
Uncertain Databases in Collaborative Data
Management �

Reinhard Pichler1, Vadim Savenkov1, Sebastian Skritek1, Hong-Linh Truong2

1 {pichler, savenkov, skritek}@dbai.tuwien.ac.at
2 truong@infosys.tuwien.ac.at

Vienna University of Technology

Abstract. We discuss an approach to collaborative data management
based on uncertain databases. Note that, in a collaborative data manage-
ment system, users may have contradicting opinions about the correct
values of data items. In our approach, we propose to store all conflicting
data versions in parallel and to resolve conflicts based on user ratings. We
show that such a collaborative data management system can be nicely
represented in an uncertain database using U-relations.

1 Introduction

With the Web 2.0 paradigm invading more and more areas of life, from entertain-
ment to enterprise workflows and even e-government (take the Gov 2.0 initiative
of the US government as an example, see http://www.gov2summit.com), decen-
tralized community-oriented architectures become increasingly important. With
a vast amount of curated datasets available to-date, we are confronted with sce-
narios where the data are exported, updated, shared and used by people through
numerous online services. Consequently, several approaches to collaborative data
management have emerged over the past years to support such scenarios. In
case of unstructured data, solutions based on the Wiki idea [14] have been very
successful. For sharing scientific data, portals such as BIRN [5] and GEON [9]
have been created. Recently, the Orchestra system [12] considered “collaborative
update exchange“ for structured data, where multiple data peers connected by
data dependencies can publish and receive updates to their data. Conflicting
updates are reconciled based on the inter-peer trust relationships, established a
priori. Propagation of data updates forward and backward along such data de-
pendencies was studied in the Youtopia project [13]. Considering trust relations
similar to [12], [8] introduced an approach for conflict resolution whose result
is independent of the order in which updates arrive at the system, allowing for
globally consistent states.

While useful for scenarios with independent data peers, maintaining a single
consistent database version [12, 13] is not always satisfactory for scenarios where
some consistent global state of the data in the network is required [8]. Moreover,
a more fine-grained notion of trust would be desirable. That is, it should be
possible to distinguish between the trustworthiness of a data source or a user in

� This work was supported by the Vienna Science and Technology Fund (WWTF),
project ICT08-032. Vadim Savenkov is supported by the Erasmus Mundus External
Co-operation Window Programme of the European Union

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

129

users

update data query data rate data

collaborative activities

multi-version
data with
rankings

ratingsuser
reputation

evaluate
quality

resolve
conflicts

data, quality metrics and ratings

Fig. 1. A collaborative data management system

general and the acceptability of a concrete data item. Of course, in the long term,
there must be a correlation between the two trust notions. Another approach for
dealing with inconsistent data is a multi-versioned database concept, shared e.g.
by uncertain databases [16] and the recent BeliefDB system [7], which allows
different users to specify their own versions of each data tuple, called beliefs.
There, also a belief-aware query language that allows e.g. to query for all users
who share (or do not share) a particular belief is presented and analyzed from
the complexity point of view.

In this paper, we present a new, user-rating-based approach to collaborative
data management. Unlike Orchestra and Youtopia, we propose not to resolve
such inconsistencies before storing the data, but to store all the different ver-
sions of the data in parallel, thus following the multi-versioned database model.
We assume a scenario where all users work on the same data set, thereby up-
dating and querying the data, but also rating its quality. In such a scenario,
contradicting updates and inconsistencies (different beliefs of [7]) are unavoid-
able. However, unlike BeliefDB, we are not interested in tracking the beliefs of
a particular user, but rather in combining the majority of common beliefs in a
single consistent view on the data. The community feedback to various versions
of each tuple (and, ultimately, various versions of the whole database) derived
from beliefs of different users is being collected, in terms of ratings in the [0, 1]
scale. From this feedback the reputation of each user is derived, as a measure of
alignment of her beliefs with the majority viewpoint. Figure 1 sketches our model
of a collaborative data management system. It is similar to that of Wikipedia
and P2P systems [10], but we focus on structured data, which have different
query and update models.

Since various versions of data items have to be maintained in parallel, un-
certain databases are a natural candidate for realizing such systems. Indeed, we
show that U-relations (see [2]) with slight extensions are perfectly suited for
this purpose. In U-relations, different versions of a data item are kept apart by
assigning different values to some world set descriptor(s). A world table keeps
track of all allowed value combinations for these descriptors. This allows one
to store ratings for updates (in fact, for data versions created by updates) by
annotating the various value assignments to world set descriptors. In addition

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

130

we also have to introduce a user table that stores the current reputation of each
user and allows us to keep track of the initiator of each update.

Existing recommendation systems [1] show that user feedbacks are usually
used for helping the user to select data suitable to the user’s context. In this
paper we assume that user ratings are made on the data quality of data tuples.
The rationale behind this assumption is that data quality is critical in collab-
orative databases and currently there is a lack of techniques to evaluate data
quality based on the user feedback and to combine such evaluated, community-
based quality metrics into automatic, system-based quality metrics in traditional
databases. We believe that if such a combination can be implemented in an in-
tegrated data management system, the quality of query answering can be im-
proved. There exist a lot of data quality dimensions [4]. The approach suggested
here is general enough to work with every quality dimension.

