
Manifold Answer-Set Programs for Meta-Reasoning⋆

Wolfgang Faber1 and Stefan Woltran2

1 University of Calabria, Italy
wf@wfaber.com

2 Vienna University of Technology, Austria
woltran@dbai.tuwien.ac.at

Abstract. In answer-set programming (ASP), the main focus usually is on com-
puting answer sets which correspond to solutions to the problem represented by
a logic program. Simple reasoning over answer sets is sometimes supported by
ASP systems (usually in the form of computing brave or cautious consequences),
but slightly more involved reasoning problems require external postprocessing.
Generally speaking, it is often desirable to use (a subset of) brave or cautious
consequences of a programP1 as input to another programP2 in order to provide
the desired solutions to the problem to be solved. In practice, the evaluation of
the programP1 currently has to be decoupled from the evaluation ofP2 using
an intermediate step which collects the desired consequences ofP1 and provides
them as input toP2. In this work, we present a novel method for representing
such a procedure within asingle program, and thus within the realm of ASP
itself. Our technique relies on rewritingP1 into a so-calledmanifold program,
which allows for accessing all desired consequences ofP1 within a single an-
swer set. Then, this manifold program can be evaluated jointly with P2 avoiding
any intermediate computation step. For determining the consequences within the
manifold program we useweak constraints, which is strongly motivated by com-
plexity considerations. As an application, we present an encoding for computing
the ideal extension of an abstract argumentation framework.

1 Introduction

In the last decade,Answer Set Programming(ASP) [1, 2], also known as A-Prolog
[3, 4], has emerged as a declarative programming paradigm. ASP is well suited for
modelling and solving problems which involve common-sensereasoning, and has been
fruitfully applied to a wide variety of applications including diagnosis, data integration,
configuration, and many others. Moreover, the efficiency of the latest tools for process-
ing ASP programs (so-called ASP solvers) reached a state that makes them applicable
for problems of practical importance [5]. The basic idea of ASP is to compute answer
sets (usually stable models) of a logic program from which the solutions of the problem
encoded by the program can be obtained.

However, frequently one is interested not only in the solutions per se, but rather in
reasoning tasks that have to take some or even all solutions into account. As an exam-
ple, consider the problem of database repair, in which a given database instance does

⋆ This work was supported by the Vienna Science and TechnologyFund (WWTF), grant ICT08-
028, and by M.I.U.R. within the Italia-Austria internazionalization project “Sistemi basati sulla
logica per la rappresentazione di conoscenza: estensioni etecniche di ottimizzazione.”.

not satisfy some of the constraints imposed in the database.One can attempt to mod-
ify the data in order to obtain a consistent database by changing as little as possible.
This will in general yield multiple possibilities and can beencoded conveniently using
ASP (see, e.g., [6]). However, usually one is not interestedin the repairs themselves,
but in the data which is present inall repairs. For the ASP encoding, this means that
one is interested in the elements which occur in all answer sets; these are also known
ascautious consequences. Indeed, ASP systems provide special interfaces for comput-
ing cautious consequences by means of query answering. But sometimes one has to
do more, such as answering a complex query over the cautious consequences (not to
be confused with complex queries over answer sets). So far, ASP solvers provide no
support for such tasks. Instead, computations like this have to be done outside ASP
systems, which hampers usability and limits the potential of ASP.

In this work, we tackle this limitation by providing a technique, which transforms an
ASP programP into amanifold programMP which we use to identify all consequences
of a certain type3 within a singleanswer set. The main advantage of the manifold ap-
proach is that the resulting program can be extended by additional rules representing
a query over the brave (or cautious, definite) consequences of the original programP ,
thereby using ASP itself for this additional reasoning. In order to identify the conse-
quences, we useweak constraints[8], which are supported by the ASP-solver DLV [9].
Weak constraints have been introduced to prefer a certain subset of answer sets via pe-
nalization. Their use for computing consequences is justified by a complexity-theoretic
argument: One can show that computing consequences is complete for the complex-

ity classesFPNP
|| or FP

ΣP

2

|| (depending on the presence of disjunction), for which also

computing answer sets for programs with weak constraints iscomplete4, which means
that an equivalent compact ASP program without these extra constructs does not exist,
unless the polynomial hierarchy collapses. In principle, other preferential constructs
similar to weak constraints could be used as well for our purposes, as long as they meet
these complexity requirements.

We discuss two particular applications of the manifold approach. First, we specify
an encoding which decides the SAT-relatedunique minimal model problem, which is
closely related to closed-world reasoning [10]. The secondproblem stems from the
area of argumentation (cf. [11] for an overview) and concerns the computation of the
ideal extension [12] of an argumentation framework. For both problems we make use of
manifold programs of well-known encodings (computing all models of a CNF-formula
for the former application, computing all admissible extensions of an argumentation
framework for the latter) in order to compute consequences.Extensions by a few more
rules then directly provide the desired solutions, requiring little effort in total.

