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Abstract. Many problems from the area of AI have been shown tractable for bounded
treewidth. In order to put such results into practice, quite involved dynamic programming
(DP) algorithms on tree decompositions have to be designed and implemented. These al-
gorithms typically show recurring patterns that call for tasks like subset minimization. In
this paper we present a novel approach to obtain such DP algorithms from simpler princi-
ples, where the DP formalization of subset minimization is performed automatically. We
first give a theoretical account of our novel method, and then present D-FLATˆ2, a system
that allows one to specify the core DP algorithm via answer set programming (ASP). We
illustrate the approach at work by providing several DP algorithms that are more space-
efficient than existing solutions, while featuring improved readability, reuse and therefore
maintainability of ASP code. Experiments show that our approach also yields a significant
improvement in runtime performance.
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1 Introduction
Many prominent NP-hard problems in the area of AI have been shown tractable for bounded
treewidth. Thanks to Courcelle’s theorem [9], it is sufficient to encode a problem as an MSO
sentence in order to obtain such a result. To put this into practice, tailored systems for MSO logic
are required, however. While there has been remarkable progress in this direction [26] there is still
evidence that designing DP algorithms for the considered problems from scratch results in more
efficient software solutions (cf. [11, 30]).

The actual design of these algorithms can be quite tedious, especially for problems located
at the second level of the polynomial hierarchy like the AI problems circumscription, abduction,
answer set programming or abstract argumentation (see [16, 21, 23, 24]). In many cases, the in-
creased complexity of such problems is caused by co-NP hard subset minimization or maximiza-
tion subproblems (e.g., minimality of models in circumscription). It is exactly the handling of
these subproblems that makes the design of the DP algorithms difficult.

What we aim for in this article is thus the automatic generation of intricate DP algorithms
from simpler principles. To the best of our knowledge, there is only a little amount of work in
this direction. The D-FLAT system [2] – a declarative framework for rapid prototyping of DP
algorithms on tree decompositions – offers a few built-ins for cost minimization and the handling
of join nodes in standard DP algorithms; the LISP-based Autograph approach (see, e.g., [10]) on
the other hand makes it possible to obtain a specification of the problem at hand via combinations
of (pre-defined) fly-automata.

What we have in mind is different and motivated by recent developments in the world of an-
swer set programming (ASP) [8]: For exploiting the full expressive power of ASP, a saturation
programming technique (see, e.g., [27]) is often required for the encoding of co-NP subproblems.
Several approaches for relieving the user from this task have been proposed [7,18,19] that employ
metaprogramming techniques. For instance, in order to compute minimal models of a proposi-
tional formula, one can simply express the SAT problem in ASP together with a special minimize
statement (recognized by systems like metasp). In this way, one obtains a program computing
subset minimal models. Unfortunately, easy-to-use facilities like such minimize statements had no
analog in the area of DP so far.

In this article, we propose a solution to this issue: We provide a new method for automati-
cally obtaining DP algorithms for problems requiring minimization, given only an algorithm for
a problem variant without minimization. For example, given a DP algorithm for SAT [33], our
approach enables us to generate a new algorithm for finding only subset-minimal models. Making
minimization implicit in this way makes the programmer’s life considerably easier. Moreover, we
present D-FLATˆ2, which is an implementation of the new method and extends D-FLAT1. To un-
derline the practical relevance of this work, we show elegant solutions for common AI problems
using D-FLATˆ2.

The contributions of this article are the following:

• We introduce a formal model of DP computations, abstracting from concrete algorithms.
1The systems D-FLAT and D-FLATˆ2 are publicly available at http://dbai.tuwien.ac.at/proj/

dflat/system/ and https://github.com/hmarkus/dflat-2/, respectively.
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Our results are therefore generally applicable, not just to a particular problem.

• We then show how our model captures typical DP computations for subset minimization
problems.

• We discuss how computations can be compressed to ensure fixed-parameter tractability.

• Our main contribution is a formal definition of a transformation that turns non-minimizing
computations into ones that perform minimization. We identify under which conditions this
procedure is sound and give a formal proof.

• Finally, we discuss implementation issues. In contrast to DP algorithms that implement sub-
set minimization directly, we present an implementation of our method, called D-FLATˆ2,
which not only yields more succinct algorithm specifications, but also avoids redundant com-
putations. We illustrate our method at work by providing DP encodings for several AI prob-
lems, and show promising preliminary performance results.

This article is structured as follows. In Section 2, DP on tree decompositions is introduced.
Section 3 contains our formal model of DP computations. In Section 4 we illustrate how the
concepts are put into practice in the D-FLAT and D-FLATˆ2 systems. Next, in Section 5 we show
how common AI problems such as Circumscription and disjunctive ASP can be solved using our
approach. Finally, Section 6 reports on experimental results.

Compared to the workshop paper [4], this article contains a full formal proof of the correctness
of the method implemented in D-FLATˆ2.

2 Dynamic Programming on Tree Decompositions
In this section we outline DP on tree decompositions. The ideas underlying this concept stem from
the field of parameterized complexity. Many computationally hard problems become tractable in
case a certain problem parameter is bound to a fixed constant. This property is referred to as fixed-
parameter tractability [14], and the complexity class FPT consists of problems that are solvable
in f(k) · nO(1), where f is a function that only depends on the parameter k, and n is the input size.

For problems whose input can be represented as a graph, an important parameter is treewidth,
which measures “tree-likeness” of a graph. It is defined by means of tree decompositions
(TDs) [32].

Definition 1. A tree decomposition of a graphG = (V,E) is a pair T = (T, χ) where T = (N,F )
is a (rooted) tree and χ : N → 2V assigns to each node a set of vertices (called the node’s bag),
such that the following conditions are met:

(1) For every v ∈ V , there exists a node n ∈ N such that v ∈ χ(n).

(2) For every edge e ∈ E, there exists a node n ∈ N such that e ⊆ χ(n).

