
8th International Conference Conference on Collaborative Computing: Networking, Applications and Worksharing , Collaboratecom 2012 Pittsburgh, PA, United States, October 14-17, 2012

Optimized Execution of Business Processes on

Crowdsourcing Platforms

Roman Khazankin, Benjamin Satzger, and Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

Argentinierstrasse 8/184-1, A-1040 Vienna, Austria

{lastname}@dsg.tuwien.ac.at
http://dsg.tuwien.ac.at/

Abstract-Crowdsourcing in enterprises is a promising ap
proach for organizing a flexible workforce. Recent developments

show that the idea gains additional momentum. However, an

obstacle for widespread adoption is the lack of an integrated way
to execute business processes based on a crowdsourcing platform.

The main difference compared to traditional approaches in

business process execution is that tasks or activities cannot be
directly assigned but are posted to the crowdsourcing platform,

while people can choose deliberately which tasks to book and
work on. In this paper we propose a framework for adaptive

execution of business processes on top of a crowdsourcing
platform. Based on historical data gathered by the platform we

mine the booking behavior of people based on the nature and
incentive of the crowdsourced tasks. Using the learned behavior
model we derive an incentive management approach based on

mathematical optimization that executes business processes in
a cost-optimal way considering their deadlines. We evaluate
our approach through simulations to prove the feasibility and

effectiveness. The experiments verify our assumptions regarding

the necessary ingredients of the approach and show the advantage
of taking the booking behavior into account compared to the case

when it is partially of fully neglected.
Index Terms-Human-centric BPM, Crowdsourcing, Incentive

Management, Adaptive Process Execution

I. INTRODUCTION

Today's fast changing business environments require com

panies to be highly flexible in order to stay competitive.

Short, unpredictable business cycles and fluctuations, rapidly

emerging technologies and trends, globalization, and the global

interconnectedness provided by the Internet have increased the

world's economical clock speed and competition among com

panies. Recent developments in IT promise to help companies

to cope with the new requirements they are facing. Social

networks can be leveraged to support people in loosely coupled

and open team structures to efficiently collaborate. Web-based

crowdsourcing, on the other hand, allows to broadcast tasks to

a large network of people, the crowd, via an open call. Crowd

members voluntary agree to solve crowd sourced problems

motivated by incentives, such as money or social recognition.

Crowdsourcing has the potential to give companies flexible

access to a talent pool of almost unlimited size. In fact,

according to an internal strategy document that leaked out in

early 2012, IBM plans to employ a radically new business

model [1]. It involves to let the company run by a small

number of core workers. A dedicated Web-based platform is

used to attract specialists and to create a virtual "cloud" of

contributors. Similar to cloud computing where computing

power is provided on demand, IBM's people cloud would

allow to leverage a flexible on-demand workforce. Today's

crowdsourcing systems are still relatively simple and only suit

able for non-critical, atomic tasks requiring minor efforts. In

particular, Amazon offers a task-based crowdsourcing market

place called Amazon Mechanical Turk (AMT) [2]. Requesters

are invited to issue human-intelligence tasks (HITs) requiring

a certain qualification to AMT. The registered customers post

mostly tasks with minor effort that, however, require human

capabilities (e.g., transcription, classification, or categorization

tasks [3]).

We foresee that in the future companies will increasingly

use crowdsourcing to address a flexible workforce. However,

it is still an open issue how to carry out business processes

leveraging crowdsourcing. Most task-based crowdsourcing

platforms simply provide requesters the possibility to publish

simple task descriptions into a database all workers have

access to. A task description in AMT for instance consists

of a title, textual description, expiration date, time allotted,

keywords, required qualifications, and monetary reward. Busi

ness processes or workflows, on the other hand, describe

a logical structure between tasks crowd sourcing platforms

cannot handle. The main problem is, however, that people

book tasks voluntarily in crowdsourcing, which means the only

way to influence booking and execution times of single tasks

is to either change incentives or modify other aspects of a task,

e.g., define a later deadline.

The contribution of this paper is an enterprise crowdsourc

ing approach that executes business processes on top of a

crowdsourcing platform. For each single task in the business

process we reason about the optimal values for incentive and

time allotted when crowdsourcing them. The goal is to carry

out the business process with minimal investments before the

deadline. During execution of the business process we con

stantly monitor the progress and adjust these values for tasks

that have not been booked by a worker yet. Our approach for

calculating optimal values is based on mining historical data

about task executions, e.g., which influence higher rewards

have on the booking time, analyzing the current status of

the business process, and quadratic programming, which is

443
978-1-936968-36-7 © 2012 leST

DOl 10.4108/icst.collaboratecom.2012.250434

a mathematical optimIzation fonnulation that can be solved

efficiently. We evaluate our approach through simulations for

different process sizes and structures. The experiments show

the effectiveness of the approach and demonstrate its adaptivity

to the poorly predictable crowdsourcing environment.

The paper is organized as follows. In Section II we introduce

a motivating scenario for our work. Section III introduces

the approach in detail. Results of conducted experiments

are presented in Section IV. Related work is discussed in

Section V. Finally, Section VI concludes the paper.

