
TECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18493

sek@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

A General Modeling Format for
Employee Scheduling

DBAI-TR-2017-109

Lucas Kletzander, Florian Mischek, Nysret Musliu,
Gerhard Post and Felix Winter

DBAI TECHNICAL REPORT

2017

DBAI TECHNICAL REPORT

DBAI TECHNICAL REPORT DBAI-TR-2017-109, 2017

A General Modeling Format for Employee Scheduling

Lucas Kletzander 1 Florian Mischek 1 Nysret Musliu 1

Gerhard Post 2 Felix Winter 1

Abstract. In this paper we present a structured XML format that is able to describe problem
instances for a large number of different problems from the employee scheduling area. The
format can be used to compose instances for new problems that combine specifications from
several existing problems.

1TU Wien. E-mail: {lkletzan, fmischek, musliu, winter}@dbai.tuwien.ac.at
2University of Twente, E-mail: g.f.post@utwente.nl

Acknowledgements: This work has been supported by the Austrian Science Fund (FWF):
P24814-N23.

Copyright c© 2018 by the authors

Contents
1 Introduction 3

2 General Employee Scheduling 3

3 Format Modules 4
3.1 General Module . 5
3.2 Tasks Module . 5
3.3 Shifts Module . 5
3.4 Breaks Module . 6
3.5 Employees Module . 6
3.6 Demands Module . 6

4 Examples 7
4.1 Simple rostering example . 7

4.1.1 Hard Constraints . 7
4.1.2 Soft Constraints . 9

4.2 Break scheduling example . 10

2

1 Introduction
Employee scheduling problems appear in a wide range of fields including health care, airlines,
transportation services and any other organization that employs a large workforce. A large number
of different scheduling subproblems like Shift Design, Rostering, Break Scheduling and many
others have been described and solved in the literature [Ernst et al., 2004]. Due to the complexity
inherent in this domain, these subproblems are usually solved separately, although there have been
approaches combining two or more subproblems. Further, there are many variants of each such
subproblem, as different industries and organizations have different requirements and constraints
for their schedules. Most of the publications also introduce their own text based format to model
their specific problem instances. As a result, solvers can not be reused for similar problem variants
and comparison between different versions of the same problem are difficult, despite the often
large similarities between them.

Especially for the subproblem of Employee Rostering, there have been some attempts at the
categorization of problem variants (e.g. [De Causmaecker and Vanden Berghe, 2011]) and the
development of a standardized instance description format. In particular, the XML based modeling
format1 for the AutoRoster software, developed by Staff Roster Solutions, supports a wide range
of options and constraints. A set of benchmarking instances2 from a large number of different
publications and institutions has been modeled using this format.

The same company also provides a (separate) modeling format for a limited form of the shift
design problem3.

For other subproblems, and more complex problems, such a standardized format does not exist.
In this paper we present a structured XML format, which extends the AutoRoster modeling

format, and is able to describe problem instances for a large number of different problems from
the employee scheduling area. Additionally, the format can be used to compose instances for new
problems that combine specifications from several existing problems. Using our format encourages
the reuse of code when creating solvers and can also make it easier to compare the performance
of different solution methods, since benchmark instances that use the format can easily be shared
between publications.

In Section 2, we will give a description of the type of scheduling problems our format is de-
signed to model. Section 3 will present the five core modules that make up our format. In Section
4 we will show how the format can be used to model some basic instances for existing shift design,
break scheduling and rostering problems.

2 General Employee Scheduling
In 1986, Glover and McMillan [Glover and McMillan, 1986] gave an informal description of the
General Employee Scheduling problem.

1http://www.staffrostersolutions.com/support/autoroster-problem-data.php
2http://www.schedulingbenchmarks.org/
3http://www.staffrostersolutions.com/support/shiftsolver-problem-data.php

3

http://www.staffrostersolutions.com/support/autoroster-problem-data.php
http://www.schedulingbenchmarks.org/
http://www.staffrostersolutions.com/support/shiftsolver-problem-data.php

Based on their model, with extensions to cover other important variants, the following elements
can be identified in employee scheduling problems:

There is some form of demand, describing the work that needs to be done. Depending on the
specific problem variant and industry, this is usually given either as a list of tasks that have to be
performed or as staffing requirements during certain time periods.