(3) For every v ∈ V , the subtree of T induced by {n ∈ N | v ∈ χ(n)} is connected.
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φEx : (u ∨ v) ∧ (¬v ∨ w ∨ x) ∧ (¬w) ∧ (¬x ∨ z) ∧ (¬x ∨ y ∨ ¬z)

GEx : u

v

w

x

y

z

TEx : ∅n6

{x}n5

{v, w, x}n2

{u, v}n1

{x} n4

{x, y, z} n3

Figure 1: Primal graph GEx and a TD TEx of φEx .

The width of T is maxn∈N |χ(n)| − 1. The treewidth of a graph is the minimum width over all
its tree decompositions.

Although constructing a minimum-width TD is intractable in general [3], it is in FPT [5] and
there are polynomial-time heuristics giving “good” TDs [6, 12, 13].

Example 1. Let us consider the enumeration variant of the SAT problem. Given a propositional
formula φ in CNF, we first have to find an appropriate graph representation. Here, we construct the
primal graph G of φ, that is, vertices in G represent atoms of φ, and atoms occurring together in a
clause form a clique in G. An example formula φEx , its graph representation GEx and a possible
TD TEx are given in Figure 1. The width of TEx is 2.

Algorithms for DP on TDs generally traverse the TD in post-order. At each node, partial
solutions for the subgraph induced by the vertices encountered so far are computed and stored in a
data structure associated with the node. The size of the data structure is typically bounded by the
TD’s width and the number of TD nodes is linear in the input size. So if the width is bounded by
a constant, the search space for subproblems is constant as well, and the number of subproblems
only grows linearly for larger instances. We now illustrate the DP algorithm for SAT [33] on our
running example; formal details are given in the next section.

Example 2. Figure 2 illustrates the DP computation for SAT. The tables are computed as follows.
For a TD node n, each table row r consists of data D(r), which stores partial truth assignments
over atoms in χ(n). Here, D(r) only contains atoms that get assigned “true”, atoms in χ(n)\D(r)
get assigned “false”. In r, all clauses covered by χ(n) must be satisfied by the partial truth
assignment. The set P(r) contains so-called extension pointer tuples (EPTs) that denote the rows
in the children where r was constructed from. First consider node n1: here, χ(n1) = {u, v} covers
clause (u ∨ v), yielding three partial assignments for φEx . In n2, the child rows are extended, the
partial assignments are updated (by removing atoms not contained in χ(n2) and guessing truth
assignments for atoms in χ(n2)\χ(n1)). Here, clauses (¬v∨w∨x) and (¬w) have to be satisfied.
Observe that row 21 is constructed from two different child rows. In n3 we proceed as described
before. In n4, data related to removed vertices y and z are projected away. In n5, additionally
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r D P

61 (51), (52)
n6

r D P

51 x (21, 41), (22, 41)

52 (23, 42)

n5

r D P

21 v, x (11), (13)

22 x (12)

23 (12)

n2

r D P

11 u, v ()

12 u ()

13 v ()

n1

r D P

41 x (31)

42 (32), (33), (34), (35)

n4

r D P

31 x, y, z ()

32 y, z ()

33 y ()

34 z ()

35 ()

n3

Figure 2: DP computation for SAT.

only partial assignments that agree on the truth assignment for common atoms are to be joined.
We continue this procedure recursively until we reach the TD’s root.

To decide whether a formula is satisfiable, it suffices to check if the table in the root node is non-
empty. The overall procedure is in FPT time because the number of nodes in the TD is bounded by
the input size (i.e., the number of atoms), and each node n is associated with a table of size at most
O(2|χ(n)|) (i.e., the number of possible truth assignments). For our example, φEx is satisfiable due
to existence of row 51. Solutions (models of φEx ) can be enumerated with linear delay by starting
at the root and following the EPTs while combining the partial assignments associated with the
rows. For instance, model {u, v, x, y, z} is constructed by starting at 61 and following EPTs (51),
(21, 41), (11) and (31), thereby combining D(61) ∪D(51) ∪D(21) ∪D(11) ∪D(41) ∪D(31).

The problems we will focus on in this paper are more involved. One such problem is the
enumeration of the subset-minimal models of CNF formulas. Note that a naive implementation
of this problem where the enumeration of models is used to filter out the minimal ones would
violate the desired linear delay for enumerating the solutions. Indeed, genuine DP algorithms for
such problem which involve subset minimization are needed. In the forthcoming section, we will
present such an DP algorithm for ⊆-MINIMAL SAT. Together with the above algorithm for SAT

these algorithms will be used as a running example to illustrate our method.
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3 A Formal Account of DP on TDs
In this section we formally introduce DP on TDs for subset optimization problems. First we
define our data structure, called computation, which is a tree of tables resulting from the bottom-
up traversal of the TD. We then define the extensions of rows in the tables, that are used to obtain
(partial) solution candidates for the problem at hand. Additionally, we define their relation to
so-called counterexamples. Counterexamples are witnesses for a solution candidate not being
subset-minimal. Finally, we state how solutions are obtained, and define properties that have to
be fulfilled by the tables in a computation in order to yield correct results. Section 3.2 then deals
with compressing the tables, such that the size of the tables is bounded by the width of the TD.
Finally, Section 3.3 introduces requirements for a computation without minimization to be eligible
for transformation into a “minimizing” one (we call such a computation augmentable). We then
show how this transformation can be achieved automatically, and prove that the solutions of the
augmentable computation correspond to subset-minimal solutions of the original computation.

3.1 Computations
First, let us define the data structure used in our approach.

Definition 2. A computation is a rooted ordered tree whose nodes are called tables. Each table R
is a set of rows and each row r ∈ R possesses

• some problem-specific data D(r),

• a non-empty set of extension pointer tuples (EPTs) P(r) such that each tuple is of arity k,
where k is the number of children of R, and for each (p1, . . . , pk) ∈ P(r) it holds that each
pi is a row of the i-th child of R,

• a subtable S(r), which is a set of subrows, where each subrow s ∈ S(r) possesses

– some problem-specific data D(s),

– a non-empty set of EPTs P(s) such that for each (p1, . . . , pk) ∈ P(s) there is some
(q1, . . . , qk) ∈ P(r) with pi ∈ S(qi) for 1 ≤ i ≤ k,

– an inclusion status flag inc(s) ∈ {eq,⊂}.

