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INSTITUT FÜR LOGIC AND COMPUTATION

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Shaping Abstract Argumentation for the
Argumentation Pipeline –

How to avoid Multiple Arguments with
the same Claim

DBAI-TR-2019-115
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Abstract. Abstract argumentation frameworks are a constitutive formalism within a more
general argumentation process, where arguments and conflicts are instantiated from a given
knowledge base and acceptable sets of arguments are obtained solely from the resulting at-
tack relation between arguments. Inspecting the claims of the accepted arguments is often
considered as final step in this process. However, a certain subtlety occurs when different
arguments with the same claim are constructed during the instantiation process. This not
only gives rise to different views on acceptance but can also have an impact on the complex-
ity of acceptance problems, as recently shown. A natural goal is thus to investigate under
which circumstances such situations can be avoided, i.e. when one can express the result of
the instantiation with standard formalisms where each argument represents a unique claim.
We study this problem on the general level of claim-augmented argumentation frameworks
(CAFs). As a main result we show that, for all standard semantics, the class of well-formed
CAFs, where arguments with the same claim have the same outgoing attacks, can be equiv-
alently represented as argumentation frameworks with collective attacks.
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1 Introduction
The formal analysis of human reasoning facing uncertain information and conflicting beliefs is an
important research area within AI. Abstract argumentation, as introduced by Dung [13], has been
established as an important tool to analyze and evaluate the raw structure of argumentation systems
by treating arguments as abstract entities. Depending on the particular task, various instantiation
processes are used to model discourses, medical and legal cases [4], but also logic programs and
non-monotonic reasoning formalisms [13, 11].

The general schema is often referred to as the argumentation pipeline and involves: (1) instan-
tiation of a problem into an abstract argumentation framework (AF); (2) application of semantics
yielding sets of collectively acceptable arguments (the extensions of the AF); (3) re-interpretation
of the extensions in terms of the original problem. Different instantiation processes have been es-
tablished, see e.g. [17, 22, 11]. They all have in common that each generated argument possesses a
statement (claim). Step (3) hence usually consists of inspecting the claims of the arguments occur-
ring in the extensions. The entire process is implemented, for instance, in the TOAST system [23].

Example 1. We consider an instantiation procedure using ASPIC+ [22]. Let Kp = {b, b, c, c} be
the set of premises, Ks = {b → a, c → a} be the set of strict rules and let the pairs (b, b), (c, c),
(b, c) be contradictory. The arguments and the resulting AF are given as follows.

Arg. Structure claim
A1 b b

A2 b b
A3 c c
A4 c c
A5 A2 → a a
A6 A4 → a a

Figure 1: Arguments in Ex-
ample 1.

A3

A4

A2

A1

A6

A5

Figure 2:
Resulting AF.

The evaluation of the AF in Example 1 under stable semantics1 yields the sets {A1, A3},
{A2, A3, A5} and {A1, A4, A6}. The re-interpretation in terms of claims gives us the sets {b, c},
{a, b, c} and {a, b, c}.

Observing that arguments A5 and A6 refer to the same claim it is a natural question whether
or not we can avoid such duplicates of claims. To put it in other words, to which extent can we
simplify an AF such that the extensions (interpreted in terms of their claims) remain unchanged? It
is evident that such questions are crucial for practical reasons, since smaller AFs can be processed
more efficiently. In the best case, each claim then is represented by exactly one argument. This
would avoid certain subtleties observed by several authors (see e.g. [18], Definition 2.18), namely
that although a particular claim is covered by all extensions, there might be no argument which is
contained in all extensions, making the skeptical acceptance problem on the AF level insufficient
for a claim-centric view.

1A set S of arguments is stable if it attacks exactly those arguments which do not belong to S.
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Coming back to our example, the affirmative answer to the question whether each claim can
be represented by one argument is negative. In this case, we would need an AF over a, b, c, b and
c, such that the stable extensions are given by the sets {b, c}, {a, b, c} and {a, b, c}. Results by
Dunne et al. [14] on signatures show that such an AF cannot exist. However, recent results [15]
on signatures for SETAFs (AFs with collective attacks [20]) show that a slightly more powerful
abstract formalism is capable to deliver those sets as stable extensions.

Generally speaking, we are interested under which conditions one can express the result of an
instantiation process in terms of an abstract formalism F , such that the outcome of the original
problem is directly given by the extensions of F .

In the present paper, we utilize the concept of claim-augmented argumentation frameworks,
CAFs for short, as introduced by Dvořák and Woltran [16] in order to base our studies indepen-
dently from concrete instantiations. CAFs are AFs where arguments are associated with claims and
semantics deliver those sets of claims attached to the arguments in the extensions under standard
AF semantics. We will focus on the most common semantics, namely preferred, stable, complete,
admissible and grounded semantics [13]. Compared to [16] who analyse the complexity of ac-
ceptance problems in terms of CAFs, we are interested in the expressibility of CAFs in order to
understand in which situations we can avoid the necessity to have different arguments with the
same claim.

To this end, we consider two independent restrictions on the attack relation in CAFs and inves-
tigate their effect on the expressibility of the CAF semantics. A CAF is well-formed if arguments
with the same claim attack the same arguments (the AF from Example 1 is indeed well-formed).
This constraint naturally occurs in instantiation processes: attacks are usually generated under
consideration of the claim of the attacker.2 The second restriction we study can be seen as dual
to well-formed CAFs and requires arguments with the same claim to be attacked by the same
arguments. We call such frameworks attack-unitary CAFs. Our main results are:

• We first provide a rewriting technique for CAFs in order to reduce the number of arguments
with the same claim.

• We show that well-formed CAFs are equally powerful (w.r.t. the semantics under considera-
tion) to SETAFs by providing translations in both directions. As a consequence, each well-formed
CAF can be equivalently represented as SETAF where each argument refers to a unique claim.

• We strengthen this result for attack-unitary CAFs under admissibility-based semantics and we
provide a transformation to standard AFs for this particular class.

• Finally, we show for unrestricted CAFs that the expressibility of the considered semantics
increases drastically which indicates that compilation of arbitrary CAFs into purely abstract for-
malisms cannot be expected.

2Exceptions are instantiation procedures which allow rule and claim preferences (cf. ASPIC+).
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2 Preliminaries
In this section, we introduce argumentation frameworks [13] and recall the semantics we study (for
a comprehensive introduction, see [5]). We fix U as countable infinite domain of arguments.

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A ⊆ U is a finite set
of arguments and R ⊆ A × A is the attack relation. The pair (a, b) ∈ R means that a attacks b.
Given an argument a, we use a+R = {b | (a, b) ∈ R} and a−R = {b | (b, a) ∈ R}; we extend both
notions to sets S as expected: S+

R =
⋃
a∈S a

+
R, S−R =

⋃
a∈S a

−
R. Argument a ∈ A is defended (in

F ) by S ⊆ A if a−R ⊆ S+
R .

Semantics for AFs are defined as functions σ which assign to each AF F = (A,R) a set
σ(F ) ⊆ 2A of extensions. We consider for σ the functions cf , adm, com, grd , stb, and prf ,
which stand for conflict-free, admissible, complete, grounded, stable, and preferred extensions,
respectively.

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ), if there are no
a, b ∈ S, such that (a, b) ∈ R. cf (F ) denotes the collection of sets being conflict-free in F . For a
conflict-free set S ∈ cf (F ), it holds that

• S ∈ adm(F ), if each a ∈ S is defended by S in F ;

• S ∈ com(F ), if S ∈ adm(F ) and each a ∈ A defended by S in F is contained in S;

• S ∈ grd(F ), if S =
⋂
T∈com(F ) T ;

• S ∈ stb(F ), if each a ∈ A \ S is attacked by S in F ;

• S ∈ prf (F ), if S ∈ adm(F ) and there is no T ⊃ S such that T ∈ adm(F ).

We recall that for each AF F , stb(F ) ⊆ prf (F ) ⊆ com(F ) ⊆ adm(F ), and grd(F ) yields
a unique extension. Moreover, semantics σ ∈ {stb, prf } deliver incomparable sets, i.e. for all
S, T ∈ σ(F ), S ⊆ T implies S = T .

