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Abstract. Decompositions of graphs play a central role in the field of parameterized com-
plexity and are the basis for many fixed-parameter tractable algorithms for problems that
are NP-hard in general. Practical experience showed that generating decompositions of
small width is not the only crucial ingredient towards efficiency. In fact, additional features
of tree decompositions are very important for good performance in practice. To turn the
theoretical potential of structural decomposition into successful applications, we thus re-
quire implementations of decomposition methods which allow for a smooth integration and
moreover are easily extendible and adaptable to the domain-specific needs. To this end, we
present htd, a free and open-source library for graph decomposition. The current version of
htd includes efficient implementations of several heuristic approaches for tree decomposi-
tion and offers various features for normalization and customization of the decomposition.
The aim of this report is to present the main features of htd together with an experimental
evaluation underlining the effectiveness and efficiency of the implementation.
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1 Introduction
Graph decompositions are an important concept in the field of parameterized complexity and
a wide variety of such approaches can be found in the literature including tree decomposi-
tions [Bertelè and Brioschi, 1973; Halin, 1976; Robertson and Seymour, 1984], hypertree decom-
positions [Gottlob et al., 2002] (of hypergraphs) and branch decompositions [Robertson and Sey-
mour, 1991] to mention just a few. The concept of tree decompositions gained special attention as it
can be shown that many NP-hard search problems become tractable when the parameter treewidth,
i.e., the minimum width (maximum bag size - 1) over all tree decompositions of the problem
instance, is bounded by some constant k [Arnborg and Proskurowski, 1989; Niedermeier, 2006;
Bodlaender and Koster, 2008]. A problem exhibiting tractability by bounding some problem-
inherent constant is also called fixed-parameter tractable (FPT) [Downey and Fellows, 1999].

The standard technique for solving problems using this concept is the computation of a tree
decomposition followed by a dynamic programming (DP) algorithm that traverses the nodes of
the decomposition and consecutively solves the respective sub-problems [Niedermeier, 2006]. For
problems that are FPT w.r.t. treewidth, the general run-time of such algorithms for an instance of
size n is f(k) ·nO(1), where f is an arbitrary function over width k of the used tree decomposition.
In fact, this approach has been used for several applications including inference problems in prob-
abilistic networks [Lauritzen and Spiegelhalter, 1988], frequency assignment [Koster et al., 1999],
computational biology [Xu et al., 2005], and logic programming [Morak et al., 2012].

From a theoretical point of view the actual width k is the crucial parameter towards efficiency
for FPT algorithms that use tree decompositions. However, as recently stressed by Gutin [2015],
to turn the concept of FPT to practical success, more empirical work is required.

In terms of FPT algorithms for treewidth, experience shows that even decompositions of the
same width lead to significant differences in the run-time of DP algorithms and recent results
confirm that the width is indeed not the only important parameter that has a significant influence
on the run-time [Abseher et al., 2015; Abseher et al., 2016b; Jégou and Terrioux, 2014; Morak et
al., 2012]. Therefore we see a need to offer a specialized framework, allowing to obtain customized
decompositions, i.e., decompositions which reflect certain preferences of the developer, in order to
optimally fit to the dynamic programming algorithm in which they are used.

To cover the aforementioned points, in this report we present a free, open-source solution which
supports a vast amount of graphs and different types of decompositions. Our framework can be
easily extended as we provide programming interfaces for (almost) all classes and so one does
not need to re-invent the wheel at any place. In detail, the design goals for our framework are as
follows:

• Clean, easy-to-use interfaces

• Run-time and memory efficiency

• Utmost flexibility and extensibility

• Support for a variety of graph and decomposition types
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• Support for a wide range of convenience features like various normalization strategies and
automated modifications of decompositions directly in the context of the library in order to
keep the code clean and structured

The software library is called htd and is availabe under https://github.com/mabseher/
htd. We consider htd as a potential starting point for researchers to contribute their algorithms in
order to provide a new framework for all different types of graph decompositions.

In the remainder of this work, we provide a detailed description of the features of htd, shed
some light at crucial algorithm decisions, illustrate its usage in some example scenarios, and we
also give an experimental evaluation comparing the tree decomposition heuristics currently offered
by htd to other implementations.

In order to find out how htd compares to other approaches for computing tree decompositions,
htd is one of the participants of the “First Parameterized Algorithms and Computational Experi-
ments Challenge” (“PACE16”)1 and it was ranked at the third place in the heuristics track. The
results of htd are very close to those of the heuristic approaches ranked at the first two places.
This underlines not only that htd is rich in features helping to make the development of dynamic
programming algorithms more comfortable, but also that it is very competitive and efficient when
compared to other approaches.

2 Background
Tree decomposition is a technique often applied for solving NP-hard problems. The underlying
intuition is to obtain a tree from a (potentially cyclic) graph by subsuming multiple vertices in one
node and thereby isolating the parts responsible for the cyclicity. Formally, the notions of tree
decomposition and treewidth are defined as follows [Robertson and Seymour, 1984; Bodlaender
and Koster, 2010].

Definition 1. Given a graph G = (V,E), a tree decomposition of G is a pair (T, χ) where T =
(N,F ) is a tree and χ : N → 2V assigns to each node a set of vertices (called the node’s bag),
such that the following conditions hold:

1. For each vertex v ∈ V , there exists a node i ∈ N such that v ∈ χi.

2. For each edge (v, w) ∈ E, there exists an i ∈ N with v ∈ χi and w ∈ χi.

3. For each i, j, k ∈ N : If j lies on the path between i and k then χi ∩ χk ⊆ χj .

The width of a given tree decomposition is defined as maxi∈N |χi| − 1 and the treewidth of a graph
is the minimum width over all its tree decompositions.

Note that the tree decomposition of a graph is in general not unique. In the following we
consider rooted tree decompositions, for which a root r ∈ N is explicitly defined.

1See https://pacechallenge.wordpress.com/track-a-treewidth/ for more information.
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Definition 2. Given a graph G = (V,E), a normalized (or nice) tree decomposition of G is a
rooted tree decomposition T where each node i ∈ N is of one of the following types:

1. Leaf: i has no child nodes.

2. Introduce Node: i has one child j with χj ⊂ χi and |χi| = |χj|+ 1

3. Forget Node: i has one child j with χj ⊃ χi and |χi| = |χj| − 1

4. Join Node: i has two children j, k with χi=χj=χk

Each tree decomposition can be transformed into a normalized one in linear time without
increasing the width [Kloks, 1994]. While constructing an optimal tree decomposition, i.e.
a decomposition with minimal width, is intractable [Arnborg et al., 1987], researchers pro-
posed several exact methods for small graphs and efficient heuristic approaches that usually con-
struct tree decompositions of almost optimal width for larger graphs. Examples of exact al-
gorithms for tree decompositions are [Shoikhet and Geiger, 1997; Gogate and Dechter, 2004;
Bachoore and Bodlaender, 2006]; greedy heuristic algorithms include Maximum Cardinality
Search (MCS) [Tarjan and Yannakakis, 1984], Min-Fill heuristic [Dechter, 2003], and Mini-
mum Degree heuristic [Berry et al., 2003], to mention just a few. Metaheuristic techniques have
been provided in terms of genetic algorithms [Larranaga et al., 1997; Musliu and Schafhauser,
2007], ant colony optimization [Hammerl and Musliu, 2010], and local search based tech-
niques [Kjaerulff, 1992; Clautiaux et al., 2004; Musliu, 2008]. A more detailed description
of tree decomposition techniques is given in the recent surveys [Bodlaender and Koster, 2010;
Hammerl et al., 2015].

For a given graph G the treewidth can be found from its triangulation. Further we will give
basic definitions, explain how the triangulation of graph can be constructed and show the relation
between the treewidth and the triangulated graph.

Two vertices u and v of graph G = (V,E) are neighbors, if they are connected with an edge
e ∈ E. The neighborhood of vertex v is defined as: N(v) := {w|w ∈ V, (v, w) ∈ E}. A set
of vertices is clique if there is an edge between each pair of vertices. An edge connecting two
non-adjacent vertices which are part of a cycle is called chord. The graph is triangulated if there
exists a chord between any pair of non-adjacent vertices in every cycle of length larger than 3.

A vertex of a graph is simplicial if its neighbors form a clique. An ordering of nodes
σ(1, 2, . . . , n) of V is called a perfect elimination ordering for G if for any i ∈ {1, 2, . . . , n},
σ(i) is a simplicial vertex in G[σ(i), . . . , σ(n)] [Clautiaux et al., 2004]. In [Fulkerson and Gross,
1965] it is shown that the graph G is triangulated if and only if it has a perfect elimination order-
ing. Given an elimination ordering of nodes the triangulation H of graph G can be constructed
as following. Initially H = G, then in the process of elimination of vertices, the next vertex in
order to be eliminated is made a simplicial vertex by adding new edges in order to connect all its
neighbors in current G and H . The vertex is then eliminated from G. This process is repeated for
all vertices in the ordering. A more detailed description of the algorithm for constructing a graph’s
triangulation for a given elimination ordering is found in [Koster et al., 2001].
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The treewidth tw of a triangulated graph can be calculated based on its cliques. For a given
triangulated graph the treewidth is equal to its largest clique minus 1 [Gavril, 1972]. Moreover,
the largest clique of triangulated graph can be calculated in polynomial time. The complexity of
calculation of the largest clique for the triangulated graphs isO(|V |+|E|) [Gavril, 1972]. For every
graphG = (V,E), there exists a triangulation ofG,G = (V,E

⋃
Et), with tw(G) = tw(G). Thus,

finding the treewidth of a graph G is equivalent to finding a triangulation G of G with minimum
clique size (for more information see [Koster et al., 2001]).

3 A General Framework for Tree Decompositions and Beyond
In this section we want to have an in-depth look at some important properties of the new framework.
During our work with D-FLAT [Abseher et al., 2014], a framework for easy prototyping of dy-
namic programming on tree decompositions, we faced the problem that existing implementations
for graph decomposition algorithms often only minimize the width. That is, they deliver a tree
decomposition without possibility to transparently customize the result. Hence, post-processing
outside the library is needed in order to obtain a decomposition which reflects certain preferences
of a developer and which fits well to given dynamic programming algorithms. Furthermore, exist-
ing algorithms are often hard to adapt because at design time certain capabilities and mechanisms
(like assigning arbitrary labels to the resulting decompositions automatically) were not considered
and so extensions of functionality often requires the rewriting of huge portions of the old code.

To circumvent all these problems, the proposed library called htd is free, open-source software
and it is available under https://github.com/mabseher/htd. The software was devel-
oped with the goal to serve the needs of virtually any algorithm related to graph decompositions.
In the following we will highlight the library’s main characteristics.

3.1 Support for a Variety of Input Graph Types
Since the library shall be able to decompose any given graph type, htd supports by default a variety
of them to fit like a glove to the actual application domain where our library is applied. Indeed
all input graphs can be stored in a data structure which is able to handle multi-hypergraphs, i.e.,
hypergraphs with potentially duplicated hyperedges. E.g., we could also store a directed graph in
a data structure for multi-hypergraphs, but multi-hypergraphs are, for instance, not aware of the
concept of incoming or outgoing neighbors and also reachability is defined differently than in the
case of directed graphs. In order to enhance functionality, to enforce semantic coherence and to
shift programming effort from the developer using the library to our framework, htd offers separate
data types and programming interfaces for storing (multi-)hypergraphs, directed and undirected
(multi-)graphs, trees and paths.

For each graph type, htd also offers an implementation which is able to deal with custom names
so that instead of working with plain vertex and edge identifiers in terms of numeric integers
one can additionally address a specific vertex or edge by its name. To fit the needs of dynamic
programming algorithms in a very general and convenient way, one can use any data type which
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is equality-comparable and which provides functionality for returning its hash code (like character
strings) as an alias for the name of a vertex or an edge.

Furthermore, htd allows to add custom labels of any data type to the vertices and (hyper)edges
of a given graph by providing appropriate wrappers for each graph type. These labels can, for in-
stance, be used to store truth assignments for the endpoints of an hyperedge in case that hyperedges
represent clauses for the problem of boolean satisfiability.

One big advantage of having a built-in support for labeled graph types is the fact that with the
functionality one can keep the productive code clean and simple because one only needs a single
graph representation in memory and no conversion or mapping of the graph structure between
internal library code and the developed algorithm is necessary.

3.2 Support for a Variety of Decomposition Types
Clearly, from a graph decomposition library we expect the ability to decompose graphs. To serve
this purpose, htd offers several decomposition methods by default and a wide range of interfaces
allows to extend htd’s functionality easily and without even having to re-compile the library. Each
decomposition algorithm in the context of htd takes an (potentially disconnected) input graph in
any supported representation and constructs a decomposition of the requested type. The library
distinguishes between four types of decomposition algorithms:

• Graph Decomposition Algorithms
... return a new, labeled multi-hypergraph GD where the bag of each vertex in GD is a
subset of the vertices in G. This is the most general decomposition type currently supported
by htd.