3 We consider here the well-known concepts of brave and cautious consequence, but also definite
consequence [7].

4 The first of these results is fairly easy to see, for the second, it was shown [8] that the related

decision problem is complete for the classΘ
P

2 or Θ
P

3 , from which theFP
NP

|| and FP
Σ

P

2

||

results can be obtained. Also note that frequently cited NP,Σ
P

2 , and co-NP,ΠP

2 completeness
results hold for brave and cautious query answering, respectively, but not for computing brave
and cautious consequences.

Organization and Main Results.After introducing the necessary background in the
next section, we

– introduce in Section 3 the concept of a manifold program for rewriting proposi-
tional programs in such a way that all brave (resp. cautious,definite) consequences
of the original program are collected into a single answer set;

– lift the results to the non-ground case (Section 4); and
– present applications for our technique in Section 5. In particular, we provide an

ASP encoding for computing the ideal extension of an argumentation framework.

The paper concludes with a brief discussion of related and further work.

2 Preliminaries

In this section, we review the basic syntax and semantics of ASP with weak constraints,
following [9], to which we refer for a more detailed definition.

An atomis an expressionp(t1, . . .,tn), wherep is apredicateof arity α(p) = n ≥ 0
and eachti is either a variable or a constant. Aliteral is either an atoma or its negation
not a. A (disjunctive) ruler is of the form

a1 ∨ · · · ∨ an :- b1, . . . , bk, not bk+1, . . . , not bm

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, and wherea1, . . . , an, b1, . . . , bm are atoms.
Theheadof r is the setH(r) = {a1, . . . , an}, and thebodyof r is the setB(r) =

{b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore,B+(r) = {b1, . . . , bk} andB−(r) =
{bk+1, . . . , bm}. We will sometimes denote a ruler asH(r) :-B(r).

A weak constraint[8] is an expressionwc of the form

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w : l]

wherem ≥ k ≥ 0 andb1, . . . , bm are literals, whileweight(wc) = w (the weight)
andl (the level) are positive integer constants or variables. For convenience,w and/or
l may be omitted and are set to 1 in this case. The setsB(wc), B+(wc), andB−(wc)
are defined as for rules. We will sometimes denote a weak constraintwc as:∼ B(wc).

A programP is a finite set of rules and weak constraints.Rules(P) denotes the
set of rules andWC(P) the set of weak constraints inP . wP

max andlPmax denote the
maximum weight and maximum level overWC(P), respectively. A program (rule,
atom) ispropositionalor ground if it does not contain variables. A program is called
strongif WC(P) = ∅, andweakotherwise.

For any programP , let UP be the set of all constants appearing inP (if no constant
appears inP , an arbitrary constant is added toUP); let BP be the set of all ground
literals constructible from the predicate symbols appearing in P and the constants of
UP ; and letGround(P) be the set of rules and weak constraints obtained by applying,
to each rule and weak constraint inP all possible substitutions from the variables in
P to elements ofUP . UP is usually called theHerbrand Universeof P andBP the
Herbrand Baseof P .

A ground ruler is satisfiedby a setI of ground atoms iffH(r) ∩ I 6= ∅ whenever
B+(r) ⊆ I andB−(r) ∩ I = ∅. I satisfies a ground programP , if eachr ∈ P is

satisfied byI. For non-groundP , I satisfiesP iff I satisfiesRules(Ground(P)). A
ground weak constraintwc is violatedby I, iff B+(wc) ⊆ I andB−(wc)∩ I = ∅; it is
satisfied otherwise.

Following [13], a setI ⊆ BP of atoms is ananswer setfor a strong programP iff
it is a subset-minimal set that satisfies thereduct

P I = {H(r) :-B+(r) | I ∩ B−(r) = ∅, r ∈ Ground(P)}.

A set of atomsI ⊆ BP is ananswer setfor a weak programP iff I is an answer set
of Rules(P) andHGround(P)(I) is minimal among all the answer sets ofRules(P),
where the penalization functionHP (I) for weak constraint violation of a ground pro-
gramP is defined as follows:

HP (I) =
∑lP

max

i=1

(

fP (i) ·
∑

w∈NP

i
(I) weight(w)

)

fP (1) = 1, and
fP (n) = fP (n − 1) · |WC(P)| · wP

max + 1 for n > 1.

whereNP
i (I) denotes the set of weak constraints ofP in level i violated byI. For

any programP , we denote the set of its answer sets byAS(P). In this paper, we use
only weak constraints with weight and level 1, for whichHGround(P)(I) amounts to
the number of weak constraints violated inI.

A ground atoma is a brave(sometimes also called credulous or possible) conse-
quence of a programP , denotedP |=b a, if a ∈ A holds for at least oneA ∈ AS(P).
A ground atoma is acautious(sometimes also called skeptical or certain) consequence
of a programP , denotedP |=c a, if a ∈ A holds for allA ∈ AS(P). A ground atom
a is adefiniteconsequence [7] of a programP , denotedP |=d a, if AS(P) 6= ∅ and
a ∈ A holds for allA ∈ AS(P). The sets of all brave, cautious, definite consequences
of a programP are denoted asBC(P), CC(P), DC(P), respectively.

3 Propositional Manifold Programs

In this section, we present a translation which essentiallycreates a copy of a given
strong propositional program for each of (resp. for a subsetof) its atoms. Thus, we
require several copies of the alphabet used by the given program.