For rows or subrows a, b we write a ≈ b, a ≤ b and a < b to denote D(a) = D(b), D(a) ⊆
D(b) and D(a) ⊂ D(b), respectively. For sets of rows or subrows R, S we write D(R) to denote⋃
r∈R D(r), and we write R ≈ S, R ≤ S and R < S to denote D(R) = D(S), D(R) ⊆ D(S) and

D(R) ⊂ D(S), respectively.

The reason that each row possesses a subtable is that we consider subset optimization problems,
and we assume that algorithms for such problems use subtables to store potential counterexamples
to a solution candidate being subset-minimal. The intuition of a subrow s for a row r is that s
represents solution candidates that are subsets of the candidates represented by r. If one of these
subset relations is proper, we indicate this by inc(s) = ⊂.

7



R S(r)

r D P s D P inc
41 x (31) 41

1 x (31
1) eq

41
2 (31

2) ⊂
41

3 (31
3) ⊂

41
4 (31

4) ⊂
41

5 (31
5) ⊂

42 (32) 42
1 (32

1) eq

42
2 (32

2) ⊂
42

3 (32
3) ⊂

42
4 (32

4) ⊂
43 (33) 43

1 (33
1) eq

43
2 (33

2) ⊂
44 (34) 44

1 (34
1) eq

44
2 (34

2) ⊂
45 (35) 45

1 (35
1) eq

n4

R S(r)

r D P s D P inc
31 x, y, z () 31

1 x, y, z () eq

31
2 y, z () ⊂

31
3 y () ⊂

31
4 z () ⊂

31
5 () ⊂

32 y, z () 32
1 y, z () eq

32
2 y () ⊂

32
3 z () ⊂

32
4 () ⊂

33 y () 33
1 y () eq

33
2 () ⊂

34 z () 34
1 z () eq

34
2 () ⊂

35 () 35
1 () eq

n3

Figure 3: (Partial) DP computation for ⊆-MINIMAL SAT without compression.

Example 3. We extend our running example by now considering ⊆-MINIMAL SAT (i.e., enumer-
ating models that are subset-minimal w.r.t. the set of atoms that get assigned “true”). Figure 3
illustrates the computation for parts of our example. At n3, R is computed as before. For any
r ∈ R, each subrow s ∈ S(r) represents a partial “true” assignment that is a subset of the one in r
(i.e., D(s) ⊆ D(r)), and inc(s) is set appropriately. Now consider n4, where y and z are removed.
As in the SAT problem, we simply project away data related to the removed vertices. Observe that
for instance 41 now contains redundant subrows 41

2, 41
3, 41

4 and 41
5 that contain the same data and

inclusion flag (and only different EPTs). We overcome this problem in Section 3.2, where tables
are compressed in order to remove redundancies. A complete example including compression is
given in Section 3.2.

The EPTs of a table row r are used for recursively combining the problem-specific data D(r)
with data from “compatible” rows that are in descendant tables. The fact that each set of EPTs is
required to be non-empty entails that for each (sub)row r at a leaf table it holds that P(r) = {()}.
We disallow rows with an empty set of EPTs because in the end we are only interested in rows that
can be extended to complete solutions, consisting of one row per table. For this we introduce the
notion of an extension of a table row.

Definition 3. Let C be a computation and R be a table in C with k children. We inductively define
the extensions of a row r ∈ R as E(r) = {{r} ∪ A | A ∈

⋃
(p1,...,pk)∈P(r) {X1 ∪ · · · ∪Xk | Xi ∈

8



E(pi) for all 1 ≤ i ≤ k}}.

Note that any extension X ∈ E(r) contains r and exactly one row from each table that is a
descendant of R. If r is a row of a leaf table, E(r) = {{r}} because P(r) = {()}.

While the extensions from the root table of a computation represent complete solution candi-
dates, the purpose of subtables is to represent possible counterexamples that would cause a solution
candidate to be invalidated. More precisely, for each extensionX that can be obtained by extending
a root table row r, we check if we can find an extension Y of an element s ∈ S(r) with inc(s) = ⊂
such that every element of Y is listed as a subrow of a row in X (i.e., we check if for every y ∈ Y
there is some x ∈ X with y ∈ S(x)). If this is so, then Y witnesses that X represents no solution
because Y then represents a solution candidate that is a proper subset. For this reason, we need to
introduce the notion of extensions (like Y ) relative to another extension (like X).

Definition 4. Let C be a computation, R be a table in C with k children, r ∈ R be a row and
s ∈ S(r) be a subrow of r. We first define, for any X ∈ E(r), a restriction of P(s) to EPTs
where each element is a subrow of a row in X , as PX(s) = {(p1, . . . , pk) ∈ P(s) | ri ∈ X, pi ∈
S(ri) for all 1 ≤ i ≤ k}. Now we define the set of extensions of s relative to some extension X ∈
E(r) as EX(s) = {{s}∪A | A ∈

⋃
(p1,...,pk)∈PX(s){Y1∪· · ·∪Yk | Yi ∈ EX(pi) for all 1 ≤ i ≤ k}}.

We can now formalize that the solutions of a computation are the extensions of those rows that
do not have a subrow indicating a counterexample.

Definition 5. Let R be the root table in a computation C. We define the set of solutions of C as
sol(C) = {D(X) | r ∈ R, X ∈ E(r), @s ∈ S(r) : inc(s) = ⊂}

Example 4. If n4 in Figure 3 were the root of the TD, only 45 would yield a solution (i.e. {}, the
interpretation where x, y, and z are all set to false), since all other rows contain a subrow where
inc(s) = ⊂. This is indeed the only subset-minimal model of the formula consisting of the clauses
encountered until n4, i.e., (¬x ∨ z) ∧ (¬x ∨ y ∨ ¬z).

