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Abstract. Crowdsourcing has emerged as an important paradigm in
human-problem solving techniques on theWeb. One application of crowd-
sourcing is to outsource certain tasks to the crowd that are difficult to
implement as solutions based on software services only. Another bene-
fit of crowdsourcing is the on-demand allocation of a flexible workforce.
Businesses may outsource certain tasks to the crowd based on workload
variations. The paper addresses the monitoring of crowd members’ char-
acteristics and the effective use of monitored data to improve the qual-
ity of work. Here we propose the extensions of standards such as Web
Service Level Agreement (WSLA) to settle quality guarantees between
crowd consumers and the crowdsourcing platform. Based on negotiated
agreements, we provide a skill-based crowd scheduling algorithm. We
evaluate our approach through simulations and show that our approach
clearly outperforms a skill-agnostic scheduling approach.
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1 Introduction

Recently, business processes need to be adapted or extended more frequently to
the changing market. Companies often lack the new capabilities or knowledge re-
quired. To tackle those changes, either new personal needs to be hired, or rather,
the new process steps are outsourced. The work in this paper is based around a
recent and attractive type of outsourcing called crowdsourcing [12]. The term
crowdsourcing describes a new web-based business model that harnesses the cre-
ative solutions of a distributed network of individuals [4], [21]. This network of
humans is typically an open Internet-based platform that follows the open world
assumption and tries to attract members with different knowledge and interests.
Large IT companies such as Amazon, LiveOps, or Yahoo! ([3], [17], [22]) have
recognized the opportunities behind such mass collaboration systems [9] for both
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improving their own services and as a business case. The most prominent plat-
form they currently offer is the Amazon Mechanical Turk (AMT) [3]. Requesters
are invited to issue human-intelligence tasks (HITs) requiring a certain qualifica-
tion to the AMT. The registered customers post mostly tasks with minor effort
that, however, require human capabilities (e.g., transcription, classification, or
categorization tasks [13]).

In this paper we extend this simple model and focus on crowdsourcing plat-
forms that deal with task groups consisting of manifold similar jobs provided
by consumers. Most current public crowdsourcing platforms with market-like
operation chain announce received tasks at their portal as a first step. Next,
the worker chooses among the assorted mass of task those s/he likes to process.
The selection is motivated by her/his personal preferences. Thus, the following
assignment is initiated by the worker, and as a consequence, it hardly allows the
system to have an influence upon assignments and to leverage the skill hetero-
geneity of involved workers.

As each worker is individual, it is natural that the skills of the workers are
manifold. The tasks submitted to the platform are also diverse in their require-
ments. Hence, efficient crowdsourcing must consider the suitability of a worker
for a task. One can assume that the more the worker is suitable for a task,
the better the expected outcome quality is. Therefore, given the suitability in-
formation and a control mechanism for a worker assignment, it is possible to
improve the overall result’s quality by assigning tasks to best suitable workers
for the current situation. Moreover, from a BPM perspective, this mechanism
also provides control over task completion times which can be used to main-
tain objectives, such as deadline fulfillment. To sum up, the task assignment
control would enable a crowdsourcing platform provider to develop QoS policies
for offered crowdsourcing services, so these services can be integrated into QoS-
sensitive business processes. The assignment control demands for a scheduling
problem to be solved. The problem is to maximize overall quality while sat-
isfying agreed objectives. Such a scheduling problem is hindered by a number
of crowd-specific features, such as lack of full control of the workers and their
membership, and their limited predictable availability.

In this paper we tackle these issues by proposing crowdsourcing platform
enhancements. Hence, our key contributions are:

– A crowdsourcing platform model which allows for agreement-aware task pro-
cessing.

– Algorithms for task scheduling and workers’ skill profile updates.
– Proof-of-concept implementation and evaluation of the approach in a simu-

lated environment.

