Answer-Set Programming Encodings for Argumentation
Frameworks

Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran

Institut fur Informationssysteme, Technische Univéitsiien,
Favoritenstrafle 9-11, A—1040 Vienna, Austria

Abstract. We present reductions from Dung’s argumentation framewa)
and generalizations thereof to logic programs under thevaemset semantics.
The reduction is based on a fixed disjunctive datalog proditam interpreter)
and its input which is the only part depending on the AF to psac We discuss
the reductions, which are the basis for the system ASPART Ideitail and show
their adequacy in terms of computational complexity.

1 Motivation

Dealing with arguments and counter-arguments in discoss®a daily life process.
We usually employ this process to convince our opponent topoint of view. As
everybody knows, this is sometimes a cumbersome activitplre we miss a formal
reasoning procedure for argumentation.

This problem is not new. Leibniz (1646—1716) was the first wiex to deal with
arguments and their processing by reasoning in a more fomaalHe proposed to use
alingua characteristicda knowledge representation (KR) language) to formalige-ar
ments and &alculus ratiocinatora deduction system) to reason about them. Although
Leibniz’s dream of a complete formalization of science westbyed in the thirties of
the last century, restricted versions of Leibniz’s dreanvised.

In Artificial Intelligence (Al), the area of argumentatioseg [1] for an excellent
summary) has become one of the central issues within thedéside, providing a
formal treatment for reasoning problems arising in a nunolberteresting applications
fields, including Multi-Agent Systems and Law Research. futshell, argumentation
frameworks formalize statements together with a relatienading rebuttals between
them, such that the semantics gives an abstract handleve @ inherent conflicts
between statements by selecting admissible subsets of fftereasoning underlying
such argumentation frameworks turned out to be a very gepéreiple capturing
many other important formalisms from the areas of Al and Kiedlge Representations.

The increasing interest in argumentation led to numeroopg®als for formaliza-
tions of argumentation. These approaches differ in mangaspFirst, there are several
ways how “admissibility” of a subset of statements can beneelfi second, the notion
of rebuttal has different meanings (or even additionati@tehips between statements
are taken into account); finally, statements are augmenitedoniorities, such that the
semantics yields those admissible sets which containmnséates of higher priority.

Argumentation problems are in general intractable, thugldping dedicated al-
gorithms for the different reasoning problems is non-alivA promising approach to

implement such systems is to use a reduction method, whegén problemis trans-
lated into another language, for which sophisticated systdready exist. Earlier work
[2, 3] proposed reductions for basic argumentation franmks/to (quantified) proposi-

tional logic. In this work, we present solutions for reasmproblems in different types
of argumentation frameworks by means of computing the ansets of a datalog pro-
gram. To be more specific, the system is capable to compuiedkeimportant types of

extensions (i.e., admissible, preferred, stable, corapdetd grounded) in Dung’s origi-
nal framework [4], the preference-based argumentatiandraork [5], the value-based
argumentation framework [6], and the bipolar argumentaefiamework [7, 8]. Hence

our system can be used by researchers to compare diffegemantation semantics on
concrete examples within a uniform setting. In fact, inigegions on the relationship
between different argumentation semantics has receiwedaning interest lately [9].

The declarative programming paradigm Afiswer-Set Programmin@ASP) [10,
11] under the stable-models semantics [12] (which is owgeiaformalism) is espe-
cially well suited for our purpose. First, advanced sohsrsh as Smodels, DLV, GnT,
Cmodels, Clasp, or ASSAT which are able to deal with largéj@m instances (see
[13]) are available. Thus, using the proposed reductiorhotetelegates the burden
of optimizations to these systems. Second, language éatensan be used to employ
different extensions to AFs, which so far have not been studior instance, weak
constraints or aggregates could yield interesting spgdilored problems for AFs).
Finally, depending on the class of the program one uses fowea gype of extension,
one can show that, in general, the complexity of evaluatitthimthe target formalism
is of the same complexity as the original problem. Thus, ppraach is adequate from
a complexity-theoretic point of view.

With the fixed logic program (independent from the concreffd@d\process), we are
more in the tradition of a classical implementation, beeaus construct an interpreter
in ASP which processes the AF given as input. This is in cehtmg e.g., the reductions
to (quantified) propositional logic [2, 3], where one obs@formula which completely
depends on the AF to process. Although there is no advantate enterpreter ap-
proach from a theoretical point of view (as long as the reduastare polynomial-time
computable), there are several practical ones. The irtpis easier to understand,
easier to debug, and easier to extend. Additionally, pipyiroperties like correspon-
dence between answer sets and extensions is simpler. Marelog input AF can be
changed easily and dynamically without translating the lefarmula which simplifies
the answering of questions like “What happens if | add this aEgument?”.

