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1 Introduction
Abstract argumentation frameworks (AFs) as introduced by Dung in his seminal paper [7] are a
core formalism in formal argumentation and have been extensively studied in the literature. In
Dung AFs, conflicts and attacks are restricted to be binary in the sense that a single attack only
concerns two arguments.

SETAFs as introduced by Nielsen and Parsons [23] are a generalization of Dung AFs which
generalize the binary attacks in Dung AFs to collective attacks. This enables the formalization of
the fact that a set B of arguments may jointly attack another argument a but no proper subset of
B attacks a. The semantics as proposed in [23], make SETAFs a conservative generalization of
Dung AFs; in other words, a SETAF where all attacks are binary is evaluated in the same way as
the corresponding Dung AF. As illustrated in [23], there are several scenarios where arguments
interact and can constitute an attack on another argument only if these arguments are jointly taken
into account. Representing such a situation in Dung AFs often requires additional artificial argu-
ments to “encode” the conjunction of arguments, potentially causing an exponential blow-up in the
number of arguments [24]. In [24] it is also shown that SETAFs allow for more straightforward
and compact encodings of support between arguments than AFs do. Moreover, recent work [11]
shows that the collective attacks of SETAFs increase the expressiveness when compared to Dung
AFs.

Computational properties of SETAFs have been neglected so far. One notable exception is by
Nielsen and Parsons [22] who adapted the algorithms by Doutre and Mengin [6] for enumerating
preferred extensions in Dung AFs to SETAFs. Besides that, SETAFs have been identified as special
case of the more general Abstract Dialectical Frameworks (ADFs) [2] and thus systems for ADFs,
e.g. the DIAMOND system [18], can in principle be used to evaluate SETAFs as well. However,
these systems have a significant drawback since SETAFs are encoded in a more complex formalism
leading to a potential computational overhead. Another way to evaluate SETAFs is to translate
them to Dung AFs and use existing systems. However, since to date, no known polynomial-time
(with respect to the number of arguments) translation from SETAFs to AFs is known, this again
might cause a non-negligible computational overhead. Genuine implementations for SETAFs thus
appear necessary towards practically efficient systems.

The main aim of this work is to provide a flexible system dedicated to reasoning in SETAFs
with a broad range of semantics. Answer-Set Programming (ASP) [1] proved useful for rapid
prototyping of systems for Dung AFs (see e.g. [13, 19, 25]) and generalization thereof (see e.g. [18,
12]). We follow the approach of the ASPARTIX system, where for each semantics a fixed encoding
is provided which when combined with an AF as input returns the corresponding extensions. We
provide ASP-encodings for all the SETAF-semantics defined in [23] as well as semi-stable and
stage semantics. These encodings are also provided in executable format 1 and can be used to
enumerate extensions or to decide credulous and skeptical acceptance for SETAFs.

Our contributions and the organization of the paper are as follows. We first recall the definitions
and fundamental results from [23] (see Section 2) and then generalize the definitions of semi-stable
and stage semantics to SETAFs (see Section 2.1). Next, we clarify the complexity landscape of

1See www.dbai.tuwien.ac.at/research/argumentation/aspartix/setaf.html.
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SETAFs for the standard reasoning problems (see Section 2.2). In the main part of our paper we
provide ASP-encodings for the different semantics of SETAFs (see Section 3). Finally, we discuss
our results in a conclusion section. Some technical details are omitted in the main part of the paper
but are provided in the two appendices.

2 Argumentation Frameworks with Collective Attacks
We first introduce formal definitions of argumentation frameworks with collective attacks follow-
ing [23].

Definition 1. A SETAF is a pair F = (A,R) where A is finite, and R ⊆ (2A \ ∅) × A is the
attack relation. We write S 7→R b if there is a set S ′ ⊆ S with (S ′, b) ∈ R. Moreover, we write
S ′ 7→R S if S ′ 7→R b for some b ∈ S. For S ⊆ A, the range of S (w.r.t. R), denoted S⊕R , is the set
S ∪ {b | S 7→R b}.

We call a SETAF with binary attacks only, i.e. |S| = 1 for each (S, a) ∈ R, Dung argumentation
framework (AF) as such SETAFs are equivalent to the AFs introduced in [7].

Example 1. Consider an argumentation framework with arguments a, b, c where each pair of ar-
guments attacks the third argument. This is modeled by the SETAF F = (A,R) with arguments
A = {a, b, c} and attacks R = {({a, b}, c), ({a, c}, b), ({b, c}, a)}. ♦

The notion of defense naturally generalizes to SETAFs.

Definition 2. Given a SETAF F = (A,R), an argument a ∈ A is defended (in F ) by a set S ⊆ A
if for each B ⊆ A, such that B 7→R a, also S 7→R B. A set T of arguments is defended (in F ) by
S if each a ∈ T is defended by S (in F ).

Based on the concept of defense also the definition of the characteristic function of an argu-
mentation framework can be extended to SETAFs.

Definition 3. The characteristic function of an SETAF F = (A,R) is the function FF : 2A → 2A

with FF (S) = {a ∈ A : a is defended by S}.