This work is grouped into shifts, which denote consecutive periods of work for an employee.
A large number of constraints govern the length, placement and structure of these shifts. In other
problem variants, the set of feasible shift types is instead given in the problem description. These
shifts can include breaks that have to be placed according to various rules.

Lastly, there is a pool of employees (of either fixed or variable size), which are available to
actually perform the required work. These employees must be assigned to shifts according to
many different constraints and regulations. Individual employees may differ according to their
contracts, skills or working preferences.

A solution to the problem is a working schedule for each employee that fulfills all constraints
or, in the case of optimization problems, minimizes the violations of soft constraints.

In most cases, not the full functionality offered by this formulation is needed.

• Most Shift Design and Shift Scheduling instances do not require the assignment of work to
individual employees.

• Employee Rostering problems typically deal with a set of shift types that are fixed in time
therefore do not require the construction of feasible shifts based on demands. In these cases
it suffices to assign shifts one of a small set of shift types.

• The number of employees is often fixed and known in advance.

• Many settings do not require the scheduling of breaks.

All these reductions greatly simplify the structure of the problem and might enable different
solution approaches.

3 Format Modules
The format that we present contains a large number of XML elements and attributes that can be
used to describe the requirements and properties of many different scheduling problem instances,
including all variants and subproblems described in the previous section. All of those attributes
and elements are structured into six main modules, following the partition of problem elements
identified above:

General contains global information about the scheduling horizon and the problem instance.

Tasks is an optional module defining all available task types that can be used in the solution.

Shifts defines all feasible shift types that can be used in the solution.

4

Breaks is an optional module defining the structure and placement of breaks.

Employees gives a list of available employees, either in the form of heterogeneous individuals or
homogeneous abstract employee types.

Demands models the staffing requirements, either based on tasks, time slots or shift types.

In the following, the properties and options contained in each of those modules will shortly be
described. A full documentation of each element can be found in 4.

3.1 General Module
The elements contained in the General module can be used to model general information about the
problem instance.

This includes, among others, the length of the considered scheduling period, the start- and end
date of the scheduling horizon and the length of the shortest time interval that should be considered
for this instance.

Another set of elements contains flags for the solver concerning the task to be solved. This
includes information about whether the schedule should be seen as cyclical, whether an individual
roster should be generated for each employee and whether some sort of shift design is necessary.

3.2 Tasks Module
The optional Tasks module can be used to specify all task types that can appear in a feasible
solution schedule.

A task type is a certain type of work that can be scheduled within certain time windows and
requires at least one employee. This module can specify whether a task type counts as work time or
free time, prerequisite tasks that need to be completed before this task type or the re-acquaintance
period needed after performing this task type.

3.3 Shifts Module
Elements and attributes in the Shifts module can be used to specify all necessary information about
the working shifts that can appear in a feasible solution schedule.

Different shift types can be defined by starting and ending time as well as length. These
parameters can also be given as ranges, to allow the solver to determine concrete values for each
instance of the shift type. Each block of work assigned to an employee must be assigned exactly
one shift type and meet all its constraints.

Further, it is possible to limit the number of shift instances for each shift type, i.e. unique
assignments, as defined by starting and ending time.

4http://www.dbai.tuwien.ac.at/proj/arte/ges_format/

5

http://www.dbai.tuwien.ac.at/proj/arte/ges_format/

3.4 Breaks Module
If the optional Breaks module is included, any requirements regarding breaks that should be sched-
uled during working shifts can be formulated.

This process is split into two main parts: First, different break types (e.g. ”lunch break”,
”short break”), are defined. These differ in their length, position within the shift, the minimum and
maximum time spent working before and after the break and other criteria.

These break types can then be used in break configurations, which consist of a filter on the
properties of shifts that should use this configuration and a definition of both the number and order
of instances of each break type within the shift. In addition to that, it is also possible to set limits
on the total time spent on break within the shift.

3.5 Employees Module
Information about the available workforce and feasible rosters can be defined within the Employees
module.

Employees are split into two different types: Single employees and generic employee groups.
The former represent heterogeneous individuals, while the latter are anonymous groups of homo-
geneous employees, of which a variable number can be hired. These types can also be mixed,
in order to model e.g. a set of core employees and optional temporary hires to cover short term
workloads.