The paper is organized as follows. In Sect. 2 we list work related to crowd-
sourcing and scheduling. Section 3 outlines our platform model that provides
agreement-based task assignments to a crowd and also gives insights in the appli-
cation of current crowdsourcing platforms. Section 4 details the proposed crowd-
sourcing model. A prototype of the platform is evaluated in Sect. 5. Section 6
concludes the work.
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2 Related Work

In this work we position crowdsourcing in a service-oriented business setting by
providing automation. In crowdsourcing environments, people offer their skills
and capabilities in a service-oriented manner. Major industry players have been
working towards standardized protocols and languages for interfacing with peo-
ple in SOA. Specifications such as WS-HumanTask [11] and BPEL4People [2]
have been defined to address the lack of human interactions in service-oriented
businesses [16]. These standards, however, have been designed to model inter-
actions in closed enterprise environments where people have predefined, mostly
static, roles and responsibilities. Here we address the service-oriented integration
of human capabilities situated in a much more dynamic environment where the
availability of people is under constant flux and change [6]. The recent trend
towards collective intelligence and crowdsourcing can be observed by looking at
the success of various Web-based platforms that have attracted a huge number
of users. Well known representatives of crowdsourcing platforms are the afore-
mentioned form Yahoo!, LiveOps, and Amazon. The difference between these
platforms lies in how the labor of the crowd is used.

Crowdsourcing.AMT, for example, offers access to a large number of crowd
workers. With their notion of HITs that can be created using a Web service-
based interface they are closely related to our aim of mediating the capabilities
of crowds to service-oriented business environments. Despite the fact that AMT
offers HITs on various topics [13], the major challenges are to find on request
skilled workers that are able to provide high quality results for a particular topic
(e.g., see [1]), to avoid spamming, and to recognize low-performers. To the best
of our knowledge, these problems are still not faced by AMT. In this work we
focus on those issues. Another shortcoming of most existing real platforms is
the lack of different and comprehensive skill information. Most platforms have a
simple measure to prevent workers (in AMT, a threshold of task success rate can
be defined) from claiming tasks. In [19], the automated calculation of expertise
profiles and skills based on interactions in collaborative networks was discussed.
In this work, we introduce a novel crowdsourcing platform model comprising
a scheduling module that manages scheduling plans for a crowd according to
current agreements and the skills of the crowd.

Scheduling is a well-known subject in computer science. The novel contri-
bution in this work is to consider multidimensional assignment and allocation
of tasks. A thorough analysis and investigation in the area of multidimensional
optimal auctions and the design of optimal scoring rules has been done by [7]. In
[18] iterative multi-attribute procurement auctions are introduced while focusing
on mechanism design issues and on solving the multi-attribute allocation prob-
lem. Focusing on task-based adaptation, [20] near-optimal resource allocations
and reallocations of human tasks were presented. Workforce scheduling research
investigates the impact of weights on the multiple, at times contradicting, ob-
jectives in real work workforce scheduling [8]. Staff scheduling related to closed
systems was discussed in [5, 10]. However, unlike in closed enterprise systems,
crucial scheduling information, i.e., the current user load or precise working
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hours are usually not directly provided by the crowd. Instead, the scheduling
relevant information must be gathered by monitoring. The work in [15] details
the challenges for collaborative workforce in crowdsourcing where activities are
coordinated, workforce contributions are not wasted, and results are guaranteed.

3 Crowdsourcing Platform Model

In this section a model of a crowdsourcing platform (see Fig. 1) which supports
agreement-based task assignment is outlined. To begin with, there is a negotia-
tion that states the objectives between the consumer and the platform regarding
the coming task assignments. The life-cycle of a task begins at the consumer.
S/He submits a collection of tasks to the crowd. We assume that the tasks have
distinct skill requirements, thus, need to be assigned accordingly. After process-
ing, the result is returned to the consumer which is invited to provide a quality
feedback on the result.

The crowd
Consumer(s)