Our system makes use of the prominent answer-set solver D@V All necessary
programs to run ASPARTIX and some illustrating examplessaeglable at

http://www.kr.tuwien.ac.at/research/systems/arguatem/

2 Preliminaries

In this section, we first give a brief overview of the syntaxi@emantics of disjunctive
datalog under the answer-sets semantics [12]; for furthekdround, see [10, 14].

We fix a countable sét of (domain) elementslso calledconstantsand suppose a
total order< over the domain elements. Agtomis an expressiop(t, . . .,t,), where

p is apredicateof arity n > 0 and eacli; is either a variable or an element frém An
atom isgroundif it is free of variables. ByB;, we denote the set of all ground atoms
overly.

A (disjunctive) ruler is of the form

a; V - Voay - by,... bk, notbgy1,..., notby,

withn >0,m >k > 0,n+m > 0,and whereiq,...,a,,by,...,b, are atoms, and
“not” stands fordefault negationThe headof r is the setH (r) = {a4,...,a,} and
thebodyof r is B(r) = {b1,..., bk, not bgi1,..., not by }. Furthermore B*(r) =
{b1,...,bptandB~(r) ={bg+1,--.,bm }. Arulerisnormalif n < 1 and aconstraint
if n = 0. A rule r is safeif each variable in- occurs inB*(r). A rule r is groundif
no variable occurs in. A factis a ground rule without disjunction and empty body. An
(input) databases a set of facts. A program is a finite set of disjunctive rulésr a
programP and an input databade, we often writeP (D) instead ofD U P. If each
rule in a program is normal (resp. ground), we call the prognarmal (resp. ground).
A programP is calledstratifiedif there exists an assignmeat-) of integers to the
predicates irfP, such that for each € P, the following holds: If predicate occurs
in the head of- and predicate occurs (i) in the positive body of, thena(p) > a(q)
holds; (ii) in the negative body of, thena(p) > a(q) holds.

For any progran®, letUp be the set of all constants appearinfrtif no constant
appearsirP, an arbitrary constantis addedie). Gr(P) is the set of rulesos obtained
by applying, to each rule € P, all possible substitutions from the variables i to
elements ot/p.

An interpretation/ C By, satisfiesa ground ruler iff H(r) NI # (whenever
BT(r) C TandB~(r) NI = (. I satisfies a ground progra, if eachr € P is
satisfied byl. A non-ground rule- (resp., a prograr®) is satisfied by an interpretation
I iff I satisfies all groundings of (resp.,Gr(P)). I C By, is ananswer sebf P iff it
is a subset-minimal set satisfying tBelfond-Lifschitz reduct

PL={H(r):- B*(r) | INB~(r) = 0,r € Gr(P)}.

For a progranP, we denote the set of its answer setsh§(P).

Credulous and skeptical reasoning in terms of programdiisedtkas follows. Given
a progranP and a set of ground atoms Then, we writeéP =, A (credulous reason-
ing), if A is contained in some answer setRyfwe writeP? =, A (skeptical reasoning),
if A is contained in each answer set/f

We briefly recall some complexity results for disjunctivgilo programs. In fact,
since we will deal with fixed programs we focus on results fataccomplexity. Recall
that data complexity in our context is the complexity of dkieg whetherP(D) = A
when datalog programB are fixed, while input databasésand ground atomd are
an input of the decision problem. Depending on the concrefi@ition of =, we give
the complexity results in Table 1 (cf. [15] and the referexiterein).

stratified programsormal programgeneral cage
E. P NP 5
Es P CONP 115

Table 1. Data Complexity for datalog (all results are completenessits).

3 Encodings of Basic Argumentation Frameworks

In this section, we first introduce the most important semsaribr basic argumentation
frameworks in some detail. In a distinguished section, ves tprovide encodings for
these semantics in terms of datalog programs.

3.1 Basic Argumentation Frameworks

In order to relate frameworks to programs, we use the urelérsf domain elements
also in the following basic definition.

Definition 1. An argumentation framework (AR} a pair ' = (A, R) whereA C U

is a set of arguments an8 C A x A. The pair(a,b) € R means that: attacks (or
defeatsh. A setS C A of argumentslefeatsh (in F), if there is ana € S, such that
(a,b) € R. An argument: € A is defendedoy S C A (in F) iff, for eachb € A, it

holds that, if(b,a) € R, thenS defeatsd (in F).

An argumentation framework can be naturally representeddiscted graph.

Example 1.Let F' = (A, R) be an AF withA = {a,b,¢,d,e} andR = {(a,b), (c,b),
(¢,d), (d,c), (d,e), (e, e)}. The graph representation 8fis the following.

@—*@Q

Fig. 1. Graph of Example 1.