3 Argumentation Frameworks with Claims
Dvořák and Woltran [16] have recently introduced claim-augmented argumentation frameworks,
CAFs for short, in order to analyse the complexity of abstract argumentation under a claim-centric
view. The idea is to assign each argument in an AF a claim, i.e. an element from a countable
infinite domain of claims C. Hence, different arguments can have the same claim, but no further
information about claims is available. Figure 3 shows the CAF for Example 1.

Definition 3. A Claim-augmented Argumentation Framework (CAF) is a triple (A,R, claim)
where (A,R) is an AF and claim : A→ C assigns a claim to each argument of A.
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Semantics of CAFs are defined from the standard semantics of the underlying AF, but interpret
the extensions in terms of the claims of their arguments. To this end, we extend the claim function
to sets, i.e. claim(S) = {claim(s) | s ∈ S}.
Definition 4. For a semantics σ, we define its claim-based variant σc as follows. For any CAF
CF = (A,R, claim), σc(CF ) = {claim(S) | S ∈ σ((A,R))}. Given S ∈ σc(CF ), we say that
E ⊆ A is a σ-realization of S in CF if claim(E) = S and E ∈ σ((A,R)).

Example 2. Let CF = (A,R, claim) be given with (A,R) as depicted in Figure 4, and
claim(xi) = x, claim(yi) = y for i = 1, 2. We have comc(CF ) = admc(CF ) = {∅, {x}, {x, y}},
grdc(CF ) = {∅}, and stbc(CF ) = prfc(CF ) = {{x}, {x, y}}. Note that {x} ∈ admc(CF ) has
two adm-realizations, namely E1 = {x1} and E2 = {x2}.

Some basic relations between different semantics carry over from standard AFs. In fact, we
have for any CAF CF

stbc(CF ) ⊆ prf c(CF ) ⊆ comc(CF ) ⊆ admc(CF ) (1)

and grd c(CF ) is unique and contained in comc(CF ). Moreover, the claim-based grounded exten-
sion S ∈ grd c(CF ) is still the unique minimal claim-based complete extension.

As Example 2 shows, claim-based semantics loose some basic properties, for instance incom-
parability of stable and preferred extensions. However, this can be circumvented with a particular
subclass called well-formed CAFs which has been defined in [16].

Definition 5. A CAF (A,R, claim) is called well-formed if a+R = b+R for any a, b ∈ A with
claim(a) = claim(b), i.e. arguments with the same claim attack the same arguments.

Proposition 1. For any well-formed CAF CF , S∈prfc(CF ) iff S∈comc(CF ) and there is no
T∈comc(CF ) with T⊃S.

Proof. Consider a well-formed CAF CF = (A,R, claim). We show that forD,E ∈ com((A,R)),
D ⊆ E iff claim(D) ⊆ claim(E). The assertion then follows immediately. As claim(.) is
monotone we have that D ⊆ E implies claim(D) ⊆ claim(E). We next show the converse,
i.e. that claim(D) ⊆ claim(E) implies D ⊆ E. As CF is well-formed, claim(D) ⊆ claim(E)
implies D+

R ⊆ E+
R . That is all arguments defended by D in (A,R) are also defended by E in

(A,R). Finally as D defends all its arguments and E contains all arguments it defends we have
D ⊆ E.

Notice that the above results generalise similar observations for instantiations from logic pro-
gramming [11] and ABA [10].

Proposition 2. For σ ∈ {stb, prf } and every well-formed CAF CF = (A,R, claim), we have (a)
σc(CF ) is incomparable, and (b) |σ((A,R))| = |σc(CF )|.

c c b b

a a

Figure 3: The AF F from Example 1 as CAF; here, claims are depicted instead of argument names.
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y1 x1 x2 y2

Figure 4: The AF from Example 2.

4 Translations
In this section, we provide our main results: we show that well-formed CAFs can be equivalently
expressed without multiple claims when we allow for collective attacks (Section 4.2); moreover,
we give conditions under which CAFs can be equivalently expressed as AFs, i.e. without multiple
claims (Section 4.3). We start however, with some simplification steps for CAFs and define a
canonical form.

4.1 A Normalform for CAFs
We first show that under certain conditions we can safely remove one of the arguments which have
the same claim.

Definition 6. Let CF = (A,R, claim) be a CAF. Argument a ∈ A is called redundant (in CF )
w.r.t. argument b ∈ A if a 6= b, claim(a) = claim(b), a+R = b+R, and a−R ⊇ b−R.

In the CAF CF from Example 2, argument y1 is redundant w.r.t. y2: Indeed, we have that
y+1 = y+2 = ∅ and y−1 ⊇ y−2 .

Proposition 3. Let CF = (A,R, claim) be a CAF, a ∈ A be redundant in CF w.r.t. some b ∈ A,
and let CF ′ = (A′, R′, claim) with A′ = A \ {a}, and R′ = R ∩ (A′ × A′). Then, for σ ∈
{cf , adm, com, grd , stb, prf }, σc(CF ) = σc(CF

′).

Proof (for σ = stb). Let S ∈ stbc(CF ) and let E be a stb-realization of S in CF , i.e. E ∈
cf ((A,R)) and E+

R = A \ E. In case a /∈ E, it is easy to see that E ∈ cf ((A′, R′)) and
E+
R′ = A′ \ E; thus E is a stb-realization of S in CF ′. In case a ∈ E, we observe that

b ∈ E holds, too: otherwise, b ∈ E+
R and therefore, by a−R ⊇ b−R, also a ∈ E+

R . A contradic-
tion to E ∈ cf ((A,R)). We show that E ′ = E \ {a} is a stb-realization of S in CF ′. Clearly,
claim(E ′) = claim(E) = S. Moreover, E ′ ∈ cf ((A′, R′)), and E ′+R′ = A′ \ E ′ = A \ E. Hence,
E ′ ∈ stb((A′, R′)).

For the other direction, let S ∈ stbc(CF
′) and let E be a stb-realization of S in CF ′. Clearly

E ∈ cf ((A,R)). If a ∈ E+
R , we immediately get E ∈ stb((A,R)). So suppose a /∈ E+

R . Since
a−R ⊇ b−R, b /∈ E+

R , and it follows that b ∈ E, sinceE is stable in (A′, R′). We conclude that (b, a) /∈
R and thus, since a+R = b+R, (a, a) /∈ R. Moreover, as b /∈ E−R we have a /∈ E−R as well. That is, we
have (a, a) /∈ R, a /∈ E+

R , a /∈ E−R , and thus (E ∪ {a}) ∈ cf ((A,R)). Moreover, in (A,R) the set
E ∪ {a} attacks each argument c ∈ A \ E and, since b ∈ E, claim(E ∪ {a}) = claim(E) = S.
Hence, E ∪ {a} is a stb-realization of S in CF .

Definition 7. A CAF CF = (A,R, claim) is called normalized if there are no redundant arguments
in CF .

6



The following result is by repetitive application of Prop. 3.

Theorem 1. Any CAF CF can be transformed into an normalized CAF CF ′, such that σc(CF ) =
σc(CF

′), for σ ∈ {cf , adm, com, grd , stb, prf }.

4.2 Expressing Well-formed CAFs as SETAFs
In well-formed CAFs, arguments with the same claim are indistinguishable in terms of their outgo-
ing attacks. Hence, one can speak about claims attacking arguments, which one cannot in general
CAFs. We will use this advantage to connect well-formed CAFs to a well-studied extension of
AFs.

SETAFs and Collective Attacks. SETAFs, as introduced by Nielsen and Parsons [19], gener-
alize the binary attack-relation in AFs to collective attacks of arguments. The formalism captures
situations in which a single argument might be too weak to attack more powerful statements.

Definition 8. A SETAF is a pair SF = (A,R) where A ⊆ U is finite, and R ⊆ (2A \ {∅})× A is
the attack relation.

Given a SETAF SF = (A,R), then S ⊆ A attacks a if there is a set S ′ ⊆ S with (S ′, a) ∈ R.
S is conflicting in SF if S attacks some a ∈ S; S is conflict-free in SF , if S is not conflicting in
SF , i.e. S ′ ∪ {a} 6⊆ S for each (S ′, a) ∈ R. Finally, a ∈ A is defended by S if for each set B ⊆ A
with (B, a) ∈ R, there is some b ∈ B such that S attacks b. With these extended notions of conflict
and defense, the semantics of AFs generalize to SETAFs as follows.