Employees (of either type) can have contracts specifying the constraints that apply to their
schedules (if multiple contracts are assigned to an employee, all constraints apply together). These
contracts define the limits on the total workload of an employee, the skills provided, constraints
on the shifts they can work as well as a wide range of restrictions on working patterns. These
constraints can restrict sequences of consecutive shifts, working days or days off, weekend work
as well as express other, more complex constraints. Supported is also a form of fairness between
employees that limits the size of the gap between the highest and lowest workload assigned to any
employee.

In addition to their contracts, employees can also have preferences to (not) work on certain
days, shifts or tasks. Employees can also have pre-assignments that are shifts or periods of free time
that must occur in any solution. These can also be given before the actual start of the scheduling
horizon to include the previous time period for use in constraints.

The employee module also contains a description of all skills employees can have. Each skill
may specify a set of other skills to subsume, although this can optionally incur a penalty.

Finally, employees can be constrained to (not) be paired up, such that that one employee works
(or does not work) whenever the other does.

3.6 Demands Module
The Demands module can be used to state workforce demands that should be covered by a solution
to the problem instance. The elements and attributes contained in this module provide options to

6

formulate cover requirements in one of three different variants: task cover, time cover or shift
cover.

Task cover demand is defined as a list of tasks that have to be allocated during the scheduling
period. If more than one employee is needed for a task, it is assumed that all of them have
to work on this task at the same time. Each task is of a certain task type and has a length and
a time window during which it can be scheduled.

Time cover defines for each time slot the number of employees that should be present. If the
interval given for an entry spans more than one time slot, then the staffing level must be met
in each time slot during this interval.

Shift cover works similarly to time cover, except that demand is specified for each shift type
instead. This is most useful in instances where the available shifts are predefined and no
time-based information is present.

Independent of the variant used, multiple levels of both minimum and maximum cover require-
ments can be given, to model minimum and preferred staffing levels and similar situations. These
requirements can also be differentiated by skill to require employees with a certain qualification.

4 Examples
In this section we describe how two scheduling problems that have been previously described in
the literature can be modeled using our format. The given examples show how rostering, shift
design and break scheduling problems can be formulated. The full source code of the examples is
also available online5.

4.1 Simple rostering example
The first example that we consider deals with a basic staff rostering problem based on the instances
that have been described in [Curtois and Qu, 2014]. The goal for this problem is to construct an
optimal staff roster for a fixed number of employees that fulfills a number of given hard and soft
constraints.

Our simple example knows only one shift type of fixed length and the scheduling period is two
weeks long. Figure 1 displays how the general information and shift type definition can be defined
using our format.

4.1.1 Hard Constraints

The considered example defines seven different hard constraints. In the following we will describe
each of them and explain how the constraints can be modeled using our format.

5http://www.dbai.tuwien.ac.at/proj/arte/ges_format/examples/

7

http://www.dbai.tuwien.ac.at/proj/arte/ges_format/examples/

<SchedulingHorizon>
<General>

<StartDate>2017-01-02</StartDate>
<EndDate>2017-01-15</EndDate>

</General>
<Shifts>

<ShiftTypes>
<ShiftType ID="D">

<MinStartTime>09:00</MinStartTime>
<MaxStartTime>09:00</MaxStartTime>
<MinLength>480</MinLength>
<MaxLength>480</MaxLength>

</ShiftType>
</ShiftTypes>

</Shifts>
[...]

</SchedulingHorizon>

Figure 1 This figure shows how the scheduling period and shift types are configured for our
simple example.

Employees cannot be assigned more than one shift on a single day. This constraint is assumed
to be a hard constraint for any rostering problem that is specified in our format and therefore does
not have to be stated explicitly.

Minimum and maximum workload. This hard constraint restricts the total amount of working
time that may be assigned to a single employee during the scheduling period. Figure 2 exemplifies
how this constraint can be modeled with our format.

Minimum and maximum consecutive working days/days off. The example rostering problem
considered in this section defines limits on the number of consecutive working days and consecu-
tive days off, which can be easily stated using our format. Figure 3 displays a code example.

Maximum number of working weekends. An employee is considered to have a working week-
end if he has to work either on Saturday, on Sunday, or on Saturday and Sunday. The hard con-
straint which limits the maximum number of working weekends can be stated using the formats
WeekendCount element. Figure 4 displays how this constraint can be stated using our format.

Forced days off. In our example, some employees may state day off requests that are treated as
hard constraints. Figure 5 shows how this can be modeled using fixed assignments in our format.