We believe that collaborative data management can become a perfect show-
case for the emerging uncertain and probabilistic database technology, along
with other application domains as scientific and sensoric data management [17]
and information extraction [11] (see, e.g., [6] for a short survey, with a focus on
probabilistic data processing).
Organization of the paper and summary of results.
• System Model. In Section 2, we describe the basic principles of our user-rating-
based approach to collaborative data management. In particular, we describe
how updates are incorporated into the database and how user ratings issued on
an update can be aggregated to compute an overall rating of data items. We also
explain how these ratings can be used to compute ratings for the entire database
and to derive a reputation value for the user initiating an update.
• Representation by U-relations. We describe in Section 3 how uncertain databa-
ses can be used to implement a collaborative data management system. For this
purpose, updates (or, equivalently, versions of data items) are annotated with
reputation values. Care is taken that these reputation values can be computed
incrementally and do not have to be recomputed every time a new rating arrives.
• Extensions. In Section 4, we discuss two important extensions of the basic
model presented in Section 2, namely: We introduce the notion of “rigid up-
dates” which allow the user to restrict the number of possible versions of tuples
resulting from an update. Moreover, we describe how the deletion of tuples can
be incorporated into our rating-based model. For both extensions, the required
adaptations of the representation via U-relations are described. Directions for
further extensions, which are left for future work, are discussed in Section 5.

2 Basic Collaboration Model

In this section, we describe the basic principles of our collaborative data man-
agement model. In the next section we will then show that this model can be
very naturally implemented using uncertain databases. We note that there ex-
ists a huge body of rating and ranking systems in the literature. For the sake of
presentation, we use a rather simple rating model, and show that it can be en-
coded in uncertain databases. We note that obviously also other methods could
be used, without losing this nice property. The actual rating is not the main

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

131

contribution of this paper, but the observation that ratings in general fit nicely
into the model of uncertain databases (this holds for several design decisions).

The fundamental idea of the approach is never to delete or overwrite any
information once it has been added to the system, and to allow the insertion of
conflicting and contradicting data. That is, rather than to reconcile updates and
to maintain a single consistent version of the data, our database has multiple
versions, each given by some non-conflicting combination of updates. A conse-
quence of this approach is that the semantics of an update differs from the one
usually assumed: In our case, any update results in an insertion. Throughout
this paper, we assume every database relation to posses a key, and we define
a tuple as an entry in the database identified by a key. Disagreement on the
non-key values of a tuple leads to several versions of this tuple, which give rise
(also in combination with the other tuples) to different possible worlds. That is,
a version is a concrete value expression for some relation schema, while a tuple
is a collection of versions for the same key. Every kind of update on a tuple is
now mapped to the insertion of a new version.

Semantics Given the schema R of some relation, we consider a partitioning
of the attributes appearing in R into sets of dependent attributes, which we
call blocks (our notion of blocks should not be confused with the one in [6],
where blocks refer to sets of tuples sharing the same key). We define the key
attributes to always form a single block. In general, blocks are used whenever
an object’s property can be decomposed into several fields (like an address),
but the values in these fields highly depend of each other. Therefore we allow
as possible values for each block only those explicitly defined by updates, while
different blocks, just as different tuples, are mutually independent, such that
their values can be arbitrarily mixed. That is, for some tuple τi with the non-
key attributes partitioned into blocks C1, . . . , C� and a set of possible values
cj = {c1

j , . . . , c
kj

j } for each Cj (j ∈ {1, . . . , �}), we define the set of possible
versions of τi as c1 × . . . × c�. Furthermore, let T = {τ1, . . . , τn} be a set of
tuples where for every τi (i ∈ {1, . . . , n}) there exist several possible versions
τ1
i , . . . , τki

i , i.e. τi itself is a set τi = {τ1
i , . . . , τki

i }. Then the set of possible worlds
defined by T is τ1× . . .× τn. Note that values assigned to different blocks can be
arbitrarily recombined, even if the resulting tuple was never inserted explicitly.
Hence attributes of different blocks have to be completely independent of each
other (This rather strong assumption is relaxed in Section 4.1). We are thus able
to consider updates affecting a single block only, as splitting every update that
changes more than one block into several “unary” updates has the same effect.
This allows us to identify every possible value for a block with one update that
inserted exactly this value. As every tuple is built up from a unique set of blocks,
every tuple version can be identified by a uniquely defined set of updates.
Updates First recall that in our data model, we never overwrite or delete any
information stored in the database. Instead, every update gives rise to one (or
several) new possible world(s), unless this world is already present. Formally,
we define updates as value-assignments on block level, where for a block B of
attributes B1, . . . , Bk, an update u: (B1, . . . , Bk) ← (v1, . . . , vk)[key] assigns to
attribute Bi the value vi for the tuple identified by key . One can distinguish

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

132

several types of updates: (1) Insertion of new tuples. (2) Deletion of tuples.
(3) Update of non-key blocks. (4) Update of key blocks. Thereby, we defer the
discussion of (2) to Section 4.2. An update affecting a key block corresponds
either to the insertion of a new tuple, or, if the updated key is already present,
to an update of the corresponding non-key blocks. The insertion of a tuple means
just to insert a new tuple with exactly one version. For the update of a non-key
block, assume an update on block Cj of tuple τi with versions τ1

i , . . . , τki
i . Let

V be the set of versions of τi restricted to the blocks C1, . . . , Cj−1, Cj+1, . . . , C�.
Then the result of the update is a new version for every v ∈ V , where Cj is
defined according to the update.

