
8th International Conference Conference on Collaborative Computing: Networking, Applications and Worksharing , Collaboratecom 2012 Pittsburgh, PA, United States, October 14-17, 2012 

Optimized Execution of Business Processes on 

Crowdsourcing Platforms 

Roman Khazankin, Benjamin Satzger, and Schahram Dustdar 
Distributed Systems Group, Vienna University of Technology 

Argentinierstrasse 8/184-1, A-1040 Vienna, Austria 

{lastname}@dsg.tuwien.ac.at 
http://dsg.tuwien.ac.at/ 

Abstract-Crowdsourcing in enterprises is a promising ap
proach for organizing a flexible workforce. Recent developments 

show that the idea gains additional momentum. However, an 

obstacle for widespread adoption is the lack of an integrated way 
to execute business processes based on a crowdsourcing platform. 

The main difference compared to traditional approaches in 

business process execution is that tasks or activities cannot be 
directly assigned but are posted to the crowdsourcing platform, 

while people can choose deliberately which tasks to book and 
work on. In this paper we propose a framework for adaptive 

execution of business processes on top of a crowdsourcing 
platform. Based on historical data gathered by the platform we 

mine the booking behavior of people based on the nature and 
incentive of the crowdsourced tasks. Using the learned behavior 
model we derive an incentive management approach based on 

mathematical optimization that executes business processes in 
a cost-optimal way considering their deadlines. We evaluate 
our approach through simulations to prove the feasibility and 

effectiveness. The experiments verify our assumptions regarding 

the necessary ingredients of the approach and show the advantage 
of taking the booking behavior into account compared to the case 

when it is partially of fully neglected. 
Index Terms-Human-centric BPM, Crowdsourcing, Incentive 

Management, Adaptive Process Execution 

I. INTRODUCTION 

Today's fast changing business environments require com

panies to be highly flexible in order to stay competitive. 

Short, unpredictable business cycles and fluctuations, rapidly 

emerging technologies and trends, globalization, and the global 

interconnectedness provided by the Internet have increased the 

world's economical clock speed and competition among com

panies. Recent developments in IT promise to help companies 

to cope with the new requirements they are facing. Social 

networks can be leveraged to support people in loosely coupled 

and open team structures to efficiently collaborate. Web-based 

crowdsourcing, on the other hand, allows to broadcast tasks to 

a large network of people, the crowd, via an open call. Crowd 

members voluntary agree to solve crowd sourced problems 

motivated by incentives, such as money or social recognition. 

Crowdsourcing has the potential to give companies flexible 

access to a talent pool of almost unlimited size. In fact, 

according to an internal strategy document that leaked out in 

early 2012, IBM plans to employ a radically new business 

model [1]. It involves to let the company run by a small 

number of core workers. A dedicated Web-based platform is 

used to attract specialists and to create a virtual "cloud" of 

contributors. Similar to cloud computing where computing 

power is provided on demand, IBM's people cloud would 

allow to leverage a flexible on-demand workforce. Today's 

crowdsourcing systems are still relatively simple and only suit

able for non-critical, atomic tasks requiring minor efforts. In 

particular, Amazon offers a task-based crowdsourcing market

place called Amazon Mechanical Turk (AMT) [2]. Requesters 

are invited to issue human-intelligence tasks (HITs) requiring 

a certain qualification to AMT. The registered customers post 

mostly tasks with minor effort that, however, require human 

capabilities (e.g., transcription, classification, or categorization 

tasks [3]). 

We foresee that in the future companies will increasingly 

use crowdsourcing to address a flexible workforce. However, 

it is still an open issue how to carry out business processes 

leveraging crowdsourcing. Most task-based crowdsourcing 

platforms simply provide requesters the possibility to publish 

simple task descriptions into a database all workers have 

access to. A task description in AMT for instance consists 

of a title, textual description, expiration date, time allotted, 

keywords, required qualifications, and monetary reward. Busi

ness processes or workflows, on the other hand, describe 

a logical structure between tasks crowd sourcing platforms 

cannot handle. The main problem is, however, that people 

book tasks voluntarily in crowdsourcing, which means the only 

way to influence booking and execution times of single tasks 

is to either change incentives or modify other aspects of a task, 

e.g., define a later deadline. 

The contribution of this paper is an enterprise crowdsourc

ing approach that executes business processes on top of a 

crowdsourcing platform. For each single task in the business 

process we reason about the optimal values for incentive and 

time allotted when crowdsourcing them. The goal is to carry 

out the business process with minimal investments before the 

deadline. During execution of the business process we con

stantly monitor the progress and adjust these values for tasks 

that have not been booked by a worker yet. Our approach for 

calculating optimal values is based on mining historical data 

about task executions, e.g., which influence higher rewards 

have on the booking time, analyzing the current status of 

the business process, and quadratic programming, which is 
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a mathematical optimIzation fonnulation that can be solved 

efficiently. We evaluate our approach through simulations for 

different process sizes and structures. The experiments show 

the effectiveness of the approach and demonstrate its adaptivity 

to the poorly predictable crowdsourcing environment. 