Next we formalize requirements on subrows and their inclusion status to ensure that subrows
correspond to subsets of their parent row, that each potential counterexample is represented by a
subrow and that inc(·) is used as intended.

Definition 6. A table R is normal if the following properties hold:

1. For each r ∈ R, s ∈ S(r), X ∈ E(r) and Y ∈ EX(s), it holds that Y ≤ X , and Y < X
holds if and only if inc(s) = ⊂.

2. For each r ∈ R, s ∈ S(r) and Y ∈ E(s) there is some r′ ∈ R and X ′ ∈ E(r′) such that
s ≈ r′ and Y ≈ X ′.

3. For each q, r ∈ R, Z ∈ E(q) and X ∈ E(r), if Z ≤ X holds, then there is some s ∈ S(r)
and Y ∈ EX(s) with s ≈ q and Y ≈ Z.

A computation is normal if all its tables are normal.

9



This definition ensures that it suffices to examine the root table of a normal computation in order
to decide a subset minimization problem correctly, provided that the rows represent all solution
candidates.

We will later show how a non-minimizing computation (i.e., one with empty subtables) satis-
fying certain properties can be transformed into a normal computation. In this transformation, we
must avoid redundancies lest we destroy fixed-parameter tractability. For this, we first introduce
how tables can be compressed without losing solution candidates.

3.2 Table Compression
To compress tables by merging equivalent (sub)rows, which is required for keeping the size of the
tables bounded by the width of the TD, we first define an equivalence relation on rows, as well as
one on subrows.

Definition 7. Let R be a table and r ∈ R. We define an equivalence relation ≡r over subrows of r
such that s1 ≡r s2 if s1 ≈ s2 and inc(s1) = inc(s2).

We use this notion of equivalence between subrows to compress subtables by merging equiva-
lent subrows.

Definition 8. Let R be a table and r ∈ R. We define a subtable S∗(r) called the compressed
subtable of r that contains exactly one subrow for each ≡r-equivalence class. For any s ∈ S(r),
let [s] denote the ≡r-equivalence class of s and let s′ denote the subrow in S∗(r) corresponding to
[s]. We define s′ by s′ ≈ s, inc(s′) = inc(s) and P(s′) =

⋃
t∈[s] P(t).

Once subtables have been compressed, we can compress the table by merging equivalent rows.
For this, we first need a notion of equivalence between rows.

Definition 9. We define an equivalence relation ≡R over rows of a table R such that r1 ≡R r2 if
r1 ≈ r2 and there is a bijection f : S∗(r1) → S∗(r2) such that for any s ∈ S∗(r1) it holds that
s ≈ f(s) and inc(s) = inc(f(s)).

When rows are equivalent, their compressed subtables only differ in the EPTs. We now define
how such compressed subtables can be merged.

Definition 10. Let R be a table, r ∈ R, and let [r] denote the ≡R-equivalence class of r. For
any r′ ∈ [r] , let fr′ : S∗(r) → S∗(r′) be the bijection such that for any s ∈ S∗(r) it holds that
s ≈ fr′(s) and inc(s) = inc(fr′(s)). (The existence of fr′ is guaranteed by Definition 9.) We define
a subtable mst([r]) (for “merged subtable”) that contains exactly one subrow for each element of
S∗(r). For any s ∈ S∗(r), let s′ denote the subrow in mst([r]) corresponding to s. We define s′ by
s′ ≈ s, inc(s′) = inc(s) and P(s′) =

⋃
r′∈[r] P(fr′(s)).

We use these equivalence relations to compress tables in such a way that all equivalent
(sub)rows (according to the respective equivalence relation) are merged.

10



Definition 11. Let R be a table. We now define a table compr(R) that contains exactly one row
for each ≡R-equivalence class. For any r ∈ R, let [r] denote the ≡R-equivalence class of r and
let r′ be the row in compr(R) corresponding to [r]. We define r′ by r′ ≈ r, P(r′) =

⋃
q∈[r] P(q)

and S(r′) = mst([r]). For any computation C, we write compr(C) to denote the computation
isomorphic to C where each table R in C corresponds to compr(R).

Example 5. Figure 4 illustrates the complete DP computation for our running example, including
compression. Root node n6 contains two rows, 61 and 62. 61 represents the subset-minimal mod-
els of our running example, since it is associated with a single subrow 62

1, where inc(62
1) = eq.

Opposed to that, models represented by 61 are not subset-minimal, due to inc(61
2) = ⊂. We

obtain the solutions by following the EPTs and combining P of the respective rows: We have
P(62) ∪ P(54) ∪ P(23) ∪ P(12) ∪ P(43) ∪ P(35) = {u} and P(62) ∪ P(55) ∪ P(24) ∪ P(13) ∪
P(41)∪P(31) = {x, v, y, z}. Thus the subset-minimal models (cf. solutions) are {u} (i.e., u set to
true, and v, x, y, z set to false) as well as {v, x, y, z} (with u set to false).

Regarding compression, consider the table stored at node n4 in comparison to the non-
compressed table for n4 in Figure 3. For instance, due to Definition 10 41 now has subrow 41

2

that contains a set of EPTs, i.e., P(41
2) = {(31

2), (31
3), (31

4), (31
5)}. Additionally, due to Definition 11

we can merge complete rows. For instance, observe that the single row 42 is obtained by com-
pressing rows 42, 43 and 44 of Figure 3, since the data of these rows as well as the data and the
inclusion flags of all subrows coincide, i.e., they are contained in the same ≡R-equivalence class.

We now show that compressing a table according to these definitions retains normality.

Lemma 1. If a table R is normal, then so is compr(R).