Task, skill requirements

Tasks

Result

Feedback

The crowdsourcing platform

Worker profiles  

updated according to 

received feedback

SLAs

Assigmnent 

based on SLAs 

and profiles

SLA

Fig. 1. Platform model

Once a consumer submits a task, s/he provides skill requirements along with
the task. In the assignment phase the platform estimates the matching between
tasks and workers. The more a worker’s skills match the requirements the more
this worker is suitable for the task. Also, in service-oriented environments a Ser-
vice Level Agreement (SLA) usually is negotiated which has influence on the
assignment strategy. An SLA includes temporal and quality requirements, and
preferences. The challenge for the platform is to negotiate the Service Level Ob-
jectives (SLOs) of an SLA related to possible assignments. These SLOs must
base on the observed and predicted behavior of the crowd and the current situ-
ation. In particular, already distributed tasks and the resulting task load must
be considered. Therefore, active tasks are assigned not only according to the
workers’ skills, but also, in line with the SLOs of the agreement. The agreement
aims to avoid or minimize the losses and to maximize the overall result’s qual-
ity. In other words, the objective is to maximize the quality while enforcing the
SLA. Also, the availability of workers is taken into consideration by request-
ing short-term information regarding their ability to perform tasks. The skills
of crowd workers are maintained in their profiles by the platform management.
Initially, skill information is provided by the workers themselves. However, this
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information must not be considered complete and reliable. Some workers might
not know about their real skill-levels or overestimate their capabilities. Hence,
the platform management must be allowed to monitor the activities in the crowd
and update the created profiles according to the observations. The resulting real
quality is reported by the consumer’s feedback. The difference between expected
quality and required skills for the tasks hint the real skills of the workers. Also,
if an assignment is refused by a worker, despite his claim for availability, various
penalty sanctions can be imposed to this worker.

3.1 Application Areas

The motivation for outsourcing tasks strongly depends on the current resources
within a company. We assume electronic tasks that are either part of processes
or simply performed by people using a task-based collaboration platform. Out-
sourcing of human tasks may be performed due to the following reasons. Crowd-
sourcing is based on the paradigm of an ‘invisible workforce’ which processes
tasks on a voluntarily basis or for monetary rewards. In typical crowdsourcing
scenarios the assumption is that the arrival rate of tasks is highly dynamic and
that no medium or long-term contracts are negotiated, which makes it differ-
ent to other scenarios such as employing freelancers. However, crowdsourcing
represents a worthwhile outsourcing mechanism for companies. The previously
mentioned AMT platform, e.g., allows to hosts simple and short tasks that re-
quire humans. Only 15% of which have a price above $1. Current crowdsourcing
can be considered rather cheap [13]. Another example are company internal plat-
forms that share some of the ideas and features of crowdsourcing platforms. In
large enterprises with globally distributed operations, certain tasks in a partic-
ular business unit may be outsourced (within the company) to other units for
various reasons. Examples are balancing load, established expertise in another
unit, the current availability of experts, and last but not least, avoid confidential
content to leave the companies boundaries. This case can be described as com-
pany internal outsourcing. Compared to traditional crowdsourcing platforms, we
assume that the number of people participating in company internal outsourcing
is lower.

Thus, instead of assigning electronic tasks to company employees, crowd-
sourcing or company internal outsourcing may be performed to reduce task pro-
cessing costs or to cope with the lack of expertise. However, managing crowd-
based task assignments manually would again be a time consuming activity.
Technologies found in service-oriented systems such as the WS-Agreement and
SLA specifications help to automatically establish QoS parameters. Based on
these parameters, skill-based scheduling is performed, thereby reducing manual
configuration of task assignments to a minimum.

3.2 Integration of Service Level Agreements (SLAs)

Assignment control enables the platform to estimate the crowd occupancy and
to give certain guarantees to consumers. Such guarantees can be given in form
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of SLAs, and allow to integrate crowdsourcing activities in service-oriented envi-
ronments. As SLAs are crucial for business process management, such a model
can substantially sustain the use of crowdsourced services in business processes.
Next, we discuss an outline of a WSLA1 document that could be exchanged and
agreed between consumer and crowd platform.

1 <wsla:SLA

2 xmlns:wsla="http://www.ibm.com/wsla" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xmlns:tsp="http://www.infosys.tuwien.ac.at/tsp/" name="SLA4711">

4 <wsla:Parties>

5 <wsla:ServiceProvider name="SchedulingPlatform">

6 <!−− details −−>

7 </wsla:ServiceProvider>

8 <wsla:ServiceConsumer name="Consumer">

9 <!−− details −−>

10 </wsla:ServiceConsumer>

11 </wsla:Parties>

12 <wsla:ServiceDefinition name="CrowdService">

13 <wsla:Operation xsi:type="wsla:WSDLSOAPOperationDescriptionType" name="ScheduleTask">

14 <!−− schedule period −−>

15 <wsla:SLAParameter name="TaskSkills" type="tsp:SkillList" unit="double">

16 <wsla:Metric>CompareSkills</wsla:Metric>

17 </wsla:SLAParameter>

18 <!−− SLAParameter metrics for NrOfTasks, TaskQuality, Fee. Details: name, wsdl−location, binding −−>

19 </wsla:Operation>

20 </wsla:ServiceDefinition>

21 <!−− wsla Obligations −−>

22 </wsla:SLA>

Listing 1.1. Involved parties and body.