The paper is organized as follows. In Section II we introduce 

a motivating scenario for our work. Section III introduces 

the approach in detail. Results of conducted experiments 

are presented in Section IV. Related work is discussed in 

Section V. Finally, Section VI concludes the paper. 

II. MOTIVATING SCENARIO 

We consider a scenario of a large software company that 

plans to install a enterprise-internal crowdsourcing platform 

for software development tasks. The platform allows employ

ees to book tasks related to software development. Figure 1 

schematically shows how tasks are presented to the employees, 

which is similar to most task-oriented crowdsourcing platfonns 

like Amazon MTurk. 

Type Description Ready to Effort Time Reward 
start Allotted 

JavaScript Click here now 21h 5d $2,090 Book 
VI Design Click here Apr I, 2pm 12h 7d $810 Book 
.NET Click here Apr 3, 9am 3h 14d $110 Book 
... ... ... ... ... ... .. . 

Fig. 1. Schematic UI for the enterprise-internal crowd sourcing platform of 
a large software company. 

Each task is described by a type and a textual description. 

The third column gives an estimate when the employee will 

be able to start working on the task. Since a task may require 

input from other tasks the actual start date and time can deviate 

from the announced one. Effort provides information about the 

time effort necessary to finish the task. Time allotted defines 

the time frame in which the task is supposed to be processed. 

It starts when the task is ready to start or when the task 

is booked, whatever is later. The reward tells the employee 

how much he will get for successfully processing the task on 

time. Instead of money, rewards could also consist of more 

abstract reward points. When an employee books a task s/he 

is responsible for delivering the results within the allotted time. 

Tasks can be booked before they are ready to start. As long as 

tasks are not booked the system may modify allotted time and 

reward. The crowdsourcing platform generates and stores log 

infonnation for each processed task, as illustrated in Figure 2. 

We assume that at least information regarding the task type, 

time effort, time allotted, the reward for which the employee 

actually booked the task, and the time it took from publishing 

to booking is stored for each task processed via the platform. 

Usually paying much for a task would reduce its booking 

time; also, having a high allotted time should make tasks more 

attractive compared to tasks with a tight deadline. 

However, the software company has problems to map its 

business workflows to the crowdsourcing platfonn. Figure 3 

shows a workflow describing a business process the company 

wants to execute. The aim of the process is to integrate a new 

I 
Crowd sourcing I 
Platform Logs I 

I 
I 

= I 

Type I Effort I Time Allotted I Reward I Booking Time I 

.Net I 24h I 14d 

.Net I 12h I 4d 

.Net I 36h I 5d 

.Net I 36h I 5d 

UI Design I 12h I 8d 

I ... I ... 

I $520 

I $325 

I $570 

I $850 

I $405 

I ... 

I 
I 
I 
I 
I 
I 

ld 

5h 

6d 

5h 

3h 

.. . 

Fig. 2. The crowdsourcing platform maintains a database containing 
information related to the processing of each task. 

Fig. 3. An exemplary business workflow describing the development of a 
new plugin for a software product. The plugin consists of two features that 
need to be developed, integrated, and deployed into the software product. 
Each implementation step is followed by testing. There is a deadline for the 
completion of the whole plugin. 

plugin into an existing software product. The plugin consists 

of two features that together make up the functionality of 

the plugin. Each feature consists of three tasks, the actual 

implementation and the writing of test cases, which can be 

done in parallel, and the testing of the implementation using 

the test cases. After both features have been implemented 

and tested, an integration and deployment step is necessary 

to ensure proper installation into the software product. Three 

different testing tasks are to ensure the high quality of the 

plugin; all three are based on the integration test case. 

The introduced business process is simple yet helps to 

understand the challenges addressed by this paper. The ques

tion is how to crowd source the tasks of the workflow using 

the crowdsourcing platform, i.e., how to set the values for 

the crowdsourced tasks. Type, description, and estimated ef

fort of each single task typically are already available; the 

approximate ready-to-start times can be computed by the 

crowdsourcing platform once it has scheduled all predecessor 

tasks. This is relatively straightforward yet not trivial since 

it involves computation based on constant monitoring and 

recalculations to cover deviations from the schedule, e.g., 

delayed or early finished tasks. However, there is no obvious 

solution at all for how to determine the values for time allotted 

and reward. Time allotted should be assigned in a way to 

ensure the adherence to the deadline. Rewards should consider 

the usual "market prices" of the respective tasks, but also 

sometimes be increased to strengthen the competition among 

employees and ensure that tasks critical to the success of the 

workflow are timely booked. Also, in case the allotted time is 

short to process the task, then this should be reflected in the 

reward. 
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In this paper we introduce a novel algorithmic approach 

to crowdsource tasks that belong to a business workflow. We 

try to map tasks to the crowdsourcing platform such that the 

deadline is met and the aggregated rewards are minimized. In 

the next section we present our approach in detail. 