8

<SchedulingHorizon>
[...]
<Employees>

<Contracts>
<Contract ID="ContractA">

<Workload>
<Max>72:00</Max>
<Min>56:00</Min>
<Unit>WorkTime</Unit>

</Workload>
[...]

</Contract>
[...]

</Contracts>
[...]

</Employees>
[...]

</SchedulingHorizon>

Figure 2 Workload requirements can be defined inside of contracts. The time limits defined in a
contract then apply to all employees working under this contract.

4.1.2 Soft Constraints

Our simple rostering example defines different soft constraints that lead to a numeric penalty when-
ever they are violated. An optimal solution to this problem is any schedule that is feasible and leads
to the overall lowest possible penalty.

In the following we will describe these soft constraints, and will explain how they can be
modeled using our format.

Shift on/shift off requests. Employees can request to work in certain shift types on specific days
in the schedule. Additionally, employees can also request not to work in certain shift types on
specific days in the schedule. Figure 6 shows how such shift on/off requests can be modeled using
our format. The given weights denote the penalty that will be given in case a request is violated.

Demands. The demands of our example define a preferred number of working employees per
shift type for each day in the schedule. Different weights are declared for under- and over-coverage
and the induced penalty is linearly dependent on the difference the number of assigned employees
to the preferred number. Figure 7 shows how demands can be modeled using our format.

9

<SchedulingHorizon>
[...]
<Employees>

<Contracts>
<Contract ID="ContractA">

<PatternConstraints>
<SequenceConstraint>

<Label>Min 2, max 5 consecutive shifts</Label>
<AnyShift/>
<Min>2</Min>
<Max>5</Max>

</SequenceConstraint>
<SequenceConstraint>

<Label>Min 2 consecutive days off</Label>
<NoShift/>
<Min>2</Min>

</SequenceConstraint>
[...]

</PatternConstraints>
[...]

</Contract>
[...]

</Contracts>
[...]

</Employees>
[...]

</SchedulingHorizon>

Figure 3 Inside of contracts, the SequenceConstraint elements can be used to specify any kind
of consecutive sequence constraints. The wildcards AnyShift and NoShift can be used
to match any shift type or a day off respectively.

4.2 Break scheduling example
In this section we describe a problem that includes shift design and break scheduling components
and is based on the problem description from [Beer et al., 2010]. The goal is to design shifts so that
given time period based staff requirements are fulfilled. Additionally, breaks have to be scheduled
during shifts without violating the workforce requirements.

In our second example we consider a problem instance that describes a cyclic scheduling period
over one week. Four different shift types that have variable starting- and ending times are speci-
fied. All shifts can be scheduled as required as long as their variable starting times and lengths stay
within the specified limits. However, in the final schedule there should be as few different instan-
tiations per shift type as possible (Note that this does not restrict how often a certain shift type is

10

<SchedulingHorizon>
[...]
<Employees>

<Contracts>
<Contract ID="ContractA">

<PatternConstraints>
[...]
<WeekendCount>

<Max>1</Max>
</WeekendCount>
[...]

</PatternsConstraints>
[...]

</Contract>
[...]

</Contracts>
[...]

</Employees>
[...]

</SchedulingHorizon>

Figure 4 The maximum weekends constraint can be realized using a pattern constraint. In this
example the maximum number of working weekends is restricted to one.

scheduled, as long as all assignments have the same starting and ending time). Figure 8 shows how
the shift type specifications and the general information for this example can be modeled using our
format.

Since the goal of the second example is to design shifts and schedule breaks, the specification
of individual employees is not necessary. In such a case we can specify an anonymous variable
employee type in our format so that a solver program knows that it can use an arbitrary number
of employees for the construction of the schedule. Figure 9 shows how such a variable employee
type can be modeled using our format.

Our considered example specifies three different break types that should be scheduled during
shifts: Short breaks, long breaks and lunch breaks. Shifts that are at least 360 minutes long require
exactly one lunch break to be scheduled. Other breaks have to be scheduled whenever a certain
amount of working time has passed. After a work period of 50 minutes or longer a long break has
to be scheduled, otherwise a short break is sufficient. In our example it is required to schedule that
many breaks, so that the total break time equals at least a quarter of the total shift length. Figures
10 and 11 show how the necessary specifications for this break scheduling problem can be modeled
using our format.