Definition 1. Given a setI of literals, a collectionI of sets of literals, and an atoma,
defineIa = {pa | atomp ∈ I} ∪ {not pa | not p ∈ I} andIa = {Ia | I ∈ I}.

The actual transformation to a manifold is given in the next definition. We copy a
given programP for each atoma in a given setS, whereby the transformation guaran-
tees the existence of an answer set by enabling the copies conditionally.

Definition 2. For a strong propositional programP andS ⊆ BP , define itsmanifold
as

P tr
S =

⋃

r∈P

{H(r)a :- {c} ∪ B(r)a | a ∈ S} ∪ {c :-not i ; i :-not c}.

We assumeBP ∩ BP tr

S

= ∅, that is, all symbols inP tr
S are assumed to be fresh.

Example 1.ConsiderΦ = {p ∨ q :- ; r :- p ; r :- q} for which AS(Φ) = {{p, r},
{q, r}}, BC(Φ) = {p, q, r} andCC(Φ) = DC(Φ) = {r}. When forming the manifold
for BΦ = {p, q, r}, we obtain

Φtr
BΦ

=

pp ∨ qp :- c ; rp :- c, pp ; rp :- c, qp ; c :-not i ;
pq ∨ qq :- c ; rq :- c, pq ; rq :- c, qq ; i :- not c ;
pr ∨ qr :- c ; rr :- c, pr ; rr :- c, qr

Note that given a strong programP andS ⊆ BP , the construction ofP tr
S can be

done in polynomial time (w.r.t. the size ofP). The answer sets of the transformed pro-
gram consist of all combinations (of size|S|) of answer sets of the original program
(augmented byc) plus the special answer set{i} which we shall use to indicate incon-
sistency ofP .

Proposition 1. For a strong propositional programP and a setS ⊆ BP , AS(P tr
S) =

A ∪ {{i}}, where

A = {

|S|
⋃

i=1

Ai ∪ {c} | 〈A1, . . . , A|S|〉 ∈
∏

a∈S

AS(P)a}.

Note that
∏

denotes the Cartesian product in Proposition 1.

Example 2.ForΦ of Example 1, we obtain thatAS(Φtr
BΦ

) consists of{i} plus (copies
of {q, r} are underlined for readability)

{c, pp, rp, pq, rq , pr, rr}, {c, qp, rp, pq, rq, pr, rr}, {c, pp, rp, qq, rq, pr, rr},
{c, pp, rp, pq, rq , qr, rr}, {c, qp, rp, qq, rq, pr, rr}, {c, qp, rp, pq, rq , qr, rr},
{c, pp, rp, qq, rq, qr, rr}, {c, qp, rp, qq, rq, qr, rr}.

Using this transformation, each answer set encodes an association of an atom with
some answer set of the original program. If an atoma is a brave consequence of the
original program, then a witnessing answer set exists, which contains the atomaa. The
idea is now to prefer those atom-answer set associations where the answer set is a
witness. We do this by means of weak constraints and penalizeeach association where
the atom is not in the associated answer set, that is, whereaa is not in the answer set
of the transformed program. Doing this for each atom means that an optimal answer set
will not containaa only if there is no answer set of the original program that contains
a, so eachaa contained in an optimal answer set is a brave consequence of the original
program.

Definition 3. Given a strong propositional programP andS ⊆ BP , let

P bc
S = P tr

S ∪ {:∼ not aa | a ∈ S} ∪ {:∼ i}

Observe that all weak constraints are violated in the special answer set{i}, while in
the answer set{c} (which occurs if the original program has an empty answer set) all
but :∼ i are violated. The following result would also hold without:∼ i being included.

Proposition 2. Given a strong propositional programP andS ⊆ BP , for anyA ∈
AS(P bc

S), {a | aa ∈ A} = BC(P) ∩ S.

Example 3.For the programΦ as given Example 1,Φbc
BΦ

is given byΦtr
BΦ

∪ {:∼

not pp ; :∼ not qq ; :∼ not rr ; :∼ i}. We obtain thatAS(Φbc
BΦ

) = {A1, A2},
whereA1 = {c, pp, rp, qq, rq , pr, rr} andA2 = {c, pp, rp, qq, rq , qr, rr}, as these two
answer sets are the only ones that violate no weak constraint. We can observe that
{a | aa ∈ A1} = {a | aa ∈ A2} = {p, q, r} = BC(Φ).

Concerning cautious consequences, we first observe that if aprogram is inconsistent
(in the sense that it does not have any answer set), each atom is a cautious consequence.
But if P is inconsistent, thenP tr

S will have only{i} as an answer set, so we will need
to find a suitable modification in order to deal with this in thecorrect way. In fact, we
can use a similar approach as for brave consequences, but penalize those associations
where an atom is contained in its associated answer set. Any optimal answer set will
thus containaa for an atom only ifa is contained in each answer set. If an answer
set containingi exists, it is augmented by all atomsaa, which also causes all weak
constraints to be violated.

Definition 4. Given a strong propositional programP andS ⊆ BP , let

P cc
S = P tr

S ∪ {:∼ aa | a ∈ S} ∪ {aa :- i | a ∈ S} ∪ {:∼ i}

As for P bc
S , the following result also holds without including:∼ i.