Definition 9. Given a SETAF SF = (A,R), we denote the set of all conflict-free sets in SF as
cfs(SF ). For S ∈ cfs(SF ),

• S ∈ adms(SF ) if each a ∈ S is defended by S in SF ;

• S ∈ coms(SF ), if S ∈ adms(SF ) and a ∈ S for all a ∈ A defended by S in SF ;

• S ∈ grd s(SF ), if S =
⋂
T∈coms(SF ) T ;

• S ∈ stbs(SF ), if each a ∈ A \ S is attacked by S in SF ;

• S ∈ prf s(SF ), if S ∈ adms(SF ) and there is no T ∈ adms(SF ) s.t. T ⊃ S.

Towards our translation we introduce attack formulas as an alternative formalisation of the
attack-structure in SETAFs.

Definition 10. For any SETAF SF = (A,R) and a ∈ A, let

DSF
a =

∨
B,(B,a)∈R

∧
b∈B

b

denote the attack-formula of a in SF . By CDSF
a we denote any equivalent formula in CNF over the

same set of variables. CDSF
a is called CNF-attack-formula of a in SF .
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For each s ∈ A, the models of the attack-formula DSF
s coincide with the sets S ⊆ A such

that S attacks s in SF . Using this identity, the semantics for SETAFs can be rephrased in terms
of attack-formulas. For example, a set S is stable in SF , if for each s ∈ A, we have that s ∈ S if
and only if δ * S for all δ ∈ DSF

s (following standard conventions, we will occasionally identify
formulas in CNF or DNF as a collection of sets of literals; in our case, atoms).

Translations. We show that each well-formed CAF can be reduced to an equivalent SETAF by
identifying claims in well-formed CAFs with arguments in SETAFs. To this end, we will introduce
attack formulas for each claim c which intuitively capture all possible sets of claims which jointly
contradict each occurrence of claim c.

Definition 11. Given a well-formed CAF CF = (A,R, claim), then for each claim c ∈ claim(A),
the CNF-attack-formula of c in CF is defined as

CDCF
c =

∧
a∈A,claim(a)=c

∨
(x,a)∈R

claim(x).

DCF
c denotes any equivalent formula in DNF over the same set of variables and is called DNF-

attack-formula of c in CF .

Note that formula CDCF
c is unsatisfiable iff there exists an argument x in CF with claim(x) = c

such that x−R = ∅.
Similarly to SETAFs, attack formulas allow for an exact characterization of well-formed CAFs,

i.e. each well-formed CAF CF = (A,R, claim) is uniquely determined (modulo argument names)
via its attack formulas CDCF

c .

Example 3. Consider the following CNF-attack formulas:

CDCF
a = (c ∨ b) ∧ (c ∨ b)

CDCF
b = b CDCF

c = c

CDCF
b

= b ∨ c CDCF
c = b ∨ c

The two conjuncts of CDCF
a determine that we have two arguments with claim a, while the remain-

ing claims appear only once. The disjunctions refer to the attackers of the arguments. In fact, we
obtain the CAF as depicted in Figure 3.

We are now ready to formally state our translation Tcts, which maps each well-formed CAF CF
to a corresponding SETAF Tcts(CF ). Each claim c in the original framework CF corresponds to an
argument in Tcts(CF ), furthermore we identify each disjunct of the DNF-attack-formulaDCF

c with
a collective attack against c. Consequently, the formula DCF

c coincides with the attack-formula
DTcts(CF )
c of the resulting SETAF Tcts(CF ). Therefore, the SETAF Tcts(CF ) solely depends on

the choice of the formula DCF
c .

Translation 1. For a well-formed CAF CF = (A,R, claim) we define Tcts(CF ) = (A′, R′) with
A′ = claim(A) and

R′ = {(δ, c) | c ∈ A′, δ ∈ DCF
c }.
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c c b b

a

Figure 5: SETAF Tcts(CF ) from Example 4.

Example 4. In Example 3 we have already provided the attack formulas for the CAF CF depicted
in Figure 3. The attack formula CDCF

a for claim a in DNF representation yields DCF
a = (c ∧ c) ∨

(c ∧ b) ∨ (b ∧ c) ∨ (b ∧ b). The attack formulas for the remaining claims are readily given in DNF.
Applying Translation 1 yields the SETAF given in Figure 5: for a, we need a collective attack
for each disjunct in DCF

a ; for the remaining arguments, each disjunct contains one atom, thus the
incoming attacks remain binary as in CF .

Notice that the translation links multiple occurrences of a claim with collective attacks on
a corresponding single argument. Therefore, it interlinks claim-based extensions of CAFs with
extensions (on the argument level) of SETAFs. As we show next, this is performed in a faithful
way, that is, the reviewed semantics of well-formed CAFs can be reduced to their counterparts in
SETAFs.

Proposition 4. For each well-formed CAF CF and σ ∈ {cf , adm, com, grd , prf , stb}, σc(CF ) =
σs(Tcts(CF )).

Proof (for σ ∈ {cf , stb}). First, let σ = cf . We rephrase conflict-freeness in terms of CNF- resp.
DNF-attack-formulas. In well-formed CAFs, S ∈ cf c(CF ) iff for each s ∈ S there is an a ∈ A
with claim(a) = s such that a is not attacked by any argument b with claim(b) ∈ S. Note that,
for any s ∈ claim(A), CDCF

s identifies each clause with the set of attacking claims for a particular
occurrence of s in well-formed CAFs. That is, S ∈ cf c(CF ) iff for each s ∈ S,

there is some γ ∈ CDCF
s such that γ ∩ S = ∅. (C1)

In a SETAF (A′, R′), a set S ⊆ A′ is conflict-free iff for all S ′ ⊆ S and all s ∈ S, (S ′, s) /∈ R′. In
terms of attack formulas, S ∈ cf s(SF ) iff for each s ∈ S, it holds that

for all δ ∈ DSF
s we have δ * S. (C2)

We have (i) DSF
s = DCF

s for each s ∈ A′ by construction, and (ii) that no δ ∈ DCF
s is a subset of S

iff there exists γ ∈ CDCF
c such that γ ∩ S = ∅, and thus we obtain that (C1) is equivalent to (C2),

hence the statement follows.
Let σ = stb. A set S is stable on claim-level in CF if for each s ∈ claim(A), it holds that

s ∈ S if and only if (C1). Similarly, S is stable in Tcts(CF ) if for each s ∈ A′ = claim(A), it
holds that s ∈ S if and only if (C2). Again, the statement follows by the equivalence of (C2) and
(C1).
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The results show that multiple occurrences of claims in AFs can be equivalently treated as
collective attacks, if the framework satisfies well-formedness. Indeed, in our running example (cf.
Figure 5), the stable extensions stbs(Tcts(CF )) are given by the sets {a, b, c}, {a, b, c} and {b, c}.

Our next results show that it is equally possible to map each SETAF to a well-formed CAF
while preserving the reviewed semantics. We will provide a translation Tstc which maps each
SETAF SF to an equivalent well-formed CAF using attack formulas. Each argument a will cor-
respond to a claim in the resulting CAF; furthermore, we introduce for each clause γ in the attack
formula CDSF

a an argument aγ labelled with claim a. The clause γ also determines the set of at-
tackers of the argument aγ . Again, we see that the resulting CAF depends on the choice of the
particular CNF attack-formulas.

Translation 2. For each SETAF SF = (A′, R′), we define Tstc(SF ) = (A,R, claim) as follows:

A = {aγ | a ∈ A′, γ ∈ CDSF
a } ∪ {a∅ | a ∈ A′, CDSF

a = ∅},
R = {(x, aγ) | a ∈ A′, γ ∈ CDSF

a , claim(x) ∈ γ},
claim(aγ) = a.

By restricting both Translations Tcts and Tstc to the class of all normalized well-formed CAFs,
and respectively, SETAFs in minimal form3, it can be shown that Tcts and Tstc are each others
inverse w.r.t. a fixed conversion from CNF- to DNF-formulas and vice versa. With this observation
the following result holds.

Proposition 5. Let σ ∈ {cf , adm, com, grd , prf , stb}. For each SETAF SF in minimal form,
σs(SF ) = σc(Tstc(SF )).