In order to be able to reason about such frameworks, it isssacy to group ar-
guments with special properties ¢xtensionsOne of the basic properties of such an
extension is that the arguments are not in conflict with edlearo

Definition 2. Let F' = (A, R) be an AF. A seb C A is said to beconflict-free (inF),
if there are naa, b € S, such thata,b) € R. We denote the collection of sets which are
conflict-free (inF’) by cf (F').

The first concept of extension, we present aresthble extensionshich are based
on the idea that an extension should not only be internalhsistent but also able to
reject the arguments that are outside the extension.

Definition 3. LetF' = (A, R) be an AF. A sef is astable extensioaf F, if S € ¢f (F)
and eacha € A\ S is defeated by5 in F. We denote the collection all of stable
extensions of’ by stable(F).

The frameworkF' from Example 1 has a single stable extens{and}. Indeed
{a,d} is conflict-free, sincex and d are not adjacent. Moreover, each further ele-
mentb, c, e is defeated by eithet or d. In turn, {a, ¢} for instance is not contained
in stable(F'), although it is clearly conflict free. The obvious reasonhiatt is not
defeated by a, c}.

Stable semantics in terms of argumentation are consideredite restricted. It is
often sufficient to consider those arguments which are abfietend themselves from
external attacks, like the admissible semantics propogé&ling [4]:

Definition 4. Let I = (A, R) be an AF. A sefS is anadmissible extensioaf F, if
S € ¢f(F) and eacha € S is defended by in F'. We denote the collection of all
admissible extensions &f by adm (F).

For the frameworkF” from Example 1, we obtaigdm (F) = {0, {a},{c}, {d},
{a,c}, {a,d}}. By definition, the empty set is always an admissible extenghere-
fore reasoning over admissible extensions is also limiteéact, some reasoning (for
instance, given an AF' = (4, R), anda € A, is a contained in any extension &f)
becomes trivial wrt admissible extensions. Thus, manyaresers consider maximal
(wrt set-inclusion) admissible sets, called preferre@esions, as more important.

Definition 5. Let F' = (4, R) be an AF. A sef is apreferred extensioof F, if S €
adm(F) and for eachS’ € adm(F), S ¢ S’. We denote the collection of all preferred
extensions of” by pref (F').

Obviously, the preferred extensions of framewétkrom Example 1 aréa, ¢} and
{a,d}. We note that each stable extension is also preferred, butahverse does not
hold, as witnessed by this example.

Finally, we introduce complete and grounded extensionshkvbung considered as
skeptical counterparts of admissible and preferred ekdaasrespectively.

Definition 6. Let ' = (A, R) be an AF. A sef is acomplete extensionof F, if S €
adm(F) and, for eachu € A defended bys (in F), a € S holds. The least (wrt set
inclusion) complete extension éfis called thegrounded extensioaf F'. We denote
the collection of all complete (resp., grounded) extersioh?' by comp(F') (resp.,
ground (F)).

The complete extensions of framewaFkfrom Example 1 ar€q, ¢}, {a,d}, and
{a}, with the last being also the grounded extensionE of

We briefly review the complexity of reasoning in AFs. To thimlewe define the
following decision problems for € {stable, adm, pref , comp, ground}:

stable| adm |pref|comp|ground
Cred. || NP | NP | NP| NP P
Skept, || CONP|(trivial)| I} | P P

Table 2. Complexity for decision problems in argumentation framekgo

— Cred.: Given AFF' = (A, R) anda € A. Isa contained in som#' € e(F)?
— Skept,: Given AFF' = (A, R) anda € A. Isa contained in eacli € e(F)?

The complexity results are depicted in Table 2 (many of thetlow implicitly
from [16], for the remaining results and discussions see1&]j. All NP-entries as
well as the coNP-entry and tH&l -entry refer to completeness results. A few further
comments are in order: We already mentioned that skepgealoning over admissi-
ble extensions always is trivially false. Moreover, we ntitat credulous reasoning
over preferred extensions is easier than skeptical reagomnhis is due to the fact that
the additional maximality criterion only comes into play tbe latter task. Indeed for
credulous reasoning the following simple observation reaktear why there is no in-
crease in complexity compared to credulous reasoning alriszible extensionsi
is contained in somé& € adm(F) iff a is contained in somé& € pref (F). A simi-
lar observation immediately shows why skeptical reasopwgr complete extensions
reduces to skeptical reasoning over the grounded exterfSimally, we recall that rea-
soning over the grounded extension is tractable, sincerthenged extension of an AF
F = (A, R) is given by the least fix-point of the operatbf : 24 — 24, defined as
I'r(S) ={a € A|ais defended bys in F'} (see [4]).

3.2 Encodings

We now provide a fixed encoding. for each extension of type introduced so far,
in such a way that the AF" is given as an input databageand the answer sets of
the combined program, (F') are in a certain one-to-one correspondence with the re-
spective extensions. Note that having the fixed programt hand, the only translation
required for a given AF' is thus its reformulation as input, which is very simple (see
below). With some additions, we can of course combine therifit encodings into a
single program, where the user just has to specify which tfmxtensions she wants
to compute.