Proposition 3. Given a strong propositional programP andS ⊆ BP , for anyA ∈
AS(P cc

S), {a | aa ∈ A} = CC(P) ∩ S.

Example 4.Recall programΦ from Example 1. We haveΦcc
BΦ

= Φtr
BΦ

∪ {:∼ pp ; :∼
qq ; :∼ rr ; pp :- i ; qq :- i ; rr :- i ; :∼ i}. We obtain thatAS(Φcc

BΦ
) = {A3, A4},

whereA3 = {c, qp, rp, pq, rq , pr, rr} andA4 = {c, qp, rp, pq, rq , qr, rr}, as these two
answer sets are the only ones that violate only one weak constraint, namely:∼ rr. We
observe that{a | aa ∈ A3} = {a | aa ∈ A4} = {r} = CC(Φ).

We next consider the notion of definite consequences. Different to cautious conse-
quences, we do not add the annotated atoms to the answer set containingi. However,
this answer set should never be among the optimal ones unlessit is the only one. There-
fore we inflate it by new atomsia, all of which incur a penalty. This guarantees that this
answer set will incur a higher penalty (|BP | + 1) than any other (≤ |BP |).

Definition 5. Given a strong propositional programP andS ⊆ BP , let

P dc
S = P tr

S ∪ {:∼ aa; ia :- i; :∼ ia | a ∈ S} ∪ {:∼ i}

Proposition 4. Given a strong propositional programP andS ⊆ BP , for anyA ∈
AS(P dc

S), {a | aa ∈ A} = DC(P) ∩ S.

Example 5.Recall programΦ from Example 1. We haveΦdc
BΦ

= Φtr
BΦ

∪ {:∼ pp ; :∼
qq ; :∼ rr ; ip :- i ; iq :- i ; ir :- i :∼ ip ; :∼ iq ; :∼ ir ; :∼ i}. As in
Example 4,A3 andA4 are the only ones that violate only one weak constraint, namely
:∼ rr, and thus are the answer sets ofΦdc

BΦ
.

Obviously, one can compute all brave, cautious, or definite consequences of a pro-
gram by choosingS = BP . We also note that the programs from Definitions 3, 4 and
5 yield multiple answer sets. However each of these yields the same atomsaa, so it is
sufficient to compute one of these. The programs could be extended in order to admit
only one answer set by suitably penalizing all atomsab (a 6= b). To avoid interference
with the weak constraints already used, these additional weak constraints would have
to pertain to a different level.

4 Non-Ground Manifold Programs

We now generalize the techniques introduced in Section 3 to non-ground strong pro-
grams. In principle, one could annotate each predicate (rather than atom as in Sec-
tion 3) with ground atoms of a subset of the Herbrand Base. However, one can also
move the annotations to the non-ground level: For example, instead of annotating a
rule p(X, Y) :- q(X, Y) by the set{r(a), r(b)} yielding pr(a)(X, Y) :- qr(a)(X, Y)
and pr(b)(X, Y) :- qr(b)(X, Y) we will annotate using only the predicater and ex-
tend the arguments ofp, yielding the compact ruledr

p(X, Y, Z) :- dr
q(X, Y, Z) (we

use predicate symbolsdr
p anddr

q rather thanpr andqr just for pointing out the dif-
ference between annotation by predicates versus annotation by ground atoms). In this
particular example we have assumed that the program is to be annotated by all ground
instances ofr(Z); we will use this assumption also in the following for simplifying
the presentation. In practice, one can clearly add atoms to the rule body for restrict-
ing the instances of the predicate by which we annotate, in the example this would
yield pr(X, Y, Z) :- qr(X, Y, Z), dom(Z) where the predicatedom should be defined
appropriately. In the following, recall thatα(p) denotes the arity of a predicatep.

Definition 6. Given an atoma = p(t1, . . . , tn) and a predicateq, let atr
q be the atom

dq
p(t1, . . . , tn, X1, . . . , Xα(q)) whereX1, . . . , Xα(q) are fresh variables anddq

p is a new
predicate symbol withα(dq

p) = α(p)+α(q). Furthermore, given a setL of literals, and
a predicateq, letLtr

q be{atr
q | atoma ∈ L} ∪ {not atr

q | not a ∈ L}.

Note that we assume that even though the variablesX1, . . . , Xα(q) are fresh, they
will be the same for eachatr

q . One could define similar notions also for partially ground
atoms or for sets of atoms characterized by a collection of defining rules, from which
we refrain here for the ease of presentation. We define the manifold program in analogy
to Definition 2, the only difference being the different way of annotating.

Definition 7. Given a strong programP and a setS of predicates, define itsmanifold
as

P tr
S =

⋃

r∈P

{H(r)tr
q :- {c} ∪ B(r)tr

q | q ∈ S} ∪ {c :-not i ; i :-not c}.