Proof sketch. Let R be a normal table and R′ = compr(R). We prove conditions 1–3 of normality
of R′ separately. Let r′ ∈ R′, s′ ∈ S(r′), X ′ ∈ E(r′) and Y ′X′ ∈ EX′(s′). Then we can find
r ∈ R, s ∈ S(r), X ∈ E(r) and Y ∈ EX(s) such that r ≈ r′, s ≈ s′, X ≈ X ′ and Y ≈ Y ′X′ .
As R is normal, Y ≤ X holds, and Y < X if and only if inc(s) = ⊂. This entails Y ′X′ ≤ X ′,
and Y ′X′ < X ′ if and only if inc(s′) = ⊂ because inc(s′) = inc(s). This proves condition 1. Let
Y ′ ∈ E(s′). Then we can find Y ∈ E(s) such that Y ≈ Y ′. As R is normal, there is a row t ∈ R
with t ≈ s and an extension T ∈ E(t) such that T ≈ Y . Then there is some t′ ∈ R′ with t′ ≈ t and
(T \ {t}) ∪ {t′} ∈ E(t′), which proves condition 2. Let q′ ∈ R and Z ′ ∈ E(q′) such that Z ′ ≤ X ′.
Then we can find q ∈ R and Z ∈ E(q) such that Z ≈ Z ′, so Z ≤ X . As R is normal, there are
u ∈ S(r) and U ∈ EX(u) such that u ≈ q and U ≈ Z. Then there is some u′ ∈ S(r′) with u′ ≈ u
and (U \ {u}) ∪ {u′} ∈ EX′(u′), which proves condition 3.

3.3 Normalizing Computations
Before we introduce our transformation from “non-minimizing” computations to “minimizing”
ones, we define certain conditions that are prerequisites for the transformation. For this, we first
define the set of all data of rows that have occurred in a table or any of its descendants.

Definition 12. Let R be a table in a computation such that R1, . . . , Rk are the child tables of R.
We inductively define D∗(R) =

⋃
r∈RD(r) ∪

⋃
1≤i≤kD

∗(Ri).
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R S(r)

r D P s D P inc
61 (51), (52), (53) 611 (511), (521), (531) eq

612 (512), (513), (522), (532) ⊂
62 (54), (55) 621 (541), (551) eq

n6

R S(r)

r D P s D P inc
51 x (21, 41) 511 x (211, 4

1
1) eq

512 x (212, 4
1
1), (214, 4

1
1) ⊂

513 (213, 4
1
2) ⊂

52 x (22, 41) 421 x (221, 4
1
1) eq

522 (222, 4
1
2) ⊂

53 (23, 42) 531 (231, 4
2
1) eq

532 (231, 4
2
2) ⊂

54 (23, 43) 541 (231, 4
3
1) eq

55 x (24, 41) 551 x (241, 4
1
1) eq

n5

R S(r)

r D P s D P inc
41 x (31) 411 x (311) eq

412 (312), (313), (314), (315) ⊂
42 (32), (33), (34) 421 (321), (331), (341) eq

422 (322), (323), (324), (332), (342) ⊂
43 (35) 431 (351) eq

n4

R S(r)

r D P s D P inc
31 x, y, z () 311 x, y, z () eq

312 y, z () ⊂
313 y () ⊂
314 z () ⊂
315 () ⊂

32 y, z () 321 y, z () eq

322 y () ⊂
323 z () ⊂
324 () ⊂

33 y () 331 y () eq

332 () ⊂
34 z () 341 z () eq

342 () ⊂
35 () 351 () eq

n3

R S(r)

r D P s D P inc
21 v, x (11) 211 v, x (111) eq

212 x (112) ⊂
213 (112) ⊂
214 v, x (113) ⊂

22 x (12) 221 x (121) eq

222 (121) ⊂
23 (12) 231 (121) eq

24 v, x (13) 241 v, x (131) eq

n2

R S(r)

r D P s D P inc
11 u, v () 111 u, v () eq

112 u () ⊂
113 v () ⊂

12 u () 121 u () eq

13 v () 131 v () eq

n1

Figure 4: DP computation for ⊆-MINIMAL SAT.

Now we define conditions that the tables in a computation must satisfy for being eligible for
our transformation.

Definition 13. Let R be a table in a computation such that R1, . . . , Rk are the child tables of R,
and let r, r′ ∈ R. We say that d ∈ D(r) has been illegally introduced at r if there are (r1, . . . , rk) ∈
P(r) such that for some 1 ≤ i ≤ k it holds that d /∈ D(ri) while d ∈ D∗(Ri). Moreover, we say
that d ∈ D(r′) \D(r) has been illegally removed at r if there is some X ∈ E(r) such that d ∈ X .
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We now define the notion of an augmentable table, i.e., a table that can be used in our transfor-
mation.

Definition 14. We call a table R augmentable if the following conditions hold:

1. For all rows r ∈ R it holds that S(r) = ∅.

2. For all r, r′ ∈ R with r 6= r′ it holds that D(r) 6= D(r′).

3. For all r ∈ R, (r1, . . . , rk) ∈ P(r), 1 ≤ h < j ≤ k, H ∈ E(rh) and J ∈ E(rj) it holds that
D(H) ∩D(J) ⊆ D(r).

4. No element of D(R) has been illegally introduced.

5. No element of D(R) has been illegally removed.

We call a computation augmentable if all its tables are augmentable.

These requirements are satisfied by reasonable TD-based DP algorithms (cf. [30]) as these
usually do not put arbitrary data into the rows. Rather, the data in a row is typically restricted
to information about bag elements of the respective TD node. For instance, condition 3 mirrors
condition 3 of Definition 1, and condition 2 is usually satisfied by reasonable FPT algorithms
because they avoid redundancies in order to stay fixed-parameter tractable.

Now we describe how augmentable computations can automatically be transformed into nor-
mal computations that take minimization into account. For any table R in an augmentable compu-
tation, this allows us to compute a new table aug(R) if for each child table Ri the table aug(Ri)
has already been computed and compressed to compr(aug(Ri)).