Example 1. Consider, similar to [7], a database for monitoring an animal popu-
lation, where people report their observations. As different people may have dif-
ferent opinions about what they saw, there will be probably disagreement about
the data to store. Let this database contain a table with schema obs(T ,A,B ,S),
divided into blocks K = {T}, B1 = {A, B}, and B2 = {S}. Thereby K is the key,
consisting of the time of the observation (for the sake of simplicity, we assume
that time would give a unique identifier), B1 describes the color (A) of the ani-
mal and its probable kind (B), while B2 stores its estimated size (S) (note that
while kind and size of an animal are not independent, the observations of these
properties are). Assume for some observation (say made by Alice) the database
to contain the tuple τi with the single version (t1, a1, b1, s1). Further assume that
Bob made the same observation, but disagrees on the type (and color) of the
animal seen. He issues an update u1: (A, B) ← (a2, b2)[t1]. This results in the
two possible worlds obs(t1 , {(a1 , b1)|(a2 , b2)}, s1). If now John disagrees with
the size of the seen animal, he performs an update u2: (S) ← (s2)[t1], resulting
in the four possible versions obs(t1 , {(a1, b1)|(a2, b2)}, {s1|s2}) of τ1. ��
Ratings & User Reputation Next we describe how the quality of a tuple
version is estimated. Users are allowed to rate either updates or tuple versions,
where rating a tuple version is the same as giving this rating to all the (uniquely
defined) updates that build up this version. The votes given on one update
by different users are aggregated, where the influence of a rating is weighted
according to the reputation of the user giving the vote. The reputation of a
user is derived from the ratings given to the updates performed by the user,
and as stated in the introduction, is interpreted as a score value normalized to
[0, 1]. Every update is automatically rated with the reputation of the user who
performed it. We fix the following notation. Let U = {u1, . . . , un} be a set of n
updates, and let Ri = {r1, . . . , rmi

} be a set of mi ratings for every ui ∈ U . With
user(ui) and user(rj), we denote the user who performed the update ui, or gave
the rating rj , respectively. Finally, let rep(ui) and rep(rj) be the reputation of
user(ui) and user(rj), respectively.

We define the aggregated rating for ui by

rating(ui) =
∑mi

α=1 (rα · rep(rα))∑mi

α=1 (rep(rα))
(1)

and the rating of a tuple version τ j
i = (b1, . . . , bk) (where b1, . . . , bk are grouped

to blocks c1, . . . , c�) as rating(τ j
i) =

∑�
α=1 (wα·rating(cα)). Thereby rating(cα) =

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

133

rating(ui), with ui being the update that sets the value for the block Cα in τi to
cα, and wα is some weighting factor (

∑�
β=1 wβ = 1) that expresses the influence

of each block. Denoting the number of attributes in a block Cα with |Cα|, a
reasonable value for wα could be (1/

∑�
β=1 |Cβ |) · |Cα|, which can be adopted

accordingly if not all attributes are considered equally important. Obviously
rating(ui) can be incrementally computed. For mi votes, instead of storing them
together with the user reputations, it suffices to store rat(ui) =

∑mi

α=1(rα ·
rep(rα)) and rep(ui) =

∑mi

α=1(rep(rα)), from which the new rating after a new
vote can be easily derived.

Concerning user reputation, we argue that it is advantageous not to consider
all contributions of a user from the beginning, but only her more recent work.
Thereby “recent” is defined in terms of a time window that defines which con-
tributions to take into account. Leaving its concrete definition as a parameter to
the system, beside its actual size it can be also defined either in terms of time
(e.g. all the contributions from the last year), or in terms of contributions (e.g.
the last 100 updates performed by this user). For the computation of a user’s
reputation (say userμ), consider U = {u1, . . . , un} as the set of updates done by
userμ that fall into the time window. We define her reputation as

reputation(userμ) =
∑n

α=1 (rating(uα) · rep(uα))∑n
α=1 rep(uα)

=
∑n

α=1 rat(uα)∑n
α=1 rep(uα)

(2)

The reputation of a user can change because of two reasons. Either a new rating
enters the time window, or some ratings (i.e. some updates) fall out of it. In both
cases the reputation can be easily computed incrementally by storing rat ′ =∑n

i=1 rat(ui) and rep′ =
∑n

i=1 rep(ui). If a new rating arrives, the following
steps are required for updating the user reputation: (1) Identify the user who
performed the update just rated. (2) Check if the update is currently in the time
window. (3) Update the user’s reputation and the values stored for the user. For
performance reasons, the current time window for each user is explicitly stored
as an index for the contained updates. From the description, it goes without
saying that also several alternatives for aggregating the user reputation could be
used, like the moving average to “fade out” older updates.

The initial reputation of a new user is 0 until she makes some contribution
that is rated by other users. The system, however, can be easily adapted to
support any other initial reputation. If a user is invited by some other user, she
could get the reputation of the inviting user. In such cases, for aggregation, the
initial reputation can be modeled as “rating” for some dummy update u0.