• Tree Decomposition Algorithms
... return a new, labeled tree TD where the bag of each vertex in TD is a subset of the vertices
in G such that all criteria for tree decompositions are satisfied. In the first step, the default
implementation of a tree decomposition algorithm in htd uses bucket-elimination [Dechter,
1999; Dermaku et al., 2008] based on a generated eliminating ordering to obtain a tree
decomposition for each connected component of the input graph. Afterwards, it connects
the trees in the forest to a single tree by adding additional edges where appropriate. The
vertex ordering required for bucket-elimination is obtained via the library’s default ordering
algorithm which the developer can select before the decomposition algorithm is invoked.2

• Path Decomposition Algorithms
... return a new, labeled path PD where the bag of each vertex in PD is a subset of the
vertices in G such that all criteria for tree decompositions are satisfied. The default im-
plementation constructs a tree decomposition of the input graph and then manipulates it by
rearranging the join node’s children in order to obtain a path structure.

2Apart from employing a custom algorithm given by the developer, htd currently provides default implementations
for Min-Fill, Minimum Degree and Maximum Cardinality Search vertex elimination orderings. If the developer does
not specify the ordering algorithm to use, the default setting is Min-Fill.
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• Hypertree Decomposition Algorithms
... return a new, labeled tree TD where the bag of each vertex in TD is a subset of the
vertices in G. Additionally, each vertex of TD has assigned a second label, consisting of a
subset of hyperedges of the input graph such that the corresponding bag content is a subset of
the set union of vertices contained in these hyperedges. That is, htd’s default implementation
computes a generalized hypertree decomposition [Gottlob et al., 2009].

The current implementation starts by first generating a tree decomposition and then we
solve the SET COVER problem for each of its bags. That is, we compute for each bag
the minimum-cardinality set of all hyperedges such that each vertex in the bag has at least
one hyperedge in which it is contained.

We can see that basically every algorithm is constructed in a very modular way, i.e., we only
require the input graph which shall be decomposed and afterwards everything is up to the concrete
implementations. This leads to light-weight interfaces and high flexibility for both developers
“just” using the library and those who want to contribute to the library. For instance, although the
default implementations of the algorithms rely on the simple bucket-elimination procedure, there
is absolutely no need for a developer contributing to the library to use bucket-elimination or vertex
elimination orderings at all.

Finally, before we have a deeper look at flexibility and extensibility of htd, we should have a
quick look at an additional feature concerning decomposition algorithms which can be very helpful
in practice: For reduced post-processing effort on the developer-side, htd offers the concept of
manipulations which can be applied to a computed decomposition. The term “manipulation” in
the context of htd refers to operations which manipulate the structure of the decomposition, like
making a tree decomposition nice, or add/remove/change certain labels, like adding additional
information to a decomposition node. Note that also the built-in path decomposition algorithm of
htd is such a manipulation.

Manipulations can always be applied to a given decomposition but one can also specify the
list of desired manipulations when calling the decomposition algorithm. In the latter case, the
computed decomposition will be returned with the desired operations automatically applied. This
helps to keep the code at developer-side clean because one does not have to do any post-processing
in order to get the manipulations applied.

3.3 Automated Optimization of Decompositions
One of the main novelties of htd compared to existing implementations of decomposition algo-
rithms is the support for automated optimization. In order to support the special needs of certain
dynamic programming algorithms, like minimizing the number of join nodes, or even to allow
complex optimizations, like the prioritization of selected vertices with respect to their average
position in the decomposition, htd supports two optimization strategies.

The first strategy implemented by the library is an iterative approach which computes a (user-
definable) number of decompositions and finally returns the decomposition for which the fitness
evaluation (the result of the provided fitness function), is maximal. This built-in strategy allows to
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mimic the approach which proved successfully in [Abseher et al., 2015; Abseher et al., 2016b],
namely the computation of a pool of tree decompositions and afterwards selecting the optimal one
via machine learning, by only writing a few lines of code.

The second strategy relies on the fact that one can select any vertex of a tree as its root and
the outcome of this reallocation will still be a tree. Based on this fact, the second optimization
strategy allows to automatically select the node as root of the tree decomposition for which the
fitness evaluation for the tree decomposition rooted at the respective node is maximal. For utmost
flexibility and highest performance one can select from a wide range of (custom) criteria which
aim at narrowing down the subset of vertices of a decomposition which shall be considered as
new root node. This is important especially for large graphs as exhaustively trying out all possible
choices might be expensive.

Note that the two approaches can indeed be combined in order to improve the result of the
optimization step. Additionally, one can assign also priorities to each level of a fitness evaluation
if multi-criteria optimization is needed.

3.4 High Level of Flexibility and Extensibility
One of the main limitations of many software libraries is the fact that they are often developed
as a by-product of some application and so the complete functionality is, in many cases, tailored
towards a specialized application domain and extensions or adaptations are hard to implement. htd
is different in that sense as it is developed with the goal of utmost flexibility and extensibility and
it is developed independently from a concrete application domain3. Currently, the library provides
around 80 interfaces for almost all parts of the library, allowing to easily replace, improve and
extend functionality. Furthermore, htd provides explicit factory classes for most interfaces so that
one can set new default implementations without even having to re-compile the library.

3.5 Working with the Library
After sketching some important characteristics of htd, in this section we now want to give an
overview of the general workflow of how to compute decompositions via htd and we provide an
example of an application scenario to illustrate how the library can be used in practice.

Figure 1 depicts the concept behind htd. At first, one clearly needs to parse the input and
maybe do some conversion or pre-processing in order to obtain a graph representation of the in-
put instance which we can directly feed into the decomposition algorithm. The decomposition
algorithm may be either one of the built-ins of htd or a custom one provided by the developer.
Optionally, the developer can provide additional information to the decomposition algorithm, like
a custom vertex ordering as needed by bucket-elimination. Furthermore, it is possible to request
different manipulations of the resulting decomposition, like computing additional labels or making
a tree decomposition nice.

3Note that htd also provides a command-line application, named htd main which is a small, light-weight front-end
for the library that allows to trigger the main functions of htd. The front-end is fully configurable in order to easily
investigate the effects of modifications to htd.
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Figure 1 Workflow for computing customized decompositions using htd.

Note that the library supports a developer in any of the depicted steps, that is, it defines inter-
faces allowing the parsing of input files and it provides implementations for various graph types,
decomposition algorithms and manipulation operations. Furthermore, the large collection of algo-
rithms in htd contains lots of convenience functions.

Currently, htd is used in several projects, like D-FLAT [Abseher et al., 2014], a framework for
rapid-prototyping of dynamic programming algorithms on tree decompositions, dynASP [Morak
et al., 2010; Fichte et al., 2016], an answer-set programming solver which is based on dynamic
programming on tree decompositions, or dynQBF [Charwat and Woltran, 2016], a solver for quan-
tified boolean formulae based on dynamic programming and binary decision diagrams.

In these projects it turned out that a very helpful “bonus” functionality of our library is the
following: All built-in decomposition algorithms of htd automatically provide for each bag the set
of induced edges, i.e., the set of all edges which form a subset of the bag content. This means
in a dynamic programming algorithm there is no need any more to filter the full set of edges of
the input graph for each bag in order to find out which of them are affected by the respective bag.
This can be a very time-consuming task for large graphs. htd provides this important information
(almost) for free, significantly accelerating the given applications.
. . .
/ / Cr ea t e a new management i n s t a n c e ( w i t h ID 1) f o r t h e c u r r e n t t h r e a d .
h t d : : L i b r a r y I n s t a n c e ∗ manager = h t d : : c r e a t e M a n a g e m e n t I n s t a n c e ( 1 ) ;

/ / Im po r t some graph i n t h e f o r m a t o f t h e PACE c h a l l e n g e from s t d i n .
h t d : : G r F o r m a t I m p o r t e r i m p o r t e r ( manager ) ;
h t d : : I M u l t i G r a p h ∗ graph = i m p o r t e r . i m p o r t ( s t d : : c i n ) ;

/ / Get d e f a u l t d e c o m p o s i t i o n a l g o r i t h m .
h t d : : I T r e e D e c o m p o s i t i o n A l g o r i t h m ∗ a l g o r i t h m =

manager−>t r e e D e c o m p o s i t i o n A l g o r i t h m F a c t o r y ( )
. g e t T r e e D e c o m p o s i t i o n A l g o r i t h m ( ) ;
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/ / S e t d e s i r e d m a n i p u l a t i o n s f o r a l g o r i t h m .
a l g o r i t h m . a d d M a n i p u l a t i o n O p e r a t i o n

( new h t d : : N o r m a l i z a t i o n O p e r a t i o n ( manager ) ) ;

/ / Decompose t h e p r o v i d e d graph .
h t d : : I T r e e D e c o m p o s i t i o n ∗ t d =

a l g o r i t h m−>computeDecompos i t ion (∗ graph ) ;

/ / Ou tpu t t h e w i d t h o f t h e o b t a i n e d t r e e d e c o m p o s i t i o n .
s t d : : c o u t << ” Width : ” << ( td−>maximumBagSize ( ) − 1) << s t d : : e n d l ;
. . .

Listing 1 Example source code (C++) how to use htd in practice.

To underline how easy htd can be applied in practice, in Listing 1 we give a short working
example in terms of the only five lines long C++ source code sufficient to compute a nice tree
decomposition of a given input instance in the format of the “PACE16” challenge4. The first two
lines of the source code take care of importing the input graph. The third line then gets the default
tree decomposition algorithm of htd. All what remains is to set the manipulation operation for
normalized tree decompositions and to decompose the graph. The last line of our example then
outputs the width of the decomposition, but one may also proceed with a dynamic programming
algorithm.

Note that the above source code is more or less a minimal working example, but one is free to
implement any algorithm one can think of and it will work with the library as long as it implements
the interfaces of htd properly. In the following list we give some examples for important interfaces
of htd:

• htd::IMultiHypergraph
All (custom) graph classes must implement the interface for hypergraphs with potentially
duplicated edges. It provides the functionality which is common to all graph types, like
accessing its vertices and edges or, for instance, to get the neighbors of a vertex.

• htd::ITreeDecomposition
A tree decomposition in htd is a special case of a htd::IMultiHypergraph in which
each vertex has a bag label and where the underlying graph is a tree. Like mentioned
before, apart from the other functionality one would expect from a tree structure, the
htd::ITreeDecomposition interface additionally defines a function to retrieve the
hyperedges of the input graph which are induced by a bag.

• htd::ITreeDecompositionAlgorithm
This interface must be implemented by all tree decomposition algorithms in the context
of htd. It defines functionality to compute a htd::ITreeDecomposition of some

4The format specification is given under the following link:
https://pacechallenge.wordpress.com/track-a-treewidth/
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htd::IMultiHypergraph. Apart from decomposing a given input graph, htd’s tree
decomposition algorithms automatically apply provided manipulation operations.

• htd::IDecompositionManipulationOperation
As mentioned in Section 3.2, manipulation operations are an important part of the library
and cover all operations which are made to a decomposition’s structure or its labels. For
each type of decomposition, htd provides a separate interface in order to ensure that only
compatible operations are performed during the computation of a decomposition.

4 Developer Documentation
htd is a relatively small piece of software for efficiently computing decomposition of large graphs
and hypergraphs. The library is developed with the goal to optimally fit the needs of a wide
range of dynamic programming algorithms. Although its code base is small, consisting of only
some hundred thousand lines of source code, the library is able to efficiently decompose graphs
containing millions of vertices and it offers various interfaces to provide the developers of dynamic
programming algorithms exactly with those features they need without having to pay the price for
functionality they don’t need.

To employ htd for one’s purposes and to fully exploit its potential it is important to know about
its interface structure, the functionality each of the interfaces offers and how the underlying algo-
rithms interact. In this section we therefore want to give a detailed introduction to htd’s application
programming interface.

4.1 Introduction
Before we dig into the details of the htd software library, in this section we want to give an intro-
duction to its macrostructure in order to make the remainder of the documentation easier to follow.
htd is structured roughly as follows:

• Input graphs

• Graph decompositions

• Decomposition algorithms

• Manipulation operations

• Normalization operations

• Utility functions

Before using any of these features, the first thing to start of when developing a new application
based on htd is creating a so-called library instance of htd. A library instance acts as a central point
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of management allowing to configure the default settings for any algorithm within the library.
Therefore we will use the term “manager” as a synonym for the term “library instance” for the
remainder of this work.