Since each SETAF can be reduced to a minimal form [21][Thm. 4.2.5] and, similarly, each
well-formed CAF has a normalized representative, the following theorem is an immediate conse-
quence of the Propositions 4 and 5:

Theorem 2. Let σ ∈ {cf , adm, com, grd , prf , stb}. For any well-formed CAF CF , there is a
SETAF SF such that σc(CF ) = σs(SF ), and vice versa.

4.3 Classes of CAFs Expressible as AFs
In this section we investigate classes of CAFs that can be directly expressed by AFs. An example
are CAFs such that their normal form (cf. Definition 7) contains each claim at most once (then only
replacing each argument a by claim(a) does the job). Well-formed CAFs (A,R, claim) where R
is symmetric fall into this category (we have a+R = b+R, a−R = b−R for any arguments a, b with the
same claim; thus Proposition 3 can be applied exhaustively). However, as we show next, a weaker
condition on the attack structure is sufficient.

Definition 12. A CAF (A,R, claim) is called attacker-unitary (att-unitary) if, for any a, b ∈ A with
claim(a) = claim(b), it holds that a−R = b−R, i.e. arguments with the same claim are attacked by
the same arguments.

3A SETAF SF = (A,R) is in minimal form if it has no attacks (A, a), (B, a) ∈ R such that A ⊂ B.
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In att-unitary CAFs, a set of arguments E defends either all or no occurrences of a claim c. The
next lemma states that, for admissible-based semantics, each claim-extension S can be realized by
a maximal representative.

Lemma 1. Let CF = (A,R, claim) be att-unitary and let S ∈ σc(CF ) for σ ∈
{adm, com, grd , prf , stb}. Then Emax

S = {x ∈ A | claim(x) ∈ S} ∈ σ((A,R)).

Next, we state translation Tcta from CAFs to AFs. Given CAF CF = (A,R, claim), each claim
c ∈ claim(A) is mapped to a single argument c in the resulting AF Tcta(CF ), wherein c attacks d
if at least one argument with claim c attacks the arguments with claim d in (A,R).

Translation 3. For an att-unitary CAF CF =(A,R, claim), we define Tcta(CF ) = (claim(A), R′)
with

R′ = {(claim(x), claim(y)) | (x, y) ∈ R}.

Proposition 6. Let CF = (A,R, claim) be att-unitary. Then σc(CF ) = σ(Tcta(CF )) for σ ∈
{adm, com, grd , prf , stb}.

Proof (for σ = stb). Let F = Tcta(CF ) = (A′, R′) and consider S ∈ stbc(CF ). By Lemma 1,
Emax
S ∈ stb((A,R)). Note that S ∈ cf (F ) by definition of R′. For each c ∈ A′ \ S there is an

x ∈ A \ Emax
S with claim(x) = c and there is y ∈ Emax

S such that (y, x) ∈ R. Consequently
(claim(y), claim(x)) ∈ R′, and S attacks in F all arguments a ∈ A′ \ S.

Now, let S ∈ stb(F ) and let c ∈ A′ \ S. Then there is some argument a ∈ S such that
(a, c) ∈ R′. By definition of R′, there are arguments x, y ∈ A, claim(x) = a, claim(y) = c, such
that (x, y) ∈ R. By att-unitaryness, (x, z) ∈ R for each z ∈ A such that claim(z) = c. Hence
each argument y ∈ A \ Emax

S is attacked by Emax
S .

For an AF F = (A,R) the CAF CF = (A,R, id) with id(a) = a is an equivalent att-unitary
CAF. Together with above proposition this yields the following result.

Theorem 3. Let σ ∈ {adm, com, grd , prf , stb}. For any att-unitary CAF CF there is an equiva-
lent AF F , i.e. σc(CF ) = σ(F ), and vice versa.

Notice that Theorem 3 does not extend to cf semantics. For cf the orientation of attacks is
immaterial and thus well-formed and att-unitary CAFs are intertranslateable.

5 Expressiveness of CAFs
Dunne et al. [14] introduced the concept of signatures in order to compare the expressiveness of
semantics for AFs. For a semantics σ, its signature is defined as ΣAF

σ = {σ(F ) | F is an AF},
thus capturing all possible outcomes which can be obtained by AFs when evaluated under σ. We
consider ΣCAF

σ , Σwf
σ and Σunit

σ as the claim-based counter-parts for unrestricted, well-formed and
att-unitary CAFs, e.g. Σwf

σ = {σc(CF ) | CF is a well-formed CAF}. Note that ΣAF
σ yields a

collection of sets of arguments while ΣCAF
σ , Σwf

σ and Σunit
σ yield a collection of sets of claims. In
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order to compare ΣAF with ΣCAF , Σwf and Σunit we assume that the domains of identifiers for
arguments and claims coincide.

Note that for any semantics σ, we have ΣAF
σ ⊆ Σα

σ ⊆ ΣCAF
σ with α ∈ {wf , unit}. Σα

σ ⊆ ΣCAF
σ

is immediate by definition; ΣAF
σ ⊆ Σα

σ holds since using the claim function id(a) = a, we have
σ((A,R)) = σc((A,R, claim)).

We first will discuss signatures for well-formed resp. att-unitary CAFs. As an immediate con-
sequence of Theorem 2, we have that signatures Σwf

σ of well-formed CAFs and signatures ΣSET
σ of

SETAFs [15] coincide. By Theorem 3, the signatures of att-unitary CAFs for admissible, complete,
grounded, preferred and stable semantics correspond to the signatures of AFs. Furthermore, the
signature of well-formed and att-unitary CAFs for conflict-free semantics coincide (the orientation
of attacks can be ignored here).

Theorem 4. Σwf
σ = ΣSET and Σunit

σ = ΣAF
σ for σ ∈ {adm, com, grd , prf , stb}; and Σwf

cf =

Σunit
cf = ΣSET

cf .

It follows that ΣAF
σ ⊆ Σunit

σ ⊆ Σwf
σ . Dvořák et al. [15] have shown that ΣSET

stb contains all
incomparable sets of extensions and this carries over to the signatures of well-formed CAFs, while
ΣAF

stb is weaker. Coming back to our introductory example, this reflects the fact that we cannot
express the claim-based stable extensions of the CAF of Example 1 in terms of AFs and stable
semantics, but can do it with SETAFs.

Expressiveness of General CAFs. We next show that almost all sets of claim-based extensions
can be realised in arbitrary CAFs with stable and preferred semantics.

Theorem 5. The following characterisations hold:

ΣCAF
stb = {S ⊆ 2C | S = {∅} or ∅ /∈ S}

ΣCAF
prf = ΣCAF

stb \ {∅}

Proof. The conditions are necessary, since for any CF = (A,R, claim), σprf (CF ) 6= ∅ and ∅ ∈
σc(CF ) implies σ(A,R) = {∅} and thus σc((A,R, claim)) = {∅}.

Now we show that the above conditions are also sufficient by giving an actual construction of
a realising CAF. If S = ∅ (this only applies to stable semantics) simply use any AF which has no
stable extension. If S 6= ∅ construct a CAF CF = (A,R, claim) as follows (we use [S] =

⋃
S∈S S).

A ={aS | S ∈ S} ∪ {ac | c ∈ [S]}
R ={(aS, aS′) | S, S ′ ∈ S, S 6= S ′} ∪
{(aS, ac) | S ∈ S, c ∈ [S] \ S}

and claim(ac) = c and claim(aS) ∈ S, i.e. for aS one can pick an arbitrary claim from the set S.
It can be verified that stbc(CF ) = prfc(CF ) = S.

Finally, we give the characterisations for the remaining semantics. We call a set S downwards-
closed if for any S ∈ S, all subsets of S are also contained in S.
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Theorem 6. The following characterisations hold:

ΣCAF
cf = {S ⊆ 2C | S 6= ∅,S is downwards-closed}

ΣCAF
adm = {S ⊆ 2C | ∅ ∈ S}

ΣCAF
com = {S ⊆ 2C | S 6= ∅,

⋂
S∈S S ∈ S}

6 Discussion
Related Work. The work by Amgoud et al. [3] is probably closest to ours. They investigate
equivalence in logic-based argumentation systems and study conditions under which arguments
can be removed from a system without affecting its semantics. Their setting is more limiting as
they require arguments to have both equivalent support and equivalent claims in order to remove
one of them. Also related are semantics-preserving translations to standard AFs that have been
investigated for several generalizations of AFs, e.g. [12, 7, 6]. In contrast to our main results
where claims are mapped to arguments, all of these translations concern the argument level only.
An exception is the work by Strass [24] on expressiveness of AFs compared to the expressiveness
of logic programs and propositional logic, where arguments are mapped to propositional atoms.
Finally, we mention studies [8, 17, 2, 1] that analyse whether particular properties on the level of
claims (rationality and consistency postulates) are fulfilled by AF extensions in certain instantiation
scenarios.