II. MOTIVATING SCENARIO

We consider a scenario of a large software company that

plans to install a enterprise-internal crowdsourcing platform

for software development tasks. The platform allows employ

ees to book tasks related to software development. Figure 1

schematically shows how tasks are presented to the employees,

which is similar to most task-oriented crowdsourcing platfonns

like Amazon MTurk.

Type Description Ready to Effort Time Reward
start Allotted

JavaScript Click here now 21h 5d $2,090 Book
VI Design Click here Apr I, 2pm 12h 7d $810 Book
.NET Click here Apr 3, 9am 3h 14d $110 Book
...

Fig. 1. Schematic UI for the enterprise-internal crowd sourcing platform of
a large software company.

Each task is described by a type and a textual description.

The third column gives an estimate when the employee will

be able to start working on the task. Since a task may require

input from other tasks the actual start date and time can deviate

from the announced one. Effort provides information about the

time effort necessary to finish the task. Time allotted defines

the time frame in which the task is supposed to be processed.

It starts when the task is ready to start or when the task

is booked, whatever is later. The reward tells the employee

how much he will get for successfully processing the task on

time. Instead of money, rewards could also consist of more

abstract reward points. When an employee books a task s/he

is responsible for delivering the results within the allotted time.

Tasks can be booked before they are ready to start. As long as

tasks are not booked the system may modify allotted time and

reward. The crowdsourcing platform generates and stores log

infonnation for each processed task, as illustrated in Figure 2.

We assume that at least information regarding the task type,

time effort, time allotted, the reward for which the employee

actually booked the task, and the time it took from publishing

to booking is stored for each task processed via the platform.

Usually paying much for a task would reduce its booking

time; also, having a high allotted time should make tasks more

attractive compared to tasks with a tight deadline.

However, the software company has problems to map its

business workflows to the crowdsourcing platfonn. Figure 3

shows a workflow describing a business process the company

wants to execute. The aim of the process is to integrate a new

I
Crowd sourcing I
Platform Logs I

I
I

= I

Type I Effort I Time Allotted I Reward I Booking Time I

.Net I 24h I 14d

.Net I 12h I 4d

.Net I 36h I 5d

.Net I 36h I 5d

UI Design I 12h I 8d

I ... I ...

I $520

I $325

I $570

I $850

I $405

I ...

I
I
I
I
I
I

ld

5h

6d

5h

3h

.. .

Fig. 2. The crowdsourcing platform maintains a database containing
information related to the processing of each task.

Fig. 3. An exemplary business workflow describing the development of a
new plugin for a software product. The plugin consists of two features that
need to be developed, integrated, and deployed into the software product.
Each implementation step is followed by testing. There is a deadline for the
completion of the whole plugin.

plugin into an existing software product. The plugin consists

of two features that together make up the functionality of

the plugin. Each feature consists of three tasks, the actual

implementation and the writing of test cases, which can be

done in parallel, and the testing of the implementation using

the test cases. After both features have been implemented

and tested, an integration and deployment step is necessary

to ensure proper installation into the software product. Three

different testing tasks are to ensure the high quality of the

plugin; all three are based on the integration test case.

The introduced business process is simple yet helps to

understand the challenges addressed by this paper. The ques

tion is how to crowd source the tasks of the workflow using

the crowdsourcing platform, i.e., how to set the values for

the crowdsourced tasks. Type, description, and estimated ef

fort of each single task typically are already available; the

approximate ready-to-start times can be computed by the

crowdsourcing platform once it has scheduled all predecessor

tasks. This is relatively straightforward yet not trivial since

it involves computation based on constant monitoring and

recalculations to cover deviations from the schedule, e.g.,

delayed or early finished tasks. However, there is no obvious

solution at all for how to determine the values for time allotted

and reward. Time allotted should be assigned in a way to

ensure the adherence to the deadline. Rewards should consider

the usual "market prices" of the respective tasks, but also

sometimes be increased to strengthen the competition among

employees and ensure that tasks critical to the success of the

workflow are timely booked. Also, in case the allotted time is

short to process the task, then this should be reflected in the

reward.

444

In this paper we introduce a novel algorithmic approach

to crowdsource tasks that belong to a business workflow. We

try to map tasks to the crowdsourcing platform such that the

deadline is met and the aggregated rewards are minimized. In

the next section we present our approach in detail.

III. ApPROACH

The goal of our solution is to ensure the timely execution

of business processes that contain crowdsourced tasks while

minimizing the expenses associated with crowd sourcing re

wards. We assume that the crowdsourcing platform allows to

specify allotted time and reward for each task (as described

in Sec. II). The expenses can be reduced by setting lower

rewards for tasks, however, if the reward is too small, a task

might stay not booked for too long, if booked at all. Such

situations can significantly affect the execution of the process,

and become a reason of missed deadlines. The allotted time

also affects expenses: it is less likely that an employee decides

to take an urgent task for a regular reward. Hence, there can

be more employees interested in a non-urgent task at a lower

reward, because some of them might have less experience

in this type of tasks, and would like to improve, but need

more time allotted. Obviously, the time allotted also directly

influences the process completion time. The main idea of our

approach is to find a most beneficial trade-off between rewards,

allotted times, and expected booking times for crowd sourced

tasks in the process. Specifically, we address the following

questions:

How to estimate booking time? The time it takes someone

to book a task after it is announced in the platform, or the

booking time, can be influenced by various factors. However,

we are convinced that it is driven mostly by the strength of

the competition among employees. Therefore, tasks whose

time allotted and reward combination satisfies demands of

more people are generally booked earlier, and vice-versa.