An example of how to properly initialize the manager is given in Listing 2. Note that one can
use more than one manager per application, for example, in situations where it is desired to have
different configurations per thread. After creating the new manager, it may be used by algorithms
to incorporate the developer’s preferences. This is ensured by the fact that the manager contains a
collection of factory classes (one for each interface available in htd) and so each algorithm can use
exactly those settings which were defined by the developer.
/ / Cr ea t e a new management i n s t a n c e ( w i t h ID 1) f o r t h e c u r r e n t t h r e a d .
h t d : : L i b r a r y I n s t a n c e ∗ manager = h t d : : c r e a t e M a n a g e m e n t I n s t a n c e ( 1 ) ;

Listing 2 Example source code (C++) how to initialize a library instance of htd.

For a minimal working example, the code shown in Listing 2 suffices due to the fact that htd
provides efficient default implementations for each of the interface classes. Nevertheless, one may
decide to use a different algorithm provided by htd or one can even use its own implementation.
A toy example how to set and retrieve the default implementation of the graph class is given in
Listing 3.
/ / Cr ea t e a new management i n s t a n c e ( w i t h ID 1) f o r t h e c u r r e n t t h r e a d .
h t d : : L i b r a r y I n s t a n c e ∗ manager = h t d : : c r e a t e M a n a g e m e n t I n s t a n c e ( 1 ) ;

/ / Change t h e d e f a u l t i m p l e m e n t a t i o n f o r graphs .
manager−>g r a p h F a c t o r y ( ) . s e t C o n s t r u c t i o n T e m p l a t e ( new MyFancyGraphClass ( ) ) ;

/ / Get a new i n s t a n c e o f t h e graph c l a s s .
h t d : : IMutab leGraph ∗ g = manager−>g r a p h F a c t o r y ( ) . ge tGraph ( ) ;

Listing 3 Example source code (C++) how to change the default graph type.

Note that in htd, factory classes always take control over the memory region pointed to by
the argument of the function “setConstructionTemplate” in order to avoid copying the instance.
Therefore, one must not free the pointed-to memory manually because this is done automatically
by the factory class.

In the remainder of this chapter we present the functionality for each group of data structures
and each algorithm category. All subsequent sections will rely on the fact that a properly initialized
and configured library instance named “manager” already exists.

4.2 Graph Types
htd distinguishes five graph types, namely hypergraphs (graphs with hyperedges), (undirected)
graphs, directed graphs, trees and paths. According to this distinction, htd provides the following
interface classes:

• htd::IHypergraph, htd::IMultiHypergraph
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Hypergraphs are the most general graph type in htd as they allow using hyperedges, i.e.,
edges with an arbitrary number of endpoints. Self-loops, induced by hyperedges containing
the same vertex multiple times, are allowed.

Inheritance:

Each htd::IHypergraph is a htd::IMultiHypergraph.

• htd::IGraph, htd::IMultiGraph

Graphs in the context of htd are hypergraphs where each hyperedge has exactly two end-
points. Again, self-loops are allowed.

Inheritance:

Each htd::IGraph is a htd::IHypergraph and each htd::IMultiGraph is a
htd::IMultiHypergraph.

• htd::IDirectedGraph, htd::IDirectedMultiGraph

Directed graphs in the context of htd are graphs where the order of endpoints matters. In
addition to the functionality of graphs, the corresponding interface classes for directed graphs
allow to easily retrieve the incoming and outgoing neighbors of a vertex. Self-loops are
allowed.

Inheritance:

Each htd::IDirectedGraph is a htd::IGraph and each
htd::IDirectedMultiGraph is a htd::IMultiGraph.

• htd::ITree
This interface is implemented by all tree classes and it allows to access the tree.

Inheritance:

Each htd::ITree is a htd::IGraph.

• htd::IPath
This interface is implemented by all path classes and it allows to access the path.

Inheritance:

Each htd::IPath is a htd::ITree.

The graph classes above only provide read-only methods in order to maintain a proper in-
heritance hierarchy. To illustrate the problem, think about the common statement that any tree
is a graph. On the one hand, when looking at the aforementioned sentence from the read-only
perspective there is no doubt that it is true. On the other hand, when looking at it from the write-
perspective, i.e. when we want to modify the graph, the statement is no longer valid as we cannot
add arbitrary edges to a tree without potentially violating the acyclicity requirement. To circumvent
this problem, each read-only graph class has its mutable counterpart which is denoted by adding
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the character sequence “Mutable” between the capital letter ‘I’ and the remainder of the graph
class name. For instance, the mutable interface for the interface class htd::IHypergraph is
htd::IMutableHypergraph.

The read-only graph classes support the aforementioned inheritance hierarchy (each path is a
tree, each tree is a graph ...) while the mutable graph classes, which extend the immutable ones by
adding the specialized functionality to modify the underlying graph, are not subject to inheritance.

The graph types containing the character sequence “Multi” in their names, that are
htd::IMultiHypergraph, htd::IMultiGraph and htd::IDirectedMultiGraph,
allow edge duplicates while all other graph types assume that edges with the same endpoints (in
identical order) refer to the very same edge instance.

4.2.1 Labeled Graph Types

Furthermore, for each graph type there is also a labeled counterpart which allows to assign custom
labels to the vertices and edges of the graph. One example for a labeled graph type is for instance
the interface class htd::ILabeledTree (with its mutable version htd::IMutableLabeledTree). Using
these two interfaces one can, in addition to the basic functionality provided by the tree classes,
assign arbitrary, customizable labels to the vertices and edges of the tree. The labeled versions of
the other graph types provide analogous functionality for the respective basic type.

4.2.2 Named Graph Types

While standard graph types implemented in htd take integers as identifiers for vertices and edges
in order to save resources, input graphs often use different data types for referencing vertices and
edges. To provide the developer with enough flexibility to use arbitrary data types as identifiers,
htd offers for each graph type a template class which automatically takes care of the efficient
one-to-one mapping between the identifier used in the context of the input graph and the integer
identifiers used by htd. We will subsequently refer to those template wrappers for graph as “named
graph types”.

One example for such a C++ template class representing a named graph type is the
class htd::NamedGraph<std::string,std::string> which wraps an instance of
htd::MutableLabeledGraph in such a way that instead of using an automatically assigned
integer to reference vertices and edges, one can now use a (unique) std::string. Similarly, the class
htd::NamedGraph<int, std::string> allows to use (custom) integer values as vertex
identifiers and strings as edge identifiers. Generally, one can use any data type as identifier which
provides a hash code and which is equality-comparable. The named versions of the other graph
types work in an identical manner for the respective basic type.

4.3 Decomposition Types
Initially, the focus of htd was the efficient computation of tree decompositions only. Nevertheless,
in order to perfectly fit the distinct needs of developers of dynamic programming algorithms, htd
at the current stage of development offers support for four basic types of decompositions:
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• htd::IGraphDecomposition
Graph decompositions are the most general type of decompositions in the context of htd. The
interface offers all possibilities of htd::IMultiHypergraph and extends it by provid-
ing functionality to add a bag information as well as assigning vertex and edge labels. The
bag information in the context of htd is always a sorted vector of vertices from the original
graph from which the decomposition was computed. Note that graph decompositions allow
for multiple edges and disconnected graphs.

Inheritance:

Each htd::IGraphDecomposition is a htd::IMultiHypergraph.

• htd::ITreeDecomposition
While plain graph decompositions represented by the decomposition interface
htd::IGraphDecomposition are basically nothing more than arbitrary graphs
which can take the information about the bag content assigned to a vertex as well as custom
additional labels for all vertices and edges, tree decompositions represented by the interface
htd::ITreeDecomposition offer much more functionality.

For instance, each tree decomposition offers functions to efficiently access its join, intro-
duce and forget nodes. Furthermore, one can use the write-capable extension interface
htd::IMutableTreeDecomposition to manipulate the tree not only by adding chil-
dren to nodes but also by adding parents (useful for creating intermediate nodes), deleting
whole subtrees and the re-attachment of nodes to totally different parents, thus allowing
almost any tree manipulation one can think of.

Inheritance:

Each htd::ITreeDecomposition is a htd::IGraphDecomposition.

• htd::IPathDecomposition
Path decompositions are tree decompositions without join nodes. In order to support this
type of decompositions optimally, htd provides a special interface for path decompositions.
By checking inheritance from this interface, algorithms sometimes can take shortcuts as they
can rely on the fact that each vertex has at most one child.

Inheritance:

Each htd::IPathDecomposition is a htd::ITreeDecomposition.

• htd::IHypertreeDecomposition
The most involved type of graph decompositions currently supported by htd are hypertree
decompositions [Gottlob et al., 2002]. Hypertree decompositions extend the properties of
tree decompositions by additionally adding functionality to retrieve the subsets of hyper-
edges from the input graph which are needed to cover the bag content of the node under
focus.
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Note that, generally, one could also implement this functionality by adding a custom label
to each vertex of a tree decomposition, but by implementing this interface, efficiency can be
increased.

Inheritance:

Each htd::IHypertreeDecomposition is a htd::ITreeDecomposition.

Analogous to the interfaces specific to the graph types, again we distinguish between read-
only and write-capable decomposition interfaces. In the same way as before, the name of the
write-capable interface for the four read-only decomposition interfaces is constructed by adding
the character sequence “Mutable” between the letter ‘I’ and the remainder of the graph class name.
As one example, htd::IMutableTreeDecomposition is the mutable counterpart of the
interface class htd::ITreeDecomposition.

4.4 Decomposition Algorithms
In order to support the aforementioned decomposition types it is necessary for a good code design
to distinguish different types of decomposition algorithms. The following algorithms take an input
graph of type htd::IMultiHypergraph, that is, they can be fed with any graph type htd
supports, and they return a pointer to a decomposition of the corresponding type.

• htd::IGraphDecompositionAlgorithm
This type of algorithm provides the base interface for all decomposition algorithms in the
context of htd. Algorithms implementing this interface partition the input graph and return a
labeled multi-hypergraph of type htd::IGraphDecomposition.

Note that there is generally no guarantee or need that the vertices in the decomposition,
representing the partitions of the input graph, form a single connected component. Therefore
one can implement any decomposition algorithm one can think of using this basic interface
class.

• htd::ITreeDecompositionAlgorithm
The purpose of algorithms implementing this specialized interface is to optimally serve the
needs of dynamic programming algorithms which rely on tree decompositions. In contrast to
the basic decomposition algorithm type htd::IGraphDecompositionAlgorithm,
decomposition algorithms of type htd::ITreeDecompositionAlgorithm are
somewhat more involved. This is caused by the fact that they return labeled trees of type
htd::ITreeDecomposition, thus requiring that the output graph to consist of a single
connected, but cycle-free, component.

Extends:

htd::IGraphDecompositionAlgorithm.
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• htd::IPathDecompositionAlgorithm
When we request that the resulting decomposition is cycle-free and that it must not contain
vertices with more than two neighbors, one is perfectly served using decomposition algo-
rithms of type htd::IPathDecompositionAlgorithm as they return labeled paths
of type htd::IPathDecomposition.

Extends:

htd::ITreeDecompositionAlgorithm.

• htd::IHypertreeDecompositionAlgorithm
In cases where the output of the decomposition algorithm shall be a labeled tree of type
htd::IHypertreeDecomposition, one can use the designated algorithms of type
htd::IHypertreeDecompositionAlgorithm.

Extends:

htd::ITreeDecompositionAlgorithm

Note that each of the interfaces mentioned above can also be called with additional parameters
dedicated to desired manipulations. In cases where these additional parameters are provided, the
decomposition algorithm is required to return a decomposition which fulfills all criteria requested
via the provided manipulation operations. This feature often dramatically reduces implementation
effort and it significantly improves readability and maintainability of the code to be written by the
developer. More details about manipulation operations follow subsequently and examples how to
use (custom) manipulation operations can be found in Section 6.

4.5 Decomposition Manipulation Algorithms
During the design stage of htd, one of the main goals was the ability to customize the re-
sulting decomposition without requiring tedious post-processing work at developer side. For
this reason, htd provides various, built-in manipulation operations and also allows to extend
their functionality easily by implementing the corresponding interface classes which are of type
htd::IDecompositionManipulationOperation.

For each of the decomposition types which htd distinguishes there exists a corresponding,
specialized interface for tailored manipulation operations. The distinction into these specialized
interface classes allows to take advantage of shortcuts potentially originating from the features of
the graph types on which they can be applied, e.g. there are no join nodes in path decompositions,
hence we do not have to handle them.

The manipulation operations can be applied directly by the decomposition algorithms or also in
a post-processing step. In the latter case it is required to cast the read-only decomposition returned
by the decomposition algorithm to the corresponding write-capable one as the manipulation clearly
involves updating information of the decomposition. Supporting the development process and
maintainability of the code, htd currently provides the following built-in manipulation operations:
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• htd::AddEmptyLeavesOperation
It often reduces the effort needed to implement dynamic programming algorithms when it
is guaranteed that leaf nodes always have an empty bag. This is primarily because one does
not need to treat leaves as a special case.