Summary and Outlook. In this work we addressed the question under which conditions argu-
mentation frameworks can be simplified such that multiple arguments that share the same claim
can be represented by a single argument. Apart from identifying classes of CAFs which can be ex-
pressed as standard AFs, we showed that well-formed CAFs are equally powerful to SETAFs with
respect to the reviewed semantics. We complemented these findings by settling the expressiveness
of unrestricted CAFs.

Directions for future research include: (a) extending our studies to further argumentation se-
mantics, in particular naı̈ve, stage and semi-stable semantics [25] in well-formed CAFs; (b) a
systematic analysis of instantiation processes in order to identify other structural restrictions on
CAFs; (c) an adaption of our formalism towards 3-valued labellings [9] instead of extensions.
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A Appendix
In this appendix we provide full proofs for the main results of the paper. We first show an alterna-
tive characterization of grd c-semantics that we will exploit later on.

Proposition 7. For any CAF CF , S ∈ grd c(CF ) iff S ∈ comc(CF ) and S ⊆ T for all T ∈
comc(CF ).

Proof. Let CF = (A,R, claim) and consider the grounded extension G ∈ grd((A,R)). We have
that G ⊆ E for all E ∈ com((A,R)) and, by the monotonicity of claim(.), claim(G) ⊆ S for all
S ∈ comc(CF ).

Proofs of Section 3
Proposition 2 (restated). For σ ∈ {stb, prf } and every well-formed CAF CF = (A,R, claim),
we have (a) σc(CF ) is incomparable, and (b) |σ((A,R))| = |σc(CF )|.

Proof. Let F = (A,R). Then σ(F ) is an incomparable set, σ(F ) ⊆ com(F ), and, as we have
shown in the proof of Proposition 1, for E,E ′ ∈ com(F ): E ⊆ E ′ iff claim(E) ⊆ claim(E ′).
Hence, for S, T ∈ σ(F ), S 6= T implies claim(S) 6⊆ claim(T ). The result follows.

Proofs of Section 4.1
Proposition 3 (restated). Let CF = (A,R, claim) be a CAF, with a ∈ A redundant in CF w.r.t.
some b ∈ A, and let CF ′ = (A′, R′, claim) with A′ = A \ {a}, and R′ = R∩ (A′×A′). Then, for
σ ∈ {cf , adm, com, grd , stb, prf }, σc(CF ) = σc(CF

′).

Proof. We show the result step-by-step for the different semantics.
(1) Let S ∈ cf c(CF ) and let E be a cf -realization of S in CF . If a /∈ E, then E is a cf -

realization of S in CF ′ as well and thus S ∈ cf c(CF
′). If a ∈ E, consider E ′ = (E \ {a}) ∪ {b};

by definition claim(E ′) = claim(E), thus it remains to show that E ′ ∈ cf ((A′, R′)). First, we
have (b, b) 6∈ R as otherwise (b, a) ∈ R (since a−R ⊇ b−R) and also (a, a) ∈ R (since a+R = b+R). By
a ∈ E ∈ cf ((A,R) we have a−R ∩ E = emptyset and a+R ∩ E = emptyset and, since a−R ⊇ b−R
and a+R = b+R, we obtain E ′ ∈ cf ((A,R) and thus E ′ ∈ cf ((A′, R′). For the other direction, let
S ∈ cf c(CF

′) and E ′ a cf -realization of S in CF ′. Clearly, E ′ remains conflict-free in (A,R) and
thus S ∈ cf c(CF ).

(2) Let S ∈ admc(CF ) and let E be an adm-realization of S in CF . If a /∈ E, then E is
conflict-free in CF ′. Furthermore, since E−R ⊆ E+

R , we have that E−R′ = E−R \ {a} ⊆ E+
R \ {a} =

E+
R′ , hence E defends itself in (A′, R′) and thus adm-realizes S in CF ′. If a ∈ E, define E ′ =

(E\{a})∪{b}. We already know thatE ′ is a cf -realization of S in CF ′, thus it remains to show that
E ′ defends itself in (A′, R′). First observe that E ′−R ⊆ E−R , since b−R ⊆ a−R, and E+

R = E ′+R , since
b+R = a+R. Second, E ′−R′ = E ′−R : otherwise (a, c) ∈ R for some c ∈ E ′, but since E ∈ cf ((A,R)),
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this implies c = b which would yield (a, a) ∈ R via a+R = b+R. Finally, E ′+R = E ′+R′ : otherwise
(c, a) ∈ R for some c ∈ E ′; this implies (b, a) ∈ R (since E ∈ cf ((A,R))) and (a, a) ∈ R via
a−R ⊇ b−R. Together with E−R ⊆ E+

R , we thus obtain E ′−R′ = E ′−R ⊆ E−R ⊆ E+
R = E ′+R = E ′+R′ and

hence E ′ defends itself in (A′, R′). To show the other direction, let S ∈ admc(CF
′). Then there is

a set E ′ which adm-realizes S in CF ′. We show that E ′ is an adm-realization of S in CF : Clearly,
E ′ is conflict-free in (A,R). It remains to show that E ′ defends itself in (A,R). Suppose this is
not the case. Then a /∈ E ′+R and (a, c) ∈ R for some c ∈ E ′. It follows that b /∈ E ′ since b+R = a+R
and E ′ ∈ cf (A′, R′). Since E ′ ∈ adm((A′, R′)), it then also follows that b ∈ E ′+R′ = E ′+R . Because
of a−R ⊇ b−R, we arrive at a ∈ E ′+R , a contradiction.

(3) Let S ∈ comc(CF ) and let E be a com-realization of S in CF . If a /∈ E, we know from
above that E is an adm-realization of S in CF ′. It remains to show that E contains all arguments it
defends in (A′, R′). Let d ∈ A′ be defended by E in (A′, R′); we have that d−R′ ⊆ E+

R′ = E+
R \{a}.

If (a, d) /∈ R, then d−R = d−R′ , consequently d−R ⊆ E+
R , and therefore d ∈ E. If (a, d) ∈ R,

then (b, d) ∈ R (since a+R = b+R), and thus (b, d) ∈ R′. Since a−R ⊇ b−R, we conclude that d is
defended by E in (A,R) and therefore d ∈ E. Now, if a ∈ E, then b ∈ E, since a−R ⊇ b−R. Let
E ′ = E \{a}. We know from above that E ′ is an adm-realization of S in CF ′. Moreover, for each
d ∈ A′ which is defended by E ′ in (A′, R′), it holds that d−R = d−R′ ⊆ E ′+R′ = E ′+R = E+

R , therefore
d ∈ E ′. Thus E ′ ∈ com((A′, R′)). To show the other direction, let S ∈ comc(CF

′) and let E ′ be
a com-realization of S in CF ′. We already have that E ′ is admissible in (A,R). If b /∈ E ′, then
E ′ ∈ com((A,R)): Consider d ∈ A such that d−R ⊆ E ′+R . First note that d 6= a, otherwise b ∈ E ′
since a−R ⊇ b−R. Furthermore, d−R′ = d−R \ {a} ⊆ E ′+R \ {a} = E ′+R′ , thus d ∈ E ′. If b ∈ E ′, then
either E ′ or E = E ′ ∪ {a} is complete in (A,R). For each argument c ∈ A \ {a}, if c−R ⊆ E ′+R ,
then c−R′ ⊆ E ′+R′ , i.e. E ′ contains all arguments from A \ {a} it defends in CF . Hence it remains
to check whether a is defended by E ′. If this is the case, i.e. if a−R ⊆ E ′+R , then E is conflict-free
in CF : Towards a contradiction, assume that a is in conflict with some c ∈ E. If (a, c) ∈ R, then
also (b, c) ∈ R by a+R = b+R. Since E ∈ cf ((A,R)), we have that c = a, i.e. (b, a) ∈ R. But since
E ′ defends a, we get that (e, b) ∈ R for some e ∈ E ′, contradiction. If (c, a) ∈ R, then there is an
argument d ∈ E ′ such that (d, c) ∈ R. Since E ∈ cf ((A,R)) it follows that c = a, i.e. (a, a) ∈ R
and, therefore, (b, a) ∈ R, which leads to the same contradiction. It follows that E is admissible in
(A,R). Furthermore, E ∈ com((A,R)), since E and E ′ defend the same arguments. If a−R * E ′+R ,
then E ′ ∈ com((A,R)). In both cases, S has a com-realization in CF . We thus have shown that
comc(CF ) = comc(CF

′).
(4) From comc(CF ) = comc(CF

′) and Proposition 7, it follows that grd c(CF ) = grd c(CF
′).