2.1 Semantics

Next, we introduce the semantics we study in this work. These are the naive, stable, preferred,
complete, grounded, stage, and semi-stable semantics, which we will abbreviate by naive, stb,
pref, com, grd, stage, and sem, respectively. All semantics except semi-stable and stage are defined
according to [23], while semi-stable and stage are straight forward generalizations of the according
semantics for Dung AFs [26, 3]. For a given semantics σ, σ(F ) denotes the set of extensions of F
under σ.
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Definition 4. Given a SETAF F = (A,R), a set S ⊆ A is conflict-free (in F ), if S ′ ∪ {a} 6⊆ S
for each (S ′, a) ∈ R. We denote the set of all conflict-free sets in F as cf(F ). S ∈ cf(F ) is called
admissible (in F ) if S defends itself. We denote the set of admissible sets in F as adm(F ). For a
conflict-free set S ∈ cf(F ), we say that

• S ∈ naive(F ), if there is no T ∈ cf(F ) such that T ⊃ S,

• S ∈ stb(F ), if S 7→R a for all a ∈ A \ S,

• S ∈ pref(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) such that T ⊃ S,

• S ∈ com(F ), if S ∈ adm(F ) and a ∈ S for all a ∈ A defended by S,

• S ∈ grd(F ), if S =
⋂
T∈com(F ) T ,

• S ∈ stage(F ), if there is no T ∈ cf(F ) such that T⊕R ⊃ S⊕R , and

• S ∈ sem(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) such that T⊕R ⊃ S⊕R .

As shown in [23], most of the fundamental properties of Dung AFs extend to SETAFs. We have
the same relations between the semantics as in Dung AFs, i.e. stb(F ) ⊆ sem(F ) ⊆ pref(F ) ⊆
com(F ) ⊆ adm(F ) ⊆ cf(F ) and stb(F ) ⊆ stage(F ) ⊆ naive(F ). The grounded extension is
the unique minimal complete extension for any SETAF F . If there is at least one stable extension
then stable, semi-stable, and stage semantics coincide. The properties for semi-stable and stage
semantics follow from straightforward adaptations of the proofs for Dung AFs (see Appendix A).
Moreover, Dung’s fundamental lemma generalizes to SETAFs.

Lemma 1 ([23]). Given a SETAF F = (A,R), a set B ⊂ A, and arguments a, b ∈ A that are
defended by B. Then (a) B ∪ {a} is admissible in F and (b) B ∪ {a} defends b in F .

2.2 Complexity
In this section we assume the reader to have basic knowledge in computational complexity theory2,
in particular we make use of the complexity classes L (logarithmic space), P (polynomial time),
NP (non-deterministic polynomial time), coNP, ΣP

2 and ΠP
2 .

For a given SETAF we consider the standard reasoning problems in formal argumentation:
Credulous acceptance Credσ: Is a given argument contained in at least one σ extension?; Skeptical
acceptance Skeptσ: Is a given argument contained in all σ extensions?; Verification Verσ: Is a given
set a σ extensions of the SETAF?; Existence of a Extension Existsσ: Does the SETAF have a σ
extension?; and Existence of a nonempty Extension Exists¬∅σ : Does the SETAF have a non-empty
σ extension?

The complexity landscape of SETAFs coincides with that of Dung AFs and is depicted in
Table 1. As SETAFs generalize Dung AFs the hardness results for Dung AFs [4, 5, 8, 14, 15, 9]
(for a survey see [10]) carry over to SETAFs. Interestingly also the same upper bounds hold

2For a gentle introduction to complexity theory in the context of formal argumentation, see [10].
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Table 1: Complexity of SETAFs (C-c denotes completeness for class C).
σ Credσ Skeptσ Verσ Existsσ Exists¬∅σ

cf in L trivial in L trivial in L

naive in L in L in L trivial in L

grd P-c P-c P-c trivial in L

stb NP-c coNP-c in L NP-c NP-c

adm NP-c trivial in L trivial NP-c

com NP-c P-c in L trivial NP-c

pref NP-c ΠP
2 -c coNP-c trivial NP-c

sem ΣP
2 -c ΠP

2 -c coNP-c trivial NP-c

stage ΣP
2 -c ΠP

2 -c coNP-c trivial in L

for SETAFs. In SETAFs checking whether a set is conflict-free and evaluating the characteristic
function is more evolved than in Dung AFs but still can be done in L. As this is at the basis
of the complexity upper bounds for Dung AFs, these upper bounds also apply to SETAFs with
slight adaptations in the algorithms (details are provided in Appendix B). Notice that also our
ASP-encodings implicitly show matching upper bounds for many of the decision problems (by the
complexity of the corresponding fragments of the ASP language).