In most cases, we have to guess candidates for the selepedftgxtensions and
then check whether a guessed candidate satisfies the aomd#sg conditions. We use
unary predicatef(-) andout(-) to make such a guess for a setC A, wherein(a)
represents that € S. Thus the following notion of correspondence is relevaniar
purposes.

Definition 7. Let S C 2 be a collection of sets of domain elements dnd- 25

a collection of sets of ground atoms. We say tBandZ correspond to each other,
in symbolsS = T iff |S| = |Z| and (i) for eachl € Z, there exists arf € S, such
that{a | in(a) € I} = S; and (ii) for eachS € S, there exists ad € Z, such that
{a|in(a) € I} = S.

Let us first determine how an AF is presented to our progranvgpas. In fact, we
encode a given AF' = (A, R) as follows

F = {arg(a) | a € A} U {defeat(a,b) | (a,b) € R}.

The following program fragment guesses, when augmenteﬁ bkyr a given AF
F = (A, R), any subset C A and then checks whether the guess is conflict-fréein

e = { In(X) :- notout(X), arg(X);
out(X):- notin(X),arg(X);
- in(X),in(Y), defeat(X, Y)}.

Proposition 1. For any AFF, ¢f (F) = AS(wa(ﬁ)).
The additional rules for the stability test are as follows:

Tstable = Tep U { defeated(X):- in(Y"), defeat (Y, X);
:- out(X), not defeated(X)}.

The first rule computes those arguments attacked by thentugteess, while the
constraint eliminates those guesses where some argumeocomained in the guess
remains undefeated. This brings us to an encoding for séxitdmsions, which satisfies
the following correspondence result.

~

Proposition 2. For any AFF, stable(F) = AS (Tstapie (F)).
Next, we give the additional rules for the admissibilityttes

Tadm = Tef U { defeated(X) :- in(Y"), defeat(Y, X);
not_defended(X) :- defeat(Y, X), not defeated(Y');
:- in(X), not_defended(X)}.

The first rule is the same as Ny, The second rule derives those arguments
which are not defended by the current guess, i.e., thoseremgis which are defeated
by some other argument, which itself is not defeated by theeatiguess. If such a
non-defended argument is contained in the guess, we halieioae that guess.

~

Proposition 3. For any AFF, adm (F) = AS (7 adm (F)).

We proceed with the encoding for complete extensions, wikialso quite straight-
forward. We define

Teomp = Tadm U { - out(X), not not_defended (X)}.

~

Proposition 4. For any AFF, comp(F) = AS(Tcomp (F)).

We now turn to the grounded extension. Suitably encodingpesatorl », we can
come up with a stratified program which computes this extandiote that here we
are not able to first guess a candidate for the extension arddheck whether the
guess satisfies certain conditions. Instead, we “fill"ithe)-predicate according to the
definition of the operatof'». To compute (without unstratified negation) the required
predicate for being defended, we now make use of the eraeter the domain elements
and we derive corresponding predicates for infimum, supnepamd successor.

e = {(X,Y):- arg(X),arg(Y), X <Y;
nsuce(X, Z) - t(X,Y), (Y, Z);
suce(X,Y) - It(X,Y), not nsucc(X,Y);
ninf(Y) - (X, Y);
inf(X):- arg(X), not ninf (X);
nsup(X) - t(X,Y);
sup(X) :- arg(X), not nsup(X)}.

We now define the desired predicatefended (X) which itself is obtained via a
predicatedefended_upto(X, Y") with the intended meaning that argumefitis de-
fended by the current assignment with respect to all argtsier< Y. In other words,
we let rangeY” starting from the infimum and then using the defined successali-

cate to derivelefended_upto(X,Y") for “increasing”Y". If we arrive at the supremum
element in this way, we finally derivéefended(X). We define

Tdefended = { defended_upto(X,Y) - inf(Y"), arg(X), not defeat(Y, X);
defended_upto(X,Y) :- inf(Y),in(Z), defeat(Z,Y), defeat(Y, X);
defended_upto(X,Y) :- succ(Z,Y), defended_upto(X, Z),

not defeat(Y, X);
defended_upto(X,Y) :- succ(Z,Y), defended _upto(X, Z),
in(V), defeat(V,Y), defeat(Y, X);
defended(X) :- sup(Y’), defended_upto(X,Y)}, and
Tground = T< U Tdefended U {in(X):- defended(X)}

Note thatr g,ounq is indeed stratified.

~

Proposition 5. For any AFF, ground(F) = AS(T ground (F)).

Obviously, we could have used thiefended(-) predicate in previous programs,
especiallyr ., could be defined as

Tef U Tdefended U { - In(X), not defended(X); :- out(X), defended(X)}.