After the contract parties’ details, SchedulingPlatform and Consumer listed
in lines 4 to 11, Listing 1.1 states the contract items from line 12 to 20. These are
a collection of ServiceObjectType items including scheduling, operation descrip-
tion, and configuration, and also, the SLAParameters. Here, as an example the
parameter (TaskSkills) uses a crowd particular metric CompareSkills to com-
pare skill profiles of the workers to the skill required in the document. Important
to note, we extend the WSLA definition with our own namespace (task schedul-
ing platform tsp) defining xpath methods for expressions and type definitions
to comply with all requirements of the platform.

Listing 1.2 shows the agreement’s terms as Obligations of the contract in-
cluding some SLOs. An SLO consists of an obliged party, a validity period, and
an Expressions that can be combined with a logic expression (e.g., Or). The
Value tag in the predicates of WSLA is restricted to double. Hence, another
extension with xpath methods allows us to provide more complex expressions
for the values (e.g., see Line 8). Generally, in an SLO an evaluation event defines
the trigger for the evaluation of the metric function. The content of the ex-
pressions connects the pool of SLAParameters of the items to a predicate (e.g,
GreaterEqual) and threshold value (Value). In the example we define three
objectives. The first, sloSkills defines that the match between the task skill
requirement skills required and the selected potential worker’s skills must
be greater or equal. The second, sloQuality is a composed objective by an Or

1 http://www.research.ibm.com/wsla/
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1 <wsla:Obligations>

2 <wsla:ServiceLevelObjective name="sloSkills" serviceObject="ScheduleTask">

3 <wsla:Obliged>SchedulingPlatform</wsla:Obliged>

4 <!−− Validity −−>

5 <wsla:Expression> <!−− skill requirements −−>

6 <wsla:Predicate xsi:type="wsla:GreaterEqual">

7 <wsla:SLAParameter>TaskSkills</wsla:SLAParameter>

8 <tsp:Value>tsp:getInput("TaskDesc")//TaskDefinition/skills required</tsp:Value>

9 </wsla:Predicate>

10 </wsla:Expression>

11 <wsla:EvaluationEvent>TaskAssignment</wsla:EvaluationEvent>

12 </wsla:ServiceLevelObjective>

13 <wsla:ServiceLevelObjective name="sloQuality" serviceObject="ScheduleTask">

14 <wsla:Obliged>SchedulingPlatform</wsla:Obliged>

15 <!−− Validity −−>

16 <wsla:Or>

17 <wsla:Expression>

18 <wsla:Predicate xsi:type="wsla:Equal">

19 <wsla:SLAParameter>NrOfTasks</wsla:SLAParameter>

20 <wsla:Value>100.0</wsla:Value>

21 </wsla:Predicate>

22 </wsla:Expression>

23 <wsla:Expression>

24 <wsla:Predicate xsi:type="wsla:GreaterEqual">

25 <wsla:SLAParameter>TaskQuality</wsla:SLAParameter>

26 <wsla:Value>0.8</wsla:Value> <!−− expected qty 80%−−>

27 </wsla:Predicate>

28 </wsla:Expression>

29 </wsla:Or>

30 <wsla:EvaluationEvent>TaskResult</wsla:EvaluationEvent>

31 </wsla:ServiceLevelObjective>

32 <wsla:ServiceLevelObjective name="sloFee" serviceObject="ScheduleTask">

33 <wsla:Expression>

34 <wsla:Obliged>Customer</wsla:Obliged>

35 <wsla:Predicate xsi:type="wsla:Equal">

36 <wsla:SLAParameter>Fee</wsla:SLAParameter>

37 <tsp:Value>

38 <![CDATA[tsp:getInput(”TaskDesc”)//Fee ∗ tsp:getInput(”TaskRes”)//Quality]]>

39 </tsp:Value>

40 </wsla:Predicate>

41 </wsla:Expression>

42 <wsla:EvaluationEvent>TaskResult</wsla:EvaluationEvent>

43 </wsla:ServiceLevelObjective>

44 <!−− agreed qualified actions on slo violations −−>

45 </wsla:Obligations>

Listing 1.2. Obligations and SLOs.