Example 2. Recall the scenario in Example 1, and consider the situation after
u1. We split the initial update done by Alice into three smaller ones. One that
inserted the key, one that set B1 = (A, B) to (a1, b1) and one update B2 =
(S) ← (s1)[t1]. We denote the updates with uK , u0 and u′

0, respectively. Also,
let τ1 = (t1, a1, b1, s1), and τ2 = (t1, a2, b2, s1). Assume rat(u0) = 8.4, rep(u0) =
12, rat(u′

0) = 2.4, rep(u′
0) = 8, rat(u1) = 25.2, rep(u1) = 28, hence, by (1),

rating(u0) = 8 .4
12 = 0 .7 , rating(u ′

0) = 0 .3 , and rating(u1) = 0 .9 . We omit the
influence of the key and assume a uniform influence of the non-key attributes

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

134

A, B, S, that is wK = 0, wB1 = 2
3 , and wB2 = 1

3 . Then we get rating(τ1) =
2
3 · 0 .7 + 1

3 · 0 .9 ≈ 0 .77 and rating(τ2) = 2
3 · 0 .3 + 1

3 · 0 .9 = 0 .5 .
Now suppose that John performs update u2. Let rat ′(John) = 7 .5 and

rep′(John) = 15 , hence reputation(John) = 0 .5 . His update is automatically
rated by 0.5, which results in rating(u2) = 0 .5 ·0 .5

0 .5 = 0 .5 . (It is easy to check
that his reputation remains unchanged.) Now let some user user3 with a high
reputation of 0.9 disagree with u2, which she expresses by giving a rating of 0.3
on u2. This results in rat(u2) = 0.52 and rep(u2) = 1.4, hence rating(u2) =
0 .25+0 .27

1 .4 ≈ 0 .372 . Because of this rating, the reputation of John changes to
reputation(John) = 7 .5+0 .25+0 .27

15+0 .5+0 .9 ≈ 0 .489 . Yet another user, with reputation
0.2 agrees with u2 and rates it 0.7. Then rat(u2) = 0.66 and rep(u2) = 2.1, hence
rating(u2) = 0 .66

1 .6 = 0 .4125 . For the reputation of John, this has the effect of
rat ′(u2) = 8.16 and rep′(u2) = 16.6, hence reputation(John) ≈ 0 .492 .

That is, the resulting rating for τ3 = (t1, a1, b1, w2), and τ4 = (t1, a2,
b2, w2) is rating(τ3) = 2

3 · 0 .7 + 1
3 · 0 .4125 ≈ 0 .60417 and rating(τ4) =

2
3 · 0 .3 + 1

3 · 0 .4125 = 0 .3375 . ��
Foreign Keys The semantics described in this section allows also for foreign
keys. Consider a relation R1 with a block A of key attributes, and another rela-
tion R2, that contains a block Cj with the same number and type of attributes
as in A. Then Cj can be defined as a foreign key to A. To ensure referential
integrity between Cj and A, it suffices to check for every update on Cj whether
for the newly added values cj there already exists a tuple τ of R1 where the key
A has the value cj . If this is the case then referential integrity is ensured in all
possible worlds. This is due to our assumption that different versions of τ are
due to different values of the non-key attributes; however, the value cj of the
key attributes of τ is the same in all possible worlds.

Query Answering We define query answering in terms of the best rated world.
That is, given a query from a user, in a first step, the best rated possible world
is selected. Then the query is answered on this world. This approach has the
advantage to provide the user a consistent view of the worlds, independent of
the issued query. We therefore have to define the rating of a possible world. As
each world is a set of tuples, we define the rating of a world as the average of
the ratings over all tuple versions appearing in this world. That is, for a possible
world Wi containing tuples Wi = {τ1, . . . , τn}, rating(Wi) = 1

n ·
∑n

α=1 rating(τα).
We note that, in our model, every possible world has exactly the same number
of tuples, as for every primary key, exactly one tuple version must be selected.

Obviously, the best rated world does not need to be unique. If this is the
case, we prefer more recent updates: Going from the newest update to the old-
est, if some of the best rated worlds contains the update (i.e. that have the
corresponding block set to the value defined by the update), remove all worlds
that do not contain this update, until only a single world is left. In the model
described above, the most recent, best rated world can be found easily. Just pick
for every block the best rated update. If there are several best rated updates for
one block, then pick the youngest one. Of course, our approach could be easily
adapted to other preference criteria: e.g., the most often rated update or the
update with highest rep.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

135

3 Representation in U-relations

In this section we show that the data model described above can be encoded
in U-relations. We use the database schema for U-relations as proposed in [2],
consisting of the vertical decomposition tables (VDTs) for every attribute and
the world table (W). For every tuple τi and every block Cj , we use a unique
world set descriptor (WSD) xi,j , and define in W one distinct assignment to xi,j

for every possible value for Cj in any version of τi. That is, let τi = {τ1
i , . . . , τk

i }
be a tuple with k versions, Cj = B1, . . . , Bsj a block, and V =

⋃k
α=1 πCj (τ

α
i),

where πCj
(τα

i) denotes the projection of τα
i onto the values for the attributes in

Cj . In the vertical decomposition table (VDT) of every attribute Bβ ∈ Cj , there
exists exactly one distinct assignment to xi,j for every v ∈ V . For the vertical
decompositions of the key attributes, there exists exactly one variable xi,A for
every tuple τi, with exactly one assignment for xi,A.