Example 6.Consider programΨ = {p(X) ∨ q(X) :- r(X); ; r(a) :- ; r(b) :- } for
which AS(Ψ) = {{p(a), p(b), r(a), r(b)}, {p(a), q(b), r(a), r(b)}, {q(a), p(b), r(a),
r(b)}, {q(a), q(b), r(a), r(b)}}. Hence,BC(Ψ) = {p(a), p(b), q(a), q(b), r(a), r(b)}
andCC(Ψ) = DC(Ψ) = {r(a), r(b)}. Forming the manifold forS = {p}, we obtain

Ψ tr
S =

{

dp
p(X, X1) ∨ dp

q(X, X1) :- dp
r(X, X1), c ;

dp
r(a, X1) :- c ; dp

r(b, X1) :- c ; c :- not i ; i :- not c

}

AS(Ψ tr
S) consists of{i} plus 16 answer sets, corresponding to all combinations of the

4 answer sets inAS(Ψ).

Now we are able to generalize the encodings for brave, cautious, and definite con-
sequences. These definitions are direct extensions of Definitions 3, 4, and 5, the dif-
ferences are only due to the non-ground annotations. In particular, the diagonalization
atomsaa should now be written asdp

p(X1, . . . , Xα(p), X1, . . . , Xα(p)) which represent
the set of ground instances ofp(X1, . . . , Xα(p)), each annotated by itself. So, a weak
constraint:∼ dp

p(X1, . . . , Xα(p), X1, . . . , Xα(p)) gives rise to{:∼ dp
p(c1, . . . , cα(p),

c1, . . . , cα(p)) | c1, . . . , cα(p) ∈ U} whereU is the Herbrand base of the program in
question, that is one weak constraint for each ground instance annotated by itself.

Definition 8. Given a strong programP and a setS of predicate symbols, let

P bc
S = P tr

S ∪ {:∼ not ∆q | q ∈ S} ∪ {:∼ i}

P cc
S = P tr

S ∪ {:∼ ∆q; ∆q :- i | q ∈ S} ∪ {:∼ i}

P dc
S = P tr

S ∪ {:∼ ∆q; Iq :- i; :∼ Iq | q ∈ S} ∪ {:∼ i}

where∆q = dq
q(X1, . . . , Xα(q), X1, . . . , Xα(q)) andIq = iq(X1, . . . , Xα(q)).

Proposition 5. Given a strong programP and a setS of predicates, for an arbitrary
A ∈ AS(P bc

S), (resp.,A ∈ AS(P cc
S), A ∈ AS(P dc

S)), the set{p(c1, . . . , cα(p)) |
dp

p(c1, . . . , cα(p), c1, . . . , cα(p)) ∈ A} is the set of brave (resp., cautious, definite) con-
sequences ofP with a predicate inS.

Example 7.Consider againΨ andS = {p} from Example 6. We obtainΨ bc
S = Ψ tr

S ∪
{:∼ not dp

p(X1, X1) ; :∼ i} and we can check thatAS(Ψ bc
S) consists of the sets

R∪{dp
p(a, a), dp

p(b, b), d
p
q(a, b), dp

q(b, a)}, R∪{dp
p(a, a), dp

p(b, b), d
p
p(a, b), dp

q(b, a)},

R∪{dp
p(a, a), dp

p(b, b), d
p
q(a, b), dp

p(b, a)}, R∪{dp
p(a, a), dp

p(b, b), d
p
p(b, a), dp

p(b, a)};

whereR = {dp
r(a, a), dp

r(a, b), dp
r(b, a), dp

r(b, b)}. For eachA of these answer sets we
obtain{p(t) | dp

p(t, t) ∈ A} = {p(a), p(b)} which corresponds exactly to the brave
consequences ofΨ with a predicate ofS = {p}.
For cautious consequences,Ψ cc

S = Ψ tr
S ∪ {:∼ dp

p(X1, X1) ; dp
p(X1, X1) :- i ; :∼ i}

and we can check thatAS(Ψ cc
S) consists of the sets

R∪{dp
q(a, a), dp

q(b, b), d
p
q(a, b), dp

q(b, a)}, R∪{dp
q(a, a), dp

q(b, b), d
p
p(a, b), dp

q(b, a)},

R∪{dp
q(a, a), dp

q(b, b), d
p
q(a, b), dp

p(b, a)}, R∪{dp
q(a, a), dp

q(b, b), d
p
p(b, a), dp

p(b, a)};

whereR = {dp
r(a, a), dp

r(a, b), dp
r(b, a), dp

r(b, b)}. For eachA of these answer sets we
obtain{p(t) | dp

p(t, t) ∈ A} = ∅ and indeed there are no cautious consequences ofΨ

with a predicate ofS = {p}.
Finally, for definite consequences,Ψdc

S = Ψ tr
S ∪ {:∼ dp

p(X1, X1) ; ip(X1) :- i ; :∼

ip(X1) ; :∼ i}. It is easy to see thatAS(Ψdc
S) = AS(Ψ cc

S) and so{p(t) | dp
p(t, t) ∈

A} = ∅ for each answer setA of Ψdc
S , and indeed there is also no definite consequence

of Ψ with a predicate ofS = {p}.

These definitions exploit the fact that the semantics of non-ground programs is de-
fined via their grounding with respect to their Herbrand Universe. So the fresh variables
introduced in the manifold will give rise to one copy of a rulefor each ground atom.