Undoubtedly, even if an employee is satisfied with the time

allotted and the reward offered, s/he can still refuse to book a

task, because of being too busy, not interested in this particular

type of tasks, or just not being in the mood. Nevertheless, if the

crowd is large enough, the trend should remain. Our approach

is to determine this trend using platform logs (see Sec. II).

How to optimize allotted times and rewards? The op

timization should consider the dependency between booking

times, rewards, allotted times, and the structure of the process.

Also, it can happen that something goes not as expected (e.g.,

a worker delays a critical task or completes it significantly

earlier), so either it becomes necessary to get some tasks

done faster to cope with a deadline or an opportunity to

cut more costs emerges. The optimization therefore should

perform adaptively, and consider the process state as well.

When should tasks be published in the crowdsourcing

platform? If a task is booked by an employee, then the

platform undertakes a commitment and can' t demand the

employee to perform faster or change the reward for this task

any more. However, as mentioned above, an adaptive behavior

can be advantageous, and it can be more beneficial to publish

tasks later. But this should not be done too late and be aligned

with the process execution state. Our approach is to publish

a task when the sum of its optimized booking and allotted

times, and expected execution time of subsequent activities in

the process is almost as long as the time left before deadline.

In Section IV we experimentally prove that such an approach

produces optimal results.

We thus map the described functionality to components and

propose a framework for a deadline-driven reward optimiza

tion for processes containing crowdsourced tasks (see Fig. 4).

The estimator collects the statistical data from the platform

logs and estimates the functional dependency for each type of

task CD. The optimizer retrieves structure and state of processes

@, booking state of already published tasks ®, functional

dependencies �, and determines optimal values for booking

time, reward, and time allotted. These values are further used

by the publisher ® which announces tasks to the platform at

appropriate time and updates them if needed ®.

-B�Process Engme-

u=-

Op�tl�ml �ze �r -----

minimize
f(x) = Y, xT Qx + cT x

subject to
Ax "b

Estllnato� r ----�

Fig. 4. The architecture of the framework

Subsections below provide a detailed description of the cor

responding components of the framework. Estimation should

be performed for all task types before rewards can be op

timized. After some time, it can be re-executed to conform

to the crowd's changing characteristics. The optimization and

publisher are activated periodically thus realizing the adaptive

behavior.

A. Estimator

As described in Sec. II, each log entry corresponds to a

processed task and includes task type, weight (e.g., in hours

of effort), allotted time, booking time, and reward. Let us refer

ence to these values as T, W, t, bt, r. The estimation for each

445

task type is done independently. Therefore, for a particular

type of task, an entry can be represented as < w, t, bt, r >.

Assuming that reward and time allotted linearly depend on

the weight, and booking time depends on the combination of

reward and time allotted, we can consider a mapping bt' =

f(t', r') populated with log entries as follows: t' = t/w; r' =

r /w; bt' = bt, which reflects tasks with weight one.

Further, we need to estimate a function ub(t, r) which is an

upper bound for mapping f for each (t, r). Even with a weak

competition, a task can be booked fast due to a coincidence.

Therefore, for stable prediction in the context of deadline

fulfillment, we are interested in the maximum time that it takes

a task with specified reward and time allotted to get booked.

The particular methods for upper bound estimation can vary

according to the real setup.

Finally, using the discovered upper bound, we need to

approximate the function g(t, bt) that reflects the reward that

needs to be set for a specified time allotted and expected

booking time. This function will be used in an objective

function for optimization. The dataset for approximating 9

is obtained as a set of tuples < ri, ti, ub(ti, ri) > for each

log entry. We argue that 9 should be approximated with a 2nd

degree polynomial, because (i) polynomial-based optimization

is well studied [4], (ii) many optimization frameworks support

quadratic prograrmning [5] , and (iii) the 2nd degree is a good

trade-off between optimization complexity and fitting accuracy

for the problem. In our experiments, the difference in accuracy

between 2nd and 5th degree polynomial approximation was

less than 5%, whereas it was more than 20% between 1st and

2nd degree. The estimation should also determine minimum

and maximum values for all arguments. The approximated

function should therefore have the following form:

g(t, bt) = al * t2 + a2 * t * bt + a3 * bt2 + a4 * bt + a5

An example of an approximated function is illustrated in

Sec. IV.

B. Optimizer

The goal of the optimization is to fulfill process deadline,

while trying to minimize the offered rewards. Therefore, based

on the state and structure of the process and estimated depen

dencies, we formulate a quadratic programming problem. The

constraints ensure that the process can be finished before the

deadline considering all the booking and allotted times, and

the optimization objective is the sum of the rewards that will

be paid for tasks contained in the process.