expression. The agreement states, that either a defined number of tasks (100)
is delivered at the end of an agreed interval (e.g., wsdl:Months) or the focus of
processing is on the task’s quality, and hence, a result quality of at least 80% is
expected. The final objective sloFee obliges the consumer to confirm the qual-
ity of the result and pay the related fee. In the example, similar to Line 8, the
xpath method getInput parses a document TaskDesc and returns the task’s fee.
As the fee depends also on the result, the result report TaskRes contains the
reported quality. Multiplied they give the final fee due.

3.3 Discussion

Generally, in our model, workers are more restricted than in market-oriented
crowdsourcing platforms. Still, such an approach provides adequate flexibility
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for workers by allowing them to choose the time periods in which they are willing
to work. Thus, assuming a strong competition among workers, the model will be
feasible. Constantly increasing interest in crowdsourcing platforms [9] indicates
that such competition is quite realistic. Also, SLA-enabled services are higher
valued, therefore, the monetary compensation, and, thus, the competition can
be higher. The feedback provision from the consumer is of his/her own interest,
as it positively affects the result quality. It can be provided not for all results
but selectively.

4 Quality and Skill-aware Crowdsourcing

This section explains in detail the quality and skill-aware crowdsourcing platform
architecture, which is a proof-of-concept implementation of the model described
in Sect. 3.

Skill profile 

updating 

module

Skill updating

Job assignment
The crowd

Availability

reporting

Job data

Feedback

Scheduling and 

assignment 

module

Consumer

Tasks (consisting of manifold jobs), 

skill requirements, deadlines

Results
Worker profile

Skills

Availability

Worker profile

Skills

Availability

Worker profile

Skills

Availability

Profile manager

Job deadlines and 

skill requirements

Worker skills 

and availability

Active jobs

Job result
Jobs

1

2

3

4

Fig. 2. Platform architecture

The platform behavior can be summarized by the following steps (in the line
with the ones in Fig. 2):

1. A consumer submits a task that consists of manifold similar jobs. The con-
sumer also specifies required skills and the deadline for the task, so all the
jobs should be processed until this deadline. The task is added to active task
pool.

2. The scheduling module periodically assigns active jobs to workers according
to deadlines and suitability of workers.

3. When a job is done, the result is sent to the consumer.
4. The consumer can provide a feedback about the result quality. It is reported

to the skill profile updating module, which matches it with the expected
quality and corrects the worker skill profile if necessary.

Of course, the platform is intended for usage by multiple consumers, this fact
is not depicted for simplicity. A deterministic time model is used in the platform,
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so the time is discreet and is represented by sequential equally long time periods.
A time period can represent any time duration like a minute, an hour, or a day.

4.1 Skills and Suitability

The system distinguishes a fixed set of skills. Each worker has a skill profile,
where each skill is described by a real number s ∈ [0, 1] which defines it quanti-
tatively (0 - lack of skill, 1 - perfect).

Each submitted task has the required skills specified. Each required skill is
also represented as a real number r ∈ [0, 1]. If r = 0 then the quality does not
depend on this skill. If r > 0 then the best outcome quality is expected in case if
the corresponding worker’s skill s is s >= r. If s < r then the expected quality
is affected in the inverse proportion to r − s. The quality is again represented
as a real number q ∈ [0, 1]. The suitability of a worker for a task is equal to the
expected outcome quality. The exact matching formula is shown below.