(5) Let S ∈ prf c(CF ) and let E be a subset-maximal admissible set in (A,R) such that
claim(E) = S. First consider the case a /∈ E. From (2), we know that E is admissible in (A′, R′).
It remains to show there is no admissible set F ⊆ A′ in (A′, R′) such that E ⊂ F . Towards
a contradiction, assume such F exists. Again, using the argument from (2), F is admissible in
(A,R), a contradiction. If a ∈ E, then b ∈ E, since a−R ⊇ b−R and each preferred set is also
complete. Let E ′ = E \ {a}; in (3) we have shown that E ′ ∈ com((A′, R′)) and likewise that for a
complete set F of (A′, R′) with b ∈ F , F ∪{a} is complete for (A,R) in case a−R ⊆ F+

R . It follows
that for each such F , E 6⊂ F . Now, let S ∈ prf c(CF

′) and E ′ a prf -realization of S in CF ′. Then
E ′ is admissible in CF . We show that either E ′ or E = E ′ ∪ {a} is a maximal admissible set in
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(A,R): Towards a contradiction, assume that there is an admissible set F ∈ A in (A,R) such that
F ⊃ E ′. If a /∈ F , then F is admissible in CF ′, contradiction to the maximality of E ′. If a ∈ F ,
then F ′ = (F \ {a}) ∪ {b} ∈ adm((A′, R′)). Since E ′ is maximal in (A′, R′), we conclude that
E ′ = F ′.

(6) Let S ∈ stbc(CF ), let E be a stb-realization of S in CF , i.e. E+
R = A \ E and E is

conflict-free. In case a /∈ E, it is easy to see that E ∈ cf ((A′, R′)) and E+
R′ = A′ \ E; thus E is a

stb-realization of S in CF ′. In case a ∈ E, we observe that b ∈ E holds, too: otherwise, b ∈ E+
R

and therefore, by a−R ⊇ b−R, also a ∈ E+
R . A contradiction to E ∈ cf ((A,R)). We show that

E ′ = E \ {a} is a stb-realization of S in CF ′. Clearly, claim(E ′) = claim(E) = S. Moreover,
E ′ ∈ cf ((A′, R′)), and E ′+R′ = A′ \E ′ = A\E. Hence, E ′ ∈ stb((A′, R′)). For the other direction,
let S ∈ stbc(CF

′) and E a stb-realization of S in CF ′. Clearly E ∈ cf ((A,R)). If a ∈ E+
R , we

immediately get E ∈ stb((A,R)). So suppose a /∈ E+
R . Since a−R ⊇ b−R, b /∈ E+

R , and it follows
that b ∈ E, since E is stable in (A′, R′). We conclude that (b, a) /∈ R and thus, since a+R = b+R,
(a, a) /∈ R. Moreover, as b /∈ E−R we have a /∈ E−R as well. That is, we have (a, a) /∈ R, a /∈ E+

R ,
a /∈ E−R , and thus (E ∪ {a}) ∈ cf ((A,R)). Moreover, in (A,R) the set E ∪ {a} attacks each
argument c ∈ A \ E and, since b ∈ E, claim(E ∪ {a}) = claim(E) = S. Hence, E ∪ {a} is a
stb-realization of S in CF .

Proofs of Section 4.2
Proposition 4 (restated). For each well-formed CF = (A,R, claim), it holds that σc(CF ) =
σs(Tcts(CF )) for σ ∈ {cf , adm, com, grd , prf , stb}.

Proof. Let SF = Tcts(CF ) = (A′, R′).
(1) Let σ = cf . We rephrase the property of being conflict-free in terms of CNF- resp. DNF-

attack-formulas. In well-formed CAFs, S ∈ cf c(CF ) iff for each s ∈ S there is an a ∈ A with
claim(a) = s such that a is not attacked by any argument b with claim(b) ∈ S. Note that, for
any s ∈ claim(A), the CNF-attack-formula CDCF

s identifies each clause with the set of attacking
claims for a particular occurrence of s in well-formed CAFs. That is, S ∈ cfc(CF ) iff for each
s ∈ S,

there is some γ ∈ CDCF
s such that γ ∩ S = ∅. (C1)

In a SETAF (A′, R′), a set S ⊆ A′ is conflict-free iff for all S ′ ⊆ S and all s ∈ S, (S ′, s) /∈ R′. In
terms of attack formulas we have that S ∈ cf s(SF ) iff for each s ∈ S, it holds that

for all δ ∈ DSF
s it holds that δ * S. (C2)

We have (i) DSF
s = DCF

s for each s ∈ A′ by construction, and (ii) that no δ ∈ DCF
s is a subset of S

iff there exists γ ∈ CDCF
c such that γ ∩ S = ∅, and thus we obtain that (C1) is equivalent to (C2),

hence the statement follows.
(2) Let σ = adm. We will translate admissibility in well-formed CAFs resp. SETAFs to CNF-

resp. DNF-attack-formulas. Let S ⊆ claim(A). S is adm-realizable in CF if there exists a set
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E ⊆ A, claim(E) = S, which is conflict-free and defends itself. Recall that in well-formed CAFs,
arguments with the same claim attack the same arguments, which allows for speaking about claims
attacking arguments. Using this advantage, we get that S ∈ admc(CF ) iff for each s ∈ S, there
exists an a ∈ A, claim(a) = s, such that (b, a) /∈ R for any argument b with claim(b) ∈ S and for
all claims d ∈ claim(A) which attack a, for each argument with claim d there is a claim s′ ∈ S
which attacks the argument. Thus, in terms of CNF-attack-formulas: S ∈ admc(CF ) iff for each
s ∈ S,

there exists γ ∈ CDCF
s such that γ ∩ S = ∅,

and for all d ∈ γ, for all γ′ ∈ CDCF
d

it holds that γ′ ∩ S 6= ∅. (A1)

A set S ⊆ A′ is admissible in SF iff it is conflict-free and defends itself. The latter is satisfied
iff each attacking set B is attacked by some subset S ′ ∈ S, i.e. there is some b ∈ B which gets
attacked by S ′. Thus, in terms of DNF-attack-formulas, a set S is admissible in SF iff for each
s ∈ S, it holds that

for all δ ∈ DSF
s it holds that δ * S,

and there exists d ∈ δ, exists δ′ ∈ DSF
d ,

such that δ′ ⊆ S. (A2)

By construction, we have that (i) DSF
s = DCF

s for all s ∈ A′. Thus it remains to show that A1
and A2 are equivalent. Recall that (ii) for each γ ∈ CDCF

s it holds that γ ∩ S 6= ∅ if and only if
there exists δ ∈ DCF

s , such that δ ⊆ S.
To show A1 ⇒ A2, fix a witness γ ∈ CDCF

s satisfying A1. We show that for all δ ∈ DCF
s ,

δ * S and there exists d ∈ δ and δ′ ∈ DSF
d , such that δ′ ⊆ S. First note that δ * S follows

immediately from (ii). Furthermore observe that each δ ∈ DCF
s contains some d ∈ γ, such that for

every γ′ ∈ CDCF
d , γ′ has non-empty intersection with S. By (ii), the latter implies that there exists

some δ′ ∈ DCF
d such that δ′ ⊆ S.