We formally represent a process as a directed acyclic graph,

where nodes represent tasks and edges represent control flow.

The graph has 2 special nodes that represent the beginning and

the end of the process, namely in and out. Thus, for each node

in the graph, there exists a path from in to out which contains

this node. A task can be started when all its incoming edges

are adjacent to already finished tasks. Besides crowd sourced

tasks, a process can contain simple activities, whose execution

times are regarded as constants. For simplicity, in and out

nodes can be considered dummy, i.e., simple activities with

execution time O. Such representation is more general than,

e.g., combination of flow and sequence activities in BPEL. In

this work we do not consider constructs such as conditions or

loops for the sake of simplicity, although the approach can be

extended to support such elements.

Each task has a property that indicates its status, which

can be either unavailable, published, ready,
started or finished. The process engine can thus

launch only the tasks that are ready. Tasks are marked as

published when published in the crowdsourcing platform,

and change their status to ready when booked. For each not

yet booked crowd sourced task, decision variables for allotted

time and for booking time are included for optimization. The

variables are restricted using the minimum and maximum

values provided by the estimator. Two categories of constraints

are included into the optimization model:

1) Constraints covering all the processing and allotted times

throughout all possible process execution paths from

the current state. The combination of these constraints

ensures that the slowest branch will complete before the

deadline.

2) Constraints covering booking time for unavailable
and published tasks and all possible subsequent

process execution paths. These constraints ensure that

booking times will not endanger the deadline fulfillment.

If a task is already booked or represents a simple activity, then

its execution time is fixed. If it has been already started, then

its completion time can be estimated for current situation. In

both of these cases, the execution time is regarded as a constant

from the perspective of the optimization. The exact algorithm

for building the constraints is described in Algorithm 1.

An example of the algorithm's functionality is shown in

Fig. 5. A simple activity has already started and has been

processed for five time units, as illustrated by the time line.

Since the expected processing time for the activity is 20 time

units, the optimizer assumes that the activity finishes in 15

time units. As there is only one started activity, the optimizer

adds two constraints of first category because there exist two

paths from this activity to out activity. As all the other tasks are

either unavailable or published, the constraints of the second

category should be created for them. Therefore, two constraints

for booking time t2 are generated, covering both successor

paths. For both t3 and t4, only one constraint is generated for

each single path to out.

The optimization objective is composed of a sum of rewards

using the scaled values of estimated dependency functions:

min L)gtypes (ts/ws, bts) * ws)
sES

where S is the set of all tasks in the process, gtypes represents

the dependency function for the type of task s, ts, bts are

decision variables, and Ws is the weight of task s.

If the optimization problem turns out to be infeasible, the

optimizer should try to extended the deadline and try again,

446

until a feasible solution is found. This will ensure that even

if the deadline cannot be met, then the best possible solution

will be provided.

Algorithm 1 Algorithm for creating optimization constraints

input : timeToDeadline, processGra ph

call : createConstraints ([I, processGra ph.outNode)

createConstraints(list path, task t) {
add t to the beginning of path;

foreach (incoming edge e of t) {

}

get adjacent node t' which is source of e;

if (status of t' is not finished) createConstraints(path, t ');

if (there were no incoming edges with adjacent not finished nodes)
addConstraint(path, 1 st type); else

addConstraint(path, 2nd type);
remove t from path;

addTermsToExpression(list path, constraint expression expr) {
foreach (t in path)

}

if (status of t is unavailable or published)

add decision variable for allotted time of t to expr; else

add expected execution time left for t as a constant to expr;

addConstraint(list path, constraint type cType) {
t = first task in path;

}

if (cType is "2nd type" and
status of t is not either unavailable or published) return;

create constraint expression expr;

if (t is unavailable)

add decision variable for booking time of t to expr;

if (t is published)

add predicted time for t to be booked as constant to expr;

addTermsToExpression(path, expr);

add optimization constraint [expr < timeToDeadline];

15 + t2 + t3 < 100

15 + t2 + t4 < 100

bt2 + t2 + t3 < 100

bt2 + t2 + t4 < 100

bt3 + t3 < 100

bt4 + t4 < 100

Fig. 5. Example for the generation of optimization constraints for the
quadratic programming problem formulation.

C. Publisher

A task is published in the platform when the sum of its

expected booking time, allotted time, and expected execution

time of subsequent activities in the process is almost as current

time to deadline. In other words, the time to deadline when

it should be published can be determined by (i) finding the

longest path from the task node to out node in the process

graph, where weights of edges are set to the determined

optimal values for time allotted of their source nodes, and

(ii) adding the booking time of the task to this value. A task

can also be updated after being published if it has not been

booked yet.

In practice, the time to deadline value which is provided to

optimizer and publisher can be lower than the real value in

order to keep a small fraction of time reserved for handling

unexpected events.