III. ApPROACH 

The goal of our solution is to ensure the timely execution 

of business processes that contain crowdsourced tasks while 

minimizing the expenses associated with crowd sourcing re

wards. We assume that the crowdsourcing platform allows to 

specify allotted time and reward for each task (as described 

in Sec. II). The expenses can be reduced by setting lower 

rewards for tasks, however, if the reward is too small, a task 

might stay not booked for too long, if booked at all. Such 

situations can significantly affect the execution of the process, 

and become a reason of missed deadlines. The allotted time 

also affects expenses: it is less likely that an employee decides 

to take an urgent task for a regular reward. Hence, there can 

be more employees interested in a non-urgent task at a lower 

reward, because some of them might have less experience 

in this type of tasks, and would like to improve, but need 

more time allotted. Obviously, the time allotted also directly 

influences the process completion time. The main idea of our 

approach is to find a most beneficial trade-off between rewards, 

allotted times, and expected booking times for crowd sourced 

tasks in the process. Specifically, we address the following 

questions: 

How to estimate booking time? The time it takes someone 

to book a task after it is announced in the platform, or the 

booking time, can be influenced by various factors. However, 

we are convinced that it is driven mostly by the strength of 

the competition among employees. Therefore, tasks whose 

time allotted and reward combination satisfies demands of 

more people are generally booked earlier, and vice-versa. 

Undoubtedly, even if an employee is satisfied with the time 

allotted and the reward offered, s/he can still refuse to book a 

task, because of being too busy, not interested in this particular 

type of tasks, or just not being in the mood. Nevertheless, if the 

crowd is large enough, the trend should remain. Our approach 

is to determine this trend using platform logs (see Sec. II). 

How to optimize allotted times and rewards? The op

timization should consider the dependency between booking 

times, rewards, allotted times, and the structure of the process. 

Also, it can happen that something goes not as expected (e.g., 

a worker delays a critical task or completes it significantly 

earlier), so either it becomes necessary to get some tasks 

done faster to cope with a deadline or an opportunity to 

cut more costs emerges. The optimization therefore should 

perform adaptively, and consider the process state as well. 

When should tasks be published in the crowdsourcing 

platform? If a task is booked by an employee, then the 

platform undertakes a commitment and can' t demand the 

employee to perform faster or change the reward for this task 

any more. However, as mentioned above, an adaptive behavior 

can be advantageous, and it can be more beneficial to publish 

tasks later. But this should not be done too late and be aligned 

with the process execution state. Our approach is to publish 

a task when the sum of its optimized booking and allotted 

times, and expected execution time of subsequent activities in 

the process is almost as long as the time left before deadline. 

In Section IV we experimentally prove that such an approach 

produces optimal results. 

We thus map the described functionality to components and 

propose a framework for a deadline-driven reward optimiza

tion for processes containing crowdsourced tasks (see Fig. 4). 

The estimator collects the statistical data from the platform 

logs and estimates the functional dependency for each type of 

task CD. The optimizer retrieves structure and state of processes 

@, booking state of already published tasks ®, functional 

dependencies �, and determines optimal values for booking 

time, reward, and time allotted. These values are further used 

by the publisher ® which announces tasks to the platform at 

appropriate time and updates them if needed ®. 

-B�Process Engme-

u=-

Op�tl�ml �ze �r -----

minimize 
f(x) = Y, xT Qx + cT x 

subject to 
Ax "b 

Estllnato� r ----� 

Fig. 4. The architecture of the framework 

Subsections below provide a detailed description of the cor

responding components of the framework. Estimation should 

be performed for all task types before rewards can be op

timized. After some time, it can be re-executed to conform 

to the crowd's changing characteristics. The optimization and 

publisher are activated periodically thus realizing the adaptive 

behavior. 

A. Estimator 

As described in Sec. II, each log entry corresponds to a 

processed task and includes task type, weight (e.g., in hours 

of effort), allotted time, booking time, and reward. Let us refer

ence to these values as T, W, t, bt, r. The estimation for each 
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task type is done independently. Therefore, for a particular 

type of task, an entry can be represented as < w, t, bt, r >. 

Assuming that reward and time allotted linearly depend on 

the weight, and booking time depends on the combination of 

reward and time allotted, we can consider a mapping bt' = 

f(t', r') populated with log entries as follows: t' = t/w; r' = 

r /w; bt' = bt, which reflects tasks with weight one. 

Further, we need to estimate a function ub( t, r) which is an 

upper bound for mapping f for each (t, r). Even with a weak 

competition, a task can be booked fast due to a coincidence. 

Therefore, for stable prediction in the context of deadline 

fulfillment, we are interested in the maximum time that it takes 

a task with specified reward and time allotted to get booked. 

The particular methods for upper bound estimation can vary 

according to the real setup. 

Finally, using the discovered upper bound, we need to 

approximate the function g(t, bt) that reflects the reward that 

needs to be set for a specified time allotted and expected 

booking time. This function will be used in an objective 

function for optimization. The dataset for approximating 9 

is obtained as a set of tuples < ri, ti, ub(ti, ri) > for each 

log entry. We argue that 9 should be approximated with a 2nd 

degree polynomial, because (i) polynomial-based optimization 

is well studied [4], (ii) many optimization frameworks support 

quadratic prograrmning [5] , and (iii) the 2nd degree is a good 

trade-off between optimization complexity and fitting accuracy 

for the problem. In our experiments, the difference in accuracy 

between 2nd and 5th degree polynomial approximation was 

less than 5%, whereas it was more than 20% between 1st and 

2nd degree. The estimation should also determine minimum 

and maximum values for all arguments. The approximated 

function should therefore have the following form: 

g(t, bt) = al * t2 + a2 * t * bt + a3 * bt2 + a4 * bt + a5 

An example of an approximated function is illustrated in 

Sec. IV. 

