

From Intractability to Inconceivability ¹

Christof Spanring

Institute of Information Systems, TU Wien, Austria

Workshop on New Trends in Formal Argumentation 2017

Der Wissenschaftsfonds.

¹This research has been supported by FWF (project I1102).

Example

Question

What is some preferred extension?

Christof Spanring, Workshop on New Trends in Formal Argumentation 2017

From Intractability to Inconceivability 1/14

Example

Question

What is some preferred extension?

Answer

The set $\{a_0, a_1, a_2\}$ is a preferred extension.

Christof Spanring, Workshop on New Trends in Formal Argumentation 2017

From Intractability to Inconceivability 1/14

Example

Question

What is some preferred extension?

Example

Question

What is some preferred extension?

Answer

The set $\{a_0, a_1, a_2, a_3\}$ is a preferred extension.

Christof Spanring, Workshop on New Trends in Formal Argumentation 2017

From Intractability to Inconceivability 2/14

Simple Problems...,...

Example

Question

What is some preferred extension?

Christof Spanring, Workshop on New Trends in Formal Argumentation 2017

From Intractability to Inconceivability 3/14

Simple Problems...,...

Example

Question

What is some preferred extension?

Answer

The set $\{a_{ij}: i \in \{0, 1, \dots, 7\}, j \in \{0, 1, 2\}\}$ is a preferred extension.

Christof Spanring, Workshop on New Trends in Formal Argumentation 2017

From Intractability to Inconceivability 3/14

Example

Example

	pr	sm	st	sg	na	<i>c</i> 2	s2
Ver_{σ}	-	-	\checkmark	-	\checkmark	\checkmark	-
$Cred_{\sigma}$	-	-	-	-	\checkmark	-	-
$Skept_{\sigma}$	-	-	-	-	\checkmark	-	-
EX_{σ}	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
NEX_σ	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark

- ASPIC Variants [Modgil and Prakken, 2014]
- Automata [Baroni et al., 2013]
- Logic Programming [García and Simari, 2004]
- Structured Argumentation

- ASPIC Variants [Modgil and Prakken, 2014]
- Automata [Baroni et al., 2013]
- Logic Programming [García and Simari, 2004]
- Structured Argumentation
- Set Theoretic Approach for Arbitrary Infinities
 - Zermelo-Fraenkel Set Theory
 - Axiom of Choice, Zorn's Lemma, Well-Ordering Theorem
 - Transfinite Induction
 - Bourbaki-Witt

Collapse I

Example

Collapse of stable, semi-stable, stage, cf2, stage2 semantics in ZFC.

Simple Problems?

Simple Problems?

Example

. . .

Possible collapse of stable, semi-stable, stage, cf2, stage2, preferred, naive semantics in ZF, i.e. models of ZF where AC does not hold.

Christof Spanring, Workshop on New Trends in Formal Argumentation 2017

From Intractability to Inconceivability 9/14

	со	na	pr	st	sg	sm	<i>c</i> 2	s2	gr	id	eg
well-founded	\checkmark										
bipartite	\checkmark										
finite	\checkmark	\checkmark	\checkmark	-	\checkmark						
limited controversial	\checkmark	AC	\checkmark	AC	AC						
symmetric loop-free	\checkmark	AC	\checkmark	AC	AC						
finitary	\checkmark	AC	AC	-	AC	AC	?	?	\checkmark	AC	AC
symmetric	\checkmark	AC	AC	-	-	-	AC	-	\checkmark	AC	AC
planar	\checkmark	AC	AC	-	?	-	?	?	\checkmark	AC	AC
finitely superseded	\checkmark	AC	AC	-	-	-	-	-	\checkmark	AC	AC
finitarily superseded	\checkmark	AC	AC	-	-	-	-	-	\checkmark	AC	AC
arbitrary	\checkmark	AC	AC	-	-	-	-	-	\checkmark	AC	AC

Table: Perfection results.

Christof Spanring, Workshop on New Trends in Formal Argumentation 2017

From Intractability to Inconceivability 10/14

Question

In the infinite case:

- Computational Complexity
- Intertranslatability
- Signatures

Question

In the infinite case:

- Computational Complexity
- Intertranslatability
- Signatures

Question

In the infinite case:

- Computational Complexity
- Intertranslatability
- Signatures

Example

- Admissibility based semantics widely yield the same comparability, regardless of ZF or ZFC;
- In ZF, given extension set $\{0,1\}^{\omega}$ we can give an AF with matching semantic evaluation;
- In ZF, a collection of pairs of arguments with symmetric conflicts might not provide maximal extensions;
- How do cf-based semantics compare?

Example

Christof Spanring, Workshop on New Trends in Formal Argumentation 2017

From Intractability to Inconceivability 12/14

Definition

Example

Christof Spanring, Workshop on New Trends in Formal Argumentation 2017

From Intractability to Inconceivability 12/14

Theorem

- In ZFC stable, stage, cf2 and stage2 semantics provide the same expressiveness.
- In ZF without AC even naive, stable, stage, cf2 and stage2 are comparable.

Christof Spanring, Workshop on New Trends in Formal Argumentation 2017

From Intractability to Inconceivability 12/14

Christof Spanring, Workshop on New Trends in Formal Argumentation 2017

From Intractability to Inconceivability 13/14

Christof Spanring, Workshop on New Trends in Formal Argumentation 2017

From Intractability to Inconceivability 13/14

- The possibility of collapse can be considered a valuable tool.
- Inconceivable (i.e. collapsing) subframeworks can enforce other extensions.
- Similarly, can we make use of intractability for expressiveness in terms of tractable extensions?
- For general (finite) AFs, can we tractably detect intractability of subframeworks?

References

Baroni, P., Cerutti, F., Dunne, P. E., and Giacomin, M. (2013). Automata for infinite argumentation structures. Artif. Intell., 203:104–150.

Dung, P. M. (1995).

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.

Artif. Intell., 77(2):321-357.

García, A. J. and Simari, G. R. (2004).

Defeasible logic programming: An argumentative approach. <u>TPLP</u>, 4(1-2):95–138.

Jech, T. (2006). Set Theory. Springer, 3rd edition.

Modgil, S. and Prakken, H. (2014).

The <u>ASPIC</u>⁺ framework for structured argumentation: a tutorial. Argument & Computation, 5(1):31–62.

Spanring, C. (2015).

Hunt for the Collapse of Semantics in Infinite Abstract Argumentation Frameworks.

In OASIcs-OpenAccess Series in Informatics, volume 49. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Christof Spanring, Workshop on New Trends in Formal Argumentation 2017

From Intractability to Inconceivability 14/14