Finally, the staffing requirements for our example are defined over specific time periods and
can be easily modeled using TimeCover elements in our format. Figure 12 shows the use of those

11

<SchedulingHorizon>
[...]
<Employees>

[...]
<EmployeeList>

<Employee ID="A">
[...]
<PreAssignments>

<NoShift>
<StartDay>0</StartDay>
<EndDay>0</EndDay>

</NoShift>
</PreAssignments>

</Employee>
<Employee ID="B">

[...]
<PreAssignments>

<NoShift>
<StartDay>5</StartDay>
<EndDay>5</EndDay>

</NoShift>
</PreAssignments>

</Employee>
[...]

</EmployeeList>
</Employees>
[...]

</SchedulingHorizon>

Figure 5 PreAssignments can be used to define shift assignments on certain days that should not
be changed in any way when generating a solution. In this example they are used to
define strict day off requests.

elements in a code example.

References
[Beer et al., 2010] Andreas Beer, Johannes Gärtner, Nysret Musliu, Werner Schafhauser, and

Wolfgang Slany. An ai-based break-scheduling system for supervisory personnel. IEEE In-
telligent Systems, 25(2):60–73, 2010.

[Curtois and Qu, 2014] Tim Curtois and Rong Qu. Computational results on new staff scheduling

12

<SchedulingHorizon>
[...]
<Employees>

<EmployeeList>
[...]
<Employee ID="D">

[...]
<Preferences>

<ShiftOffRequest weight="3">
<Day>8</Day>
<ShiftTypes>D</ShiftTypes>

</ShiftOffRequest>
<ShiftOffRequest weight="3">

<Day>2</Day>
<ShiftTypes>D</ShiftTypes>

</ShiftOffRequest>
<ShiftOffRequest weight="3">

<Day>3</Day>
<ShiftTypes>D</ShiftTypes>

</ShiftOffRequest>
[...]

</Preferences>
</Employee>
[...]

</EmployeeList>
</Employees>
[...]

</SchedulingHorizon>

Figure 6 Shift requests can be modeled for each employee by providing the corresponding ele-
ments in their preferences.

benchmark instances. Technical report, ASAP Research Group, School of Computer Science,
University of Nottingham, NG8 1BB, Nottingham, UK, October 2014.

[De Causmaecker and Vanden Berghe, 2011] Patrick De Causmaecker and Greet Vanden Berghe.
A categorisation of nurse rostering problems. Journal of Scheduling, 14(1):3–16, 2011.

[Ernst et al., 2004] A.T Ernst, H Jiang, M Krishnamoorthy, and D Sier. Staff scheduling and
rostering: A review of applications, methods and models . European Journal of Operational
Research, 153(1):3–27, 2004. Timetabling and Rostering.

[Glover and McMillan, 1986] Fred Glover and Claude McMillan. The general employee schedul-
ing problem. an integration of ms and ai. Computers & Operations Research, 13(5):563 – 573,

13

<SchedulingHorizon>
[...]
<Demands>

<ShiftCover>
<Shift>D</Shift>
<Day>0</Day>
<Requirements>

<Min weight="100">5</Min>
<Max weight="1">5</Max>

</Requirements>
</ShiftCover>
<ShiftCover>

<Shift>D</Shift>
<Day>1</Day>
<Requirements>

<Min weight="100">7</Min>
<Max weight="1">7</Max>

</Requirements>
</ShiftCover>
[...]

</Demands>
</SchedulingHorizon>

Figure 7 This figure shows how demands per shift type can be defined in our format. Different
weights are specified for under- and over-coverage by using separate Min and Max
elements.

1986.

14

<SchedulingHorizon>
<General>

<PeriodLength>7</PeriodLength>
<CyclicSchedule>Cyclic</CyclicSchedule>
<TimeSlotLength>5</TimeSlotLength>

</General>
<Shifts>

<ShiftTypes>
<ShiftType ID="F">

<Name>Early Shift</Name>
<MinStartTime>05:30</MinStartTime>
<MaxStartTime>08:00</MaxStartTime>
<MinLength>360</MinLength>
<MaxLength>765</MaxLength>

</ShiftType>
[...]

</ShiftTypes>
<GlobalShiftConstraints>

<ShiftInstances>
<ShiftTypes>F</ShiftTypes>
<Max weight="60">1</Max>

</ShiftInstances>
[...]

</GlobalShiftConstraints>
</Shifts>
[...]