To ensure that a tree or path decomposition has only leaves with empty bags, htd provides
the manipulation operation htd::AddEmptyLeavesOperation which simply adds a new child
with empty bag to each leaf node which does not already have an empty bag.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::AddEmptyRootOperation
This operation ensures that the root node of a tree or path decomposition has an empty
bag. Similar to the operation htd::AddEmptyLeavesOperation, the manipulation
operation htd::AddEmptyRootOperation often helps to reduce the amount of special
cases which one has to think about during development of dynamic programming algorithms.

This becomes apparent when we look at the fact that without empty root one still has to
check correctness of partial solutions by taking into account that the vertices in the root still
have to be forgotten. With empty root, this final check can often be done exactly by the same
procedure as for all other forget nodes.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::AddIdenticalJoinNodeParentOperation
Sometimes it is needed to do some complex post-processing of join nodes which can-
not be done directly in the dynamic programming step belonging to the respective join
node, like it was needed in [Abseher et al., 2016a]. For this purpose, htd offers the
class htd::AddIdenticalJoinNodeParentOperation which ensures that each
join node has a parent node with identical bag content. With this guarantee, one can easily
implement the desired post-processing functionality without having to handle various special
cases.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation
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• htd::CompressionOperation
All built-in implementations of decomposition algorithm in htd guarantee that the resulting
decomposition is minimal in the sense that all bags in the decomposition are subset-maximal,
hence no subsumed bags are contained. Clearly, this guarantee only holds as long as one does
not apply manipulation operations which add nodes with bags subsumed by other nodes’
bags or which manipulate existing bag contents.

Especially for undoing manipulations applied beforehand or in order to compress tree and
path decompositions computed by custom decomposition algorithms, htd provides the class
htd::CompressionOperation which efficiently removes all vertices from the given
decomposition which are not subset-maximal.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::ExchangeNodeReplacementOperation
Exchange nodes are inner nodes of decompositions where some vertices are forgotten and,
at the same time, some vertices are introduced. Sometimes one wants to avoid these
situations and wants to deal with introduce and forget nodes separately in the dynamic
programming algorithm. For this purpose, one can employ the manipulation operation
htd::ExchangeNodeReplacementOperation which replaces each exchange node
with one forget node and one introduce node. In order to keep the width of the decomposition
unchanged, the forget node will be the child node of the introduce node.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::InducedSubgraphLabelingOperation
Although the bag content of a vertex is very important, dynamic programming algorithms
also need the information about the subgraph of the original graph which is induced by the
vertices contained in a bag as this information is the actual part of input data on which the
algorithm operates. Especially for large graphs finding the (hyper)edges which are induced
by the bag content can be extremely expensive.

As we will observe later (see Section 4.7), all built-in decomposition algorithms of htd
already compute this information very efficiently and store the outcome directly in the
resulting decomposition from which it can be accessed easily. Nevertheless, the class
htd::InducedSubgraphLabelingOperation allows to automatically add an ad-
ditional label to each decomposition node containing the set of induced edges. This is espe-
cially useful to efficiently compute the set of induced edges when a custom decomposition
algorithm does not expose this information directly.
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Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::IntroducedSubgraphLabelingOperation
An (hyper)edge of the input graph is relevant for many dynamic programming algorithm
especially at the time when it is introduced, i.e., when all its endpoints occur together in a
bag for the first time in a branch of a given tree decomposition.

To assign a vertex label containing information about the set of introduced (hyper)edges
to each node of the tree decomposition, one can use the manipulation operation
htd::IntroducedSubgraphLabelingOperation.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::JoinNodeNormalizationOperation
Join nodes can be very complex to handle in dynamic programming algorithms when the
children’s bags differ from the respective parent node’s bag. Especially in the early stages of
the development of dynamic programming algorithms but also later on it can be very useful
to have the guarantee that join nodes and their children share the same bag content. For this
purpose, htd offers the class htd::JoinNodeNormalizationOperation.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

• htd::JoinNodeReplacementOperation
It is assumed that path decompositions are to be preferred over tree decomposi-
tions with join nodes when the width is equal, but also when the width is only
slightly worse it can pay off to forgo join nodes. For this purpose, htd offers
htd::JoinNodeReplacementOperation. This manipulation operation takes a tree
decomposition as input and replaces join nodes by re-arranging and combining their children
in an intelligent manner, so that the increase of the width is reduced.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation
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• htd::LimitChildCountOperation
Due to the fact that joins, in many cases, can be carried out more efficiently when
the number of children per join node is bounded, htd offers the manipulation operation
htd::LimitChildCountOperation which limits the number of children per node
to a pre-definable upper bound. This is achieved by adding intermediate nodes with bag
content identical to the join node under focus and distributing the supernumerous children
properly among these additional intermediate nodes.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

• htd::LimitMaximumForgottenVertexCountOperation
Depending on the actual implementation of the dynamic programming algorithm which
operates on the basis of the computed decomposition, it sometimes can be beneficial to
have a known upper bound for forgotten vertices in order to carry out some steps of
the algorithm more efficiently. Also for debugging purposes it is often very useful to
have only small changes between neighboring nodes of the decomposition and hence it
would be great to have a built-in manipulation to actually achieve this goal efficiently.
The class htd::LimitMaximumForgottenVertexCountOperation serves ex-
actly this purpose.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::LimitMaximumIntroducedVertexCountOperation
Analogous to the aforementioned manipulation operation which allows to limit the
maximum number of forgotten vertices for each decomposition node, the built-
in class htd::LimitMaximumIntroducedVertexCountOperation implements
functionality to limit the maximum number of introduced vertices for each node of the de-
composition.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::TreeDecompositionOptimizationOperation
This is probably the most involved manipulation operation currently implemented in htd. It
allows to automatically change the root of a given tree so that the outcome of a provided
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fitness function is maximized. Using this operation, one can easily get a customized decom-
position in a few lines of code without having to touch other portions of the code.

Although the operation at hand is a rather complex and powerful one, it is geared towards
performance and it is fully compatible with other manipulations, that is, the algorithms be-
hind htd::TreeDecompositionOptimizationOperation will optimize the tree
decomposition considering all desired manipulation operations.

For even better controllability of the optimization operation one can use different vertex
selection strategies to filter the vertices which shall be considered as new root node. This
allows to improve performance especially for large decompositions as there is no need to
exhaustively check for all vertices in the tree decomposition if they are the optimal root
node. Clearly, the built-in collection of vertex selection strategies can be easily extended by
developers by implementing the corresponding, simple interface.

A detailed explanation of this operation is given in Section 6.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

• htd::ILabelingFunction
This interface is used by decomposition manipulation operations which generate labels for
a corresponding bag. Labeling functions take an input graph of type htd::IMultiHypergraph
and a sorted set of vertices, representing the bag content of a decomposition node, and they
return a new label of type htd::ILabel. The actual data type of the value of the returned label
is dependent on the implementation of the respective labeling function class. Generally, one
can use any data type supported in C++.

For convenience, one can access the concrete label value via the template function
htd::accessLabel which takes a template argument representing the data type of the label
value as well as a reference to the label and it returns the concrete label value in the given
data type.

Note that when a labeling function is provided to a decomposition algorithm, the labeling
function will be applied automatically to each vertex of the resulting decomposition. This
makes using custom labels on the one hand very easy and on the other hand it ensures highest
efficiency and maintainability of the code.

Implements the following interfaces:

– htd::IDecompositionManipulationOperation

Also here, the list can be extended easily with own algorithms by implementing the desired
interface(s) mentioned above. One only has to take care that the manipulation operation does not
violate the properties of the decomposition on which it is applied, i.e., the decomposition must stay
valid after the manipulation is applied, otherwise it will break the functionality of the algorithms
which use the modified decomposition.
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4.6 Decomposition Normalization Algorithms
While the manipulation operations described in Section 4.5 are dedicated to exactly one task per
operation class, one sometimes requires more complex manipulations. One example is for instance
making a given tree decomposition nice. This would involve the combination of many of the
aforementioned basic manipulation operations. We refer to such complex manipulations which
are generated by combining simpler manipulation operations by the term “normalizations”. For
convenience, htd offers the following built-in normalizations:

• htd::WeakNormalizationOperation
When each join node of a tree decomposition only has children with a bag content identical
to the bag content of the respective join node under focus, we call such decompositions
weakly normalized.

When we want to obtain a decomposition which fulfills this criterion, one can use
the manipulation operation of type htd::WeakNormalizationOperation. Ad-
ditionally, one can specify that the root node and/or all leaf nodes of the de-
composition shall be empty. The manipulation operation at hand efficiently com-
bines the manipulation operations htd::JoinNodeNormalizationOperation,
htd::AddEmptyRootOperation and htd::AddEmptyLeavesOperation, the
last two of them being optional.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::SemiNormalizationOperation
Semi-normalized tree decompositions in the context of htd are tree decomposition where
each of its join nodes has exactly two children with the same bag content as the respective
join node. Hence, the manipulation operation htd::SemiNormalizationOperation
extends the class htd::WeakNormalizationOperation by combining it with the
manipulation operation htd::LimitChildCountOperation with a child limit of 2.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::NormalizationOperation
Sometimes one wants to work in the dynamic programming algorithm with a fully normal-
ized (nice) decomposition, that is a tree (or path) decomposition where join nodes and their
children have the same bag content and the bag contents between adjacent non-join nodes
differ in at most one element.
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Specifically for this purpose, htd offers the class htd::NormalizationOperation
which extends the class htd::SemiNormalizationOperation by combining it
with the manipulation operations htd::ExchangeNodeReplacementOperation,
htd::LimitMaximumForgottenVertexCountOperation (with a vertex limit of
1) as well as htd::LimitMaximumIntroducedVertexCountOperation (with a
vertex limit of 1).

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

4.7 Useful Additional Functionality
An efficient way to compute tree decompositions is a very important ingredient of an application
based on dynamic programming. While this is a widely accepted statement, a tree decomposition
alone often is rather worthless as long as there is no way to efficiently retrieve the information
stored in it. For this reason, htd offers a wide range of utility functions. A small selection of them
is given in the following list:

• Easy Retrieval of Induced Subgraph Information

Maybe one of the most unique features of htd in contrast to other tree decomposition frame-
works is the fact that all implementations of graph decomposition algorithms which are
implemented in htd automatically compute for each bag of the decomposition the subgraph
of the input graph which is induced by the respective bag content. By using the function
called “inducedHyperedges” one can easily and with almost no cost obtain the hyperedges
which are induced by the bag with the given ID. This can lead to a significant boost in terms
of performance as input graphs can have millions of edges and so doing a subset check for
each of them in each bag can be very expensive.

• Tree and Graph Traversal Algorithms

Due to the fact that they are in many cases easier to develop, describe and to implement,
graph traversal algorithms often use recursion. A big issue with recursion is the fact that as
soon as the graphs reach a certain size, the proper operation of practical implementations is
no longer guaranteed as the stack is no longer capable of holding the information needed by
the recursive function calls. Therefore and also because we think, a developer shall not have
to re-invent the wheel, we provide the following interfaces and algorithms in htd:

Built-In Implementations of htd::IGraphTraversal:

The following two algorithms, the first one implementing breadth-first and the second one
depth-first traversal, traverse a graph beginning from a custom starting vertex and take a
lambda expression which is called for each visited vertex with the information about the
vertex at hand, its predecessor during the traversal and its distance from the starting vertex.
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In this way, one can easily determine even complex characteristic numbers (like the diameter)
of the graph which is traversed.

– htd::BreadthFirstGraphTraversal

– htd::DepthFirstGraphTraversal

Built-In Implementations of htd::ITreeTraversal:

The interface htd::ITreeTraversal extends htd::IGraphTraversal and is
dedicated to trees. Here, the predecessor of a vertex is always identical to its parent. Hence,
there is no need to spend time for looking up the parent of the vertex currently visited as it
is provided for free to the lambda expression. Note at this point that the parent of the root
node in the context of htd is the “undefined vertex“ referenced by the ID 0. The following
three tree traversal algorithms are currently implemented in htd:

– htd::InOrderTreeTraversal

– htd::PreOrderTreeTraversal

– htd::PostOrderTreeTraversal

• Connected Component Algorithms

Sometimes it can be beneficial to pre-process a given input graph before decomposing it.
Depending on the actual application scenario, one possibility of pre-processing a graph is
by investigation of its (strongly) connected components. The following interfaces and their
implementations help to implement such a pre-processing step effectively and efficiently:

Built-In Implementations of htd::IConnectedComponentAlgorithm:

– htd::DepthFirstConnectedComponentAlgorithm

This algorithm for determining connected components is based on depth-first search
and internally uses the class htd::DepthFirstGraphTraversal. Again, the use of recursion
is avoided which allows to handle graphs of (almost) arbitrary size.

Built-In Implementations of htd::IStronglyConnectedComponentAlgorithm:

– htd::TarjanStronglyConnectedComponentAlgorithm

This class implements Tarjan’s algorithm for determining the strongly connected com-
ponents of direct graphs which is described in [Tarjan, 1972]. The implementation of
the algorithm is fully iterative, allowing to handle graphs of (almost) arbitrary size.