In practice, ASP systems usually require rules to be safe, that is, that each variable
occurs (also) in the positive body. The manifold for a set of predicates may therefore
contain unsafe rules (because of the fresh variables). But this can be repaired by adding
a domain atomdomq(X1, . . . , Xm) to a rule which is to be annotated withq. This
predicate can in turn be defined by a ruledomq(X1, . . . , Xm) :-u(X1), . . . , u(Xm)
whereu is defined using{u(c) | c ∈ UP }. One can also provide smarter definitions for
domq by using a relaxation of the definition forq.

We also observe that ground atoms that are contained in all answer sets of a pro-
gram need not be annotated in the manifold. Note that these are essentially the cautious
consequences of a program and therefore determining all of those automatically before
rewriting does not make sense. But for some atoms this property can be determined
only by the structure of the program. For instance, facts will be in all answer sets. In
the sequel we will not annotate extensional atoms (those defined only by facts) in order
to obtain more concise programs. One could also go further and omit the annotation of
atoms which are defined using nondisjunctive stratified programs.

As an example, we present an ASP encoding for boolean satisfiability and then cre-
ate its manifold program for resolving the following problem: Given a propositional
formula in CNFϕ, compute all atoms which are true in all models ofϕ. We provide a
fixed program which takes a representation ofϕ as facts as input. To apply our method
we first require a program whose answer sets are in a one-to-one correspondence to the
models ofϕ. To start with, we fix the representation of CNFs. Letϕ (over atomsA) be
of the form

∧n
i=1 ci. Then,Dϕ = {at(a) | a ∈ A} ∪ {cl(i) | 1 ≤ i ≤ n} ∪ {pos(a, i) |

atoma occurs positively inci} ∪ {neg(a, i) | atoma occurs negatively inci}. We con-
struct programSAT as the set of the following rules.

true(X) :-not false(X), at(X); false(X) :-not true(X), at(X);

ok (C) :- true(X), pos(C, X); ok (C) :- false(X), neg(C, X); :- not ok (C), cl(C).

It can be checked that the answer sets ofSAT∪Dϕ are in a one-to-one correspondence
to the models (overA) of ϕ. In particular, for any modelI ⊆ A of ϕ there exists an
answer setM of SAT ∪ Dϕ such thatI = {a | true(a) ∈ M}. We now consider
SATcc

{true} which consists of the following rules.

dtrue
true(X, Y) :- c, not dtrue

false(X, Y), at(X); c :- not i; i :- not c;

dtrue
false(X, Y) :- c, not dtrue

true(X, Y), at(X); :- c, not dtrue
ok (C, Y), cl(C);

dtrue
ok (C, Y) :- c, dtrue

true(X, Y), pos(C, X); :∼ dtrue
true(X, X); :∼ i;

dtrue
ok (C, Y) :- c, dtrue

false(X, Y), neg(C, X); dtrue
true(X, X) :- i.

Given Proposition 5, it is easy to see that, given some answersetA of SATcc
{true}∪Dϕ,

{a | dtrue
true(a, a) ∈ A} is precisely the set of atoms which are true in all models ofϕ.

5 Applications

In this section, we put our technique to work and show how to use meta-reasoning over
answer sets for two application scenarios. The first one is a well-known problem from

propositional logic, and we will reuse the example from above. The second example
takes a bit more background, but presents a novel method to compute ideal extensions
for argumentation frameworks.

5.1 The Unique Minimal Model Problem

As a first example, we show how to encode the problem of deciding whether a given
propositional formulaϕ has a unique minimal model. This problem is known to be
in ΘP

2 and to beco-NP-hard (the exact complexity is an open problem). LetI be the
intersection of all models ofϕ. Thenϕ has a unique minimal model iffI is also a
model ofϕ. We thus use our example from the previous section, and definethe pro-
gramUNIQUE asSATcc

{true} augmented by rulesok(C) :-dtrue
true(X, X), pos(C, X);

ok (C) :- not dtrue
true(X, X), neg(C, X); :-not ok(C), cl(C).

Theorem 1. For any CNF formulaϕ, it holds thatϕ has a unique minimal model, if
and only if programUNIQUE ∪ Dϕ has at least one answer set.

A slight adaption of this encoding allows us to formalize CWA-reasoning [10] over
a propositional knowledge baseϕ, since the atomsa in ϕ, for which the corresponding
atomsdtrue

true(a, a) are not contained in an answer set ofSATcc
{true} ∪ Dϕ, are exactly

those which are added negated toϕ for CWA-reasoning.

5.2 Computing the Ideal Extension

Our second example is from the area of argumentation, where the problem of computing
the ideal extension [12] of an abstract argumentation framework was recently shown
to be complete forFPNP

|| in [14]. Thus, this task cannot be compactly encoded via
normal programs (under usual complexity theoretic assumptions). On the other hand,
the complexity shows that employing disjunction is not necessary, if one instead uses
weak constraints. We first give the basic definitions following [15].