However, we want to highlight a subtle difference between the complexity results for Dung
AFs and SETAFs. In both cases the complexity is w.r.t. the size of the input framework, which
in case of Dung AFs is often interpreted as w.r.t. the number of arguments |A| in the input frame-
work. However, this interpretation is not valid for SETAFs where the number of attacks |R| can
be exponentially larger than the number of arguments |A| (this even holds for normal forms where
redundant attacks are removed). Thus, the results for SETAFs should be understood as complexity
w.r.t. |A| + |R|. This also reflects the fact that when translating SETAFs to AFs there can be an
exponential blow up in the number of arguments [24].

3 ASP-Encodings

In this part of the paper we provide ASP-encodings for the different SETAF semantics. We do this
by following the same approach as in the ASPARTIX system [16, 19] for Dung AFs. That is, for
each of the semantics we provide a fixed encoding (a.k.a. query) that, when combined with the
encoding of a SETAF as input, returns the corresponding extensions as answer-sets.

In what follows, we first give an overview on disjunctive logic programs under the answer-sets
semantics (Section 3.1), then we state the input format for SETAFs (Section 3.2), and finally we
present our encodings for the different semantics (Section 3.3).
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3.1 Background on ASP
We give an overview of the syntax and semantics of disjunctive logic programs under the answer-
sets semantics [21].

We fix a countable set U of (domain) elements, also called constants. An atom is an expression
p(t1, . . . , tn), where p is a predicate of arity n ≥ 0 and each ti is either a variable or an element
from U . An atom is ground if it is free of variables. BU denotes the set of all ground atoms over
U . A (disjunctive) rule r is of the form

a1 | · · · | an ← b1, . . . , bk, not bk+1, . . . , not bm (1)

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, where a1, . . . , an, b1, . . . , bm are literals, and “not ”
stands for default negation. The head of r is the set H(r) = {a1, . . . , an} and the body of r is
B(r) = {b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore, B+(r) = {b1, . . . , bk} and B−(r) =
{bk+1, . . . , bm}. A rule r is normal if n ≤ 1 and a constraint if n = 0. A rule r is safe if each
variable in r occurs in B+(r). A rule r is ground if no variable occurs in r. A fact is a ground rule
without disjunction and empty body. An (input) database is a set of facts. A program is a finite set
of disjunctive rules. If each rule in a program is normal (resp. ground), we call the program normal
(resp. ground).

For any program π, let Uπ be the set of all constants appearing in π. Gr(π) is the set of rules
rσ obtained by applying, to each rule r ∈ π, all possible substitutions σ from the variables in r to
elements of Uπ. An interpretation I ⊆ BU satisfies a ground rule r iff H(r) ∩ I 6= ∅ whenever
B+(r) ⊆ I and B−(r) ∩ I = ∅. I satisfies a ground program π, if each r ∈ π is satisfied
by I . A non-ground rule r (resp., a program π) is satisfied by an interpretation I iff I satisfies
all groundings of r (resp., Gr(π)). I ⊆ BU is an answer-set of π iff it is a subset-minimal set
satisfying the Gelfond-Lifschitz reduct πI = {H(r) ← B+(r) | I ∩ B−(r) = ∅, r ∈ Gr(π)}. For
a program π, we denote the set of its answer-sets by AS(π).

Modern ASP solvers offer additional language features. Among them we make use of the
conditional literal [20]. In the head of a disjunctive rule literals may have conditions, e.g. consider
the head of rule “p(X) : q(X) ←”. Intuitively, this represents a head of disjunctions of atoms
p(a) where also q(a) is true. As well rules might have conditions in their body, e.g. consider the
body of rule “← p(X) : q(X)”, which intuitively represents a conjunction of atoms p(a) where
also q(a) is true.

3.2 Encoding SETAFs
Before specifying the encodings for the specific semantics, we need to fix an encoding πsetaf (A,R)
of SETAFs as input databases. A SETAF F = (A,R) is encoded by predicates arg, att, and
mem. The former is used to encode arguments, the latter two to encode the set attacks. Notice
that the encoding uses a unique identifier for each attack in R.

πsetaf (A,R) : {arg(a). | for a ∈ A}∪
{att(r, x). | for r ∈ R and r = (S, x)}∪
{mem(r, y). | for r ∈ R, r = (S, x) and y ∈ S}
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We next exemplify this encoding on the SETAF from Example 1.

Example 2. Consider the SETAF F from Example 1. The encoding πsetaf (F ) of F is given by
arg(a). arg(b). arg(c).

att(r1, c). mem(r1, a). mem(r1, b).

att(r2, b). mem(r2, a). mem(r2, c).

att(r3, a). mem(r3, b). mem(r3, c).
♦

3.3 Encoding Semantics
In this section we provide encodings πσ for the semantics under our considerations, such that the
answer-sets of πsetaf (F ) ∪ πσ are in certain correspondence to the σ-extensions of F = (A,R).
Intuitively, in an answer-set we are interested in the set of atoms for which the predicate in holds
true and we require these sets to be in a one to one correspondence to the extensions of the SETAF
F . We make our notion of correspondence precise by the next definition.