4.8 Implementation Guidelines
The following section is a short guide to the most important design rules to which the interfaces
and algorithms in htd conform. Especially when developing own algorithms one should read these
coding guidelines carefully and follow them in order to avoid breaking functionality.
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Class Names Due to the fact that C++ does not use a special keyword for discriminating inter-
faces from (abstract) classes we define that each class name starting with the the capital letter “I”
followed by another capital letter is considered an interface, i.e., a class with pure virtual functions
only.

Function Arguments and Return Types Whenever a function receives a reference which is
not modified this reference is marked as “const”. Conversely, when a reference is not marked as
“const” one can assume that the object will be modified inside the function and one should be
careful in cases where it is desired to keep an unmodified variant of the input object. Similarly,
when a function returns a reference, one is free to modify the underlying object.

One crucial point is the memory management in cases where function receive and/or return
pointers to objects. In cases where the function argument is a non-const pointer, the function is
required to take over control over the memory region. That is, the function must take care that
the memory region is properly freed. This also applies to functions which take collections of non-
const pointers. When a function returns a non-const pointer, one must free the resources after using
them. Note that functions receiving a const-pointer will not free the pointer, so one must take care
of freeing the resources.

WARNING: You must not free the memory of const-pointers returned by functions, you must
not provide the same non-const pointer multiple times as a function argument and you must not
free objects which were given to a function via a non-const pointer outside the respective function
boundaries as this will probably lead to memory corruptions.

To be on the safe side, don’t access or modify to object to which the non-const pointer points
after it was used as a function argument. In order to re-use it, one can easily create a deep copy of
almost all classes in htd via their appropriate clone() method.

Type Conversions and Casts Note that its a safe operation to up-cast from a read-only graph or
decomposition type to the corresponding write-capable one. That is, one can use the dynamic cast
function provided in the C++ language specification to convert, for instance, a pointer or reference
to htd::IGraph to a pointer or reference to htd::IMutableGraph. This convertibility
must also be guaranteed by custom implementations in order to avoid breaking the functionality of
algorithms.

WARNING: This conversion is only a safe and permitted operation for directly
corresponding interfaces, i.e., although each htd::ITreeDecomposition is a
htd::IMultiHypergraph one cannot cast a htd::ITreeDecomposition to a
htd::IMutableMultiHypergraph. This is clearly neither possible nor permitted as
hypergraphs allow cycles and trees do not.

5 Algorithm Engineering
During the development of htd, a lot of time was spent on implementing, extending and optimizing
the algorithms which contribute to the library. The extension of (existing) algorithms was needed
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to be able to incorporate all customization capabilities of htd and the optimization is needed to be
able to efficiently deal with large input graphs.

Subsequently, we will discuss in detail our approach how to accelerate the most-crucial parts
for computing tree decompositions in the context of htd, namely the algorithm for computing the
Min-Fill vertex elimination ordering and the algorithm for computing the actual tree decomposition
via Bucket Elimination [Dechter, 1999; McMahan, 2004; Schafhauser, 2006]. We chose these two
algorithms for presentation here as they represent well-established techniques and we want to
share our findings in order to speed up development of implementations of Min-Fill and Bucket
Elimination in future projects.

5.1 Accelerating Min-Fill
Min-Fill is a prominent heuristic for computing vertex elimination orderings which often produces
good results, i.e., tree decompositions of low width, in practice [Koster et al., 2001]. Like any
greedy triangulation algorithm, Min-Fill follows the schema that, given an input graphG = (V,E),
in each iteration a vertex v ∈ V is chosen based on a given criterion and then a clique incorporating
all of v’s neighbors is formed in G by adding the so-called fill edges. The vertex v is then removed
from G and stored in the next position of the resulting ordering. These simple steps are repeated
until G finally is empty.

In the case of Min-Fill, the criterion for selecting the vertex to be removed is the following: In
each iteration, we select and eliminate the vertex which requires the least amount of fill edges to
be added in order to form a clique of all its neighbors. As, in general, there are multiple vertices
with the same amount of required fill edges, ties are broken randomly.

Figure 2 shows an example input graph for the Min-Fill graph triangulation algorithm. The
vertex labels denote the number fill value of the corresponding vertex. For instance, Vertex a has a
fill value of 2 as we need two additional edges, namely (b, d) and (b, e), in order to create a clique
containing all of a’s neighbors which are given by the vertices named b, d and e.

a

2

b

3
c

1

d1 e 1

f

2

g

3

h

1

Figure 2 Example Input Graph for Min-Fill
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The pseudo-code of the Min-Fill heuristic is shown in Algorithm 1. Note that, although our
definition of triangulation algorithms given before refers to graphs, the pseudo-code in Algorithm 1
takes an arbitrary (constraint) hypergraph as input. This is a valid move because we can easily
transform any (constraint) hypergraph to its corresponding primal graph by introducing an edge
between each pair of vertices in a hyperedge.

Input: A (constraint) hypergraphH = (V,H)
Result: A vertex elimination ordering σ = {σ1 . . . σn} of the vertices in V

1 Let G = (V,E) be the primal graph ofH.

2 σ ← []; // List σ is initially empty.

3 while G is not empty do
/* Ties are broken randomly! */

4 Select a vertex vx ∈ V whose elimination requires the least amount of edges to be added;

/* Add necessary fill-in edges. */
5 neighbors ← ({v | (vx, v) ∈ E} ∪ {v | (v, vx) ∈ E}) \ {vx};
6 for v1 ∈ neighbors do
7 for v2 ∈ neighbors do
8 if (v1, v2) /∈ E then
9 E ← E ∪ {(v1, v2)};

10 end
11 end
12 end

/* Remove vx from G. */
13 V ← V \ {vx};
14 E ← E \ {(vx, v) | (vx, v) ∈ E} ;
15 E ← E \ {(v, vx) | (v, vx) ∈ E} ;

16 Append vx to σ;
17 end

18 return σ;
Algorithm 1: Min-Fill (Simple Pseudo-Code)

Basically, the pseudo-code does not tell us how to efficiently determine the fill value of a vertex.
By the term fill value we refer to the amount of fill edges that need to be added in order to form
a clique incorporating all neighbors of the respective vertex. Subsequently we will give detailed
insights on how to accelerate the computation of a Min-Fill vertex elimination ordering.

First, let us define the data structures which the algorithm will rely on and fix the notation we
will use throughout the following explanation: As underlying data structure for storing the graph
we use a simple adjacency list. Additionally we maintain a dictionary which holds the current fill
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value for each vertex which is not yet removed and we maintain set of vertices which we refer to
as the pool and which contains all vertices with minimum fill value.

We define that, given a graphG = (V,E), the (one-hop) neighborhoodN1(v) of a vertex v ∈ V
is represented by the set {vx|(vx, v) ∈ E}∪{vx|(v, vx) ∈ E}∪{v} and the two-hop neighborhood
N2(v) of a vertex v ∈ V is given by the set N1(v) ∪ (

⋃
vx∈N1(v)

(vy|(vy, vx) ∈ E} ∪ {vy|(vx, vy) ∈
E})). That is, N1(v) contains all vertices which are reachable from v in at most one hop andN2(v)
contains all vertices which are reachable from v within not more than two hops. Based on these
definitions, we define the following notions with respect to a removed vertex vr ∈ V :

Definition 3. For a vertex v ∈ N2(vr), we call the vertices in Ne(v) = (N1(v)∩N1(vr))\{vr} the
existing neighbors of v. Furthermore, we call the vertices Nu(v) = N1(v) \N1(vr) the unaffected
neighbors of v and we refer to Na(v) = (N1(vr) \N1(v)) \ {vr} as the additional neighbors of v.
Indeed, Ne(v) ∪ Nu(v) ∪ Na(v) ≡ N(v) \ {vr} holds and the sets are disjoint, that is, existing,
unaffected and additional neighbors of v form a partition of v’s neighborhood with vr removed.

The intuition behind the terms existing, unaffected and additional vertex is the following: The
existing vertices of a vertex v are those vertices which are directly manipulated, i.e., the vertices
whose neighborhood will be updated. The additional vertices are those vertices which are to be
added to the neighborhood of v in order to create a clique between the neighbors of vr and the
unaffected vertices are those neighbors of v which are not adjacent to vr. Note that Na(v) = ∅
holds for all vertices v ∈ N2(vr) \N1(vr) where vr is the vertex eliminated in the current iteration.
This is because of the fact that only vertices which are direct neighbors of the eliminated vertex vr
will potentially get additional neighbors due to the creation of the clique.

As mentioned before, in order to perform the selection step in Line 4 of Algorithm 1 efficiently,
we decide to keep track of the fill value of each vertex by storing it in a dictionary data structure
which allows for fast lookup. That is, instead of computing the fill value of a vertex from scratch
in each iteration, we just update the fill value accordingly. In this way, we can easily manage a
pool of vertices which currently have the lowest fill values without having to re-compute the same
information over and over for vertices which were not affected in a previous iteration. From this
pool of vertices with minimum fill value we can then simply select a vertex at random in order to
perform the next iteration.

To illustrate how to efficiently compute the necessary fill value changes, we refine the pseudo-
code provided in Algorithm 1. The enhanced version of the pseudo-code is given in Algorithm 2.
While the procedures of eliminating a vertex and adding it to the ordering stay unchanged, the
extended algorithm now illustrates how one can easily update the fill value of those vertices (and
only of those vertices) which are affected by a vertex elimination step.

In the first iteration of the algorithm, we need to compute the actual fill value for each ver-
tex. With this information we can initialize the variables fill, minfill and pool (see Line 6 of
Algorithm 2). After doing so we never need to compute the full fill value of a vertex again. We
completely rely on updating the fill values as this significantly improves performance in practice.
This is based on the fact that for updating the fill value it often suffices to consider at most two out
of the three partitions – Ne(v), Nu(v) and Na(v) – of the neighborhood relation.
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Input: A (constraint) hypergraphH = (V,H)
Result: A vertex elimination ordering σ = {σ1 . . . σn} of the vertices in V

1 Let G = (V,E) be the primal graph ofH.

2 σ ← []; // List σ is initially empty.
3 fill ← []; // The dictionary for the fill value of each vertex.
4 pool ← ∅; // The set of vertices with minimum fill value.
5 minfill ←∞; // The minimum fill value.

6 Initialize fill , minfill and pool based on G.

7 while G is not empty do
8 if pool == ∅ then
9 Initialize minfill and pool based on fill.

10 end
11 Select randomly a vertex vx ∈ pool ;

12 if fill [vx] == 0 then
13 for v ∈ N1(vx) \ {vx} where fill [v] > 0 do
14 fill [v]← fill [v]− |N1(v) \N1(vx)|;
15 end
16 else
17 for v ∈ N1(vx) \ {vx} do
18 fill[v]← updateNeighbor(G, vx, v, fill[v]);
19 end
20 for v ∈ N2(vx) \ ({vx} ∪ {u|u ∈ N1(vx), Nu(u) == ∅ || Na(u) == ∅}) do
21 for u ∈ Ne(v) do
22 fill [v]← fill [v]− |{t|t ∈ Ne(v), t > u} ∩Na(u)|;
23 end
24 end
25 end

26 Add necessary fill-in edges;
27 Remove vx from G;
28 Append vx to σ;
29 end
30 return σ;

Algorithm 2: Min-Fill (Verbose Pseudo-Code)

In Lines 8–10 of Algorithm 2 we update the pool if it is empty. This can occur whenever the
last vertex with fill value equal to minfill was eliminated in the iteration before or when the all
vertices which were in the pool in the iteration before got updated to a fill value which is higher
than minfill . Note that we omit in Algorithm 2 the code for updating the pool content and the
value of minfill due to space reasons. Basically, whenever the fill value of a vertex is updated, also
the pool and, potentially, also the value minfill need to be updated.
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In Lines 12–15 of Algorithm 2 the case is handled in which the eliminated vertex vx has a fill
value of 0, that is, all its neighbors already form a clique. In this case, we can simply subtract the
amount of unaffected neighbors Nu(v) from the fill value of each neighbor v of vx. This update is
sufficient because v does not have any additional neighbors (because the neighbors of vx already
form a clique) and the existing neighbors of v do not contribute to its fill value (for the same
reason). Hence, a change of the fill value of v can be only be caused by the fact that now all
missing edges between vx and v’s neighbors are no longer relevant after the elimination of vx.

More interesting is the case in which the fill value of the eliminated vertex is greater than 0.
In those cases we first enter the loop at Lines 17–19 of Algorithm 2 for each neighbor of the
eliminated vertex vx. To update the fill value of these vertices, we use Algorithm 3. This helper
algorithm takes as input an undirected graph, the eliminated vertex vx, the vertex v whose fill value
shall be updated and the old fill value of v. The result of the algorithm is the new fill value of v
after eliminating vx.