B. Optimizer 

The goal of the optimization is to fulfill process deadline, 

while trying to minimize the offered rewards. Therefore, based 

on the state and structure of the process and estimated depen

dencies, we formulate a quadratic programming problem. The 

constraints ensure that the process can be finished before the 

deadline considering all the booking and allotted times, and 

the optimization objective is the sum of the rewards that will 

be paid for tasks contained in the process. 

We formally represent a process as a directed acyclic graph, 

where nodes represent tasks and edges represent control flow. 

The graph has 2 special nodes that represent the beginning and 

the end of the process, namely in and out. Thus, for each node 

in the graph, there exists a path from in to out which contains 

this node. A task can be started when all its incoming edges 

are adjacent to already finished tasks. Besides crowd sourced 

tasks, a process can contain simple activities, whose execution 

times are regarded as constants. For simplicity, in and out 

nodes can be considered dummy, i.e., simple activities with 

execution time O. Such representation is more general than, 

e.g., combination of flow and sequence activities in BPEL. In 

this work we do not consider constructs such as conditions or 

loops for the sake of simplicity, although the approach can be 

extended to support such elements. 

Each task has a property that indicates its status, which 

can be either unavailable, published, ready, 
started or finished. The process engine can thus 

launch only the tasks that are ready. Tasks are marked as 

published when published in the crowdsourcing platform, 

and change their status to ready when booked. For each not 

yet booked crowd sourced task, decision variables for allotted 

time and for booking time are included for optimization. The 

variables are restricted using the minimum and maximum 

values provided by the estimator. Two categories of constraints 

are included into the optimization model: 

1) Constraints covering all the processing and allotted times 

throughout all possible process execution paths from 

the current state. The combination of these constraints 

ensures that the slowest branch will complete before the 

deadline. 

2) Constraints covering booking time for unavailable 
and published tasks and all possible subsequent 

process execution paths. These constraints ensure that 

booking times will not endanger the deadline fulfillment. 

If a task is already booked or represents a simple activity, then 

its execution time is fixed. If it has been already started, then 

its completion time can be estimated for current situation. In 

both of these cases, the execution time is regarded as a constant 

from the perspective of the optimization. The exact algorithm 

for building the constraints is described in Algorithm 1. 

An example of the algorithm's functionality is shown in 

Fig. 5. A simple activity has already started and has been 

processed for five time units, as illustrated by the time line. 

Since the expected processing time for the activity is 20 time 

units, the optimizer assumes that the activity finishes in 15 

time units. As there is only one started activity, the optimizer 

adds two constraints of first category because there exist two 

paths from this activity to out activity. As all the other tasks are 

either unavailable or published, the constraints of the second 

category should be created for them. Therefore, two constraints 

for booking time t2 are generated, covering both successor 

paths. For both t3 and t4, only one constraint is generated for 

each single path to out. 

The optimization objective is composed of a sum of rewards 

using the scaled values of estimated dependency functions: 

min L)gtypes (ts/ws, bts) * ws) 
sES 

where S is the set of all tasks in the process, gtypes represents 

the dependency function for the type of task s, ts, bts are 

decision variables, and Ws is the weight of task s. 

If the optimization problem turns out to be infeasible, the 

optimizer should try to extended the deadline and try again, 
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until a feasible solution is found. This will ensure that even 

if the deadline cannot be met, then the best possible solution 

will be provided. 

Algorithm 1 Algorithm for creating optimization constraints 

input : timeToDeadline, processGra ph 

call : createConstraints ([I, processGra ph.outNode) 

createConstraints( list path, task t) { 
add t to the beginning of path; 

foreach (incoming edge e of t) { 

} 

get adjacent node t' which is source of e;  

if  ( status of  t' is  not finished ) createConstraints(path, t '); 

if (there were no incoming edges with adjacent not finished nodes) 
addConstraint(path, 1 st type ); else 

addConstraint(path, 2nd type); 
remove t from path; 

addTermsToExpression(list path, constraint expression expr) { 
foreach (t in path) 

} 

if ( status of t is unavailable or published) 

add decision variable for allotted time of t to expr; else 

add expected execution time left for t as a constant to expr; 

addConstraint( list path, constraint type cType) { 
t = first task in path; 

} 

if (cType is "2nd type" and 
status of t is not either unavailable or published) return; 

create constraint expression expr; 

if (t is unavailable) 

add decision variable for booking time of t to expr; 

if (t is published) 

add predicted time for t to be booked as constant to expr; 

addTermsToExpression(path, expr); 

add optimization constraint [expr < timeToDeadline ]; 

15 + t2 + t3 < 100 

15 + t2 + t4 < 100 

bt2 + t2 + t3 < 100 

bt2 + t2 + t4 < 100 

bt3 + t3 < 100 

bt4 + t4 < 100 

Fig. 5. Example for the generation of optimization constraints for the 
quadratic programming problem formulation. 