IV. EVALUATION

As we mention in Section V, best to our knowledge there are

no similar approaches. Therefore, we were not able to make a

comparative evaluation. Because the distinguishing feature of

our approach is consideration of competition in crowd sourcing

and booking time, we compare the effectiveness of the opti

mization with cases when booking time is partially or fully

neglected. We also empirically prove the optimal choice of

task publishing time, and evaluate the overall performance

overhead of the optimization component.

To evaluate our approach, we examined a prototype imple

mentation of the framework (accessible online I) in a simulated

environment. We used MATLAB surface fitting for functional

approximation, and GUROBI [6] framework for solving the

quadratic optimization problem. We used a discrete time

model, so time was measured in arbitrary integer units.

A. Simulation setup

Workers. The size of the simulated crowd was assumed

to be 1000 workers. Platform logs were generated assuming

that, at any point, only about 5% of them are willing to

use the crowdsourcing platform (at various times those can

be different workers). For every task type, each worker was

assigned two values: the least time allotted that s/he needs to

finish a task of this type with weight 1, and the minimum

acceptable reward. These values were generated using the

normal distribution. Then, for a random sampling of time

allotted and reward pairs, 200 log entries were created. To

pick a sensible booking time for a log entry, the competition

value was calculated as a number of workers from the crowd,

whose least time allotted and minimum acceptable reward

were less than the log entry had. Then, assuming that only

5% of the potential competitors would actually compete for

the task, the booking time estimation was guided by the

probability that at least one of competing workers books

the task before time n, assuming that the time of booking

the task by one worker follows the normal distribution. The

actual value was determined by stepwise increasing n and

comparing a uniformly distributed random value with this

1 http://www.infosys.tuwien.ac.at/prototypelincentivemgmt

447

TABLE I
TASK GENERATION PARAMETERS

Pro perty
Type 1 Type 2 Type 3

Ayg Dey Ayg Dey Ayg Dey
Reward 100 15 50 7 80 10
Time allotted 20 3 15 3 13 2
Booking time for 30 9 20 8.5 15 5
one worker

probability. Once it happens that the random value is less

than the probability, n is the booking time. Such a method

covered coincidental fast bookings while generally exhibiting

the trend associated with competition. This method was also

used to simulate actual booking while performing experiments,

i.e., the crowd simulator was not informed about the booking

time chosen.

Tasks. Three types of crowdsourced tasks were simulated.

Each task was described by average reward and allotted time,

booking time by one worker, and corresponding deviations.

The types of tasks and their generation parameters are shown

in Table I. The estimated dependencies between booking time,

allotted time, and reward for tasks of Type 1 are illustrated in

Fig. 6.

10 ::!o Booking time

__ -r����� � 30

30
25 Time allotted

140
I:!O �
100 �

'"

Fig. 6. Estimated quadratic polynomial that describes the dependencies
between booking time. allotted time. and rewards for tasks of Type 1.

Processes. The simulator randomly generated processes

with different sizes. We simulated small processes (5-10

tasks) and big processes (10-30 tasks), including all types

of crowdsourced tasks and simple activities. We believe that

bigger numbers are not realistic in a real setup, because

usually business logic is clustered into concise compositions

that are then managed on a higher level. Weights for tasks

were selected randomly from the range [0.5,5].

B. Experiments

We ran the prototype in different simulation settings by

randomizing process structures, and by emulating the inac

curacy of task execution and booking times (the results from

different random generation seeds were averaged). The actual

execution time for tasks was set using normal distribution with

deviations of 0.1 and 0.2 of the supposed execution time. We

considered both cases when the deadline could and could not

be adhered thus exploring how different parameters of the

approach impact both critical and noncritical situations. We

compare the results based on average reward, total time penalty

(time penalty is a delay of a process with regard to the deadline

for cases where deadline was missed), and number of missed

deadlines produced, as these indicators fully reflect the goal

of the approach.

Publishing time. In our solution a task is published when

the difference between the time left before deadline and the

sum of the task's allotted time, and expected execution time of

subsequent activities in the process (let us refer to this value

as booking buffer) is equal to its decided booking time. In

order to prove that this is the optimal choice, we performed

experiments where tasks were published at earlier and later

times. The results are shown in Figure 7. We used booking

buffer values equal to 0.2,0.5, 1,2,3,4,5,6 multiplied by the

task's decided booking time, and, finally, we tested the case

when the tasks were published in the platform immediately

after a process was started (OnStart mark in the figure).

It can be clearly seen that booking buffer equal to the ex

pected (decided) booking time produces optimal results. When

it is less than this value, the tasks are not booked on time, so

the optimizer has to compensate that by putting higher awards,

and, regardless of that, more deadlines are missed because of

these delays. When booking buffer is greater than the decided

booking time, then there is less room for maneuvering to

handle uncertainty in execution and booking times, because

tasks become booked earlier and their parameters cannot be

changed anymore. This results into more missed deadlines and

bigger penalties. This behavior then gradually changes in an

opposite way, which can be explained by the fact that the

real booking time can be longer than the estimated one, and

therefore the impact of this inaccuracy is reduced for bigger

values of booking buffer. However, the number of missed

deadlines remains at least 25% greater than in the ultimate

case when all the tasks are published when the process is

started; rewards and time penalties in this case are almost the

same.