Input: An undirected graph G = (V,E)
A vertex vr ∈ V which is eliminated in the current iteration
A vertex v ∈ V whose fill value shall be updated
The old fill value f of v

Result: The new fill value of v

1 if |Nu(v)| > 0 then
2 if |Na(v)| > 0 then
3 f ← f + (|Na(v)| − 1) ∗ |Nu(v)| −

∑
u∈Na(v)

|Nu(u) ∩Nu(v)|;
4 else
5 f ← f − |Nu(v)|;
6 for u ∈ Ne(v) do
7 f ← f − |{t|t ∈ Ne(v), t > u} ∩Na(u)|
8 end
9 end

10 else
11 f ← 0;
12 end

13 return f ;
Algorithm 3: Procedure updateNeighbor for Algorithm 2

In the case where there are no unaffected neighbors of v, Algorithm 3 will simply return 0
as the new fill value because after the elimination of vx all of v’s neighbors will be together in a
clique. When there exists at least one unaffected neighbor of v, we distinguish two cases: When
there exist, additional neighbors of v, we update the fill value of v according to the formula shown
in Line 3 of Algorithm 3. That is, we first increase its fill value by the maximum amount of edges
that can exist between the additional and the unaffected vertices and then we subtract the amount
of existing edges between the additional and unaffected vertices.
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In the second case, that is, when v has some unaffected but no additional vertices, we first
subtract the amount of unaffected neighbors from v’s fill value because vx is a neighbor of v and
the missing edges between vx and the unaffected neighbors no longer matter. Then we iterate over
all u ∈ Ne(v) and subtract the size of the set intersection of all additional vertices of u and of all
existing neighbors of v greater than u. By taking only vertices greater than u into consideration, we
do not count any edge twice. In this way, we can efficiently compute the amount of edges between
the existing neighbors of v which were missing but which are to be added due to the construction
of the clique between the neigbors of vx.

This brings us back to Lines 20–23 of Algorithm 2. In this loop, we iterate over all two-hop
neighbors of the eliminated vertex vx excluding vx and which are either not directly adjacent to vx
or which have both unaffected and additional neighbors. That is, we consider again those two-hop
neighbors vx which are also direct neighbors and which were handled by Line 3 of Algorithm 3.
This helps to avoid redundant code and can easily be achieved by maintaining a dictionary holding
a status value of the neighbors of vx. Line 22 of Algorithm 2 follows the same idea as Line 7 of
Algorithm 3. All what remains in an iteration of the Min-Fill algorithm is to add the necessary
fill-in edges, remove vx from the graph and append it to the ordering.

Note that one can achieve additional improvements by keeping track of the total fill value – the
sum of all fill values – and abort the main loop earlier when this counter reaches 0. This is possible
because a total fill value of 0 implies that the remaining graph is a clique. The ordering can then
be completed by appending the vertices in the remaining graph in arbitrary order.

5.2 Extending Bucket-Elimination
Bucket elimination [Dechter, 1999] was originally presented as a unifying framework for reason-
ing. Based on this concept, we can easily compute a tree decomposition of a given input hypergraph
as shown in Algorithm 4. The pseudo-code in Algorithm 4 was presented in [McMahan, 2004;
Schafhauser, 2006] and it illustrates the process of computing a tree decomposition when given a
input hypergraph and a corresponding vertex elimination ordering. The algorithm first creates an
empty bucket for each vertex of the input graph (Line 2) and then it proceeds by initializing the
bags based on the (hyper-)edges which are contained in the graph (Lines 3–6). This happens by
assigning the vertices of a given hyperedge h to the bucket which corresponds to the lowest ranked
vertex in h with respect to the given elimination ordering σ. Afterwards we have to iterate over the
vertex elimination ordering σ in order to obtain the complete content of each bucket and the edges
between the buckets by which the final tree is constructed (Lines 7–12).

Subsequently, we propose an extension of Algorithm 4 which can be extremely helpful for the
development of dynamic programming algorithms. For dynamic programming on tree decompo-
sitions we need always need the information about the (hyper-)edges which are induced by a bag.
A naive approach where we check in each bag of the tree decomposition the induced edges soon
becomes a bottleneck when the input graph contains thousands of edges. To overcome this issue,
we use the following trick in htd, so that all the work is done directly by the Bucket Elimination
procedure:
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Input: A (constraint) hypergraphH = (V,H)
A vertex elimination ordering σ = {σ1 . . . σn} of the vertices in V

Result: A tree decomposition 〈T, χ〉 ofH

1 E = ∅;

2 Create an empty bucket Bσi for each vertex σi ∈ σ: χ(Bσi)← ∅.

3 for h ∈ H do
4 Let v be the vertex in h which is ranked at lowest position in σ among all vertices in h;
5 χ(Bv)← χ(Bv) ∪ vertices(h);
6 end

7 for i ∈ {1..n} do
/* Create temporary vertex set A based on bucket Bvi. */

8 Let A = χ(Bvi) \ {vi};
/* Determine lowest ranked vertex in A based on σ. */

9 Let vj ∈ A be the next in A following vi in σ;
10 χ(Bvj) = χ(Bvj) ∪ A;
11 E = E ∪ {(Bvi , Bvj)};
12 end

13 return 〈(B,E), χ〉 where B = {B1 . . . Bn};
Algorithm 4: Bucket Elimination

In fact, at Line 5 of Algorithm 4 we can store the target bucket of a (hyper-)edge, that is, we
can use a dictionary which for each (hyper-)edge holds the bucket in which it is fully contained.
The speedup comes from the fact that while finding the first bucket in a given tree decomposition
in which an edge is contained can be tedious, internally in the context of the Bucket Elimination
algorithm we get this valuable information for free.

After implementing this small change, all that remains in order to find the induced edges for
each bag is to start for each edge in the input graph a kind of depth limited search in the tree
decomposition starting from the target bag of the edge. The limit in this case is given by the bucket
where the edge is no longer fully contained. That is, we follow a branch until we reach a bag which
does no contain the edge as a whole any more and then we backtrack, instead of backtracking as
soon as a certain depth is reached.

6 htd at Work
In this section we will have an in-depth look at how to use htd optimally in different situations and
how to adapt it according to the actual needs. The focus of this explanation is not only to introduce
the developer to the concrete classes and interfaces which can be useful for implementing dynamic
programming algorithms but also to shed some light at the interplay between them. This section
will first cover details on loading input data and then we will have a detailed look on how to

34



a
b

c
d

{a, b, c} {c, d}

{c}

∅

Figure 3 Example graph and a possible tree decomposition.

i c d C ext.
0 o o 0 -
1 d i 1 -
2 i d 1 -
3 i i 2 -

i a b c C ext.
0 o o o 0 -
1 d d i 1 -
2 d i d 1 -
3 d i i 2 -
4 i d d 1 -
5 i d i 2 -
6 i i d 2 -
7 i i i 3 -

i c C ext.
0 d 2 {(2, 1), (4, 1)}
1 i 1 {(1, 2)}

i C ext.
0 1 {(1)}

Figure 4 Solving MINIMUM DOMINATING SET via DP for the problem instance in Figure 3.

customize the way decompositions. Finally we will make use of htd’s utility functions to show
how the information stored in the resulting decomposition can be efficiently incorporated in the
dynamic programming algorithm.

6.1 The Dynamic Programming Algorithm
For the remainder of this section, let’s assume that we want to solve the MINIMUM DOMINATING

SET problem via dynamic programming on tree decompositions. That is, we try to find cardinality-
minimal subsets S ⊆ V of a graph G = (V,E) such that each vertex v ∈ V is either contained in
S or adjacent to at least one vertex in S. Furthermore, assume that we are interested in determining
the complete set of all such solutions.

Figures 3 and 4 illustrate our example problem by mean of a simple input graph, a possible
tree decomposition of the input graph and the corresponding dynamic programming tables. Note
that the decomposition is of minimal width but not optimal, as we could simply omit the join node
and the empty root node and directly connect the two leaf nodes of the given decomposition and
obtain a smaller one without join nodes. Nevertheless, for explanatory purposes we stick with the
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tree decomposition shown at the right-hand side of Figure 3.
In Figure 4 we can then see the dynamic programming tables for each node of the given tree

decomposition. Each row within a table is identified by its index i. Furthermore, each table row
stores the value assigned to each vertex contained in the corresponding bag, its total cost C and the
extension pointer tuple which tells us from which child row(s) the current row originates. For the
problem of MINIMUM DOMINATING SET the values which can be assigned to a vertex are i (the
vertex is contained in S), d (the vertex is not contained in S but adjacent to at least one vertex in
S) and o (the vertex is neither contained in S nor a neighbor of a vertex which is element of S).

To ensure correctness during the bottom-up traversal of the tree decomposition, a row may
extend only compatible child rows. Rows are compatible if and only if all vertices which are part
of the child bag but not of current bag have a value of either i or d. Furthermore, in join nodes, two
child rows (from two different tables) are compatible if and only if the projection of the respective
child row to the vertices in the current bag agrees on the vertices that carry the assignment i. Note
that the value d dominates the value o, that is, if in a join node a table row of the child assigns
the value d to a vertex and a compatible table row in another child assigns the value o to the same
vertex, the assignment of the resulting table row is d. This is because it is sufficient for a vertex to
be neighbor of a single vertex in S and, obviously, this vertex was already forgotten.

The cost of a row is computed by summing up the number of introduced vertices assigned the
value i and the cost of the child row from which the row originates. In leaf nodes, the cost of a
row is equal to the number of vertices with value i. In join nodes, we have to follow the inclusion-
exclusion principle to avoid counting the same vertex multiple times. To do so, we simple sum up
the costs of all child table rows which are extended by the current row and subtract the product of
the number of children minus 1 and the number of vertices in the current bag which are assigned
the value i. Clearly, as we are interested in the cheapest solution(s), in cases where table rows
coincide, we only need to extend the cheapest one of them.

When we follow this schema, we obtain exactly the tables shown in Figure 4. After we have
computed all the information about table rows we can construct a solution simply by following
the extension pointers starting from the root node down to the leaves. In our example, we can see
that the only optimal solution is to select S = {c}, as by selecting c we automatically dominate all
other vertices of the input graph.

6.2 Loading the Input Data
In general, there are many ways to parse input data and even the origin of the data stream from
which to read may vary between different scenarios. For the following example code we assume
that the input is stored in files conforming to the following variant of DIMACS graph format which
is also used as the official input format of Track A of the “First Parameterized Algorithms and
Computational Experiments Challenge 2016” (“PACE16”, see https://pacechallenge.
wordpress.com/track-a-treewidth/):

• The file starts with a header matching the pattern “p tw Vertices Edges”, where the place-
holder Vertices represents the number of vertices of the input graph and Edges is a place-
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holder for the number of edges which are contained in the input graph. The vertices are
numbered between 1 and Vertices .

• All lines starting with the letter ‘c’ are treated as comments.

• Each remaining line (there must be exactly Edges such lines) represents an edge. An edge
information consists of exactly two vertex identifiers (numbers between 1 and Vertices)
separated by a single space.

Subsequently we will sketch how one can simply and effectively create a new instance of
htd::IMultiGraph which contains all relevant information of a given input graph. Note that
the following C++ code snippets are not optimized and that we omit error handling here for brevity.
An efficient implementation for parsing input files of the aforementioned format, also containing
error handling routines, is provided via the class htd::GrFormatImporter which can be
found in the folder “src/htd main” located in the main folder of the htd project.

The project htd main, which is providing a command-line executable for the htd project, also
contains a collection of other useful classes allowing to import additional, often-used graph types.
These classes can act also as a starting point for the development of custom importers.

To come back to our example, let’s assume that there exists a pointer to an object of type
htd::LibraryInstance called “manager” and assume furthermore that we already parsed
the first non-comment line of an input file in the aforementioned format. At this point, we already
know the total amount of vertices the new graph will contain and we can store it in the variable
Vertices . With this information we can then create a new instance of the desired graph type using
the code shown in Listing 4.
/ / Get a new i n s t a n c e o f t h e d e f a u l t m u l t i−graph i m p l e m e n t a t i o n .
h t d : : I M u t a b l e M u l t i G r a p h ∗ g =

manager−>m u l t i G r a p h F a c t o r y ( ) . g e t M u l t i G r a p h ( V e r t i c e s ) ;

Listing 4 Creating a new instance of htd::IMutableMultiGraph (Variant 1).