Example 3. τ1 from Example 1 could be represented in U-relations as follows:
tid WSD T WSD A WSD B WSD S
τ1 x1,K � 1 τ1 x1,1 � 1 a1 x1,1 � 1 b1 x1,2 � 1 s1

x1,1 � 2 a2 x1,1 � 2 b2 x1,2 � 2 s2

(Except for T , we discard the column holding the tuple id in the relations, as
we consider only a single tuple. The corresponding world table is depicted in
Example 4.) Note that every update is identified by an assignment to a WSD,
e.g. x1,1 � 2 corresponds to u1, or x1,2 � 2 to u2. As discussed in Example 2,
the initial update is split into the three updates uK , u0, and u′

0. For uK , a WSD
x1,K with the single assignment 1 is created, and added together with t1 into
the corresponding table. Similar for u0 and u′

0, where the WSDs x1,1 and x1,2

are used. For u1, a new assignment for x1,1 is created, and corresponding entries
are added to the VDTs for A and B. Similarly for u2 and x1,2. ��

As sketched in the example, every update operation identified above can be
easily mapped to this representation: For the update of a non-key block Cj of
some existing tuple τi, as already stated above, we only need to consider updates
of a single block of a single tuple. The update process consists of creating a new
assignment for the unique variable xi,j , and adding a new entry for τi, the
new assignment for xi,j , and the new value to the VDT for every Bβ ∈ Cj .
If the value is already present for this block, then the update is ignored. The
insertion of a new tuple is similar to the above operation. To insert a new tuple
(a1, . . . , ak, b1, . . . , bn), first insert the key (a1, . . . , ak) with a new WSD, and then
perform � updates on this tuple, by setting the values for the blocks c1, . . . , c�.

To keep track of the ratings and user reputations, the information described
above can be stored as follows. The information about ratings on updates can
be stored in the world table W , as every update corresponds to the combination
of a variable and an assignment, i.e. to one row in W . We extend W (WSD ,
WSDvalue) to W (WSD , WSDvalue, rat , rep, rating , timestamp [, user]). There-
by user stores a reference to the user who initiated the update. If the time
window is stored explicitly for every user, this reference can be omitted. The
information rat , rep, and rating need to be present for every quality dimension

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

136

tracked. The current time window for each user can be maintained using a re-
lation tw(user , tid , WSD , WSDvalue, (count |timestamp)). We can further log
which user gave a rating to which update. Finally, in an additional table we store
for every user her current reputation as well as rat ′ and rep′.

Example 4. The left table shows the world table to Example 3, while the right
one stores the user information. We omit the representation of the time windows.

WSD ass. rat rep rating user rat ′ rep′ reputation
x1,K 1 1 1 1 John 8.16 16.6 0.492
x1,1 1 8.4 12 0.7 user3 20.34 22.6 0.9
x1,1 2 2.4 8 0.3 user4 2.46 12.3 0.2
x1,2 1 25.2 28 0.9
x1,2 2 0.66 2.1 0.4125

��
Query Answering We defined the semantics for query answering as answering
the query on the most recently updated, top rated world. On the representation
level, every possible world is identified by a (total) assignment to the WSDs [2].
As described above, in the world table W , we store every possible assignment to
a WSD along with its rating (which corresponds to a rating on some update).
Choosing one assignment to every WSD defines one set of tuples. For each of
these tuples, we already defined their ratings, hence the rating of the world can
be easily computed.

4 Extensions

In this section, we consider two important extensions of the basic scenario,
namely, tuple updates with inter-block dependencies and tuple deletions. First
we discuss the required adaptations of our basic model described in Section 2.
We then also discuss the impact on the representation by U-relations.

4.1 Inter-block dependencies

In the basic scenario, updates of the attribute blocks were independent of each
other. Assume now that the user wants to update the values of several blocks
at the same time, e.g., by inserting new values for all three non-key attributes
in our running example. Moreover, one may want to exclude from any possible
world the combination of the new size with any of the prior values for kind and
color of the animal. We call such updates spanning several blocks rigid.

In principle, such updates could be handled by simply merging the two blocks
into one. However, this naive approach would lead to an explosion of the number
of tuples needed to represent the possible worlds stored in the previously inde-
pendent blocks. We therefore propose a more expressive representation scheme
here.

Example 5. Consider the following shorthand notation of the schema of our run-
ning example: obs = KB1B2 where K is the key block and B1 and B2 are the
blocks of attributes as defined in Example 1. Let obs contain the tuple τ1 with
the uncertain value τ1 = R(k, {b1|b′1}, {b2|b′2}), giving rise to 4 possible worlds
and the following decomposition into three partitions:

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

137

obsK T WSD K obsB1 T WSD B1 obsB2 T WSD B2

τ1 xK k τ1 x1 � 1 b1 τ1 x2 → 1 b2

τ1 x1 � 2 b′1 τ1 x2 → 2 b′2

Suppose that some observer now wants to ensure that the size added only
appears in conjunction with the animal type she also added. That is, she needs
to insert a pair of block values b′′1 , b′′2 as a rigid update of the tuple τ1. If one now
chooses to merge respective blocks, it will be necessary to first explicitly specify
all possible worlds compactly represented in the partitions obsB1 and obsB2 :

obsK T WSD A obsB1 T WSD B1 obsB2 T WSD B2

τ1 xK � 1 k τ1 x1 � 1 b1 τ1 x1 → 1 b2

τ1 x1 � 2 b1 τ1 x1 → 2 b′2
τ1 x1 � 3 b′1 τ1 x1 → 3 b2

τ1 x1 � 4 b′1 τ1 x1 → 4 b′2
τ1 x1 � 5 b′′1 τ1 x1 → 5 b′′2

Clearly, the total number of tuples needed for such “decompression” of the
succinct representation with independent partitions is exponential in the number
of blocks that have to be merged. Therefore, the succinctness of representation
due to partitioning in U-relations is deteriorated by rigid updates. ��
Note that in [3] it is also observed that updates might make the decompression
of the succinct representation by U -relations necessary. However, in our case,
the blow-up of the U -relations is even more problematic since, in contrast to [3],
we want to be able to increase the number of possible worlds as a consequence
of an update (as we never overwrite any data). We therefore propose to use
compound (that is, non-normalized [3]) WSDs for blocks. To express arbitrary
dependencies between N blocks in a tuple, it is sufficient that the WSD of each
block contain N variables.