Booking time. Consideration of booking time is a key

feature in our approach. To analyze the effectiveness of this

feature, we compare the full-featured optimization to the case

where booking time constraints (second type of constraints,

see Section III) are completely removed from the optimization

problem (tasks are still published at the appropriate time

according to the expected booking time which inferred from

the decided rewards and allotted times), and to the case where

average booking time is chosen for each task. The results

for small and big processes are shown in Figures 9 and 10

respectively, depicting the same indicators as in the previous

set of experiments.

As the results show, choosing an average booking time

always results in approximately l3% more expenses for all

process sizes, and produces more or almost as much penalties

and deadline misses as the full-featured optimization does.

448

!!! ::J III CO
�
01 C

'5 c 0 Q. III
� 0 u
co
'0
v ::J
�
m c 0
.€ 0 Q.
e
"-

1.6

1 2

--- Reward

--e- Penalty time

--e-- Nurrber of nissed deadlines

3 4
Booking b u ffer

5 6 OsStart

(the assumed booking time multiplied by the value on this axis)

Fig. 7. Publishing time. This figure shows the effect when the booking
buffer is varied and tasks are published not as suggested by our approach (1
on the x-axis).

40

35
<f) "0 C 30 0 0 ()) <f)

." 25 "0 '" ())
.<::: 20 � 0
c

15 0
� N
E 10 a

0
5

0 20,000 40,000
Number of constraints

60,000

Fig. 8. Performance overhead. This figure shows the dependency of the
performance overhead on the number of constraints in the optimization
problem for one run.

This happens because some tasks do not need to be booked

fast, and the full-featured optimization would pick less com

petitive and therefore less expensive values for rewards.

Disabled booking time constraints do not affect the indica

tors for big processes. This can be explained by the fact that

there is almost always enough time for booking the tasks in

long processes. Only first tasks of the process can be delayed,

but it does not affect the overall performance. Also, booking

times are always chosen to be maximal in this case because

they are not constrained and it reduces the paid rewards.

However, for smaller processes, the consideration of booking

time is crucial, as it can stronger affect the relatively short

process execution time, The unconstrained case produces 14%

more deadline misses and penalties.

One can argue that the full-featured optimization should

perform at least with the same performance as two other

approaches. In perfect conditions this assertion would hold.

However, on the one hand, the booking time is estimated as

an upper bound, therefore, the booking can often take less

time than predicted. On the other hand, when the competition

is too low, it can have the opposite effect: a task, which is

assumed to be booked and executed earlier and costs more, can

be eventually delayed more than a task which costs less and

was expected to be booked later. Therefore, estimating realistic

booking times is one of the key requirements of this approach.

The accuracy of booking time in our experiments was 92%,

which resulted in at most 2% of more missed deadlines and

penalties.

� :J <f) '" � 1.2
0> c
'0 [1.1
<f)
�
8
'"
'0
()) � 0.9

OJ c
:E 0.8
o a.
e
Il.

0.7-

c=J Full-featured optimization
c=J Optimization with average booking time
_ Optimization without booking time constraints

r-

..... r--

........ l,............. _ � L,.............
Reward Time penalty Missed deadlines

Fig. 9. Effect of neglecting the booking time in optimization for small
processes (5-10 tasks).

� :J <f) '" � 1.2
0> c
'0 [1.1

�
8
'"
'0
()) :J 0.9 OJ >
OJ c 0 0.8 t: 0 a.
e
Il.

c=J Full-featured optimization
c=J Optimization with average booking time
_ Optimization without booking time constraints

r-

0.7 - L--.-.-.-.--. - - <---
Reward Time penalty Missed deadlines

Fig. 10. Effect of neglecting the booking time in optimization for big
processes (10-30 tasks).

Performance overhead. The overhead of optimization de

pends on the number of variables and the number of con

straints, However, the number of variables for our problem

449

is proportional to the number of tasks involved, which was

less than or equal to 30, and the variance within this limit did

not affect the overhead. However, the number of constraints is

proportional to the total amount of all possible paths that go

through in and out activities (see Section III), and this number

depends on the process structure and scales from one to tens

of thousands. Figure 8 depicts the overhead dependency on

the number of constraints for one optimization run2.

For small processes (up to ten tasks), the worst case is when

there is a sequence of five constructs each with two activities

in parallel, the number constraints is less than 25 * 2 = 64,

which implies that an optimization run for a small process

always takes less than 0.01 second. For bigger processes, the

worst case is 215 * 2 = 65535, so an optimization run can take

up to 35 seconds in this case. In both cases, the overhead is

acceptable for performing periodical adaptations in processes

with human tasks which can span from several minutes to

hours or days.

C. Discussion

The results clearly show that booking time should be con

sidered when publishing tasks to achieve the best adaptable be

havior, because the best results are achieved when the booking

buffer equals to the estimated expected booking time. Booking

time constraints for optimization are not always favorable,

however. They should not be used for bigger processes (more

than ten tasks in out setting), but become important for smaller

processes. Such smaller processes can emerge in, e.g., agile

software development environments, where work is organized

into short cycles with small sets of tasks.