</SchedulingHorizon>

Figure 8 This figure shows how the general information and shift type specifications for the sec-
ond example can be modeled using our format. The timeslot length is specified to five
minutes in this example. The code also shows how early shifts can be specified as a
shift type. An early shift may start anytime between 5:30 and 8:00 and can last from
360 minutes up to 765 minutes. Preferably there should be only one instantiation of the
early shift type and any additional instantiation will cause a penalty of 60.

15

<SchedulingHorizon>
[...]
<Employees>

<Contracts>
<Contract ID="C" />

</Contracts>
<EmployeeList>

<VariableEmployee ID="E">
<Contracts>

<Contract>C</Contract>
</Contracts>

</VariableEmployee>
</EmployeeList>

</Employees>
[...]

</SchedulingHorizon>

Figure 9 This figure shows how an anonymous variable employee type can be modeled. The
variable employee type E and contract C do not contain any preferences and just tell the
solver that it can use an arbitrary number of employees when constructing a solution
schedule for this problem. One could however use those elements to specify additional
constraints if necessary.

16

<SchedulingHorizon>
[...]
<Breaks>
<!-- Different break types are configured here, if no weight is given

constraints are hard -->
<BreakTypes>

<BreakType ID="ShortBreak">
<MinLength weight="1">10</MinLength>
<MaxLength weight="1">15</MaxLength>
<MinStartShift>30</MinStartShift>
<MinEndShift>30</MinEndShift>
<MinWorkBefore>30</MinWorkBefore>
<MaxWorkBefore>45</MaxWorkBefore>

</BreakType>
<BreakType ID="LongBreak">

[...]
</BreakType>
<BreakType ID="LunchBreak">

[...]
</BreakType>

</BreakTypes>
[...]

</Breaks>
[...]

</SchedulingHorizon>

Figure 10 This figure shows how break types can be modeled using our format. Different break
types can be defined with BreakType elements. Different constraints regarding length,
the starting and ending time relative to the shift, and the amount of working time that
may appear between breaks can be formulated for each break type. In this example
short breaks can have a length between 10 and 15 minutes and should not be scheduled
within the first and last 30 minutes of a shift. Additionally, the length of a preceding
working period should be between 30 and 45 minutes.

17

<SchedulingHorizon>
[...]
<Breaks>

[...]
<!-- Break configurations determine which breaks are allowed for

which shifts -->
<BreakConfigurations>

<BreakConfiguration>
<ShiftFilter>

<MinShiftLength>360</MinShiftLength>
</ShiftFilter>
<BreakSet>

<Break>ShortBreak</Break>
<Break>LongBreak</Break>
<Break MinCount="1" MaxCount="1">LunchBreak</Break>

</BreakSet>
<MinTotalBreakTimeFraction>0.25</MinTotalBreakTimeFraction>

</BreakConfiguration>
[...]

</BreakConfigurations>
</Breaks>
[...]

</SchedulingHorizon>

Figure 11 BreakConfiguration elements can be used to state the break types that should appear
in shifts that match given filter criteria. In this example, any shift that has a minimum
length of 360 minutes can schedule all the three different break types, but has to assign
exactly one lunch break. Furthermore, breaks should be scheduled in such a way so
that the total break time sums up to 25 % of the shift’s length.

18

<SchedulingHorizon>
[...]
<Demands>

<TimeCover>
<Day>0</Day>
<Start>00:00</Start>
<End>06:00</End>
<Requirements>

<Min weight="10">2</Min>
<Max weight="2">2</Max>

</Requirements>
</TimeCover>
<TimeCover>

<Day>1</Day>
<Start>00:00</Start>
<End>06:00</End>
<Requirements>

<Min weight="10">2</Min>
<Max weight="2">2</Max>

</Requirements>
</TimeCover>
[...]

</Demands>
</SchedulingHorizon>

Figure 12 This figure shows how time period based workforce requirements can be modeled
using our format. In this example two employees should be present during 00:00 and
06:00 on the first two days of the schedule. The requirements are modeled as soft
constraints, and therefore a violation will lead to a penalty that is weighted differently
in case of an under- or over-coverage of the requirement.

19

	Introduction
	General Employee Scheduling
	Format Modules
	General Module
	Tasks Module
	Shifts Module
	Breaks Module
	Employees Module
	Demands Module

	Examples
	Simple rostering example
	Hard Constraints
	Soft Constraints

	Break scheduling example