C. Publisher 

A task is published in the platform when the sum of its 

expected booking time, allotted time, and expected execution 

time of subsequent activities in the process is almost as current 

time to deadline. In other words, the time to deadline when 

it should be published can be determined by (i) finding the 

longest path from the task node to out node in the process 

graph, where weights of edges are set to the determined 

optimal values for time allotted of their source nodes, and 

(ii) adding the booking time of the task to this value. A task 

can also be updated after being published if it has not been 

booked yet. 

In practice, the time to deadline value which is provided to 

optimizer and publisher can be lower than the real value in 

order to keep a small fraction of time reserved for handling 

unexpected events. 

IV. EVALUATION 

As we mention in Section V, best to our knowledge there are 

no similar approaches. Therefore, we were not able to make a 

comparative evaluation. Because the distinguishing feature of 

our approach is consideration of competition in crowd sourcing 

and booking time, we compare the effectiveness of the opti

mization with cases when booking time is partially or fully 

neglected. We also empirically prove the optimal choice of 

task publishing time, and evaluate the overall performance 

overhead of the optimization component. 

To evaluate our approach, we examined a prototype imple

mentation of the framework (accessible online I ) in a simulated 

environment. We used MATLAB surface fitting for functional 

approximation, and GUROBI [6] framework for solving the 

quadratic optimization problem. We used a discrete time 

model, so time was measured in arbitrary integer units. 

A. Simulation setup 

Workers. The size of the simulated crowd was assumed 

to be 1000 workers. Platform logs were generated assuming 

that, at any point, only about 5% of them are willing to 

use the crowdsourcing platform (at various times those can 

be different workers). For every task type, each worker was 

assigned two values: the least time allotted that s/he needs to 

finish a task of this type with weight 1, and the minimum 

acceptable reward. These values were generated using the 

normal distribution. Then, for a random sampling of time 

allotted and reward pairs, 200 log entries were created. To 

pick a sensible booking time for a log entry, the competition 

value was calculated as a number of workers from the crowd, 

whose least time allotted and minimum acceptable reward 

were less than the log entry had. Then, assuming that only 

5% of the potential competitors would actually compete for 

the task, the booking time estimation was guided by the 

probability that at least one of competing workers books 

the task before time n, assuming that the time of booking 

the task by one worker follows the normal distribution. The 

actual value was determined by stepwise increasing n and 

comparing a uniformly distributed random value with this 

1 http://www.infosys.tuwien.ac.at/prototypelincentivemgmt 
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TABLE I 
TASK GENERATION PARAMETERS 

Pro perty 
Type 1 Type 2 Type 3 

Ayg Dey Ayg Dey Ayg Dey 
Reward 100 15 50 7 80 10 
Time allotted 20 3 15 3 13 2 
Booking time for 30 9 20 8.5 15 5 
one worker 

probability. Once it happens that the random value is less 

than the probability, n is the booking time. Such a method 

covered coincidental fast bookings while generally exhibiting 

the trend associated with competition. This method was also 

used to simulate actual booking while performing experiments, 

i.e., the crowd simulator was not informed about the booking 

time chosen. 

Tasks. Three types of crowdsourced tasks were simulated. 

Each task was described by average reward and allotted time, 

booking time by one worker, and corresponding deviations. 

The types of tasks and their generation parameters are shown 

in Table I. The estimated dependencies between booking time, 

allotted time, and reward for tasks of Type 1 are illustrated in 

Fig. 6. 

10 ::!o Booking time 

__ -r����� � 30 

30 
25 Time allotted 

140 
I:!O � 
100 � 

'" 

Fig. 6. Estimated quadratic polynomial that describes the dependencies 
between booking time. allotted time. and rewards for tasks of Type 1. 

Processes. The simulator randomly generated processes 

with different sizes. We simulated small processes (5-10 

tasks) and big processes (10-30 tasks), including all types 

of crowdsourced tasks and simple activities. We believe that 

bigger numbers are not realistic in a real setup, because 

usually business logic is clustered into concise compositions 

that are then managed on a higher level. Weights for tasks 

were selected randomly from the range [0.5,5]. 

B. Experiments 

We ran the prototype in different simulation settings by 

randomizing process structures, and by emulating the inac

curacy of task execution and booking times (the results from 

different random generation seeds were averaged). The actual 

execution time for tasks was set using normal distribution with 

deviations of 0.1 and 0.2 of the supposed execution time. We 

considered both cases when the deadline could and could not 

be adhered thus exploring how different parameters of the 

approach impact both critical and noncritical situations. We 

compare the results based on average reward, total time penalty 

(time penalty is a delay of a process with regard to the deadline 

for cases where deadline was missed), and number of missed 

deadlines produced, as these indicators fully reflect the goal 

of the approach. 

Publishing time. In our solution a task is published when 

the difference between the time left before deadline and the 

sum of the task's allotted time, and expected execution time of 

subsequent activities in the process (let us refer to this value 

as booking buffer) is equal to its decided booking time. In 

order to prove that this is the optimal choice, we performed 

experiments where tasks were published at earlier and later 

times. The results are shown in Figure 7. We used booking 

buffer values equal to 0.2,0.5, 1,2,3,4,5,6 multiplied by the 

task's decided booking time, and, finally, we tested the case 

when the tasks were published in the platform immediately 

after a process was started (OnStart mark in the figure). 