V. RELATED WORK

In this work we combine crowdsourcing and business pro

cess execution. Major industry players have been working

towards standardized protocols and languages for interfacing

with people in a service-oriented way, which may be used

as technical foundation for implementing our ideas in real

businesses. Specifications such as WS-HumanTask [7] and

BPEL4People [8] have been defined to address the lack of hu

man interactions in service-oriented businesses [9]. Although

some prospective features and possible extensions for dynamic

resource management were outlined for these standards [10],

[11], however, they have been designed to model interactions

in closed enterprise environments where people have prede

fined, mostly static, roles and responsibilities.

The area of QoS-aware composition of Web services has

many similarities to the topics addressed in this work. Web

service compositions create value-added services by compos

ing existing ones. Here the question arises which services

to chose for participation in a composite service, given that

there are many available Web services providing equivalent

functionality. Liangzhao Zeng et al. [12] propose a QoS-aware

middleware for selecting Web services that maximize user

2Hardware used: Intel Core 2 Quad 2.40 GhZ with 6 GB of RAM

satisfaction modeled as utility functions. They define multiple

quality criteria, i.e., execution price, execution duration, repu

tation, successful execution rate, and availability. The authors

propose service selection based on local optimization and

global selection, considering aforementioned quality criteria.

In the local optimization case service selection is done for

each task individually, while the global planning also considers

the interrelations between services. Integer Programming is

used to solve the global planning problem. Canfora et al. [13]

argue that genetic algorithms, while being slower than integer

programming, represent an alternative, more scalable option.

Another work [14] focuses on the optimization of large-scale

QoS-aware compositions at runtime based on QoS specifi

cation based on constraint hierarchies. Multiple well-known

metaheuristic optimization approaches are applied to solve

the optimization problems. The major difference between Web

service composition and crowdsourcing of business processes

is that Web services which are to execute a functionality can be

directly chosen while humans in the crowd are self-determined

and act autonomously.

The recent trend towards collective intelligence and crowd

sourcing can be observed by looking at the success of various

Web-based platforms that have attracted a huge number of

users. Well known representatives of crowdsourcing platforms

include Yahoo! Answers [15] (YA) and the aforementioned

AMT [2]. The difference between these platforms lies in

how the labor of the crowd is used. YA, for instance, is

mainly based on interactions between members. Questions are

asked and answered by humans, thereby lacking the ability

to automatically control the execution of tasks. In contrast,

AMT offers access to the largest number of crowdsourcing

workers. With their notion of HITs that can be created using

a Web service-based interface they are closely related to

our aim of mediating the capabilities of crowds to service

oriented business environments. According to one of the latest

analysis of AMT [3], HIT topics include, first of all, transcrip

tion, classification, and categorizations tasks for documents

and images. Furthermore, there is also tasks for collecting

data, image tagging, and feedback or advice on different

subjects. Related work in the area of crowdsourcing also

includes experiments about behavioral aspects [16], impact

of incentives on the performance of crowdsourcing [l7], and

impact of dynamic learning environments on the quality of

crowdsourced tasks [18]. These studies partially confirm our

assumptions (e.g., that higher incentives generate more interest

and produce results faster), however, none of these works

focus on internal enterprise crowdsourcing, and none of them

discuss the controlled execution of business processes using

such platforms.

While this paper focuses on how to take a workflow and

optimally convert the subtasks into crowdsourcing tasks, there

is also research about how to map crowd sourcing tasks to suit

able workers. A possibility is to use auctioning mechanisms

for implementing such a mapping [19], [20]. All workers

450

that meet the mlfilmum requirements for a particular are

invited to submit a bid to an auction created for assigning

the task. The winning bid is determined by a combination of

the workers' suitability for the task and the bids' prices. For

improved reliability and training of workers a single task may

be crowd sourced multiple times. Another possibility is to use

scheduling [21] and specifically assign most suitable workers

to pending tasks, while allowing workers to be flexible and to

choose periods when they are available for work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented an approach that allows to

adaptively execute business processes on top of an internal

competition-based crowdsourcing platform. The main feature

that distinguishes our approach from other workflow and

process optimization methods is consideration of time that

it takes a crowd to book a task. We proposed a method for

estimating the functional dependency of booking time by using

statistical data, presented an algorithm for constructing an

optimization problem, and empirically determined the optimal

task publishing technique.

The results show that our model is effective for adapting the

properties of tasks in a crowdsourcing platform to adhere to

process deadlines and to minimize the rewards. We discovered

that booking time should be considered when publishing tasks

to achieve the best adaptable behavior, and that taking booking

time into account in optimization can reduce deadline misses

up to 14%. The approach can also be used to predict feasibility

and expenses for a specified deadline by running a simulation

like ours, therefore allowing to explicitly observe the tradeoff

between processing time and associated costs.

It is fair to notice that the approach assumes booking time

to be comparable to execution time of tasks. So, for example,

if there is a strong overall competition in a crowdsourcing

platform and tasks are taken not long after being published,

then booking time might have a weaker effect on the process.

It can be also discovered that booking time depends on the

weight of a task. Such a dependency can be mined from logs

and can be handled by our model as well.