Definition 9. An argumentation framework (AF)is a pair F = (A, R) whereA ⊆ U
is a set of arguments andR ⊆ A × A. (a, b) ∈ R means thata attacksb. An argument
a ∈ A is defendedbyS ⊆ A (in F) if, for eachb ∈ A such that(b, a) ∈ R, there exists
a c ∈ S, such that(c, b) ∈ R. An argumenta is admissible (inF) w.r.t. a setS ⊆ A if
eachb ∈ A which attacksa is defended byS.

Semantics for argumentation frameworks are given in terms of so-called extensions.
The next definitions introduce two such notions which also underly the concept of an
ideal extension.

Definition 10. Let F = (A, R) be an AF. A setS ⊆ A is said to beconflict-free (in
F), if there are noa, b ∈ S, such that(a, b) ∈ R. A setS is anadmissible extensionof
F , if S is conflict-free inF and eacha ∈ S is admissible inF w.r.t. S. The collection
of admissible extensions is denoted byadm(F). An admissible extensionS of F is a
preferred extensionof F , if for eachT ∈ adm(F), S 6⊂ T . The collection of preferred
extensions ofF is denoted bypref (F).

Definition 11. Let F be an AF. A setS is called ideal for F , if S ∈ adm(F) and
S ⊆

⋂

T∈pref (F) T . A maximal (w.r.t. set-inclusion) ideal set ofF is called anideal
extensionof F .

It was shown that for each AFF , a unique ideal extension exists. In [14], the fol-
lowing algorithm to compute the ideal extension of an AFF = (A, R) is proposed. Let
X−

F = A \
⋃

S∈adm(F) S andX+
F = {a ∈ A | ∀b, c : (b, a), (a, c) ∈ R ⇒ b, c ∈

X−
F } \ X−

F , and define an AFF ∗ = (X+
F ∪ X−

F , R∗) whereR∗ = R ∩ {(a, b), (b, a) |
a ∈ X+

F , b ∈ X−
F }. F ∗ is a bipartite AF in the sense thatR∗ is a bipartite graph.

Proposition 6 ([14]).The ideal extension of AFF is given by
⋃

S∈adm(F∗)(S ∩ X+
F).

The set of all admissible atoms for a bipartite AFF can be computed in polynomial
time using Algorithm 1 of [16]. This is basically a fixpoint iteration identifying argu-
ments inX+

F that cannot be in an admissible extension: First, argumentsin X0 = X+
F

are excluded, which are attacked by unattacked arguments (which are necessarily in
X−

F), yieldingX1. Now, arguments inX−
F may be unattacked byX1, and all arguments

in X1 attacked by such newly unattacked arguments should be excluded. This process is
iterated until either no arguments are left or no more argument can be excluded. There
may be at most|X+

F | iterations in this process.
We exploit this technique to formulate an ASP-encodingIDEAL. We first report a

program the answer sets of which characterize admissible extensions. Then, we use the
brave manifold of this program in order to determine all arguments contained in some
admissible extension. Finally, we extend this manifold program in order to identifyF ∗

and to simulate Algorithm 1 of [16].
The argumentation frameworks will be given toIDEAL as sets of input facts. Given

an AFF = (A, R), letDF = {a(x) | x ∈ A}∪{r(x, y) | (x, y) ∈ R}. ProgramADM,
given by the rules below, computes admissible extensions (cf. [17, 18]):

in(X) :-not out(X), a(X); out(X) :-not in(X), a(X); def(X) :- in(Y), r(Y, X);

:- in(X), in(Y), r(X, Y); :- in(X), r(Y, X), not def(Y).

Indeed one can show that, given an AFF , the answer sets ofADM ∪ DF are
in a one-to-one correspondence to the admissible extensions of F via thein(·) predi-
cate. In order to determine the brave consequences ofADM for predicatein, we form
ADMbc

{in}, and extend it by collecting all brave consequences ofADM ∪ DF in predi-
catein(·), from which we can determineX−

F (represented byin−(·)), X+
F (represented

by in+(·), using auxiliary predicatenot in+(·)), andR∗ (represented byq(·, ·)).

in(X) :-din
in(X,X); in−(X) :- a(X), not in(X); in+(X) :- in(X), not not in+(X);

not in+(X) :- in(Y), r(X,Y); not in+(X) :- in(Y), r(Y ,X);

q(X,Y) :- r(X,Y), in+(X), in−(Y); q(X,Y) :- r(X,Y), in−(X), in+(Y).

In order to simulate Algorithm 1 of [16], we use the elements in X+
F for marking

the iteration steps. To this end, we use an arbitrary order< on ASP constants (all ASP
systems provide such a predefined order) and define successor, infimum and supremum
among the constants representingX+

F w.r.t. the order<.

nsucc(X,Z) :- in+(X), in+(Y), in+(Z), X<Y, Y <Z;

succ(X, Y) :- in+(X), in+(Y), X<Y, not nsucc(X, Y);

ninf(Y) :- in+(X), in+(Y), X<Y ; nsup(X) :- in+(X), in+(Y), X<Y ;

inf(X) :- in+(X), not ninf(X); sup(X) :- in+(X), not nsup(X).