We now continue with the more involved encoding for preféregtensions. Com-
pared to the one for admissible extensions, this encodimgines an additional maxi-
mality test. However, this is sometimes quite complicatertoode (see also [19] for a
thorough discussion on this issue).

In fact, to compute the preferred extensions, we will usetaraion technique as
follows: Having computed an admissible extensiKynve make a second guess using
new predicates, sayN(-) andoutN(-), such that they represent a guéés> S. For
that guess, we will use disjunction (rather than defaulttieg), which allows thaboth
inN(a) andoutN(a) are contained in a possible answer set (under certain conslit
for eacha. In fact, exactly such answer sets will correspond to théepred extension.
The saturation is therefore performed in such a way thatreflipatesinN(a) and
outN(a) are derived, for thos§” which donot characterize an admissible extension.
If this saturation succeeds for eagh > S, we want that saturated interpretation to
become an answer set. This can be done by using a saturagidicgiiespoil, which is
handled via a constraint not spoil. This ensures that only saturated guesses survive.

Such saturation techniques always requires a restricedfusegation. The predi-
cates defined im~ will serve for this purpose. Two new predicates are needextlip
cateeq(-) which indicates whether a gueSsrepresented by atonisN(-) andoutN(+)
is equal to the guess fdt (represented by atonis(-) andout(+)). The second pred-
icate we define isindefeated(X) which indicates thaf(is not defeated by any el-
ement fromS’. Both predicates are computed if.;,.rs Via predicatesq-upto(-)
(resp.undefeated_upto(-, -)) in the same manner as we usédended_upto(-, -) for
defended(-) in the moduler sefenqdes above. To this end let

Fhetpers = 1< U { cqupto(Y) - imf(Y), in(¥), mN(Y);

eq-upto(Y) :- inf(Y), out(Y), outN(Y);

eq-upto(Y) :- bUCC(Z Y),in(Y),inN(Y), equpto(Z2);

eq-upto(Y) :- succ(Z,Y),out(Y), outN(Y), eq_upto(Z2);

eq:- sup(Y), eq_upto(Y);

undefeated_upto(X,Y) :- inf(Y"), owtN(X), outN(Y);

undefeated_upto(X,Y) :- inf(Y"), outN(X), not defeat(Y, X);

undefeated_upto(X,Y) :- succ(Z,Y), undefeated_upto(X, Z),
outN(Y');

undefeated_upto(X,Y) :- succ(Z,Y), undefeated_upto(X, Z),
not defeat (Y, X);

undefeated(X) :- sup(Y'), undefeated_upto(X,Y)}.

b

Tspoit = { INN(X) V outN(X) :- out(X); (@)
inN(X) :- in(X); 2
spoil :- eq; 3)
spoil :- inN(X),inN(Y), defeat(X,Y); 4
spoil :- inN(X), outN(Y"), defeat(Y, X), undefeated(Y); (5)
inN(X) :- spoil, arg(X); (6)
outN(X) :- spoil, arg(X); (7

:- not spoil}. (8)

stable adm pref comp ground
Crede T stable (ﬁ) ':c a Wadm(ﬁ) ':c a 71—adm(ﬁ) ':c a ﬂ—cump(ﬁ) ':c a Wgroq;nd(ﬁ) ': a
Skepte T stable (F) ':5 a (trivial) Wpref(F) ':S Q| ground (F) ': a 7Tgmund(F) ': a

Table 3. Overview of the encodings of the reasoning tasks forlAE (A, R) anda € A.

We define
Tpref = Tadm U T helpers U T spoil -

When joined withF' for some AFF = (A, R), the rules ofrgy,;; Work as follows:
(1) and (2) guess a new sgt C A, which compares to the gueSsC A (characterized
by predicatesn(-) andout(-) as used inr,4,) @asS C S’. In caseS’ = S, we obtain
predicateeq and derive predicatepoil (rule (3)). The remaining guessé&s are now
handled as follows. First, rule (4) derives predicateil if the new guess’ contains a
conflict. Second, rule (5) derivepoil if the new guess’ contains an element which
is attacked by an argument outsidé which itself is undefeated (b$’). Hence, we
derivedspoil for thoseS C S’ where eitherS = S’ or S’ did not correspond to an
admissible extension of’. We now finally spoil up the current guess and derive all
inN(a) andoutN(a) in rules (6) and (7). Recall that due to constraint (8) suddilsg
interpretation are the only candidates for answer setsurfothem into an answer set,
it is however necessary that we spoiledéachS’, such thatS C S’; but by definition
this is exactly the case B is a preferred extension.

Proposition 6. For any AFF, pref (F) = AS(mpyef (F)).
We summarize the results from this section.

Theorem 1. For any AFF ande € {stable, adm, comp, ground, pref }, it holds that
e(F) =2 AS(me(F)).