Let WSi - worker skills, RSi - required skills of a task, i = 1, N,N− number
of skills. Then the suitability of the worker to the task is calculated as

S = 1−
∑

i∈M

Max((RSi −WSi)/RSi, 0)

|M |
M : k ∈ M ⇔ k ∈ N,RSk > 0

Thus, the more worker’s skills are proportionally closer to the required skills
of a task, the more the worker is suitable to the task. If the worker’s skill is equal
or greater than the corresponding required skill, then this skill suits perfectly.

4.2 Worker and Consumer Communication

As the user interface is not the focus of our work, the communication with
consumers and workers is performed by means of web services. The full imple-
mentation of the platform can employ, e.g., a web interface developed on top of
these web services.

4.3 Scheduling

Scheduling is performed based on deadlines and skill requirements also derived
from an SLA. The objective of the scheduling module is to maximize the overall
quality, while fulfilling deadlines. The assumption is that missing a deadline can
not be justified by any quality gain, thus, meeting a deadline is the first-priority
objective, and the quality maximization is the second-priority objective.

Algorithm 1 describes a scheduling algorithm which is used in our platform.
The idea behind the algorithm is that the best quality is achieved when a task is
assigned to most suitable workers. The quality is higher when a task is performed
by a smaller number of best workers, but this number should not be too small, so
the task can be finished until the deadline. This number is calculated in toTake
for each active task. The tasks with earlier deadlines are assigned in the first
place. In an attempt to improve the algorithm’s efficiency, we tried a number of
heuristic extensions, such as:
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Algorithm 1 Greedy scheduling algorithm.
Require: currentT ime current time
Require: tasks active tasks
1: for task ∈ tasks in the order of ascending task.deadline do

2: stepsToDeadline = (task.deadline− currentT ime+1) / task.duration - 1
3: if stepsToDeadline > 0 then

4: if (task.deadline− currentT ime+ 1) % task.duration) > 0 then

5: toTake = 0
6: else

7: toTake = Trunc(task.numberOfJobsToDo/stepsToDeadline)
8: end if

9: else

10: toTake = task.numberOfJobsToDo
11: end if

12: while toTake > 0 AND some workers are still available do

13: Assign a job of task to most suitable available worker for task
14: toTake = toTake− 1
15: end while

16: end for

– Based on reported short-time worker availability, assign less jobs at a given
time to wait for more suitable workers to become available (while avoiding
possible crowd “overloads”)

– Assign more jobs at a given time if the suitability of additional workers is
almost as good as the suitability of best workers.

– Having toTake numbers calculated, optimize the worker-task assignments
for each time period using an optimization framework.

However, as shown in Sect. 5, such extensions do not give a substantial im-
provement. We believe that the reason of such a weak improvement is the size
of the crowd: if a worker cannot be assigned to a due task, in most of the cases
a good enough replacement for the worker can be found. Thus, we conclude
that a greedy algorithm is generally sufficient for scheduling in a crowdsourc-
ing environment. The refinement of the algorithm can be done according to the
particular crowd characteristics that can be estimated only when the system is
used by real users in the commercial operation.

4.4 Profile Management

The crowd workers’ profile management is of major importance in our assump-
tions. As mentioned before, the success of the scheduling algorithm partially
depends on the accuracy of the profile monitoring. At the beginning of her/his
membership at the crowdsourcing platform a user registers with a profile rep-
resenting the skills. Usually this information is not very accurate because users
tend to over-/underestimate their skills. Hence at runtime, a monitoring module
must run on-line and manage the profiles by updating the provided information.
It is necessary to avoid conflicts with the promised quality agreements (c.f.,
Sect. 3). This is a major challenge. The task processing results and the expected
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quality outcome must be used as a reference for the real skills of a worker. The
quality expectations on the tasks result are often detailed in the task descrip-
tion. At the AMT, for example, the result feedback contains usually only a task
accept or reject. At our platform, with an agreement requiring the customer to
give a feedback on the quality, the feedback contains crucial information for the
Algorithm 2 that can be used to update the skills of the reported worker profiles.