Definition 15. We inductively define a function aug(·) that maps each tableR from an augmentable
computation to a table. Let the child tables of R be called R1, . . . , Rk. For any 1 ≤ i ≤ k and
r ∈ Ri, we write res(r) to denote {q ∈ compr(aug(Ri)) | q ≈ r}. We define aug(R) as the
smallest table that satisfies the following conditions:

1. For any r ∈ R, (r1, . . . , rk) ∈ P(r) and (c1, . . . , ck) ∈ res(r1)× · · ·× res(rk), there is a row
q ∈ aug(R) with q ≈ r and P(q) = {(c1, . . . , ck)}.

2. For any q, q′ ∈ aug(R) such that q′ ≤ q, P(q) = {(q1, . . . , qk)} and P(q′) = {(q′1, . . . , q′k)}
the following holds: If for all 1 ≤ i ≤ k there is some si ∈ S(qi) with si ≈ q′i, then there is a
subrow s ∈ S(q) with s ≈ q′ and P(s) = {(s1, . . . , sk)}. Moreover, inc(s) = ⊂ if q′ < q or
inc(si) = ⊂ for some si, otherwise inc(s) = eq.

For any augmentable computation C, we write aug(C) to denote the computation isomorphic to C
where each table R in C corresponds to aug(R).

13



Augmentable tables never have two different rows r, r′ with D(r) = D(r′). Moreover, we
defined aug(R) in such a way that for all r ∈ R there is some q ∈ aug(R) with r ≈ q. In the
compression compr(aug(R)), we only merge rows and subrows having the same data. So with
each row and subrow in aug(R) or compr(aug(R)) we can associate a unique originating row in
R. In fact, the extensions from an augmentable table R are in a one-to-one correspondence to the
extensions of rows from aug(R). This is formalized by the following lemma, which we prove in
the appendix.

Lemma 2. Let R be a table from an augmentable computation and Q = aug(R). Then for any
r ∈ R and Z ∈ E(r) there are q ∈ Q and X ∈ E(q) such that r ≈ q and Z ≈ X . Also, for any
q ∈ Q and X ∈ E(q) there are r ∈ R and Z ∈ E(r) such that q ≈ r and X ≈ Z.

The following lemma is central for showing that aug(·) works as intended. For a full proof, see
the appendix.

Lemma 3. Let R be a table from an augmentable computation. Then the table aug(R) is normal.

Proof sketch. Let R be a table in some augmentable computation such that R1, . . . , Rk denote
the child tables of R and let Q = aug(R). We use induction. If Q is a leaf table, then rows
and extensions coincide and the construction of Q obviously ensures that Q is normal. If Q has
child tables Qi = compr(aug(Ri)) and all aug(Ri) are normal, all Qi are normal by Lemma 1.
Let q ∈ Q, s ∈ S(q), P(q) = {(q1, . . . , qk)}, P(s) = {(s1, . . . , sk)}, Xi ∈ E(qi), Yi ∈ EXi

(si),
X = {q}∪X1∪· · ·∪Xk and Y = {s}∪Y1∪· · ·∪Yk. As for normality condition 1, the construction
of Q ensures s ≤ q and normality of Qi ensures Yi ≤ Xi, so Y ≤ X . To show that inc(s) has the
correct value, first suppose Y < X and inc(s) = eq. The latter would entail Yi = Xi, so s < q,
but then inc(s) = ⊂, which is a contradiction. So suppose X ≈ Y and inc(s) = ⊂. If q < s, there
would be an illegal removal at the origin of s in R, contradicting that R is augmentable. So for
some j there is a d ∈ D(Xj) \ D(Yj). Due to X ≈ Y , d ∈ D(s) or d ∈ D(Yh) for some h 6= j. In
the first case, there is an illegal introduction at the origin of s in R. In the other case, d ∈ D(Yh)
entails d ∈ D(Xh). As row extensions in Q are in a one-to-one correspondence with those in R,
and by augmentability of R, d ∈ D(Xj) ∩ D(Xh) entails d ∈ D(q). But then d ∈ D(s), which we
already led to a contradiction.

For condition 2, let Zi ∈ E(si) and Z = {s}∪Z1 ∪ · · · ∪Zk. As s ∈ S(q), there are p ∈ Q and
(p1, . . . , pi) ∈ P(p) with p ≈ s and pi ≈ si This entails existence of r ∈ R and (r1, . . . , rk) ∈ E(r)
with r ≈ p ≈ s and ri ≈ pi. By hypothesis, there are q′i ∈ Qi and X ′i ∈ E(q′i) with q′i ≈ si and
X ′i ≈ Zi. Each q′i originates from the unique ri ∈ R with ri ≈ q′i. So q′i ∈ res(ri) holds and there
are q′ ∈ Q and X ′ ∈ E(q′) with q′ ≈ r ≈ s and X ′ ≈ Z.

For condition 3, let q′ ∈ Q, P(q′) = {(q′1, . . . , q′k)}, X ′ ∈ E(q′) and X ′i ∈ E(q′i) for all 1 ≤ i ≤
k. Suppose X ′ ≤ X and, for the sake of contradiction, for some j there is a d ∈ D(X ′j) \ D(Xj).
Then d ∈ D(q) or d ∈ D(Xh) for some h 6= j. In the first case, there is an illegal introduction at
the origin of q in R. In the other case, d ∈ D(Xj)∩D(Xh) entails d ∈ D(q), which we already led
to a contradiction. SoX ′i ≤ Xi for each i. By hypothesis then there are ti ∈ S(qi) and Ti ∈ EXi

(ti)
with ti ≈ q′i and Ti ≈ X ′i. So there is a t ∈ S(q) with t ≈ q′ and P(t) = {(t1, . . . , tk)}. Then
T = {t} ∪ Ti ∪ · · · ∪ Tk is in EX(t) and T ≈ X ′.
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We can now state our main theorem, which says that exactly the subset-minimal solutions of
an augmentable computation are solutions of the augmented computation.

Theorem 1. Let C be an augmentable computation. Then sol(aug(C)) = {S ∈ sol(C) | @S ′ ∈
sol(C) : S ′ ⊂ S}.