To show A2⇒ A1, let γ = {d ∈ δ | δ ∈ DCF
s ∧ ∃δ′ ∈ DSF

d such that δ′ ⊆ S}. We show that
γ ∩ S = ∅ and for all d ∈ γ, for all γ′ ∈ CDCF

d it holds that γ′ ∩ S 6= ∅. By (ii) and by definition
of γ, the latter is satisfied, i.e. γ′ ∩ S 6= ∅ for each γ′ ∈ CDCF

d , for all d ∈ γ. Now assume that
γ ∩ S 6= ∅. Let c ∈ S ∩ γ. By definition of γ, c ∈ δ for some δ ∈ DCF

s and there exists δ′ ∈ DCF
c

such that δ′ ⊆ S. But since c ∈ S, it furthermore holds that δ′ * S by A2, which is a contradiction.
(3) Let σ = com. We will express completeness of sets in well-formed CAFs and SETAFs

in terms of CNF-, respectively, DNF-attack-formulas. Let S ⊆ claim(A) = A′. Observe that S
is complete iff it is admissible and contains all arguments it defends. For well-formed CAFs, we
already know from (2), that S is admissible in CF if for each s ∈ S, A1 is satisfied, i.e. there exists
γ ∈ CDCF

s such that γ ∩S = ∅, and for all g ∈ γ, for all γ′ ∈ CDCF
g it holds that γ′ ∩S 6= ∅. Now,

for complete sets, defense is not only necessary, but also a sufficient criteria for membership: If S
defends an argument a, claim(a) = s, against any attacker d ∈ claim(A), then s ∈ S. In terms
of CNF-attack-formulas: If there is γ ∈ CDCF

s such that for all g ∈ γ, for all γ′ ∈ CDCF
g it holds
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that γ′ ∩ S 6= ∅, then s ∈ S. Combining both implications, we get that s ∈ S if and only if A1 is
satisfied. A similar reasoning also applies to complete sets in SETAFs: For any complete set S in
SF it holds that s ∈ S if and only if A2 for all δ ∈ DCF

s , δ * S and there exists d ∈ δ, δ′ ∈ DCF
d

such that δ′ ⊆ S.
Since DSF

s = DCF
s for each s ∈ A′, and, furthermore, since A1 is equivalent to A2 as shown in

(2), we obtain that indeed S ∈ comc(CF ) iff S ∈ coms(SF ) for any set S ⊆ claim(A).
(4) Since grdc(CF ) is the subset-minimal claim-based complete extension for any CAF CF by

Proposition 7, it follows that grdc(CF ) = grds(SF ).
(5) We already know that comc(CF ) = coms(Tcts(CF )), by Proposition 1 the set prfc(CF ) is

given by the subset-maximal sets of comc(CF ), and by definition prfs(Tcts(CF )) is given by the
subset-maximal sets of coms(Tcts(CF )). Hence, we have prfc(CF ) = prfs(Tcts(CF )).

(6) Let σ = stb. A set S is stable on claim-level in CF if for each s ∈ claim(A), it holds
that s ∈ S if and only if (C1) is satisfied. Similarly, S is stable in Tcts(CF ) if for each s ∈ A′ =
claim(A), it holds that s ∈ S if and only if (C2) holds. The statement follows by the equivalence
of (C2) and (C1).

Proposition 5 (restated). Let σ ∈ {cf , adm, com, grd , prf , stb}. For each SETAF SF in minimal
form, σs(SF ) = σc(Tstc(SF )).

Using an appropriate CNF-DNF-conversion, we will show that Tstc and Tcts are each oth-
ers inverse when restricted to the class of all SETAFs in minimal form and to the class of
all normalized CAFs, respectively. Recall that, by Proposition 4, σc(CF ) = σs(Tcts(CF )) for
each well-formed CAF and for σ ∈ {cf , adm, com, grd , prf , stb}, consequently we get that
σs(SF ) = σs(Tcts(Tstc(SF ))) = σc(Tstc(SF )).

Let C denote the class of all normalized well-formed CAFs and let S denote the class of
all SETAFs in minimal form. We show that there are CNF-DNF-formula conversions such that
Tstc|S = (Tcts|C)−1.

To that end, we consider the following conversions.

Definition 13. Let X = {γ0, . . . , γn} denote a CNF- respectively DNF-formula. We define the
corresponding DNF- respectively CNF-formula con(X) as the set of subset-minimal elements of
{δ | ∀i ≤ n : |δ ∩ γi| ≥ 1}.

We call a formula X incomparable if all clauses γ ∈ X are pairwise incomparable, i.e. for all
γ, γ′ ∈ X , γ * γ′. Observe that both conversions yield incomparable formulas. We will show
that for each incomparable CNF- respectively DNF-formula X , the sequential application of both
conversions yield the original formula X , i.e. con(con(X)) = X .

Lemma 2. Let X = {γ0, . . . , γn} be incomparable then con(con(X)) = X .

Proof. Let Y = {δ0, . . . , δm} denote the subset-minimal elements of {δ | ∀i ≤ n : |δ ∩ γi| ≥ 1},
and let L = {ζ | ∀j ≤ m : |ζ ∩ δj| ≥ 1}. We show that the set of subset-minimal elements
min⊆(L) of L equals X .

X ⊆ min⊆(L): First note that γ ∈ L for all γ ∈ X , since |δj ∩ γ| ≥ 1 for all j ≤ m. For
each γ ∈ X , for each a ∈ γ, there is some δ st δ ∩ γ = {a}. Take all γi such that a /∈ γi, then
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there is some δ ⊆ {b | b ∈ γi \ γ} ∪ {a} and |δ ∩ γ| = 1. Now, assume that there is some γ′ ⊂ γ,
γ′ ∈ min⊆(L). Let a ∈ γ \ γ′. Using the construction above, we get that there exists δ ∈ Y such
that δ ∩ γ = {a}, consequently, γ′ ∩ δ = ∅. It follows that γ ∈ min⊆(L) for all γ ∈ X .

min⊆(L) ⊆ X: Towards a contradiction, let ζ ∈ min⊆(L) \X , and let δ ⊆
⋃
i≤n γi \ ζ . Such

a δ exists, otherwise ζ ⊇ γ for some γ ∈ min⊆(L). But then δ ∩ ζ = ∅.

Proof of Proposition 5. Observe that (i) a well-formed CAF CF = (A,R, claim) is normalized
if and only if for each claim c ∈ claim(A) it holds that CDCF

c is incomparable. Similarly, (ii)
a SETAF SF = (A′, R′) is in minimal form if and only if for every argument a ∈ A′ it holds
that DSF

a is incomparable. Furthermore note that (iii) the output of both translations Tcts and
Tstc solely depends on the choice of the CNF-DNF-conversion. Let CF = (A,R, claim) and let
Tcts and T′cts denote translations using fixed CNF-DNF-conversions DCF

c and respectively, D′CF
c

for each c ∈ claim(A). Then Tcts(CF ) = T′cts(CF ) iff DCF
c = D′CF

c for all c ∈ claim(A).
Similarly, for every SETAF SF = (A′, R′), Tstc(SF ) = T′stc(SF ) iff CDSF

a = CD′SFa for all a ∈ A′.
Since con(con(X)) = X for each incomparable CNF- respectively DNF-formula X , we have that
Tstc(Tcts(CF )) = CF for each normalized well-formed CAF and, similar, Tcts(Tstc(SF )) = SF
for each SETAF in minimal form. It follows that Tstc|S = (Tcts|C)−1.

By Proposition 4, we can conclude that σs(SF ) = σs(Tcts(Tstc(SF ))) = σc(Tstc(SF )) for each
SETAF SF in minimal form.

Proofs of Section 4.3

In order to prove Lemma 1 and Proposition 6, we show further properties of att-unitary CAFs.

Definition 14. For any AF F = (A,R), the characteristic function FF : 2A → 2A of F is defined
as FF (S) = {x ∈ A | x is defended by S}. For any CAF CF = (A,R, claim), for E ⊆ A, we use
FCF (E) to abbreviate F(A,R)(E).

Lemma 3. Let CF = (A,R, claim) be att-unitary and let E ⊆ A. Then

(1) c ∈ claim(FCF (E)) iff x ∈ FCF (E) for all x ∈ A such that claim(x) = c; and

(2) |comc(CF )| = |com((A,R))|.

Proof. To prove (1), let c ∈ claim(FCF (E)), then there is an argument x ∈ FCF (E), such that
claim(x) = c. Let y ∈ A, claim(y) = c. Since y− = x−, we can conclude that E defends y, hence
the statement follows. By definition of complete semantics, E ∈ com((A,R)) iff FCF (E) = E,
consequently c ∈ claim(E) iff x ∈ E for all x ∈ A, claim(x) = c. Thus (2) follows.

