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Question
What is some preferred extension?

Answer
The set {a0, a1, a2} is a preferred extension.
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Question
What is some preferred extension?

Answer
The set {aij : i ∈ {0, 1, . . . , 7}, j ∈ {0, 1, 2}} is a preferred extension.
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Tractable vs. Intractable

pr sm st sg na c2 s2
Verσ - - X - X X -
Credσ - - - - X - -
Skeptσ - - - - X - -
EXσ X X - X X X X
NEXσ - - - X X X X
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Approaches to the infinite case

ASPIC Variants [Modgil and Prakken, 2014]

Automata [Baroni et al., 2013]

Logic Programming [García and Simari, 2004]

Structured Argumentation . . .

Set Theoretic Approach for Arbitrary Infinities
Zermelo-Fraenkel Set Theory
Axiom of Choice, Zorn’s Lemma, Well-Ordering Theorem
Transfinite Induction
Bourbaki-Witt
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Collapse I

Example
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Collapse of stable, semi-stable, stage, cf2, stage2 semantics in ZFC.
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Simple Problems?
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Collapse II

Example

· · ·

Possible collapse of stable, semi-stable, stage, cf2, stage2, preferred,
naive semantics in ZF, i.e. models of ZF where AC does not hold.
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Collapse and Perfection

co na pr st sg sm c2 s2 gr id eg
well-founded X X X X X X X X X X X
bipartite X X X X X X X X X X X
finite X X X - X X X X X X X
limited controversial X AC AC AC AC AC AC AC X AC AC
symmetric loop-free X AC AC AC AC AC AC AC X AC AC
finitary X AC AC - AC AC ? ? X AC AC
symmetric X AC AC - - - AC - X AC AC
planar X AC AC - ? - ? ? X AC AC
finitely superseded X AC AC - - - - - X AC AC
finitarily superseded X AC AC - - - - - X AC AC
arbitrary X AC AC - - - - - X AC AC

Table: Perfection results.
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Expressiveness

Question
In the infinite case:

Computational Complexity

Intertranslatability

Signatures

Example
Admissibility based semantics widely yield the same comparability,
regardless of ZF or ZFC;

In ZF, given extension set {0, 1}ω we can give an AF with matching
semantic evaluation;

In ZF, a collection of pairs of arguments with symmetric conflicts
might not provide maximal extensions;

How do cf-based semantics compare?
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Facilitating Collapse for Translations

Definition

x y ⇒ x y

B(x)

Example

Theorem
In ZFC stable, stage, cf2 and stage2 semantics provide the same
expressiveness.

In ZF without AC even naive, stable, stage, cf2 and stage2 are
comparable.
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Expressiveness
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Expressiveness
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Conclusions

The possibility of collapse can be considered a valuable tool.

Inconceivable (i.e. collapsing) subframeworks can enforce other
extensions.

Similarly, can we make use of intractability for expressiveness in
terms of tractable extensions?

For general (finite) AFs, can we tractably detect intractability of
subframeworks?
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