Another way of achieving the same result, that is creating a new graph instance of non-zero
size, is shown in Listing 5. While the code in Listing 4 automatically initializes the graph to the
requested size, the second variant first creates an empty graph and afterwards adds the desired
number of vertices to it via a bulk operation. In both cases, the created vertices are numbered
between 1 and Vertices . When the method addVertices is called repeatedly, the range of the
newly inserted vertices starts from the last vertex identifier + 1. Alternatively, if it is needed to add
a single vertex to a graph, one can use the method addVertex. To add a vertex to a tree or path,
htd offers the methods insertRoot (for creating the first vertex of the tree or path), addChild
and addParent. Note that the creation and initialization of all other (labeled) graph types and
decomposition types works analogously.
/ / Get a new , empty i n s t a n c e o f t h e d e f a u l t m u l t i−graph i m p l e m e n t a t i o n .
h t d : : I M u t a b l e M u l t i G r a p h ∗ g =

manager−>m u l t i G r a p h F a c t o r y ( ) . g e t M u l t i G r a p h ( ) ;
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/ / Add a l l v e r t i c e s t o t h e graph
g−>a d d V e r t i c e s ( V e r t i c e s )

Listing 5 Creating a new instance of htd::IMutableMultiGraph (Variant 2).

In our example, after the graph is properly initialized to the right size one can simply go ahead
and for each edge with endpoints V1 and V2 which is read from the input file we call the code
shown in Listing 6.
/ / Add a new edge w i t h t h e two e n d p o i n t s V1 and V2 .
h t d : : i d t e dg e Id = g−>addEdge ( V1 , V2 ) ;

Listing 6 Creating a new edge.

Note that for adding hyperedges, one can also use the method addEdge and call it with a
vector or any other collection instead of the two endpoints shown in the example code. The function
always returns the ID of the corresponding edge. For graph types which do not allow duplicate
edges, the function returns the ID of the unique edge with the same endpoints.

6.3 Decomposing the Input Graph
After the input file is parsed successfully, we can now decompose the graph. As already mentioned,
htd supports a variety of decomposition types together with their corresponding decomposition
algorithms. As the general schema for obtaining a decomposition of a given graph in htd is very
similar for all decomposition types, we pick here the example of a “plain” tree decomposition of
type htd::ITreeDecomposition.

If we just need a simple tree decomposition we can use the code from Listing 7 and we will
obtain a non-normalized tree decomposition where each bag is subset-maximal with respect to the
other bags in the same decomposition. As mentioned earlier, the algorithms in htd are required to
be able to deal with empty and disconnected input graphs. This means that one can feed them any
input graph and the result will be a valid decomposition of the requested type.
/ / Ob ta in a new i n s t a n c e o f t h e d e f a u l t t r e e d e c o m p o s i t i o n a l g o r i t h m .
h t d : : I T r e e D e c o m p o s i t i o n A l g o r i t h m ∗ a l g o r i t h m =

manager−>t r e e D e c o m p o s i t i o n A l g o r i t h m F a c t o r y ( )
. g e t T r e e D e c o m p o s i t i o n A l g o r i t h m ( manager ) ;

/ / Compute a new t r e e d e c o m p o s i t i o n o f t h e g i v e n graph .
h t d : : I T r e e D e c o m p o s i t i o n ∗ d e c o m p o s i t i o n = a l g o r i t h m . computeDecompos i t ion (∗ g ) ;

Listing 7 Computing a tree decomposition.

We can see that obtaining a plain tree decomposition of a graph for a dynamic programming
algorithm is a very simple task using htd. This is a nice observation, but often an arbitrary tree
decomposition is not good enough as the absence of structural guarantees makes the design of the
dynamic programming algorithms much more complex and often this increased code complexity
has negative effects on the performance.

To illustrate that htd also makes applying modifications to decompositions very convenient,
let’s have a look at Listing 8. The code snippet is to be placed before computeDecomposition
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is called. In the given example we ensure that each join node only has children for which the bag
content is equal to the bag content of the respective join node. Having this guarantee is often very
useful as it makes join operations much easier to implement.
/ / Ensure t h a t each c h i l d bag o f a j o i n node matches t h e j o i n node ’ s bag .
a l g o r i t h m−>a d d M a n i p u l a t i o n O p e r a t i o n

( new h t d : : J o i n N o d e N o r m a l i z a t i o n O p e r a t i o n ( manager ) ) ;

Listing 8 Computing a tree decomposition.

Clearly, one can also request multiple manipulation operations to be applied automatically by
a decomposition algorithm. In this case, the manipulations are applied in the order they were
provided. For convenience, in addition to the possibility to apply manipulations globally to all
decompositions computed by an algorithm instance, one can also request manipulations directly
in the call to computeDecomposition. In this case, all manipulation operations provided
in the call to computeDecomposition are applied after all operations are provided to the
decomposition algorithm.

6.4 Decomposing the Input Graph with Optimization
Sometimes, the manipulation of a tree decomposition like shown before is not enough and we want
to obtain an optimized decomposition with respect to a custom fitness function. Also for scenarios
of this kind, htd offers an easy-to-use workflow.

To illustrate this workflow in the context of our working example let’s assume that we want to
obtain a tree decomposition which is of lowest width and whose height is minimal. Furthermore,
let’s assume that minimizing the width is more important than minimizing the height of the tree
decomposition. To achieve this goal, we first have to define the simple fitness function shown in
Listing 9.
c l a s s F i t n e s s F u n c t i o n : p u b l i c h t d : : I T r e e D e c o m p o s i t i o n F i t n e s s F u n c t i o n
{
p u b l i c :

h t d : : F i t n e s s E v a l u a t i o n ∗ f i t n e s s ( c o n s t h t d : : I M u l t i H y p e r g r a p h &,
c o n s t h t d : : I T r e e D e c o m p o s i t i o n & d e c o m p o s i t i o n ) c o n s t

{
re turn new h t d : : F i t n e s s E v a l u a t i o n ( 2 ,

−(double ) ( d e c o m p o s i t i o n . maximumBagSize ( ) ) ,
−(double ) ( d e c o m p o s i t i o n . h e i g h t ( ) ) ) ;

}

F i t n e s s F u n c t i o n ∗ c l o n e ( void ) c o n s t { re turn new F i t n e s s F u n c t i o n ( ) ; }
} ;

Listing 9 Fitness function for minimizing the width and height of a tree decomposition.

A fitness function basically is a class with a method fitness which takes two parameters,
the input graph and the tree decomposition, and which returns a fitness evaluation consisting of
an arbitrary number of levels (corresponding to the priorities) each represented by a value of type
double. The constructor of htd::FitnessEvaluation takes a (non-empty) parameter list
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where the first argument of the constructor is an integer value determining the number of levels
the evaluation will contain. A decomposition A is considered better than a decomposition B if the
fitness evaluation of A is lexicographically greater than B’s fitness evaluation. In our example,
as we want to minimize the width and height of the tree decomposition, we have to negate the
corresponding values before we create the fitness evaluation object. In Listing 9 we can also see
that there is a method clone. This function is required by almost all classes in htd as we often
need deep copies of an object and this is exactly the purpose of the clone function.
/ / Ob ta in a new i n s t a n c e o f t h e d e f a u l t t r e e d e c o m p o s i t i o n a l g o r i t h m .
h t d : : I T r e e D e c o m p o s i t i o n A l g o r i t h m ∗ b a s e A l g o r i t h m =

manager−>t r e e D e c o m p o s i t i o n A l g o r i t h m F a c t o r y ( )
. g e t T r e e D e c o m p o s i t i o n A l g o r i t h m ( manager ) ;

/ / Cr ea t e a new f i t n e s s f u n c t i o n o b j e c t .
F i t n e s s F u n c t i o n f u n c t i o n ;

/ / Cr ea t e a new o p t i m i z a t i o n o p e r a t i o n f o r s e l e c t i n g t h e o p t i m a l r o o t .
h t d : : T r e e D e c o m p o s i t i o n O p t i m i z a t i o n O p e r a t i o n ∗ o p e r a t i o n =

new h t d : : T r e e D e c o m p o s i t i o n O p t i m i z a t i o n O p e r a t i o n
( manager . g e t ( ) , f u n c t i o n ) ;

/ / C o n s i d e r a t most t e n randomly s e l e c t e d v e r t i c e s as new r o o t node .
o p e r a t i o n−>s e t V e r t e x S e l e c t i o n S t r a t e g y

( new h t d : : R a n d o m V e r t e x S e l e c t i o n S t r a t e g y ( 1 0 ) ) ;

/ / Ensure t h a t each c h i l d bag o f a j o i n node matches t h e j o i n node ’ s bag .
o p e r a t i o n−>a d d M a n i p u l a t i o n O p e r a t i o n

( new h t d : : J o i n N o d e N o r m a l i z a t i o n O p e r a t i o n ( manager ) ) ;

/ / Compute a new t r e e d e c o m p o s i t i o n o f t h e g i v e n graph .
h t d : : I T r e e D e c o m p o s i t i o n ∗ t d = a l g o r i t h m . computeDecompos i t ion (∗ g ) ;

/ / Apply t h e o p t i m i z a t i o n o p e r a t i o n t o t h e t r e e d e c o m p o s i t i o n a l g o r i t h m .
baseAlgo r i t hm−>a d d M a n i p u l a t i o n O p e r a t i o n ( o p e r a t i o n ) ;

/ / Cr ea t e a new i n s t a n c e o f a t r e e d e c o m p o s i t i o n a l g o r i t h m
/ / which i t e r a t i v e l y c a l l s t h e base a l g o r i t h m and r e t u r n s
/ / t h e d e c o m p o s i t i o n w i t h o p t i m a l f i t n e s s .
h t d : : I t e r a t i v e I m p r o v e m e n t T r e e D e c o m p o s i t i o n A l g o r i t h m a l g o r i t h m ( manager . g e t ( ) ,

ba seAlgo r i t hm ,
f u n c t i o n ) ;

/ / Compute a t most t e n d e c o m p o s i t i o n o f t h e i n p u t graph .
a l g o r i t h m . s e t I t e r a t i o n C o u n t ( 1 0 ) ;

/ / Abor t t h e o p t i m i z a t i o n p r o c e s s b e f o r e t h e i t e r a t i o n l i m i t i s
/ / r eached i f no improvement was found i n t h e l a s t f i v e i t e r a t i o n s .
a l g o r i t h m . se tNonImprovemen tL imi t ( 5 ) ;

Listing 10 Computing a tree decomposition.
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After implementing the fitness function, the ten lines of code presented in Listing 10 suffice to
enhance the code from Listing 7 in such a way that the fitness function will be maximized. This
happens in two steps: The tree decomposition optimization operation takes a tree decomposition
and tries to change its root in such a way that the fitness function is maximized and the iterative
improvement algorithm calls the base algorithm (which automatically applies the optimization
operation) repeatedly and returns the decomposition having optimal fitness. Clearly, one can also
use different fitness functions in the two algorithms or nest the algorithms, but for our example the
code is completely sufficient.

For the use in own implementations, one can freely customize the set of vertices which shall
be considered in the search for the optimal root by choosing a different vertex selection strategy
which is used by the tree decompostion optimization operation. htd offers a set of built-in selection
strategies but one can also define custom strategies depending on the actual needs of the dynamic
programming algorithm.

Note that in the listing above, the optimization algorithm takes care of applying the join node
normalization operation which is also shown in Listing 8. Moving the responsibility for applying
the manipulations from the base algorithm towards the optimization operation is necessary because
we want the fitness function to be optimal for the total outcome. Applying the normalization
operation after the optimization operation likely would destroy the property of optimality as the
height could change when normalizing the join nodes.

In order to track the progress of optimization, an interesting aspect of the iterative improvement
algorithm is the fact that we can call the function computeDecomposition with an additional
lambda expression, like shown in Listing 11. In this example, the code outputs the width and
height of each new decomposition.
h t d : : I T r e e D e c o m p o s i t i o n ∗ d e c o m p o s i t i o n =

a l g o r i t h m . computeDecompos i t ion (∗ g ,
[&] ( c o n s t h t d : : I M u l t i H y p e r g r a p h &,

c o n s t h t d : : I T r e e D e c o m p o s i t i o n &,
c o n s t h t d : : F i t n e s s E v a l u a t i o n & f i t n e s s )

{
s t d : : s i z e t wid th = − f i t n e s s . a t ( 0 ) − 1 ;
s t d : : s i z e t h e i g h t = − f i t n e s s . a t ( 1 ) ;

s t d : : c o u t << ” Width : ” << wid th << ” H e i gh t : ” << h e i g h t << s t d : : e n d l ;
}

} ) ;

Listing 11 Tracking the optimization progress.

Finally, it is important to notice that the iterative improvement tree decomposition algorithm is
safely interruptible. That is, one can call the terminate method of the corresponding manager
and the iterative improvement tree decomposition algorithm will immediately return the best tree
decomposition found so far or a nullptr in case that no decomposition was computed so far.