It can be clearly seen that booking buffer equal to the ex

pected (decided) booking time produces optimal results. When 

it is less than this value, the tasks are not booked on time, so 

the optimizer has to compensate that by putting higher awards, 

and, regardless of that, more deadlines are missed because of 

these delays. When booking buffer is greater than the decided 

booking time, then there is less room for maneuvering to 

handle uncertainty in execution and booking times, because 

tasks become booked earlier and their parameters cannot be 

changed anymore. This results into more missed deadlines and 

bigger penalties. This behavior then gradually changes in an 

opposite way, which can be explained by the fact that the 

real booking time can be longer than the estimated one, and 

therefore the impact of this inaccuracy is reduced for bigger 

values of booking buffer. However, the number of missed 

deadlines remains at least 25% greater than in the ultimate 

case when all the tasks are published when the process is 

started; rewards and time penalties in this case are almost the 

same. 

Booking time. Consideration of booking time is a key 

feature in our approach. To analyze the effectiveness of this 

feature, we compare the full-featured optimization to the case 

where booking time constraints (second type of constraints, 

see Section III) are completely removed from the optimization 

problem (tasks are still published at the appropriate time 

according to the expected booking time which inferred from 

the decided rewards and allotted times), and to the case where 

average booking time is chosen for each task. The results 

for small and big processes are shown in Figures 9 and 10 

respectively, depicting the same indicators as in the previous 

set of experiments. 

As the results show, choosing an average booking time 

always results in approximately l3% more expenses for all 

process sizes, and produces more or almost as much penalties 

and deadline misses as the full-featured optimization does. 
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This happens because some tasks do not need to be booked 

fast, and the full-featured optimization would pick less com

petitive and therefore less expensive values for rewards. 

Disabled booking time constraints do not affect the indica

tors for big processes. This can be explained by the fact that 

there is almost always enough time for booking the tasks in 

long processes. Only first tasks of the process can be delayed, 

but it does not affect the overall performance. Also, booking 

times are always chosen to be maximal in this case because 

they are not constrained and it reduces the paid rewards. 

However, for smaller processes, the consideration of booking 

time is crucial, as it can stronger affect the relatively short 

process execution time, The unconstrained case produces 14% 

more deadline misses and penalties. 

One can argue that the full-featured optimization should 

perform at least with the same performance as two other 

approaches. In perfect conditions this assertion would hold. 

However, on the one hand, the booking time is estimated as 

an upper bound, therefore, the booking can often take less 

time than predicted. On the other hand, when the competition 

is too low, it can have the opposite effect: a task, which is 

assumed to be booked and executed earlier and costs more, can 

be eventually delayed more than a task which costs less and 

was expected to be booked later. Therefore, estimating realistic 

booking times is one of the key requirements of this approach. 

The accuracy of booking time in our experiments was 92%, 

which resulted in at most 2% of more missed deadlines and 

penalties. 
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Fig. 9. Effect of neglecting the booking time in optimization for small 
processes (5-10 tasks). 
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Fig. 10. Effect of neglecting the booking time in optimization for big 
processes (10-30 tasks). 

Performance overhead. The overhead of optimization de

pends on the number of variables and the number of con

straints, However, the number of variables for our problem 
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is proportional to the number of tasks involved, which was 

less than or equal to 30, and the variance within this limit did 

not affect the overhead. However, the number of constraints is 

proportional to the total amount of all possible paths that go 

through in and out activities (see Section III), and this number 

depends on the process structure and scales from one to tens 

of thousands. Figure 8 depicts the overhead dependency on 

the number of constraints for one optimization run2. 

For small processes (up to ten tasks), the worst case is when 

there is a sequence of five constructs each with two activities 

in parallel, the number constraints is less than 25 * 2 = 64, 

which implies that an optimization run for a small process 

always takes less than 0.01 second. For bigger processes, the 

worst case is 215 * 2 = 65535, so an optimization run can take 

up to 35 seconds in this case. In both cases, the overhead is 

acceptable for performing periodical adaptations in processes 

with human tasks which can span from several minutes to 

hours or days. 

C. Discussion 

The results clearly show that booking time should be con

sidered when publishing tasks to achieve the best adaptable be

havior, because the best results are achieved when the booking 

buffer equals to the estimated expected booking time. Booking 

time constraints for optimization are not always favorable, 

however. They should not be used for bigger processes (more 

than ten tasks in out setting), but become important for smaller 

processes. Such smaller processes can emerge in, e.g., agile 

software development environments, where work is organized 

into short cycles with small sets of tasks. 

V. RELATED WORK 

In this work we combine crowdsourcing and business pro

cess execution. Major industry players have been working 

towards standardized protocols and languages for interfacing 

with people in a service-oriented way, which may be used 

as technical foundation for implementing our ideas in real 

businesses. Specifications such as WS-HumanTask [7] and 

BPEL4People [8] have been defined to address the lack of hu

man interactions in service-oriented businesses [9]. Although 

some prospective features and possible extensions for dynamic 

resource management were outlined for these standards [10], 

[11], however, they have been designed to model interactions 

in closed enterprise environments where people have prede

fined, mostly static, roles and responsibilities. 