We note that our encodings adequateén the sense that the data complexity of the
encodings mirrors the complexity of the encoded task. Ity lepending on the chosen
reasoning task, the adequate encodings are depicted ia 3aBecall that credulous
reasoning over preferred extensions reduces to creduasoning over admissible
extensions; and skeptical reasoning over complete extenseduces to reasoning over
the single grounded extension. The only proper disjungiiegram involved isr,,.f,
all other are encodings are disjunction-free. Moreoxg,...q IS stratified. Stratified
programs have at most one answer set, hence there is no ndistiriguish between
=. and|=,. If one now assigns the complexity entries from Table 1 tcetheodings as
depicted in Table 3, one obtains Table 2.

However, we also can encode more involved decision problesing our programs.
As an example consider tH&)’-complete problem o€oherencg17], which decides
whether for a given AR, pref (F) C stable(F) (recall thatpref (F) 2 stable(F)
always holds). We can decide this problem by extendipg; in such a way that an
answer-set ofr,,,..; survives only if it does not correspond to a stable extendiyn

definition, the only possibility to do so, is if some undetshargument is not contained
in the extension.

Corollary 1. The coherence problem for an AFholds iff the program
ﬂ'pmf(ﬁ) U {v:- out(X), not defeated(X); :- notv}

has no answer set.

4 Encodings for Generalizations of Argumentation Framewoks

4.1 Value-Based Argumentation Frameworks

As a first example for generalizing basic AFs, we deal withugabased argumentation
frameworks (VAFs) [6] which themselves generalize the greffice-based argumenta-
tion frameworks [5]. Again we give the definition wrt the ueigel/.

Definition 8. A value-based argumentation framework (VA& 5-tupleF’ = (A, R,
Y, 0, <) whereA C U are argumentsR C A x A, ¥ C U is a non-empty set of
values disjoint from4, o : A — X assigns a value to each argument fram and< is
a preference relation (irreflexive, asymmetric) betwednes

Let< be the transitive closure af. An argument € A defeatsan argumend € A
in F'ifand only if(a,b) € Rand (b, a) ¢<.

Using this notion of defeat, we say in accordance to Definifichat a se C A
of argumentslefeatd (in F), if there is am € S which defeat$. An argument, € A
is defendedy S C A (in F)) iff, for eachb € A, it holds that, ifb defeats: in F', then
S defeats in F. Using these notions of defeat and defense, the definitiof&] ifor
conflict-free sets, admissible extensions, and preferxtghsions are exactly along the
lines of Definition 2, 4, and 5, respectively.

In order to compute these extensions for VAFs we thus only neslightly adapt
the modules introduced in Section 3.2. In fact, we just ovitew” for a VAF F' as

F = {arg(a) | a € A} U {attack(a,b) | (a,b) € R} U
{val(a,o(a)) | a € A} U {valpref(w,v) | v < w};

and we require one further module, which now obtainsditfeat(-, -) relation accord-
ingly:
Toaf = { valpref(X, Z):- valpref(X,Y), valpref (Y, Z);
pref(X,Y) :- valpref(U, V), val(X,U), val(Y, V);
defeat(X,Y) :- attack(X,Y), not pref(Y, X)}

We obtain the following theorem using the new conceptsﬁfmndwwf, as well as
re-usingrmqqm andm,,.; from Section 3.2.

~

Theorem 2. For any VAFF ande € {adm, pref}, e(F) = AS(Tyar U me(F)).

For the other notions of extensions, we can employ our engsdrom Section 3.2
in a similar way. The concrete composition of the modules évav depends on the
exact definitions, and whether they make use of the notion a@dfaat in a uniform
way. In [20], for instance, stable extensions for a VAFare defined as those conflict-
free subset$' of arguments, such that each argument ndf is attacked (rather than
defeated) bys. Still, we can obtain a suitable encoding quite easily usiiregfollowing
redefined module:

Tstable = T U { attacked(X):- in(Y), attack(Y, X);
:- out(X), not attacked(X)}.

~

Theorem 3. For any VAFF, stable(F) = AS(Tyaf U Tstaple (F)).
The coherence problem for VAFs thus can be decided as fallows
Corollary 2. The coherence problem for a VAFholds iff the program
Tpref (F) U {attacked(X) :- in(Y), attack(Y, X);
v:- out(X), not attacked(X); :- notv}

has no answer set.

4.2 Bipolar Argumentation Frameworks

Bipolar argumentation frameworks [7] augment basic AFs bgand relation between
arguments which indicates supports independent from tefea

Definition 9. A bipolar argumentation framework (BAF) is a tupfe = (A, R4, Rs)
whereA C U is a set of arguments, anll; C A x AandR; C A x A are the defeat
(resp., support) relation of".
An argument: defeatsan argumenb in F' if there exists a sequeneg, . .., a,+1
of arguments fromd (for n > 1), such thats; = «a, anda,,+1 = b, and either
— (a4,ai+1) € Rs foreachl <i <n —1and(an,an+1) € Rg; OF
— (a1,a2) € Rqgand(a;,a;41) € R, foreach2 < i < n.