During the experiments we made in the context of the publication [Abseher et al., 2015] it
turned out that D-FLAT often benefits from a reduction of the bag size of join nodes. This is most
probably caused by the fact that then the number of possible solution candidates which have to
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be joined is potentially reduced. Due to the fact that the bag size of join nodes is not affected
by changing the root of a normalized tree decomposition, in this case we can even omit the class
htd::TreeDecompositionOptimizationOperation or leave away the fitness function
in its constructor in order to make it a transparent “non-operation”. Because the join node bag sizes
in a normalized decomposition are not influenced when selecting a different vertex as root node,
we decided to present the reduction of the decomposition height in the example code in Listing 10.
The height of a tree decomposition is highly dependent on the actual node which acts as its root
and so it is a much more intuitive application of the decomposition optimization operation of htd.

6.5 Working with the Decomposition
After the tree decomposition is computed, we still have to execute the dynamic programming al-
gorithm on it. Due to the fact that there are various ways to implement a dynamic programming
algorithm for a given problem, we do not go into details of the concrete algorithm for MINI-
MUM DOMINATING SET at this point. Instead, we provide in Listing 12 a short example how
a computed tree decomposition together with the induced edges for the bags can be printed in a
human-readable form as this code can act as a general starting point to get an idea how htd supports
the implementation of dynamic programming algorithms also beyond the plain decomposition of
input graphs.
h t d : : P r e O r d e r T r e e T r a v e r s a l t r a v e r s a l ;

t r a v e r s a l . t r a v e r s e (∗ d e c o m p o s i t i o n , [&] ( h t d : : v e r t e x t v e r t e x ,
h t d : : v e r t e x t p a r e n t ,
s t d : : s i z e t d i s t a n c e T o R o o t )

{
f o r ( h t d : : i n d e x t i n d e x = 0 ; i n d e x < d i s t a n c e T o R o o t ; ++ i n d e x )
{

o u t p u t S t r e a m << ” ” ;
}

s t d : : c o u t << ”NODE ” << v e r t e x << ” : ” <<
d e c o m p o s i t i o n . b a g C o n t e n t ( v e r t e x ) << s t d : : e n d l ;

f o r ( c o n s t h t d : : Hyperedge & e : d e c o m p o s i t i o n . i nd uc edH yp e r ed ges ( v e r t e x ) )
{

f o r ( h t d : : i n d e x t i n d e x = 0 ; i n d e x < d i s t a n c e T o R o o t + 1 ; ++ i n d e x )
{

o u t p u t S t r e a m << ” ” ;
}

s t d : : c o u t << e . i d ( ) << ” : ” << e . e l e m e n t s ( ) << s t d : : e n d l ;
}

} ) ;

Listing 12 Printing a tree decomposition.
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The code above traverses the tree decomposition in preorder and outputs for each node its
ID together with its corresponding bag content. The very helpful and powerful feature for easily
deriving the (hyper-)edges induced by a bag is also illustrated in the example source code shown in
Listing 12. With this feature one automatically has direct access to all hyperedges whose elements
are a subset of the current bag content. In this way one can save huge portions of the total runtime
compared to tree decomposition libraries which do not provide this feature as in the latter case one
has to do a subset check for each (hyper-)edge in each node’s bag. This can be very expensive in
the presence of graphs with millions of edges.

6.6 Upgrading the Dynamic Programming Algorithm
At this point we presented all aspects of htd which are needed to solve the problem of MINIMUM

DOMINATING SET. In this section we will have a glance on how we can exploit the full potential
of htd when we want to upgrade the dynamic programming algorithm so that it we can easily make
the algorithm work with vertex weights. The idea is to solve the problem of MINIMUM WEIGHTED

DOMINATING SET by using htd support for arbitrary labels.
First, let’s recall the definition of MINIMUM WEIGHTED DOMINATING SET: The problem is

defined on a graph G = (V,E) with vertex weights W : V → R and we want to find all sets
S ⊆ V of minimum cost such that each vertex in V is either contained in S or adjacent to at least
one vertex inside S. The cost of a dominating set S is defined as the sum of all vertex weights of
the vertices in S.

To adapt the basic algorithm for MINIMUM DOMINATING SET so that it is able to deal with
vertex weights, we just have to sum up the proper weight instead of the value 1 for each selected
vertex. Clearly, we can achieve this modification of the dynamic programming algorithm presented
previously by maintaining a mapping between the vertices and the corresponding weights in the
algorithm, but this would involve using a global mapping variable or passing the mapping variable
as a parameter to the function which computes the dynamic programming tables, probably causing
high maintenance effort. As a workaround and in order to keep the code clean and highly main-
tainable, one can use htd’s functionality to add, remove and access vertex and edge labels in the
context of any available decomposition and labeled graph type. An example is given in Listing 13
where we add a vertex label to Vertex 1 of type double, representing its weight.
/ / Get a new i n s t a n c e o f t h e d e f a u l t m u l t i−graph i m p l e m e n t a t i o n .
h t d : : I M u t a b l e L a b e l e d M u l t i G r a p h ∗ g =

manager−>l a b e l e d M u l t i G r a p h F a c t o r y ( ) . g e t L a b e l e d M u l t i G r a p h ( V e r t i c e s ) ;

/ / Add a v e r t e x l a b e l ” Weight ” t o t h e v e r t e x w i t h ID 1 .
g−>s e t V e r t e x L a b e l ( ” Weight ” , 1 , new h t d : : Label<double > ( 3 . 1 4 1 5 9 ) ) ;

/ / Ac c e s s t h e v e r t e x l a b e l ” Weight ” a s s i g n e d t o t h e v e r t e x w i t h ID 1 .
double we ig h t = h t d : : a c c e s s L a b e l<double >(g−>v e r t e x L a b e l ( ” Weight ” , 1 ) ) ;

/ / Remove t h e v e r t e x l a b e l ” Weight ” from t h e v e r t e x w i t h ID 1 .
g−>r emoveVer t exLabe l ( ” Weight ” , 1 ) ;

Listing 13 Using htd’s support for labels.
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Following this example, all what remains to do in the context of the dynamic programming
algorithm is to cast the reference to htd::IMultiHypergraphwhich is used by the algorithms
of htd as the basic graph interface to the labeled graph type at hand (which is clearly a valid and
permitted up-cast) and call the desired access methods of the graph for the vertex and edge labels
that are needed by the dynamic programming algorithm. We can see that the extension of the
algorithm just involves changing a few lines of code while fully maintaining the readability and
maintainability of the original code.

7 Performance Characteristics
In this section we give first results regarding the performance characteristics of our framework.
In order to have an indication for the actual efficiency, we compare htd 0.9.9 [Abseher, 2016]
to the other participants Track A (“Treewidth”) of the “First Parameterized Algorithms and
Computational Experiments Challenge 2016” (“PACE16”, see https://pacechallenge.
wordpress.com/track-a-treewidth/).

The experiments are based on the following algorithms submitted to the PACE16 challenge:

• 1: “tw-heuristic”

Available at https://github.com/mrprajesh/pacechallenge.

GitHub-Commit-ID: 6c29c143d72856f649de99846e91de185f78c15f

• 5 (htd): “htd gr2td minfill exhaustive.sh”

Available at https://github.com/mabseher/htd

GitHub-Commit-ID: f4f9b8907da2025c4c0c6f24a47ff4dd0bde1626

• 6: “tw-heuristic”

Available at https://github.com/maxbannach/Jdrasil

GitHub-Commit-ID: fa7855e4c9f33163606a0677485a9e51d26d7b0a

• 9: “tw-heuristic”

Available at https://github.com/elitheeli/2016-pace-challenge

GitHub-Commit-ID: 2f4acb30b5c48608859ff27b5f4e217ee8346ca5

• 10: “tw-heuristic”

Available at https://github.com/mfjones/pace2016

GitHub-Commit-ID: 2b7f289e4d182799803a014d0ee1d76a4de70c1f

• 12: “flow cutter pace16”

Available at https://github.com/ben-strasser/flow-cutter-pace16

GitHub-Commit-ID: 73df7b545f694922dcb873609ae2759568b36f9f
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The list of algorithms contains all participants of the sequential heuristics track of the
PACE treewidth challenge in the variant in which they were submitted to the challenge. For
each of the algorithms we provide its ID that was used in the challenge (and also in our
experiments), the name of the binary, the location of its source code and the exact identi-
fier of the program version in the GitHub repository. Note that for htd (ID 5), four differ-
ent configurations exist. In our experiments here we only consider the best-performing vari-
ant, namely “htd gr2td minfill exhaustive.sh”. Its implementation iteratively calls the min-
fill algorithm in order improve the width of obtained the tree decomposition using the class
htd::IterativeImprovementTreeDecompositionAlgorithm.

The evaluation is done separately for two data sets. The first data set is the official data set
of the PACE challenge5 and the second one is DataSet 1 from the QBFEVAL’16 competition of
solvers for quantified boolean formulae6. Note that the second data set had to be converted in order
to comply to the input format of the PACE competition. This was done in the following way: For
each QBF formula we ignore the quantifier information and we introduce a clique between the
vertices of each clause, that is, we consider the clauses in the QBF formula as hyperedges and
work on the primal graph of the QBF formula. The “PACE” data set contains 282 instances and
the “QBF” data set contains 825 instances.

All our experiments were performed on a single core of an Intel Xeon E5-2637@3.5GHz
processor running Debian GNU/Linux 8.3 and each test run was limited to a run-time of at
most 100 seconds and 32 gigabyte of main memory. For the actual evaluation we use the
testbed of the PACE challenge which is available at https://github.com/holgerdell/
PACE-treewidth-testbed.

Due to the fact that the QBF instances often contain large clauses, the converted instances
sometimes have file sizes of several gigabytes and also the output of the algorithms might be
large, we increased the kill time, i.e., the time after which the process is killed when the output
stream is not closed by the algorithm itself after sending the terminating request, to 30 seconds.
For repeatability of the experiments we provide the complete testbed and the results for each data
set and each algorithm under the following link: www.dbai.tuwien.ac.at/proj/dflat/
evaluation_htd099.zip

Figures 5 and 6 summarize the outcome of our evaluation. The first figure shows the results
for the instances of the “PACE” data set and the right-hand side is dedicated to the results for
the “QBF” data set. Each of the plots is constructed by running htd and each of the five other
algorithms of the competition on each instance. Afterwards, we plot the cumulative frequency of
the obtained width after 100 seconds.

The gray line indicates the performance of htd and the dashed lines illustrate the width achieved
by its competitors. A point p = (x, y) on a line in the figures represents the fact that y instances
could be successfully decomposed within the time limit of 100 seconds and each decomposition
had a width not higher than x. Hence, it is good to minimize xwith respect to y, that is, the optimal
algorithm reaches a certain point on the y-axis not exceeding the widths of its competitors on the
x-axis.

5Available at https://github.com/holgerdell/PACE-treewidth-testbed
6Available at http://www.qbflib.org/TS2016/Dataset_1.tar.gz
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Figure 5 Benchmark-Instances “PACE”

In Figure 5 we can see that htd 0.9.9 achieves a similar or even slightly better width on the
PACE data set and the worst width achieved by htd is better than the worst width of all other
algorithms. This indicates that htd is well suited for computing decompositions of small width on
the given instances. We can also see that four out of six algorithms were able to decompose all
instances within 100 seconds and that the difference between the four algorithms is very small.

When we look at the “QBF” data set, illustrated in Figure 6, the picture is slightly more diverse.
We can see that about 100 instances cannot be decomposed by any of the algorithms and that two
algorithms (9 and 12) actually are able to decompose slightly more instances than htd. In the
fragment of the figure around width 1000 we observe that htd performs significantly better than
the other algorithms. When the width gets closer to 5000 and also in the case of higher widths, two
competitors (9 and 12) can decompose more instances.

The effect that htd performs well on instances up to a certain width and that it gets harder
for the library to finish decomposing graphs of high treewidth can be explained by the fact that
the decompositions in the context of htd always carry the information of induced edges in order
to support dynamic programming algorithms. The higher the width gets, the farther the edge
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information has to be distributed in the decomposition (see Section 5.2), causing a significant
overhead when the width is very high. Additionally, the decompositions computed by htd contain
only subset-maximal bags by default, which also can be time-consuming in the context of very
large graphs. When we omit these steps and go for “pure” decomposition performance, htd likely
will be able to decompose significantly more instances within the time limit.

8 Conclusion
In this report we presented a free, open-source C++ framework for graph decompositions. We
show the most important features, give an introduction on how to use the library and highlighted
issues we faced during the implementation phase and provide insights on how we coped with
them. Furthermore, we evaluated our approach by comparing our library with the participants of
the ”First Parameterized Algorithms and Computational Experiments Challenge”. The outcome
of the evaluation indicates that the performance characteristics of the new framework are very
promising.
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For future work we clearly want to further improve the built-in heuristics and algorithms in
order to enhance the capabilities for generation of decompositions of small width. Furthermore we
are currently working on refining the algorithms allowing to automate the process of computing
customized tree decompositions.

Last, but not least, we invite researchers and software developers to contribute to the library as
we try to initiate a joint collaboration on a powerful framework for graph decompositions and any
input is highly appreciated.
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