The area of QoS-aware composition of Web services has 

many similarities to the topics addressed in this work. Web 

service compositions create value-added services by compos

ing existing ones. Here the question arises which services 

to chose for participation in a composite service, given that 

there are many available Web services providing equivalent 

functionality. Liangzhao Zeng et al. [12] propose a QoS-aware 

middleware for selecting Web services that maximize user 

2Hardware used: Intel Core 2 Quad 2.40 GhZ with 6 GB of RAM 

satisfaction modeled as utility functions. They define multiple 

quality criteria, i.e., execution price, execution duration, repu

tation, successful execution rate, and availability. The authors 

propose service selection based on local optimization and 

global selection, considering aforementioned quality criteria. 

In the local optimization case service selection is done for 

each task individually, while the global planning also considers 

the interrelations between services. Integer Programming is 

used to solve the global planning problem. Canfora et al. [13] 

argue that genetic algorithms, while being slower than integer 

programming, represent an alternative, more scalable option. 

Another work [14] focuses on the optimization of large-scale 

QoS-aware compositions at runtime based on QoS specifi

cation based on constraint hierarchies. Multiple well-known 

metaheuristic optimization approaches are applied to solve 

the optimization problems. The major difference between Web 

service composition and crowdsourcing of business processes 

is that Web services which are to execute a functionality can be 

directly chosen while humans in the crowd are self-determined 

and act autonomously. 

The recent trend towards collective intelligence and crowd

sourcing can be observed by looking at the success of various 

Web-based platforms that have attracted a huge number of 

users. Well known representatives of crowdsourcing platforms 

include Yahoo! Answers [15] (YA) and the aforementioned 

AMT [2]. The difference between these platforms lies in 

how the labor of the crowd is used. YA, for instance, is 

mainly based on interactions between members. Questions are 

asked and answered by humans, thereby lacking the ability 

to automatically control the execution of tasks. In contrast, 

AMT offers access to the largest number of crowdsourcing 

workers. With their notion of HITs that can be created using 

a Web service-based interface they are closely related to 

our aim of mediating the capabilities of crowds to service

oriented business environments. According to one of the latest 

analysis of AMT [3], HIT topics include, first of all, transcrip

tion, classification, and categorizations tasks for documents 

and images. Furthermore, there is also tasks for collecting 

data, image tagging, and feedback or advice on different 

subjects. Related work in the area of crowdsourcing also 

includes experiments about behavioral aspects [16], impact 

of incentives on the performance of crowdsourcing [l7], and 

impact of dynamic learning environments on the quality of 

crowdsourced tasks [18]. These studies partially confirm our 

assumptions (e.g., that higher incentives generate more interest 

and produce results faster), however, none of these works 

focus on internal enterprise crowdsourcing, and none of them 

discuss the controlled execution of business processes using 

such platforms. 

While this paper focuses on how to take a workflow and 

optimally convert the subtasks into crowdsourcing tasks, there 

is also research about how to map crowd sourcing tasks to suit

able workers. A possibility is to use auctioning mechanisms 

for implementing such a mapping [19], [20]. All workers 
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that meet the mlfilmum requirements for a particular are 

invited to submit a bid to an auction created for assigning 

the task. The winning bid is determined by a combination of 

the workers' suitability for the task and the bids' prices. For 

improved reliability and training of workers a single task may 

be crowd sourced multiple times. Another possibility is to use 

scheduling [21] and specifically assign most suitable workers 

to pending tasks, while allowing workers to be flexible and to 

choose periods when they are available for work. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we presented an approach that allows to 

adaptively execute business processes on top of an internal 

competition-based crowdsourcing platform. The main feature 

that distinguishes our approach from other workflow and 

process optimization methods is consideration of time that 

it takes a crowd to book a task. We proposed a method for 

estimating the functional dependency of booking time by using 

statistical data, presented an algorithm for constructing an 

optimization problem, and empirically determined the optimal 

task publishing technique. 

The results show that our model is effective for adapting the 

properties of tasks in a crowdsourcing platform to adhere to 

process deadlines and to minimize the rewards. We discovered 

that booking time should be considered when publishing tasks 

to achieve the best adaptable behavior, and that taking booking 

time into account in optimization can reduce deadline misses 

up to 14%. The approach can also be used to predict feasibility 

and expenses for a specified deadline by running a simulation 

like ours, therefore allowing to explicitly observe the tradeoff 

between processing time and associated costs. 

It is fair to notice that the approach assumes booking time 

to be comparable to execution time of tasks. So, for example, 

if there is a strong overall competition in a crowdsourcing 

platform and tasks are taken not long after being published, 

then booking time might have a weaker effect on the process. 

It can be also discovered that booking time depends on the 

weight of a task. Such a dependency can be mined from logs 

and can be handled by our model as well. 