As before, we say that a sét C A defeatsan argumenb in F' if somea € §
defeats; an argument € A is defendedy S C A (in F) iff, for eachb € A, it holds
that, if b defeats: in F', thenS defeats in F. R

Again, we just need to adapt the input databBs&nd incorporate the new defeat-
relation. Other modules from Section 3.2 can then be reusddct, we define for a
given BAFF = (A, Ry, Rs),

ﬁz{arg(a) | a € A} U {attack(a,d) | (a,b) € R4} U {support(a,b) | (a,b) € Rs},
and for the defeat relation we first compute the transitieswte of thesupport(-, -)-
predicate and then defirlefeat(-, -) accordingly.
Thef = { support(X, Z) :- support(X,Y’),support(Y, Z);
defeat(X,Y) :- attack(X,Y);
defeat(X,Y) :- attack(Z,Y), support(X, Z);

):
defeat(X,Y) :- attack(X, Z), support(Z,Y)}.

Following [7], we can use this notion of defeat to define caifiiee sets, stable
extensions, admissible extensions and preferred extesisiaactly along the lines of
Definition 2, 3, 4, and 5, respectively.

~

Theorem 4. For any BAFF ande € {stable, adm, pref}, e(F) = AS(Tpar UTe(F)).

More specific variants of admissible extensions from [7]@b&ained by replacing
the notion a conflict-free set by other concepts.

Definition 10. Let F' = (A, R4, R;) be a BAF andS C A. ThenS is calledsafein F
if for eacha € A, such thatS defeatsa, a ¢ S and there is no sequencs, ..., a,
(n > 2), such that; € S, a, = a, and(a;,a;+1) € Rs, foreachl <i <n — 1. Aset
S is closed undeR; if, for each(a, b) € R;, it holds thata € S if and only ifb € S.

Note that for a BAFE', each safe set (i) is conflict-free (inF'). We also remark
that a setS of arguments is closed undgy; iff S is closed under the transitive closure
of R,.

Definition 11. Let F' = (A, R4, R,) be a BAF. A sef C A is called ans-admissible
extensiorof I if S is safe (inF") and eachs € S is defended by (in F). AsetS C A
is called ac-admissible extensioof F' if S is closed undetR?;, conflict-free (inF),
and eachu € S is defended by (in F). We denote the collection of altadmissible
extensions (resp. of attadmissible extensions) fby sadm (F) (resp. bycadm (F)).

We define now further programs as follows

Tsadm = Tadm U { supported(X) :- in(Y"), support(Y, X);
:- supported(X), defeated(X) }.
Teadm = Tadm U { - support(X,Y),in(X),out(Y);
:- support(X,Y), out(X),in(Y) }.

Finally, one defines-preferred (respe-preferred) extensions as maximal (wrt set-
inclusion)s-admissible (resp:-admissible) extensions.

Definition 12. Let FF = (A, R4, Rs) be a BAF. A se C A is called ans-preferred
extensionof F if S € sadm(F) and for eachS’ € sadm(F), S € S'. Likewise,
a setS C A is called ac-preferred extensioof F' if S € cadm(F') and for each
S" € cadm(F), S € S'. By spref (F) (resp.cpref (F)) we denote the collection of all
s-preferred extensions (resp. of alpreferred extensions) df.

Again, we can reuse parts of thg,.;-program from Section 3.2. The only additions
necessary are to spoil in case the additional requirementg@ated. We define

! These extensions are calléghdmissible and resg-preferred in [7].

Tspref = Tsadm U Thelpers U Tspoil U
{ supported(X):- inN(Y"), support(Y, X);
spoil :- supported(X), defeated(X) }
Tepref = Teadm U Thelpers U Tspoil U
{ spoil:- support(X,Y),inN(X), outN(Y);
spoil :- support(X,Y), outN(X),inN(Y) }.

Theorem 5. For any BAFF ande € {sadm, cadm, spref, cpref }, we havee(F) =

~

AS (Tpap U e (F)).

Slightly different semantics for BAFs occur in [8], whereethotion of defense is
based onR,;, while the notion of conflict remains evaluated with resgedthe more
general concept of defeat as given in Definition 9. Howeveg auch variants can be
encoded within our system by a suitable composition of threepts introduced so far.