We now use this to iteratively determine arguments that are not in the ideal exten-
sion, usingnid(·, ·), where the first argument is the iteration step. In the first iteration
(identified by the infimum) all arguments inX+

F which are attacked by an unattacked
argument are collected. In subsequent iterations, all arguments from the previous steps
are included and augmented by arguments that are attacked byan argument not attacked
by arguments inX+

F that were not yet excluded in the previous iteration. Finally, ar-
guments in the ideal extension are those that are not excluded from X+

F in the final
iteration (identified by the supremum).

att0(X) :- q(Y ,X); atti(J,Z) :- q(Y ,Z), in+(Y), not nid(J,Y), in+(J);

ideal(X) :- in+(X), sup(I), not nid(I,X); nid(I,Y) :- succ(J,I), nid(J,Y);

nid(I,Y) :- inf(I), q(Z,Y), in+(Y), not att0(Z);

nid(I,Y) :- succ(J,I), q(Z,Y), in+(Y), not atti(J,Z).

If we put ADMbc
{in} and all of these additional rules together to form the program

IDEAL, we obtain the following result:

Theorem 2. LetF be an AF andA ∈ AS(IDEAL∪DF). Then, the ideal extension of
F is given by{a | ideal(a) ∈ A}.

6 Conclusion

In this paper, we provided a novel method to rewrite ASP-programs in such a way that
reasoning over all answer sets of the original program can beformulated within the
same program. Our method exploits the well-known concept ofweak constraints. We
illustrated the impact of our method by encoding the problems of (i) deciding whether
a propositional formula in CNF has a unique minimal model, and (ii) computing the
ideal extension of an argumentation framework. Known complexity results witness that
our encodings are adequate in the sense that efficient ASP encodings without weak
constraints or similar constructs are assumed to be infeasible.

The manifold program for cautious consequences is also closely related to the con-
cept of data disjunctions [19] (this paper also contains a detailed discussion about the
complexity classΘP

2 and related classes for functional problems). Related workhas
also been done in the area of default logic, where a method forreasoning within a
single extension has been proposed [20]. That method uses set-variables which charac-
terize the set of generating defaults of the original extensions. Such an approach differs
considerably from ours as it encodes certain aspects of the semantics (which ours does
not), which puts it closer to meta-programming (cf. [21]).

As future work, we are interested in developing a suitable language for expressing
reasoning with brave, cautious and definite consequences, allowing also for mixing dif-
ferent reasoning modes. This language should serve as a platform for natural encodings

of problems in complexity classesΘP
2 , ΘP

3 , FPNP
|| , andFP

ΣP

2

|| . Moreover, we intend
studying the use of alternative preferential constructs inplace of weak constraints.

References

1. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: The Logic Programming Paradigm – A 25-Year Perspective. (1999) 375–
398

2. Niemelä, I.: Logic programming with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell.25(3–4) (1999) 241–273

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. CUP
(2002)

4. Gelfond, M.: Representing knowledge in A-Prolog. In: Computational Logic: From Logic
Programming into the Future. LNCS 2408, (2002) 413–451

5. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first
answer set programming system competition. In: LPNMR’07. LNCS 4483, (2007) 3–17

6. Bravo, L., Bertossi, L.E.: Logic programs for consistently querying data integration systems.
In: IJCAI 2003,(2003) 10–15

7. Saccà, D.: Multiple total stable models are definitely needed to solve unique solution prob-
lems. Inf. Process. Lett.58(5) (1996) 249–254

8. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints. IEEE
Trans. Knowl. Data Eng.12(5) (2000) 845–860

9. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G.,Perri, S., Scarcello, F.: The dlv
system for knowledge representation and reasoning. ACM Trans. Comput. Log.7(3) (2006)
499–562

10. Reiter, R.: On closed world data bases. In: Logic and Databases. Plenum Press (1978) 55–76
11. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell.

171(10-15) (2007) 619–641
12. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. Intell.

171(10-15) (2007) 642–674
13. Gelfond, M., Lifschitz, V.: Classical negation in logicprograms and disjunctive databases.

New Generation Comput.9(3/4) (1991) 365–386
14. Dunne, P.E.: The computational complexity of ideal semantics I: Abstract argumentation

frameworks. In: COMMA’08, IOS Press (2008) 147–158
15. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Artif. Intell. 77(2) (1995) 321–358
16. Dunne, P.E.: Computational properties of argument systems satisfying graph-theoretic con-

straints. Artif. Intell.171(10-15) (2007) 701–729
17. Osorio, M., Zepeda, C., Nieves, J.C., Cortés, U.: Inferring acceptable arguments with answer

set programming. In: ENC 2005 (2005) 198–205
18. Egly, U., Gaggl, S., Woltran, S.: Answer-set programming encodings for argumentation

frameworks. In: Proceedings ASPOCP’08. (2008)
19. Eiter, T., Veith, H.: On the complexity of data disjunctions. Theor. Comput. Sci.288(1)

(2002) 101–128
20. Delgrande, J.P., Schaub, T.: Reasoning credulously andskeptically within a single extension.

Journal of Applied Non-Classical Logics12(2) (2002) 259–285
21. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Computing preferred answer sets by meta-

interpretation in answer set programming. TPLP3(4-5) (2003) 463–498