Example 6. The final state of Example 5 has the following representation:

obsK T WK K obsB1 T WB1 WB2 B1 obsB2 T WB1 WB2 B2

τ1 xk � 1 k τ1 x1 � 1 b1 τ1 x2 � 1 b2

τ1 x1 � 2 b′1 τ1 x2 � 2 b′2
τ1 x1 � 3 x2 � 3 b′′1 τ1 x1 � 3 x2 � 3 b′′2

Since only the value combinations connected to consistent variable assignments
are admitted, one can check that the U-relations above define exactly the de-
sired five possible worlds: E.g., the tuple (b1, b

′′
2) is not part of the (uncertain)

projection πB1,B2(obs), as the variable assignment x1 � 1, x1 � 3 is inconsistent,
whereas (b1, b

′
2), corresponding to the assignment x1 � 1, x2 � 2, is a possible

answer. ��
The following procedure can then be used to accommodate new inserts into

the database: Let C be an attribute block, and assume that each attribute be-
longs to a separate U-relational partition. Thus, each attribute in C has a com-
pound WSD of at most |C| variables. Consider a rigid update u for a tuple τ
introducing a new value assignment for attributes C ′ ⊆ C; it can be accommo-
dated in the following two steps:

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

138

1. Build a WS descriptor w̄u for u: For each attribute A ∈ C ′ with a corre-
sponding variable xA in the WS descriptor of τ.C, check if the value u.A
is already present in τ.A. If yes, re-use the found assignment for xA in w̄u;
otherwise, take a fresh domain value not occurring in the WS descriptor of
τ.A as an assignment for xA in w̄u.

2. Perform the insert: for each attribute A ∈ C ′, insert the tuple (id(τ), w̄u, u.A)
in the partition PA of the U-relation.

For example, a rigid update b1, b
∗
2 for the blocks B1, B2 of the relation obs in its

final state as shown in the Example 5 will be assigned a WSD x1 � 1, x2 � 4.
Note that new updates can be composed of the values already occurring in

other updates: the update τ1.B1 = b′′1 can be admitted (and assigned a WSD
x � 3), despite the rigid update B1B2 � (b′′1 , b′′2) being already present in the
table. A possible meaning of such new insert is “the value b′′1 can be combined
not only with b′′2 , but with any other value of the block B2”.

Ratings of rigid updates In the basic scenario, each update is identified by
an assignment to its WSD variable. The aggregated ratings associated with each
update are summarized in the world table. If rigid updates are allowed, the world
table needs to be extended to accommodate compound WSDs: the number of
variable/value column pairs equals the maximal number of blocks in any relation
described by the world table; representation of ratings of updates remains the
same as in the Example 3. Deriving ratings of tuples from the update ratings
must be redefined, however. We address this issue in Section 4.3.

4.2 Deleting tuples

So far we have only considered disagreements on the correct values for the tuples
stored in the database. We now extend the system to also allow to express that
some tuple should not be present at all. This is modelled by introducing a special
tuple version, namely ∅, to express that there exist possible worlds that do not
contain any version of this tuple at all. Under this semantics, deletion of a tuple
corresponds to adding ∅ to the set of possible versions for this tuple. Concerning
our definition of updates, we model a deletion as u: (A1, . . . , Ak) ← ()[key], where
A1, . . . , Ak are the key attributes. We do, however, not allow ∅ to be the only
version of a tuple, but require at least one other version to exist.

Representing ∅ in U-relations can be done easily. Given a relation R with
the key-block K, for every tuple τi ∈ R, so far the WSD consists of exactly
one variable xτi,K with a unique assignment (say xτi,K � 1) that encodes the
value of the key for τi. Inserting the version ∅ for τi can be done by adding
another assignment for xτi,K (say xτi,K � 0) to the world table, without inserting
an entry for this assignment to the VDTs of the key attributes. With non-
normalized U-relations, it can be further ensured that this (empty) “selection”
for the key values cannot be combined with any other non-null values of the
non-key attributes: It suffices to add for every tuple τi the assignment xτi,K � 1
to the WSDs of every non-key attribute block. That is, the VDT of each non-
key block is extended by a column WSDkey that contains xτi,K � 1 (resp. by
columns WSDkey , WSDkeyval with (xτi,K , 1). Hence selecting xτi,K � 0 will
return no value for any attribute of τi.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

139

Example 7. Consider the representation in Example 6. To support deletion, the
WSD of the key block is added to each partition.

obsK obsB1 obsB2

T WK K T WK WB1 WB2 B1 T WK WB1 WB2 B2

τ1 xK � 1 k τ1 xK � 1 x1 � 1 b1 τ1 xK � 1 x2 � 1 b2

τ1 xK � 1 x1 � 2 b′1 τ1 xK � 1 x2 � 2 b′2
τ1 xK � 1 x1 � 3 x2 � 3 b′′1 τ1 xK � 1 x � 3 x2 � 3 b′′2

Deletion of τ1 is allowed by leaving the above tables unchanged, but adding
the assignment xk � 0 to the world table. ��
Rating tuple deletions The deletion of a tuple can be rated like every other
update on the database. As ∅ is expressed by an entry in the world table, it is
also no problem to store the rating there, hence also just like the rating on every
other update. The definition of the rating of a tuple version τk

i requires a slight
modification: If τk

i �= ∅, then it is as defined in Section 2. Otherwise, if τk
i = ∅,

then rating(τK
i) = rating(uα), where uα is the update that inserted ∅.