Again, we note that we can put together encodings for comaletl grounded ex-
tensions for BAFs, which have not been studied in the literat

5 Discussion

In this work we provided logic-program encodings for conipgidifferent types of ex-
tensions in Dung’s argumentation framework as well as inessoacent extensions of
it. To the best of our knowledge, so far no system is availalsiech supports such a
broad range of different semantics, although nowadays éeuf implementations
exist€. The encoding (together with some examples) is availabltherweb and can
be run with the answer-set solver DLV [10]. We note that DLSaegupplies the built-in
predicate< which we used in some of our encodings. Moreover, DLV prosifie-
ther language-extensions which might lead to alternatia®dings; for instance weak
constraints could be employed to select the grounded egtefrom the admissible, or
prioritization techniques could be used to compute thegpreél extensions.

The work which is closest related to ours is by Niegeal.[21] who also suggest to
use answer-set programming for computing extensions ofraegtation frameworks.
The most important difference is that in their work the peogrhas to be re-computed
for each new instance, while our system relies asirgle fixedprogram which just
requires the actual instance as an input database. We dé#haivour approach thus is
more reliable and easier extendible to further formalisms.

Future work includes a comparison of the efficiency of défarimplementations
and an extension of our system by incorporating furthenregetions of semantics, for
instance, the semi-normal semantics [22] or the ideal sgosdR3].

Acknowledgmentd he authors would like to thank Wolfgang Faber for commenmnts o
an earlier draft of this paper. This work was partially suped by the Austrian Science
Fund (FWF) under grant P20704-N18.

2 See http://www.csc.liv.ac.ukazwyner/software.html for an overview.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Bench-Capon, T.J.M., Dunne, P.E.: Argumentation irfieidi intelligence. Artif. Intell.171
(2007) 619-641

Besnard, P., Doutre, S.: Checking the acceptability aftasfarguments. In: Proceedings
NMR’04. (2004) 59-64

. Egly, U., Woltran, S.: Reasoning in argumentation frawrw using quantified boolean

formulas. In: Proceedings COMMA06, 10S Press (2006) 1331

. Dung, P.M.: On the acceptability of arguments and its &mental role in nonmonotonic

reasoning, logic programming and n-person games. Artiélllrv7 (1995) 321-358

. Amgoud, L., Cayrol, C.: A reasoning model based on the yctidn of acceptable argu-

ments. Ann. Math. Artif. Intell34 (2002) 197-215

. Bench-Capon, T.J.M.: Persuasion in practical argumsimgwalue-based argumentation

frameworks. J. Log. Comput3 (2003) 429-448

. Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptatilitarguments in bipolar argumen-

tation frameworks. In: Proceedings ECSQARU’05. VolumeBB7LNCS., Springer (2005)
378-389

. Amgoud, L., Cayrol, C., Lagasquie, M.C., Livet, P.: Ondigrity in argumentation frame-

works. International Journal of Intelligent Syste@8(2008) 1-32

. Baroni, P., Giacomin, M.: A systematic classification mjanentation frameworks where

semantics agree. In: Proceedings COMMA08, I0S Press (280848

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob,®&rri, S., Scarcello, F.: The dlv system
for knowledge representation and reasoning. ACM Trans. [ilnh.og.7 (2006) 499-562
Niemela, I.: Logic programming with stable model setit@nas a constraint programming
paradigm. Ann. Math. Artif. Intell25 (1999) 241273

Gelfond, M., Lifschitz, V.: Classical negation in logicograms and disjunctive databases.
New Generation Compu®.(1991) 365-386

Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Sbh&y Truszczyhski, M.: The first
answer set programming system competition. In: ProcesdiRiNMR’07. Volume 4483 of
LNCS., Springer (2007) 3-17

Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datglo ACM Trans. Database Sys2
(1997) 364-418

Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Corepity and expressive power of logic
programming. ACM Computing Surve@s (2001) 374—-425

Dimopoulos, Y., Torres, A.: Graph theoretical struetuin logic programs and default theo-
ries. Theor. Comput. Scl70(1996) 209-244

Dunne, P.E., Bench-Capon, T.J.M.: Coherence in fingeraent systems. Artif. Intelll41
(2002) 187-203

Coste-Marquis, S., Devred, C., Marquis, P.: Symmetrumentation frameworks. In:
Proceedings ECSQARU’05. Volume 3571 of LNCS., Springef8®17-328

Eiter, T., Polleres, A.: Towards automated integratbguess and check programs in an-
swer set programming: a meta-interpreter and applicatidieory and Practice of Logic
Programmings (2006) 23-60

Bench-Capon, T.J.M.: Value-based argumentation framies. In: Proceedings NMR'02.
(2002) 443-454

Nieves, J.C., Osorio, M., Cortés, U.: Preferred exterssas stable models. Theory and
Practice of Logic Programming(2008) 527-543

Caminada, M.: Semi-stable semantics. In: Proceedi@)dI@A06, I0S Press (2006) 121—
130

Dung, P.M., Mancarella, P., Toni, F.: Computing ide@mical argumentation. Artif. Intell.
171(2007) 642674