Algorithm 2 Profile monitoring.
Require: QF quality feedback of the provider, QE quality expected by the provider
Require: worker processing worker and taskSkills required task skills
1: workerSkills← worker.getSkills()
2: if QE > ϑq /* high quality result */ then

3: /* compare with latest history entry, update and continue on better QF */
4: entry ← setHistory(QF, taskSkills)
5: for skill s ∈ workerSkills do

6: reqSkill← getTaskSkills(s)
7: diff ← |s− reqSkill| × αw

8: if s > reqSkill then
9: workerSkills.set(s+ diff)
10: else

11: workerSkills.set(s− diff)
12: end if

13: end for

14: return

15: end if

16: /* low quality result */
17: wprofile← setOfProfiles.get(worker) /* set of registered profiles */
18: diff ← QF/QE /* difference between the qualities */
19: for skill s ∈ workerSkills do

20: /* skill == 1 perfect knowledge */
21: if skill× diff <= 1 then

22: workerSkills.set(s× diff)
23: end if

24: end for

As the scheduler requires skill knowledge the profile update is twofold. If the
worker only provided a low quality the update depends on the difference (Lines
17-24). If the quality is above a certain threshold ϑq and is better than a previous
then we consider the required skills close to the workers own (Line 3-14). Hence,
the difference between the required and the worker’s own skills (weighed by the
factor αw) influence the worker’s skill update.

5 Experiments

To evaluate our platform, we set up a simulated environment that comprises a
crowd which perform tasks and consumers who submit tasks and provide the
feedback. We assigned a real skill set for each simulated worker to calculate
the real quality outcome (which consumers report) using the suitability formula
(see Sect. 4.1). The platform management had no access to the real skills, but
was only able to estimate workers’ skills based on the feedback provided by
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consumers. We evaluated the average job quality in different setups, varying the
workload of the crowd, the availability of workers, the scheduling algorithms,
and the skill awareness.

Simulation a real crowdsourcing environment is challenging due to the lack
of comprehensive statistical data in this area. Although we don’t rely on any
real data in our simulations, we tried our best to prognosticate the meaningful
simulation parameters based on our knowledge and experience.

5.1 Experiment Setup

In our experiments we use a set of 10 skills for describing worker skills and task
skill requirements.

Customers. The customers submit tasks to the platform and provide the
feedback on completed jobs. Tasks are submitted randomly while ensuring the
average crowd workload and avoiding overloads.

Each task comprises skill requirements, number of jobs, and deadline. During
each time period of the simulation, if the Task Limit has not been reached yet,
a new task is submitted to the system with Task Concentration probability. The
job duration is calculated as Min(1+ abs(φ/2 ∗σ), σ+1), where φ is a normally
distributed random value with mean 0 and standard deviation 1. The deadline
is assigned randomly according to Steps To Deadline parameter. The number of
jobs is calculated so that the crowd workload is near equally distributed among
the tasks, and the average workload remains close to Intended Schedule Density.
The parameters and their values are described in Table 1.

Table 1. Task generation parameters

Name Description Value(s)
Tasks Limit The total number of submitted tasks 200
Job Duration Sigma (σ) Describes the deviation and the maximum for job

durations
20

Steps To Deadline Average maximum number of jobs of a task that
a single worker can finish until the deadline.

50

Task Concentration The probability of new task submission for each
time period.

0.35

Intended Schedule Density Target assignment ratio for each time period. 0.2 - 0.7
(step 0.1)

Skill requirements are generated so that each skill with approximately equal
probability either equals 0 which means that this skill is not required for the
task, or is in (0, 1] range. The random values for the (0, 1] range are normally
distributed (mean = 0.4, variance = 0.3).

The feedback that a consumer provides for a job is generated using the real
skills of the worker which were assigned for this job. In contrast to the estimated
skills, these real skills are unknown to the platform and are only used to simulate
the real outcome quality (by calculating the suitability with these skills). This
quality is thus reported as the feedback.

Crowd workers. The workers are assigned for jobs and return the result
of job processing. Each worker has the claimed skills that s/he initially reports
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to the platform, and the real skills. The real skills are generated randomly with
normal distribution with 0 mean and variance of 0.3. Then, the reported skills
are initiated as real skills with injected error (normally distributed with mean
value equal to the real skill and variance of 0.2). The crowd size in experiments
was 1000 workers. This size is big enough to enclose the diversity of workers,
but still allows for fast simulation. We tried to use 10000 instead, but the results
did not change substantially. Workers can be unavailable at certain periods. In
our experiments we use a Workers Unavailability parameter which indicates the
mean ratio of unavailable workers for each period of time (values used: 0.2− 0.6,
step 0.1). The busy periods are generated randomly, but have a continuous form
which reproduces human behavior. The amount of time that takes a worker to
finish the job is the Job Duration with injected variations. In our experiments
we used a value of 30%, which means that a job can be executed for 0.7− 1.3 of
job duration. This reflects the random nature of the real world.

