi, B of atoms,P =4 Q iff for each
setFF C Aoffacts,{INB|I € AS(PUF)}={INB|Ic AS(QUF)}.

Let us callA the context alphabet anfd the projection alphabet. As is easily verified
the following relation holds.

Proposition 3. A programP over atomd/ is super-coherent ifP Eg Q, whereq) is
an arbitrary definite Horn program.

In [21], the complexity of the problem of deciding uniformugeplence with pro-
jection has also been investigated, reportifig-completeness for disjunctive programs
and/1f-completeness for normal programs. However, these hasdasslts use bound
context alphabetsl C U (whereU are all atoms from the compared programs). Our
results thus strengthen the observations in [21]. Using@&sition 3 and the main re-
sults in this paper, we obtaiffy’ -hardness (resglZ’-hardness in the case of normal
programs) for uniform equivalence with projection eventfog particular parameteri-
zation where the context alphabet is unrestricted, theeption set is empty, and one of
the compared programs is of a very simple structure (in &aan the empty program
is sufficient for@ in Proposition 3).



7 Conclusion

Many recent advances in ASP rely on the adaptions of techreddrom other ar-
eas. One important example is the Magic Set method, whiechssfeom the area of
databases and is used in state-of-the-art ASP groundecenReork showed that a
particular variant of this technique only applies to a dartdass of programs called
super-coherent [2]. Super-coherent programs are thosghvgaissess at least one an-
swer set, no matter which set of facts is added to them. Weuethat this class of
programs is interesting of its own (for instance, sincedhgia certain relation to some
problems in equivalence checking) and thus studied herexthet complexity of recog-
nizing the property of super-coherence for disjunctive mminal programs. Our results
show that the problems are surprisingly hard, viz. comgtaté’!” and respIlf’. One
direction of future work is to identify methods to turn arbity programs into super-
coherent ones with minimal changes. Our proofs might pewvialuable foundations
for such methods.
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