4.3 Adapting the top database semantics

So far in this section we have concentrated solely on the representation of updates
and possible worlds defined by them. We now shift our focus to user ratings and,
consequently, to the reconciliation of conflicting updates, which is an essential
task from the user point of view. In the following, we assume each relation to
contain at least one non-key attribute block. Note that this is no real restriction,
as otherwise there could not be multiple versions for this relation anyway.

Conceptually, the conflict-resolution approach remains exactly the same as
in the basic scenario: We first look for WSD variable assignments maximizing
the overall world rating, and then we use the corresponding top rated world for
query answering. However, the extensions discussed earlier in this section have
several important implications:
Maximal feasible variable assignments Because of the introduction of rigid
updates, variable assignments for different variables are no longer independent
of each other, as it was the case in the basic scenario. Due to the fact that the
WSD of each rigid update is now a set of variable assignments, the dependencies
between these assignments have to be enforced. We must thus speak of maximal
feasible variable assignments defined by consistent sets of WSDs.

Example 8. Consider the setting from Example 7. There, xk → 1, x1 → 3, x2 � 3
is an example of a maximal feasible variable assignment. The assignment xk �

1, x1 � 1 is feasible but not maximal, whereas x1 � 3, x2 � 2 and xk → 0, x1 �

1, x2 � 1 are not feasible: No valid combination of updates issued to the database
gives such a variable assignment on the WSD. ��
Definition 1. A set U of WSDs (resp. the set u of updates identified with U)
is proper if it satisfies the following conditions:
— Consistency: No two WSDs in U contain different assignments for the same
variable (resp. no two updates in u have different values for the same block).

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

140

— Maximal coverage. Let domain dom(U) denote the set of all variables in U.
We request that the domain of U is maximized in the following sense: there is no
update in the database identified with the WSD U , such that U∪U is consistent
and dom(U) ⊂ dom(U ∪ {U}) (resp. every tuple is either deleted by u or the
values for all blocks of the tuple are specified by u).
— Irreducibility. Let nkdom(U) denote dom(U) restricted to non-key variables:
that is, variables not occurring in the WSD of any key block. We request that for
each WSD U ∈ U, nkdom(U \ {U}) ⊂ nkdom(U) (resp. no update in u spans
only the blocks which are also spanned by other updates).

It can be easily shown that any proper set of WSDs (resp. proper set of updates)
defines a maximal feasible variable assignment.

Example 9. Let a relation R have a schema KABC where each letter defines an
attribute block, the key one denoted by K. Suppose that a tuple identified by
a key value k is comprised by the following four rigid updates: {ur=0.3

1 : AB �

(a, b), ur=0.45
2 : C � c, ur=0.5

3 : AC � (a, c), ur=0.2
4 : B � b} (where superscripts

denote update ratings) which give rise to a single possible tuple value (k, a, b, c),
and one update u5, where the tuple was deleted.

According to the procedure of U-relational updates from Section 4.1, a value
of a non-key block determines the corresponding WS variable assignment: Hence,
there are three assignments to non-key variables xa � va, xb � vb, and xc � vc,
and two assignments to the key variable, namely xk � 1 and xk � 0. The variable
assignments of the updates are U1 = xk � 1 ∧ xa � va ∧ xb � vb, U2 = xk �

1 ∧ xc � vc, U3 = xk � 1 ∧ xa � va ∧ xc � vc, and U4 = xk � 1 ∧ xb � vb.
One can check that there are three proper update sets assigning a non-empty

value to the tuple k: namely, u1 = {u1, u2}, u2 = {u3, u4} and u3 = {u1, u3}.
We say that all of them define a maximal variable assignment A = {xk � 1,
xa � va, xb � vb, xc � vc}. By definition, A is feasible (as all three update
sets are consistent). Yet another maximal feasible variable assignment is xk � 0
implying that tuple k must not be part of the respective worlds. ��

Finding a best rated world then amounts to selecting a proper update set that
maximizes the world rating. It turns out, however, that the computation of the
rating of some world defined by a given set of updates also requires adaptation
if rigidity is allowed.
Composing update ratings In the basic scenario, the rating of a tuple value
was given by: rating(τ j

i) =
∑�

α=1 (wα ·rating(cα)) where every cα is a block value
corresponding to some update (recall that in absence of rigid updates each block
value is given by exactly one update) and weight wα depends on the attributes
comprising the respective block Cα. We call this the composition formula.

In presence of rigid updates, we no longer have ratings for each block straight
away, but rather the rating for each rigid update. We re-define the rating of a
block value cα as the maximal rating of an update in which cα is contained.

Example 10. As an example, consider the update set u3 = {u1, u3}. We take
r(A � a) = max(r(u1),r(u3)) = 0.5, r(B � b) = r(u1) = 0.3, and r(C � c) =
r(u3) = 0.5 (we shorten rating(·) as r(·) for the sake of readability). According

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

141

to the composition formula, rating(u3) = 1
3 (0.5 + 0.3 + 0.5) ≈ 0.43 (the weight

wα of each block is taken equal to 1
3 , so that the tuple ratings fall into [0, 1]).