Lemma 1 (restated). Let CF = (A,R, claim) be att-unitary and let S ∈ σc(CF ) for σ ∈
{adm, com, grd , prf , stb}. Then Emax

S = {x | claim(x) ∈ S} ∈ σ((A,R)).
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Proof. S ∈ σc(CF ) implies the existence of some set of arguments E ⊆ A, claim(E) = S, such
that E ∈ σ((A,R)). Due to att-unitaryness, E− = (Emax

S )−. The statement follows for σ = adm
since (Emax

S )− = E− ⊆ E+ ⊆ (Emax
S )+. Let σ = com, then FCF (E) = E by definition.

By Lemma 3, c ∈ S iff x ∈ E for each argument x such that claim(c) = x. It follows that
E = Emax

S . Therefore, since σ((A,R)) ⊆ com((A,R)), it also holds that Emax
S ∈ σ((A,R)) for

σ ∈ {grd , prf , stb}.

Proposition 6 (restated). Let CF = (A,R, claim) be att-unitary. Then σc(CF ) = σ(Tcta(CF ))
for σ ∈ {adm, com, grd , prf , stb}.

Proof. Let F = Tcta(CF ) = (A′, R′). For a set S ⊆ claim(A) = A′, we denote by Emax
S = {x |

claim(x) ∈ S} the maximal representative of S in CF .
(1) Let σ = adm and let S ∈ admc(CF ), then Emax

S ∈ adm((A,R)) by Lemma 1. We show
that S ∈ adm(F ). First note that S is conflict-free since (x, y) /∈ R for all x, y ∈ Emax

S . To show
that S defends itself, let b ∈ S and let (a, b) ∈ R′ for some a ∈ A′. Then by definition of R′, there
are arguments x, y ∈ A, claim(x) = a, claim(y) = b, such that (x, y) ∈ R. Since y ∈ Emax

S and
Emax
S ∈ adm((A,R)), y is defended by some z ∈ Emax

S , i.e. (z, x) ∈ R for some z ∈ A such that
claim(z) ∈ S. Consequently, (claim(z), b) ∈ R′ which shows that S defends itself.

To show the other direction, let S ∈ adm(F ). We show that Emax
S is admissible in (A,R):

By definition of R′, Emax
S does not contain any conflicts. Now, let y ∈ Emax

S , claim(y) = b, and
let (x, y) ∈ R for some x ∈ A, claim(x) = a. By definition of R′, we have that (a, b) ∈ R′.
Since S defends itself, there is some c ∈ S such that (c, a) ∈ R′, therefore there exist z, x′ ∈ A,
claim(z) = c, claim(x′) = a, such that (z, x′) ∈ R. By att-unitaryness, x− = x′−, thus (z, x) ∈ R.
Note that z ∈ Emax

S by definition, hence Emax
S defends itself.

(2) Let σ = com and let S ∈ comc(CF ). Then Emax
S is complete in (A,R) by Lemma 1. By

(1), S ∈ adm(F ). We show that S contains all arguments it defends: Let a ∈ A′ be defended by
S, i.e. for all b ∈ A′ such that (b, a) ∈ R′, there is some c ∈ S such that (c, b) ∈ R′. By definition
of Translation 3, it holds that for all b ∈ A′ such that (b, a) ∈ R′, (i) there is y ∈ A, claim(y) = b,
such that (y, x) ∈ R, for some x ∈ A, claim(x) = a; and (ii) there are y′, z ∈ A, claim(y′) = b,
claim(z) = c for c ∈ S, such that (z, y′) ∈ R. Since CF is att-unitary, y− = y′−, thus x is
defended against y by z ∈ Emax

S . Consequently, x ∈ Emax
S and therefore a = claim(x) ∈ S. in

CF .
To show the other direction, let S ∈ com(F ). We show that Emax

S ∈ com((A,R)). By (1),
Emax
S ∈ adm((A,R)). To show that Emax

S contains all arguments it defends, let x ∈ FCF (Emax
S ),

claim(x) = a. For each y ∈ A such that (y, x) ∈ R, there is some z ∈ Emax
S such that (z, y) ∈ R.

By construction of R′, we have that (claim(y), a), (claim(z), claim(y)) ∈ R′ and claim(z) ∈ S,
thus S defends a. Since S ∈ com(F ), we conclude that a ∈ S. By definition of Emax

S we have that
x ∈ Emax

S .
(3) Let σ = grd . By (2) and since grdc(CF ) is the subset-minimal complete extension by

Proposition 7, it follows that grdc(CF ) = grd(F ).
(4) Let σ = prf . Recall that prfc(CF ) ⊆ comc(CF ). Since each S ∈ comc(CF ) is realized by

Emax
S and, by Lemma 3, |comc(CF )| = |com((A,R))|, we have that for each S, S ′ ∈ comc(CF ),

S ⊆ S ′ iff Emax
S ⊆ Emax

S′ . By (2), S ∈ comc(CF ) iff S ∈ com(F ), thus the statement follows.
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(5) Let σ = stb and S ∈ stbc(CF ). By Lemma 1, Emax
S ∈ stb((A,R)). Furthermore S is

conflict-free in Tcta(CF ) by definition of R′. For each x ∈ A \ Emax
S , there is y ∈ Emax

S such that
(y, x) ∈ R, consequently (claim(y), claim(x)) ∈ R′, hence S attacks all arguments a ∈ A′ \ S.

Now, let S ∈ stb(F ) and let b ∈ A′ \ S. Then there is some argument a ∈ S such that
(a, b) ∈ R′. By definition of R′, there are arguments x, y ∈ A, claim(x) = a, claim(y) = b, such
that (x, y) ∈ R. By att-unitaryness, (x, y′) ∈ R for each y′ ∈ A such that claim(y′) = b. Hence
each argument y ∈ A \ Emax

S is attacked by Emax
S .

Proofs of Section 5
Theorem 6 (restated). The following characterisations hold:

ΣCAF
cf = {S ⊆ 2C | S 6= ∅,S is downwards-closed}

ΣCAF
adm = {S ⊆ 2C | ∅ ∈ S}

ΣCAF
com = {S ⊆ 2C | S 6= ∅,

⋂
S∈S S ∈ S}

Proof. In the following we use [S] =
⋃
S∈S S.

(1) As the set of conflict-free sets is downwards-closed [14] for AFs, the same holds for the
corresponding claim sets. To realise S construct a CAF CF = (A,R, claim) with

A ={ac,S | S ∈ S \ {∅}, c ∈ S}
R ={(ac,S, ac′,S′) | S, S ′ ∈ S, c ∈ S, c′ ∈ S ′, S 6= S ′}

and claim(ac,S) = c. It holds that CF c(CF ) = S.
(2) First, as the empty set is always admissible, the empty claim set has to be contained in each

set of S. Next we show that this condition is sufficient to realize a set S of claim sets. Construct a
CAF CF = (A,F, claim) as follows:

A ={aS | S ∈ S} ∪ {ac, bc | c ∈ [S]}
R ={(aS, aS′) | S, S ′ ∈ S, S 6= S ′} ∪ {(aS, ac) | S ∈ S, c ∈ [S] \ S} ∪
{(ac, bc) | c ∈ [S]} ∪ {(bc, aS) | S ∈ S, c ∈ S}

The function claim is defined as claim(ac) = claim(bc) = c and claim(aS) ∈ S, i.e. for aS one
can pick an arbitrary claim from the set S. Now it is easy to verify that admc(CF ) = S.

(3) First, as the intersection of all complete extensions is a complete extension (the grounded
extension) and there is a set of claims in S (the claims of the grounded extension) that is contained
in all the other sets of S. Next we show that this condition is sufficient to realise an extension-set
S. Let G =

⋂
S∈S S. Construct a CAF CF = (A,F, claim) as follows:

A ={aS | S ∈ S \ {G}} ∪ {ac | c ∈ [S]}
R ={(aS, aS′) | S, S ′ ∈ S \ {G}, S 6= S ′} ∪ {(aS, ac) | S ∈ S \ {G}, c ∈ [S] \ S}

The function claim is defined as claim(ac) = c and claim(aS) ∈ S, i.e. for aS one can pick an
arbitrary claim from the set S. Now it is easy to verify that comc(CF ) = S.
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