In a real scenario, the results will heavily depend on the 

accuracy of booking time dependency approximation. Also, 

we do not consider "unbooking" or the possibility of re

negotiating reward/allotted time with a worker when the task 

is already booked. Such extensions might be an interesting 

direction for future work. Also, it would be interesting to 

compare our approach to auction-based crowdsourcing (e.g., 

[19]) and to extend it to support custom penalty functions. 

ACKNOWLEDGEMENT 

This work received funding from the EU FP7 program under 

the agreement 257483 (Indenica) and from the Vienna Science 

and Technology Fund (WWTF), project ICT08-032. 

451 

REFERENCES 

[I] Spiegel Online (In German) , http://www.spiegel.de/wirtschaftlunt 
ernehmenlO,1518,813388,00.html, last access Sep. 2012. 

[2] Amazon Mechnical Turk, http://www.mturk.com. last access Sep. 2012. 
[3] p. G. Ipeirotis, "Analyzing the Amazon Mechanical Turk Marketplace," 

SSRN eLibrary, vol. 17 , no. 2, pp. 16-21, 2010. 
[4] Z. U, "Polynomial optimization problems, approximation algorithms 

and applications," Ph.D. dissertation, The Chinese University of Hong 
Kong, 2011. 

[5] J. Nocedal and S. Wright, Numerical Optimization, 2nd ed. , ser. Springer 
Series in Operations Research and Financial Engineering. Springer, 
2006. 

[6] I. Gurobi Optimization, "Gurobi optimizer reference manual," 2012. 
[Online]. Available: http://www.gurobi.com 

[7] A. Agrawal, M. Amend, M. Das, M. Ford, C. KeUer, M. Klopp
mann, D. Konig, F. Leymann, R. MUller, G. Pfau et al., "Web 
services human task (ws-humantask) , version 1.0," available at 

http://incubator.apache.orglhise/WS-HumanTask_vl.pdf, 2007. 
[8] M. Kioppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von 

Riegen, P. Schmidt, and I. Trickovic, "Ws-bpel extension for people
bpeI4people," Joint white paper, IBM and SAP, 2005. 

[9] F. Leymann, "Workflow-based coordination and cooperation in a service 
world," in Cooperative Information Systems (CoopIS '06), ser. LNCS. 
Springer, 2006, pp. 2-16. 

[10] N. RusseU and W. M. Aalst, "Work distribution and resource manage
ment in bpel4people: Capabilities and opportunities," in International 

coriference on Advanced Iriformation Systems Engineering (CAiSE '08). 

Berlin, Heidelberg: Springer, 2008, pp. 94-108. 
[II] D. Schall, B. Satzger, and H. Psaier, "Crowdsourcing tasks to so

cial networks in BPEL4People," World Wide Web, Springer, 2012, 
1O.1007/s11280-012-0180-6. 

[12] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and 
H. Chang, "Qos-aware middleware for web services composition," 
Software Engineering, IEEE Transactions on, vol. 30, no. 5, pp. 311 
- 327 , may 2004. 

[13] G. Can fora, M. Di Penta, R. Esposito, and M. L. Villani, "An approach 
for qos-aware service composition based on genetic algorithms," in 
Genetic and evolutionary computation (GECCO '05). New York, NY, 
USA: ACM, 2005, pp. 1069-1075. 

[14] F. Rosenberg, M. B. MUller, P. Leitner, A. Michlmayr, A. Bouguettaya, 
and S. Dustdar, "Metaheuristic Optimization of Large-Scale QoS-aware 
Service Compositions," in International Conference on Services Com

puting (SCC'JO). Washington, DC, USA: IEEE Computer Society, 
2010, pp. 97-104. 

[15] Yahoo! Answers, http://answers.yahoo.com/, last access Sep. 2012. 
[16] G. Paolacci, J. Chandler, and P. Ipeirotis, "Running experiments on 

amazon mechanical turk," Judgment and Decision Making, vol. 5, no. 5, 
pp. 411-419, 2010. 

[17] W. Mason and D. J. Watts, "Financial incentives and the "performance 
of crowds"," in SIGKDD Workshop on Human Computation (HCOMP 

'09). New York, NY, USA: ACM, 2009, pp. 77-85. 
[18] J. Le, A. Edmonds, V. Hester, and L. Biewald, "Ensuring quality 

in crowdsourced search relevance evaluation: The effects of training 
question distribution," in SIGIR Workshop on Crowdsourcing for Search 

Evaluation, 2010, pp. 21-26. 
[19] B. Satzger, H. Psaier, D. Schall, and S. Dustdar, "Stimulating SkiU Evo

lution in Market-Based Crowdsourcing," in 9th International Conference 

on Business Process Management (BPM '11), ser. LNCS. Springer, 
2011, pp. 66-82. 

[20] -- , "Auction-based crowdsourcing supporting skill management," 
lriformation Systems, 2012, 1O.1016/j.is.2012.09.003. 

[21] R. Khazankin, H. Psaier, D. SchaU, and S. Dustdar, "Qos-based task 
scheduling in crowdsourcing environments," in International Coriference 

on Service-Oriented Computing (ICSOC '11), ser. LNCS. Springer, 
2011, vol. 7084, pp. 297-311. 