Definition 5. Let S ⊆ 2U be a collection of sets of domain elements and let I ⊆ 2BU be a collection
of sets of ground atoms. We say that S and I correspond to each other, in symbols S ∼= I, iff (i)
for each S ∈ S, there exists an I ∈ I, such that {a | in(a) ∈ I} = S; (ii) for each I ∈ I, it holds
that {a | in(a) ∈ I} ∈ S; and (iii) |S| = |I|.

Notice that by the above definition we want to avoid situations where several answer-sets cor-
respond to the same extension of the SETAF.

3.3.1 Conflict-free Semantics

We start with a program fragment that, when augmented by πsetaf (F ), generates any subset S ⊆
A and can then be augmented by further program fragments to filter out extensions of specific
semantics.

πguess : in(Y )← arg(Y ), not out(Y ).

out(Y )← arg(Y ), not in(Y ).

We call an attack (B, a) ∈ R blocked w.r.t. a set S ⊆ A if B 6⊆ S. In our encoding of the
conflict-freeness test we first compute the blocked attacks and then use a constraint that checks
whether there is a non-blocked attack that attacks an argument in S.

πcf ′ : blocked(R)←mem(R,X),out(X).

← in(X), att(R,X), not blocked(R).

To enumerate the conflict-free sets of a SETAF F we combine the above code fragments, i.e.
we define πcf = πguess ∪ πcf ′ and obtain that cf(F ) ∼= AS(πsetaf (F ) ∪ πcf ).
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3.3.2 Admissible & Complete Semantics

For admissible semantics we start from the encoding of conflict-free semantics and add constraints
to make sure that all arguments in the set are defended. To this end we introduce the concept of
defeated attacks. An attack (S, a) ∈ R is considered to be defeated by a set E iff E attacks at least
one x ∈ S. Given the blocked (resp. the unblocked) attacks we can easily compute the defeated
attacks. Now the definition of defense can be restated as, an argument x is defended by as set
E iff all attacks (S, x) are defeated. The code fragment πdef consists of a rule that computes the
defeated attacks and a constraint that checks that each argument in the extension is defended by
the extension.

πdef : defeated(R)← att(R,X),mem(R, Y ), att(R2, Y ), not blocked(R2).

← in(X), att(R,X), not defeated(R).

Now we obtain the encoding πadm for admissible semantics by adding the above code fragment
to the encoding of conflict-free semantics, i.e, πadm = πcf ∪ πdef and we have adm(F ) ∼=
AS(πsetaf (F ) ∪ πadm).

For complete semantics we, additionally to admissible semantics, have to make sure that no
argument outside the set is defended. We do so by computing a predicate notDefended of
arguments not defended by the extension and then add a constraint that checks whether there is an
argument outside the extension for which the predicate does not hold true.

πcl : notDefended(X)← att(R,X), not defeated(R).

← out(X), not notDefended(X).

Now we obtain πcomp = πadm ∪ πcl as encoding for complete semantics, i.e. com(F ) ∼=
AS(πsetaf (F ) ∪ πcomp).

3.3.3 Stable Semantics

To test whether a conflict-free set is stable we first compute all arguments that are attacked, and
store them in the predicate attArg(Y ). We then apply a constraint to test whether there is an
argument that is neither in nor attacked by the extension.

πstb′ : attArg(X)← att(R,X), not blocked(R).

← out(X), not attArg(X).

Combining the above fragment with the encoding for conflict-free semantics results the encoding
πstb = πcf ∪ πstb′ of stable semantics with stb(F ) ∼= AS(πsetaf (F ) ∪ πstb).

3.3.4 Naive Semantics

Given a conflict-free set E, it is either a naive extension or there is an argument a ∈ A \ E such
that E ∪ {a} is conflict-free. Thus, we first compute a binary predicate blocked(r, a) encoding
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that an attack r is blocked for the set E∪{a}. We then use this predicate to check whether E∪{a}
has a conflict and if so, we set conflArg(a) true. Finally, we check whether there is an argument
a ∈ A \ E such that E ∪ {a} is conflict-free.

πcfmax : blocked(R,A)← out(A),mem(R,X),out(X), X 6= A.

conflArg(A)← out(A), in(X), att(R,X), not blocked(R,A).

conflArg(A)← out(A), att(R,A), not blocked(R,A).

← out(A), not conflArg(A).

Now the full encoding for naive semantics is πnaive = πcf ∪ πcfmax, i.e. we have naive(F ) ∼=
AS(πsetaf (F ) ∪ πnaive).

3.3.5 Preferred Semantics

For the encoding of preferred semantics we start from the encoding of admissible sets and add a
maximality check using the so-called saturation technique [17] (see also [16]). The idea is to use
disjunctive rules to construct a superset (stored in the sIn predicate) of the admissible set stored in
the in predicate. We first use a disjunctive rule to guess an argument that can be added to the set
and then add further arguments in order to defend all arguments in the set. We then perform certain
tests to check whether the set is actually admissible. If one of the tests fails we derive an atom fail
and force all arguments to be in the sIn predicate and all attacks to be in the necAtt predicate
(which we introduce later on), to make sure there is at most one answer-set for each extension. In
case all tests succeed, i.e. the set is admissible, there is a constraint ensuring that the guess does
not produce an answer-set.