Proof. Let R be the root table of an augmentable computation C and R′ be the root table of C ′ =
aug(C). By Lemma 3, C ′ is normal. For the first direction, let S ∈ sol(C ′). Then there are r′ ∈ R′
andX ′ ∈ E(r′) such that D(X ′) = S and for all s′ ∈ S(r′) it holds that inc(s′) = eq. By Lemma 2,
then there are r ∈ R and X ∈ E(r) such that X ≈ X ′. As R is augmentable, S(r) is empty, so
S ∈ sol(C) by Definition 5. We must now show that there is no solution in C smaller than S. For
the sake of contradiction, suppose there is some T ∈ sol(C) with T ⊂ S. Then there are q ∈ R
and Z ∈ E(q) such that D(Z) = T , hence Z < X ′. By Lemma 2, then there are q′ ∈ R′ and
Z ′ ∈ E(q′) such that Z ′ ≈ Z. As R′ is normal, due to Z ′ < X ′, there is some s′ ∈ S(r′) such that
inc(s′) = ⊂. This contradicts inc(s′) = eq, which we have seen earlier.

For the other direction, let S ∈ sol(C) be such that there is no S ′ ∈ sol(C) with S ′ ⊂ S. Then
there are r ∈ R and X ∈ E(r) such that D(X) = S. By Lemma 2, then there are r′ ∈ R′ and
X ′ ∈ E(r′) such that X ′ ≈ X , and there are no q′ ∈ R′ and Z ′ ∈ E(q′) with Z ′ < X . Hence, as
R′ is normal, there cannot be a s′ ∈ S(r′) with inc(s′) = ⊂. This proves that S ∈ sol(C ′).

Finally, we sketch that aug(·) does not destroy fixed-parameter tractability.

Theorem 2. LetA be an algorithm that takes as input an instance of size n and treewidth w along
with a TD T of width w. Suppose A produces an augmentable computation C isomorphic to T in
time f(w) · nO(1), where f is a function depending only on w. Then aug(C) can be computed in
time g(w) · nO(1), where g again depends only on w.

Proof sketch. We assume w.l.o.g. that each node in T has at most 2 children, as any TD can be
transformed to this form in linear time without increasing the width [25]. As A runs in FPT time,
i.e., in f(w) · nO(1) for a function f , no table in C can be bigger than f(w) · nc for a constant c.
To inductively compute Q = aug(R) for some table R in C with child tables R1, . . . , Rk (k ≤ 2),
suppose we have already constructed each Qi = aug(Ri) in FPT time. Then |Qi| = fi(w) · nci
for some fi and ci. We can compute Q′i = compr(Qi) in time polynomial in |Qi|. Then |Q′i| =
f ′i(w) · nc′i for some f ′i and c′i. Definition 15 suggests a straightforward way to compute Q in time
polynomial in |R| and

∑
1≤i≤k|Q′i|. So we can compute Q in FPT time. As T has size O(n), we

can compute aug(C) in FPT time.

4 Practical Realization
In this section we illustrate how the concepts introduced so far can be put into practice. We first
recall the D-FLAT system, a system which enables specifications of DP algorithms on TDs via
ASP. Then, we introduce a new variant of D-FLAT, called D-FLATˆ2. While D-FLAT requires an
explicit encoding of subset minimization within the DP algorithm, subset minimization is handled
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automatically in D-FLATˆ2, provided that the encoded problem produces an augmentable compu-
tation. Both systems use the library Htdecomp [13] for the generation of the tree decomposition
and use state-of-the-art ASP technology from the Potassco family [20] for running the encodings
of the DP algorithms.

4.1 D-FLAT: A Quick Tutorial
D-FLAT [1] is a framework for simplifying DP on TDs such that the user only has to provide an
ASP program formulating the DP algorithm on TDs for solving the given graph-based problem.
It automatically constructs a TD of the input graph in polynomial time (using heuristics). Then,
the generated TD is traversed in post-order. At each DP node the tables containing the solution
candidates are computed. There, an ASP solver is called with the following input:

1. the user-specified ASP encoding,

2. the input instance,

3. information about the current and child TD nodes (see Table 1), and

4. the partial solutions computed in the child TD nodes (see below).

Each model returned by the solver represents a partial solution of the current node.2 In order to
represent partial solutions, D-FLAT provides a general interface that supports (amongst others)
rows and subrows of a table as introduced in Section 3. Additionally, for problems in NP, a
simplified interface that only supports rows is available. We will now briefly describe the concepts
behind these interfaces, as well as their relation to the formal concepts presented in Section 3.
Simplified interface (for problems in NP). The simplified interface supports tables that contain
rows without subrows. When traversing the TD, tables for the already-visited child nodes are given
to the user-specified encoding via predicates as listed in Table 2. Then, the partial solutions for
the current TD node are computed via the user-specified encoding, and returned via the output
predicates listed in Table 3. A row r consists of a set of items and auxiliary items that store
problem-specific data D(r)3. The output predicate extend/1 specifies the child row(s) that give
rise to the partial solution encoded by the respective answer set.

Listing 1 contains the user-specified ASP encoding ΠSAT for the SAT problem. The encoding
makes use of D-FLAT’s input interface (see Tables 1 and 2) in the bodies of the rules, and the
output interface (see Table 3) in the heads of the rules. Additionally, it expects that the input
instance φ is encoded as follows. Atoms and clauses occurring in φ are given as ASP facts atom(·)
and clause(·) respectively. Facts pos(c, a) (neg(c, a)) denote that some atom a occurs positively
(negatively) in clause c.

2We use colors to highlight input (red), output (orange) and input instance (blue) predicates.
3D-FLAT provides an efficient implementation for joining tables that emerge from different child nodes, which

requires to specify items that are subject to set equivalence and auxiliary items that are subject to set union. Details
are given in [1].
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Table 1: Input predicates describing the tree decomposition.
Input predicate Meaning
final The current tree decomposition node is the root.
childNode(n) n is a child of the current decomposition node.
bag(n, v) Vertex v is contained in the bag of the decomposition node n.
current(v) Vertex v is an element of the current bag.
introduced(v) Vertex v is a current vertex but was in no child node’s bag.
removed(v) Vertex v was in a child node’s bag but is not in the current one.