As shown in Example 6, u3 is not the only proper update set defining the
variable assignment A. Its rating — and the rating of the corresponding tuple
value (k, a, b, c) — is thus not uniquely determined: other possible candidates are
rating(u1) = 1

3 (0.3+0.3+0.45) = 0.35 and rating(u2) = 1
3 (0.5+0.5+0.2) = 0.4,

obtained by the composition formula. Similarly to selection of block ratings, we
choose the maximum (i.e. rating(u3) ≈ 0.43) as the rating of the tuple value. ��

Let A be a maximal feasible variable assignment, corresponding to a world
WA. Its rating can be found in two steps:

1. For each tuple value τ determined by A, take rating(t) to be the maximum
rating computed according to the composition formula from any proper up-
date set defining A.

2. Take the maximum of the tuple ratings as the world rating (Other aggregates
like sum or average can be used instead).

The top world is then chosen as the most recently updated world from the
worlds with the highest rating, as described in Section 2.

5 Conclusion and Future Work

In this paper we presented collaborative data management as a relevant applica-
tion area for uncertain databases. We proposed an update storage model in which
user contributions are never overwritten or deleted, but persist in the database
in their original form, leading to different possible worlds. We described a frame-
work in which community feedback is used to reconcile contradicting updates
and to compute reputation values for each user according to the feedback on her
updates. One of the main points of the paper was to describe a relevant use case
for uncertain databases, in particular based on U-relations. Due to the lack of
space, we have left out some important questions that have to be addressed in a
real-world system: e.g. how to prevent creation of virtual users to rate dummy
updates for the sake of earning high reputation [15].

Directions for future work are thus manyfold. A particularly important ques-
tion is the choice of the semantics for query answering. Unlike the approach
chosen here, in probabilistic databases queries are conceptually evaluated over
all possible worlds, and then the “best” possible answer is returned. It would be
thus interesting to extend our framework to other semantics for query answer-
ing and to design efficient methods for query evaluation under these semantics.
Another open issue is a precise complexity analysis of query answering.

Besides determining the best choices for all these problems, there are also sev-
eral open questions concerning techniques of the underlying uncertain databases.
A potential shortcoming of the semantics described in Section 2 is the arbitrary
combination of all available, compatible updates. Roughly speaking, every up-
date is applied to all possible worlds in parallel. The user, however, might just
want to introduce exactly one new possible world, or to be able to specify the
set of possible worlds to which the update is applied. Hence we do no longer

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

142

make any assumptions about dependent and independent attributes, but the set
of possible worlds is just defined by the updates performed. To the best of our
knowledge, no algorithm for these kinds of inserts in U-relations are known. So
far, only updates that really overwrite the old data have been considered [3], but
the insertion of new possible worlds has not been addressed.

Another problem arises from the assumption that data is never lost. In prac-
tice, this will most probably not be possible or maybe not even desirable. While
defining some agreement which data to delete can be easily done, to the best
of our knowledge, also the problem of efficiently deleting possible worlds from
U-relations has not yet been completely solved.

Finally we plan an implementation and experimental evaluation of the pro-
posed framework.

References

1. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions. Knowledge and
Data Engineering, IEEE Transactions on, 17(6):734 – 749, june 2005.

2. L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational pro-
cessing of uncertain data. In Proc. ICDE 2008, pages 983–992. IEEE, 2008.

3. L. Antova and C. Koch. On APIs for probabilistic databases. In Proc. of
QDB/MUD ’08, pages 41–56, 2008.

4. C. Batini, C. Cappiello, C. Francalanci, and A. Maurino. Methodologies for data
quality assessment and improvement. ACM Comput. Surv., 41(3), 2009.

5. BIRN. http://nbirn.net/cyberinfrastructure/portal.shtm.
6. N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt.

Commun. ACM, 52(7):86–94, 2009.
7. W. Gatterbauer, M. Balazinska, N. Khoussainova, and D. Suciu. Believe it or not:

adding belief annotations to databases. Proc. VLDB Endow., 2(1):1–12, 2009.
8. W. Gatterbauer and D. Suciu. Data conflict resolution using trust mappings. In

Proc. of SIGMOD 2010, pages 219–230. ACM, 2010.
9. GEON. http://www.geongrid.org/.

10. T. Gruber. Collective knowledge systems: Where the social web meets the semantic
web. J. Web Sem., 6(1):4–13, 2008.

11. R. Gupta and S. Sarawagi. Creating probabilistic databases from information
extraction models. In VLDB, pages 965–976, 2006.

12. Z. G. Ives, T. J. Green, G. Karvounarakis, N. E. Taylor, V. Tannen, P. P. Talukdar,
M. Jacob, and F. Pereira. The ORCHESTRA collaborative data sharing system.
SIGMOD Rec., 37(3):26–32, 2008.

13. L. Kot and C. Koch. Cooperative update exchange in the Youtopia system.
PVLDB, 2(1):193–204, 2009.

14. B. Leuf and W. Cunningham. The Wiki Way – Quick Collaboration on the Web.
Addison-Wesley, 2001.

15. B. N. Levine, C. Shields, and N. B. Margolin. A Survey of Solutions to the Sybil
Attack. Tech report 2006-052, University of Massachusetts Amherst, October 2006.

16. A. D. Sarma, M. Theobald, and J. Widom. Live: A lineage-supported versioned
dbms. In Proc. of SSDBM 2010, volume 6187 of Lecture Notes in Computer Sci-
ence, pages 416–433. Springer, 2010.

17. S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. Hambrusch, and R. Shah. Orion
2.0: native support for uncertain data. In SIGMOD ’08:, pages 1239–1242, New
York, NY, USA, 2008. ACM.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

143