We first consider the construction of the superset. In a first step we test whether the admissible
set already contains all arguments of the AF. In that case it is the only preferred extension and we
can skip the saturation part. Otherwise, we (a) require all arguments in in to be also contained
in sIn and (b) use the conditional disjunction to force that at least one of the arguments not in in
(thus in out) is in sIn. 3

πprf−guess : notTrivial← out(X).

sIn(X)← in(X),notTrivial.

sIn(X) : out(X)← notTrivial.

For the saturation technique to work we are not allowed to use not with any predicate that appears
in the head of any rule in the saturation block, except for the not fail at the very end. In particular
we cannot compute the unblocked attacks w.r.t. the set stored sIn via a predicate for the blocked
attacks (as we did for the blocked attacks w.r.t. the arguments in in). To overcome this we compute

3Conditional disjunction allows for more compact saturation based encodings and investigations on AF also show
computational benefits [19].
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the unblocked attacks, i.e. the predicate unBlocked, directly using conditionals in the body of the
rule.

πunblocked : unBlocked(R)← att(R, Y ), sIn(X) : mem(R,X).

Next, we make sure that the constructed set either defends all its arguments or derives fail. To this
end we introduce a new predicate necAtt that holds attacks that must be unblocked in order to
defend all the arguments of the set. First, we have a rule stating that if an argument x of the set is
attacked by r = (S, x) ∈ R then there must be a r′ ∈ R that attacks one argument y ∈ S. If such
attacks r′ exist, one of them is added to necAtt, otherwise the set is obviously not admissible and
we derive fail. Our second rule states that if a rule r = (S, x) ∈ R is unblocked then all arguments
in S must be in the extension.

πprf−adm : fail|necAtt(R2) : att(R2, Y ),mem(R1, Y )← sIn(X), att(R1, X).

sIn(X)← necAtt(R),mem(R,X).

Next, we have a rule that derives fail if the constructed set of arguments is not conflict-free, i.e. if
we have a unblocked attack whose target argument is in the set.

πprf−cf : fail← sIn(Y ), att(R, Y ),unBlocked(R).

Finally, we have a fragment that completes the saturation. Whenever we derive fail we make sure
that (a) all arguments are in sIn and (b) all attacks are in necAtt. Otherwise, if we can derive
not fail then we have found a larger admissible set and thus we have a constraint excluding such
answer-sets.

πprf−spoil : sIn(X)← fail, arg(X).

necAtt(R)← fail, att(R,X).

← not fail,notTrivial.

If the predicate in already stores a preferred extensions, all guesses from πprf−guess will eventually
derive fail and thus all end up with the same answer-set where all arguments are in sIn and all
attacks are in necAtt. Otherwise, if the set of predicate in is admissible but not preferred, then
at least one guess from πprf−guess will not derive fail. For this guess, because of the constraint
in πprf−spoil, no answer-set will be returned. Moreover, also all the guesses which derive fail and
thus have all arguments in sIn and all attacks in necAtt, do not return an answer-set because of
the subset-minimal model criteria of answer-set semantics.

Finally, we obtain the encoding πpref for preferred semantics by augmenting the encod-
ing for admissible (or alternatively complete) semantics by all the above code fragments, i.e.
πpref = πadm ∪ πprf−guess ∪ πunblocked ∪ πprf−adm ∪ πprf−cf ∪ πprf−spoil and we have pref(F ) ∼=
AS(πsetaf (F ) ∪ πpref ).
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3.3.6 Semi-Stable and Stage Semantics

We next introduce the encodings for semi-stable and stage semantics. The former starts from the
encoding of admissible semantics while the latter starts from the encoding of conflict-free sets.
We will again make use of the saturation technique with the additional challenge that we have to
encode the range and maximize along the range.

We first define the predicate sPlus that holds the range of the admissible/conflict-free set stored
in. That is, we have two rules, one stating that each argument in the set is also in the range and
one stating that each target of an unblocked rule is in the range.

πrange : sPlus(Y )← in(Y ).

sPlus(Y )← att(X, Y ), not blocked(X).

notSPlus(Y )← not sPlus(Y ), arg(Y ).

Before starting with the saturation technique, we test whether the admissible/conflict-free set is
already stable and thus semi-stable/stage. If not we again make a guess for saturation technique,
but this time, as we are maximizing the range, we guess an argument that can be added to the
range.

πextRange : notStable← arg(Y ), not sPlus(Y ).

extRange(Y ) : notSPlus(Y )← notStable.

extRange(Y )← sPlus(Y ),notStable.

Now we have to make sure that each argument is either in the constructed extensions, i.e. in sIn,
or the target of an unblocked attack, i.e. in necAtt. We then have an additional rule that makes
sure that each attack (S, x) ∈ necAtt is unblocked by adding all arguments of S to sIn.

πjustRange : sIn(X)|necAtt(R) : att(R,X)← extRange(X).

sIn(X)← att(R, Y ),necAtt(R),mem(R,X).