In a real scenario, the results will heavily depend on the

accuracy of booking time dependency approximation. Also,

we do not consider "unbooking" or the possibility of re

negotiating reward/allotted time with a worker when the task

is already booked. Such extensions might be an interesting

direction for future work. Also, it would be interesting to

compare our approach to auction-based crowdsourcing (e.g.,

[19]) and to extend it to support custom penalty functions.

ACKNOWLEDGEMENT

This work received funding from the EU FP7 program under

the agreement 257483 (Indenica) and from the Vienna Science

and Technology Fund (WWTF), project ICT08-032.

451

REFERENCES

[I] Spiegel Online (In German) , http://www.spiegel.de/wirtschaftlunt
ernehmenlO,1518,813388,00.html, last access Sep. 2012.

[2] Amazon Mechnical Turk, http://www.mturk.com. last access Sep. 2012.
[3] p. G. Ipeirotis, "Analyzing the Amazon Mechanical Turk Marketplace,"

SSRN eLibrary, vol. 17 , no. 2, pp. 16-21, 2010.
[4] Z. U, "Polynomial optimization problems, approximation algorithms

and applications," Ph.D. dissertation, The Chinese University of Hong
Kong, 2011.

[5] J. Nocedal and S. Wright, Numerical Optimization, 2nd ed. , ser. Springer
Series in Operations Research and Financial Engineering. Springer,
2006.

[6] I. Gurobi Optimization, "Gurobi optimizer reference manual," 2012.
[Online]. Available: http://www.gurobi.com

[7] A. Agrawal, M. Amend, M. Das, M. Ford, C. KeUer, M. Klopp
mann, D. Konig, F. Leymann, R. MUller, G. Pfau et al., "Web
services human task (ws-humantask) , version 1.0," available at

http://incubator.apache.orglhise/WS-HumanTask_vl.pdf, 2007.
[8] M. Kioppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von

Riegen, P. Schmidt, and I. Trickovic, "Ws-bpel extension for people
bpeI4people," Joint white paper, IBM and SAP, 2005.

[9] F. Leymann, "Workflow-based coordination and cooperation in a service
world," in Cooperative Information Systems (CoopIS '06), ser. LNCS.
Springer, 2006, pp. 2-16.

[10] N. RusseU and W. M. Aalst, "Work distribution and resource manage
ment in bpel4people: Capabilities and opportunities," in International

coriference on Advanced Iriformation Systems Engineering (CAiSE '08).

Berlin, Heidelberg: Springer, 2008, pp. 94-108.
[II] D. Schall, B. Satzger, and H. Psaier, "Crowdsourcing tasks to so

cial networks in BPEL4People," World Wide Web, Springer, 2012,
1O.1007/s11280-012-0180-6.

[12] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, "Qos-aware middleware for web services composition,"
Software Engineering, IEEE Transactions on, vol. 30, no. 5, pp. 311
- 327 , may 2004.

[13] G. Can fora, M. Di Penta, R. Esposito, and M. L. Villani, "An approach
for qos-aware service composition based on genetic algorithms," in
Genetic and evolutionary computation (GECCO '05). New York, NY,
USA: ACM, 2005, pp. 1069-1075.

[14] F. Rosenberg, M. B. MUller, P. Leitner, A. Michlmayr, A. Bouguettaya,
and S. Dustdar, "Metaheuristic Optimization of Large-Scale QoS-aware
Service Compositions," in International Conference on Services Com

puting (SCC'JO). Washington, DC, USA: IEEE Computer Society,
2010, pp. 97-104.

[15] Yahoo! Answers, http://answers.yahoo.com/, last access Sep. 2012.
[16] G. Paolacci, J. Chandler, and P. Ipeirotis, "Running experiments on

amazon mechanical turk," Judgment and Decision Making, vol. 5, no. 5,
pp. 411-419, 2010.

[17] W. Mason and D. J. Watts, "Financial incentives and the "performance
of crowds"," in SIGKDD Workshop on Human Computation (HCOMP

'09). New York, NY, USA: ACM, 2009, pp. 77-85.
[18] J. Le, A. Edmonds, V. Hester, and L. Biewald, "Ensuring quality

in crowdsourced search relevance evaluation: The effects of training
question distribution," in SIGIR Workshop on Crowdsourcing for Search

Evaluation, 2010, pp. 21-26.
[19] B. Satzger, H. Psaier, D. Schall, and S. Dustdar, "Stimulating SkiU Evo

lution in Market-Based Crowdsourcing," in 9th International Conference

on Business Process Management (BPM '11), ser. LNCS. Springer,
2011, pp. 66-82.

[20] -- , "Auction-based crowdsourcing supporting skill management,"
lriformation Systems, 2012, 1O.1016/j.is.2012.09.003.

[21] R. Khazankin, H. Psaier, D. SchaU, and S. Dustdar, "Qos-based task
scheduling in crowdsourcing environments," in International Coriference

on Service-Oriented Computing (ICSOC '11), ser. LNCS. Springer,
2011, vol. 7084, pp. 297-311.