5.2 Experiment Types and Results

The aim of the experiments is to show the advantages of the platform’s archi-
tecture. The first experiment type demonstrates the convenience of skill-based
scheduling to the ordinary (random) task assignment. The second experiment
type gives evidence of the skill update mechanism efficiency.

All the plots show the average job outcome quality for the resulting assign-
ment density which is calculated as total number of periods for all workers while
they were either unavailable or busy, divided by the difference between the first
task submission time and the latest deadline. Neither of the performed experi-
ments contained a task deadline violation.

Various schedulers. To demonstrate the advantage of skill-based assign-
ment, a random scheduler which assigns tasks with the earliest deadline first
was compared with the greedy scheduler and the heuristically-enhanced greedy
scheduler (See Sect. 4) algorithms. The results are shown in Fig. 3(a). The ben-
efit of skill-based scheduling is clear, as the average quality is 1.5 times better
in the large. The heuristics do not improve the greedy algorithm substantially,
and for some tests even impair it.
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(a) Various schedulers.
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(b) Skill update efficiency.

Fig. 3. Experimental results
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Skill update efficiency. To demonstrate the efficiency of skill update mech-
anism, we compared the regular simulation which implements the logic described
in Sect. 4 (“regular” series) to upper and lower bounds. The series named “no
feedback” represents the lower bound and only the initial information on the
profiles is used for scheduling. An upper bound to the algorithm is shown by the
series of “real skill-aware”. In this case the exact skills of a worker are known
to the system. The improvement of the skill update mechanism over the lower
bound is evident and keeps performing better at any scheduling density. In the
experiments of Fig. 3(b) the improvement over no feedback remains between
10-15%. As Sect. 4.4 explains, the reason why it is never reaching real skill
awareness is twofold. First, the scheduling strategy need some input right from
start when only few feedback is available. Second, the feedback is a single value
that describes the performance depending on ten different skills. Also, a skill
value greater than required calculates the quality with the lowest value required.
Even if there was enough data an accurate calculation would not be feasible in
all cases. Thus, we decided to stick to a simpler quicker update algorithm that
provides almost constant quality improvement and, after all, supports quality
negotiation with a considerable and steady lower bound to make agreements.

The performance of scheduling and skill updating in a high workload test
(10000 workers and 1000 tasks) was good enough for a period size of one minute.
Thus, the performance is not a concern, since the real period size is likely to be
much bigger (e.g., an hour).

6 Conclusion and Future Work

In this paper we proposed a skill-aware crowdsourcing platform model which
allows to provide crowdsourcing services with SLAs and to control the task per-
formance quality. In contrast to existing crowdsourcing platforms such as AMT,
which follow a task market-oriented approach, our platform model is based on
services computing concepts. Such a model is typically applied in enterprise
workflow systems using, for example, the WS-HumanTask specification to de-
sign human interactions in service-oriented systems. However, WS-HumanTask
and related specifications lack the notion of human SLAs and task quality. In our
approach, negotiated SLAs and monitoring help to assign task requests to suit-
able workers. Thus, our platform ensures quality guarantees by selecting skilled
workers. We introduced the proof-of-concept implementation with particular al-
gorithms for task scheduling and worker profile management. The applicability
of the platform design was proved in a simulated environment. The experimental
results shows the clear advantage of skill-based scheduling, as the average quality
is 10-15% better in the large comparing to the case when workers are assigned
disregarding their skills.

This work is a continuation of a previous work [14] where scheduling was used
to re-prioritize service requests to minimize SLA penalties. In this paper we used
scheduling for task-worker assignment in a similar manner to fulfill SLAs. In our
future work we will work on extending workflow engines with human SLAs in
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order to integrate human-based crowdsourcing services in enterprise computing
environments.
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