We next add code fragments to test whether the constructed set is actually an extension. The next
fragment tests whether the constructed set is conflict-free and if not derives fail.

πsatCf : unBlocked(R)← att(R, Y ), sIn(X) : mem(R,X).

fail← sIn(Y ), att(R, Y ),unBlocked(R).

The following rule test whether the constructed set is admissible and is thus only used for semi-
stable but not for stage semantics.

πsatAdm : fail|necAtt(R2) : att(R2, Y ),mem(R1, Y )← sIn(X), att(R1, X).

Finally, we complete the saturation with a code fragment that again spoils the answer-set that can
derive fail and avoids answer-sets for guesses where one cannot derive fail. In comparison to
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preferred semantics we additionally require that whenever we derive fail then all arguments are
added to extRange.

πspoil : sIn(X)← fail, arg(X).

extRange(X)← fail, arg(X).

necAtt(R)← fail, att(R,X).

← not fail,notStable.

Now we get our encoding πsemi for semi-stable semantics by combing all the above code fragments
with the encoding of admissible semantics, i.e. πsemi = πadm ∪ πrange ∪ πextRange ∪ πjustRange ∪
πsatCf ∪ πsatAdm ∪ πspoil and we have sem(F ) ∼= AS(πsetaf (F ) ∪ πsemi). Moreover, to obtain the
encoding πstage for stage semantics we combine all the above code fragments, except πsatAdm with
the encoding of conflict-free sets, i.e. πstage = πcf ∪πrange∪πextRange∪πjustRange∪πsatCf ∪πspoil
and we have stage(F ) ∼= AS(πsetaf (F ) ∪ πstage).

4 Conclusion
In this work we first clarified the complexity landscape of SETAFs and provided definitions for
semi-stable and stage semantics that generalize their counterparts in Dung AFs. We then provided
ASP-encodings for the standard SETAF semantics as introduced in [23] as well as for the semi-
stable and stage semantics. Our ASP-encodings can be executed with the clingo [20] solver and
are available at www.dbai.tuwien.ac.at/research/argumentation/aspartix/
setaf.html. Beside enumerating all extensions, the solver features brave (a.k.a. credulous) and
cautious (a.k.a. skeptical) reasoning. In particular, in order to compute the grounded extension,
one can perform cautious reasoning on complete semantics.
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[9] Wolfgang Dvořák. Computational Aspects of Abstract Argumentation. PhD thesis, Vienna
University of Technology, Institute of Information Systems, 2012.

[10] Wolfgang Dvořák and Paul E. Dunne. Computational problems in formal argumentation and
their complexity. IfCoLog Journal of Logic and its Applications, 4(8):2557–2622, 2017.
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A Properties of Semi-stable and Stage Semantics.

Here we provide proofs for some basic properties of semi-stable and stage semantics in SETAFs.
All the proofs are straightforward adaptations of the corresponding proofs in Dung AFs.

Lemma 2. stb(F ) ⊆ sem(F ), for any SETAF F .

Proof. Consider a SETAF F = (A,R). By [23] we have that each stable extension E is also
preferred and thus admissible. As E is stable we have that E⊕R = A and thus there cannot be
another admissible set D with E⊕R ⊂ D⊕R . Hence E is semi-stable.

Lemma 3. stb(F ) ⊆ stage(F ), for any SETAF F

Proof. Consider a SETAF F = (A,R). By definition, we have that each stable extension E is
conflict-free. As E is stable we have that E⊕R = A and thus there cannot be another conflict-free
set D with E⊕R ⊂ D⊕R . Hence E is semi-stable.

Lemma 4. sem(F ) ⊆ pref(F ), for any SETAF F

Proof. Consider a SETAF F = (A,R). Towards a contradiction assume there is a semi-stable
extension E that is not preferred. Then there is a preferred extension D with E ⊂ D. and an
argument x ∈ D such that x 6∈ E and E 67→R x (otherwise there would be a conflict in D). As
the range operator ⊕ is monotone by definition, we have E⊕R ⊆ D⊕R and as x 6∈ E⊕R we obtain that
E⊕R ⊂ D⊕R . Hence, E is not semi-stable, a contradiction to our initial assumption.

Lemma 5. stage(F ) ⊆ naive(F ), for any SETAF F

Proof. Consider a SETAF F = (A,R). Towards a contradiction assume there is a stage extension
E that is not naive. Then there is a naive extension D with E ⊂ D. and an argument x ∈ D such
that x 6∈ E and E 67→R x. As the range operator ⊕ is monotone by definition we have E⊕R ⊆ D⊕R
and as x 6∈ E⊕R we obtain that E⊕R ⊂ D⊕R . Hence, E is not stage, a contradiction to our initial
assumption.

Lemma 6. For any SETAF F = (A,R), if stb(F ) 6= ∅ then stb(F ) = sem(F ) = stage(F ).

Proof. Consider a SETAF F = (A,R) with stb(F ) 6= ∅. First consider stage semantics. As each
stable extension is stage as well, we have that the range of each stage extension must be A (by the
range maximality condition) and thus each stage extensions is a stable extension. Hence, stb(F ) =
stage(F ). Now consider semi-stable semantics. As each stable extension is semi-stable as well, we
have that the range of each semi-stable extension must be A (by the range maximality condition)
and thus each semi-stable extensions is a stable extension. Hence, stb(F ) = sem(F ).
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B Complexity Results
In this appendix we discuss the complexity results depicted in Table 1. We start with the complexity
of evaluating the characteristic function and then discuss the results for each semantics separately.

Proposition 1. When given an SETAF F , a set of Arguments S, and an argument a deciding
whether a ∈ FF (S) is in L.

Proof. We simple iterate over all attacks (B, x) ∈ R and whenever x = a we again iterate over all
attacks (B′, x′) ∈ R and test whether x′ ∈ B and B′ ⊆ S. If there is an attack (B, a) such that
there is no defending attack (B′, x′) we have a 6∈ FF (S) otherwise a ∈ FF (S). Clearly the above
can be implemented with a constant number of pointers and thus in L.

Lemma 7. The results for cf semantics depicted in Table 1 hold.

Proof. Consider an arbitrary SETAF F = (A,R). We next give L upper bounds for the complexity
of the non-trivial decision problems for cf semantics:

• Credcf: In order to decide credulous acceptance for an argument a we simply check whether
({a}, a) /∈ R. If yes then {a} ∈ cf(F ) and thus a is credulously accepted, otherwise a
cannot be in any conflict-free set and thus is not credulously accepted. Thus Credcf ∈ L.

• Skeptcf: No argument can be skeptically accepted w.r.t. conflict-free semantics as the empty
set is always conflict-free.

• Vercf: To verify that a set S is conflict free we simple iterate over all (B, x) ∈ R and test
whether B ∪ {x} ⊆ S. If yes there is a conflict in S and we terminate. If none of the attacks
is contained in S, the set is conflict-free. This, is clearly in L.

• Existscf: This is always true as the empty set is always conflict-free.

• Exists¬∅cf : To decide whether there is a non-empty conflict-free set we test each argument for
being credulously accepted. If one of them is there is a non-empty extension and vice versa.
Again, this is clearly in L.

Lemma 8. The results for naive semantics depicted in Table 1 hold.

Proof. Consider an arbitrary SETAF F = (A,R). We next give L upper bounds for the complexity
of the non-trivial decision problems for naive semantics:

• Crednaive: Here we can exploit that an argument is contained in at least one naive extension
iff it is contained in at least one conflict-free set. Thus, the credulous acceptance problem
is the same for conflict-free and naive semantics, i.e. Crednaive = Credcf, and thus it can be
solved in L.

16



• Skeptnaive: An argument a is skeptically accepted w.r.t. naive semantics iff a is credulously
accepted and there is no attack (B, x) ∈ R such that a ∈ B∪{x} and (B∪{x})\{a} ∈ cf(F ).
We already discussed how to check the former in L and the latter can be easily checked by
iterating over all attacks, which is in L. and as we already know that testing whether a set is
conflict-free is in L we can test skeptical acceptance in L.

• Vernaive: We have that S ∈ naive(F ) iff S ∈ cf(F ) and for each a ∈ A \ S there is an attack
(B, x) ∈ R such that a ∈ B ∪ {x} and (B ∪ {x}) \ {a} ⊆ S. We already discussed how the
check the former in L. The latter can be easily checked by iterating over all edges and thus
is also in L.

• Existsnaive: As the empty set is always conflict-free there also exists a subset maximal
conflict-free set, i.e. a naive extension. This question can thus be always answered yes.

• Exists¬∅naive: Again, this problem is the same as Exists¬∅cf , as there is a nonempty conflict-free
set iff there is a nonempty naive extension.

Lemma 9. The results for grd semantics depicted in Table 1 hold.

Proof. The hardness results are by the corresponding results for AFs [15, 9]. For the upper bounds
consider an arbitrary SETAF F = (A,R).

• Credgrd, Skeptgrd,Vergrd: All three problems can be solved by first computing the unique
grounded extension and then perform a simple test. We can compute the grounded extension
by iteratively applying the characteristic function in order to compute the least fixed-point.
By Proposition 1 this can be done in polynomial time. Now for credulous and skeptical
acceptance we simple check whether the argument under question is in the set, while for the
verification we test whether the set under question coincides with the computed grounded
extension. Thus all the problems can be decided in polynomial time.

• Existsgrd: As there is always a grounded extension, this problem can be always answered
with yes.

• Exists¬∅grd: Here we exploit that the grounded extension is non-empty iff there is an argument
which is not attacked at all. We can check this for each argument by iterating over all attacks,
which can be done in L.

Lemma 10. The results for stb semantics depicted in Table 1 hold.

Proof. The hardness results are by the corresponding results for AFs [5]. For the upper bounds
consider an arbitrary SETAF F = (A,R). First consider the verification problem Verstb. We can
verify that a given set S is stable by first checking that it is cf and then for each a ∈ A \ S that
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there is an attack (B, a) ∈ R with B ⊆ S. As both can be done in L, we obtain the L membership
of Verstb.

The other reasoning problems for stable semantics can now be solved by the standard guess
& check algorithms. That is, we first use the non-determinism to guess a set and then use a
deterministic part to verify that the set is a stable extension and satisfied the desired property. For
credulous acceptance we check whether the argument under question is in the set, for skeptical
acceptance, in order to find a counter example, we check whether the argument under question is
not in the set and for Exists stb and Exists¬∅stb no further tests are required. This gives NP procedures
for Credstb, Exists stb, and Exists¬∅stb and a coNP procedures for Skeptstb.

Lemma 11. The results for adm semantics depicted in Table 1 hold.

Proof. The hardness results are by the corresponding results for AFs [5]. For the upper bounds
consider the SETAF F = (A,R). First consider Veradm. We can verify that a given set S is
admissible by first checking that it is cf and then for each a ∈ S that a ∈ FF (S). Both can be
done in L (cf. Proposition 1). Now Credadm and Exists¬∅adm can be solved by standard guess & check
algorithms (as discussed for stable semantics). Moreover, as the empty set is always admissible
Skeptadm is trivially false while Existsadm is trivially true.

Lemma 12. The results for com semantics depicted in Table 1 hold.

Proof. The hardness results are by the corresponding results for AFs [4]. For the upper bounds
consider an arbitrary SETAF F = (A,R). First consider Vercom. We can verify that a given set S
is complete by (a) checking that it is cf, (b) for each a ∈ S check that a ∈ FF (S), and (c) for each
a ∈ A \ S check that a /∈ FF (S). All three can be done in L (cf. Proposition 1). Now Credcom

and Exists¬∅com can be solved by standard guess & check algorithms. Moreover, as the grounded
extension is the unique minimal complete set we have that a argument is skeptically accepted w.r.t.
complete semantics iff it is contained in the grounded extension, i.e. Skeptcom = Skeptgrd. Finally,
we have that Existscom is always true as each SETAF has a grounded extension.

Lemma 13. The results for pref semantics depicted in Table 1 hold.

Proof. The hardness results are by the corresponding results for AFs [5, 8]. For the upper bounds
consider an arbitrary SETAF F = (A,R). First consider Verpref. We can verify that a given set
S is preferred by (a) checking that it is in adm(F ) and (b) checking that each S ′ ⊃ S is not
admissible. The former is in L while the latter can be solved in coNP by a standard guess & check
algorithm (guess a set and verify that it is admissible and superset of the original set). Now Skeptpref
can be solved by a standard guess & check algorithm, which because of the coNP algorithm for
verifying the extension results a ΠP

2 algorithm. For credulous acceptance we can exploit that an
argument is contained in a preferred extension iff it is contained in a admissible set, i.e. we have
Credpref = Credadm. Similarly, there is a non-empty preferred extension iff there is a non-empty
admissible set, i.e. Exists¬∅pref = Exists¬∅adm. Thus we have NP procedures for Credpref and Exists¬∅pref.
Finally, as each SETAF has a preferred extension we have that Existspref is trivially true.

Lemma 14. The results for sem semantics depicted in Table 1 hold.
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Proof. The hardness results are by the corresponding results for AFs [15]. For the upper bounds
consider an arbitrary SETAF F = (A,R). First consider Versem. We can verify that a given set S is
semi-stable by (a) checking that it is in adm(F ) and (b) checking that each S ′ ⊆ A with S ′+R ⊃ S+

R

is not admissible. The former is in L while the latter can be solved in coNP by a standard guess
& check algorithm (guess a set and verify that it is admissible and its range is a superset of the
range of the original set). Now Credsem and Skeptsem can be solved by standard guess & check
algorithms, yielding ΣP

2 resp. ΠP
2 algorithms. Moreover, we have that there is a non-empty semi-

stable extension iff there is a non-empty admissible set, i.e. Exists¬∅sem = Exists¬∅adm. Finally, as each
SETAF has a semi-stable extension we have that Exists sem is trivially true.

Lemma 15. The results for stage semantics depicted in Table 1 hold.

Proof. The hardness results are by the corresponding results for AFs [15]. For the upper bounds
consider an arbitrary SETAF F = (A,R). First consider Verstage. We can verify that a given set S
is stage by (a) checking that it is in cf(F ) and (b) checking that each S ′ ⊆ A with S ′+R ⊃ S+

R is not
conflict-free. The former is in L while the latter can be solved in coNP by a standard guess & check
algorithm (guess a set and verify that it is conflict-free and its range is a superset of the range of
the original set). Now Credstage and Skeptstage can be solved by standard guess & check algorithms,
which results in a ΣP

2 , resp. in a ΠP
2 , algorithm. Moreover, we have that there is a non-empty stage

extension iff there is a non-empty conflict-free set, i.e. Exists¬∅stage = Exists¬∅cf . Finally, as each
SETAF has a stage extension we have that Exists stage is trivially true.
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