Table 2: Input predicates describing tables of decomposition child nodes.
Input predicate Meaning
childRow(r, n) r is a table row belonging to decomposition node n.
childItem(r, i) D(r) of child row r contains item i.
childAuxItem(r, i) D(r) of child row r contains auxiliary item i.

Table 3: Output predicates for constructing the table of the current decomposition node.
Output predicate Meaning
item(i) The data associated with the current row shall contain item i.
auxItem(i) The data associated with the current row shall contain auxiliary item i.
extend(r) The EPT of the current row shall contain a reference to child table row r.

Example 6. We will now go through Listing 1 and explain how the partial solutions of our running
example (depicted in Figure 2) are computed by D-FLAT. Let us first consider leaf node n1 of
TEx . Since n1 has no children, only Lines 6 and 12-19 are of interest to us. For all atoms in
χ(n1) = {u, v} we guess their truth assignment (Line 6). In case an atom gets assigned true, it
is stored as item in the data of the computed row. Lines 12-14 specify the “current” clauses (i.e.
clauses, such that all clause atoms occur in the bag of the current TD node). In our example, this
yields clause (u ∨ v). Lines 16-17 denote whether such a clause is satisfied by the current truth
assignment. Clause (u ∨ v) is satisfied by {u, v}, {u} and {v}. However, {} is no model of the
clause, and removed by the constraint in Line 19. In n2, {u} is removed and {w, x} is introduced
to the bag. Whenever an atom was assigned false in a child row, Line 2 makes this explicit.
We now extend each partial solution of the child node (Line 4). In Figure 2, this extension is
denoted in column P. Their data (truth assignment), restricted to the current bag, is kept via
Line 10. For introduced vertices, their truth assignment is guessed in Line 6. Similar to before,
the “current” clauses are computed, and rows yielding unsatisfied current clauses are removed.
In TD nodes having several children, we extend exactly one row per child table at a time (Line 4).
Extended partial solutions have to agree on the truth assignment of atoms in the current bag
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1% D e f i n e f a l s e atoms
2 f(R,X) ← childRow(R,N), bag(N,X), not childItem(R,X).
3% Guess p a r t i a l s o l u t i o n s t o be e x t e n d e d
4 1 { extend(R) : childRow(R,N) } 1 ← childNode(N).
5% Guess t r u t h v a l u e o f i n t r o d u c e d atoms
6 { item(A) : introduced(A) }.

7% Only j o i n rows c o i n c i d i n g on t r u t h v a l u e s o f atoms
8 ← extend(X;Y), childItem(X,A), f(Y,A).

9% True atoms are k e p t
10 item(X) ← extend(R), childItem(R,X), current(X).
11% C u r r e n t c l a u s e s
12 notCurr(C) ← pos(C,A), not current(A).
13 notCurr(C) ← neg(C,A), not current(A).
14 curr(C) ← clause(C), not notCurr(C).
15% D e f i n e s a t i s f i e d c l a u s e s
16 sat(C) ← curr(C), pos(C,A), item(A).
17 sat(C) ← curr(C), neg(C,A), not item(A).
18% C u r r e n t c l a u s e s need t o be s a t i s f i e d
19 ← curr(C), not sat(C).

Listing 1: ΠSAT: D-FLAT encoding for solving SAT.

(Line 8). Consider join node n5. For instance, since χ(n5) ∩ D(21) = χ(n5) ∩ D(41), we can
construct row 51 with D(51) = {x} and EPT (21, 41).

General interface (for problems beyond NP). D-FLAT provides an interface that supports a
more general data structure, called item tree. Here, we first briefly introduce item trees. Then, we
show how item trees can be used to represent rows with subtables. For details we refer to [2]. Each
node in the TD can be associated with an item tree. The predicates specifying item trees computed
in the child nodes are given in Table 4, output predicates are given in Table 5. Similar to the
simplified interface, each node in an item tree contains data, specified by item/2 and auxItem/2
predicates. Each item tree node additionally has an EPT that represents its origin, that contains
extension pointers denoted by extend/2 (Note that these are now binary predicates). Each root-
to-leaf path has a particular length/1, and the level of an item tree node is its depth on the path.

At the TD’s root, each item tree node must be labeled with either accept or reject if it is a
leaf, otherwise with or/1 or and/1. D-FLAT uses this to filter out solution candidates for which
“counterexamples” exist: Only so-called accepting nodes are kept at the TD root, where a node
is accepting if a) its label is accept, or b) its label is or and at least one child is accepting, or
c) its label is and and all children are accepting. One can view the simplified interface as a special
case of the interface for item trees, where the length of each root-to-leaf path is one, and the root
node is of type or. Furthermore, contrary to tables, where each model returned by the ASP solver
represents a row, for item trees a model represents a single root-to-leaf path in the item tree.

For solving subset minimization problems, we use item trees to represent tables R with subta-
bles as follows. The length of each root-to-leaf path is two. The root node (level 0) of the item
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Table 4: Input predicates describing item trees of child nodes in the decomposition.
Input predicate Meaning
atNode(s, n) s is an item tree node belonging to decomposition node n.
rootOf(s, n) s is the root of the item tree at decomposition node n.
sub(r, s) r is an item tree node with child s.
childItem(s, i) The data of item tree node s contains item i.
childAuxItem(s, i) The data of item tree node s contains auxiliary item i.

Table 5: Output predicates for constructing the item tree of the current decomposition node.
Output predicate Meaning
item(l, i) Item tree node at level l in the current root-to-leaf path shall contain item

i.
auxItem(l, i) Item tree node at level l in the current root-to-leaf path shall contain aux-

iliary item i.
extend(l, s) The EPT associated with the item tree node at level l in the current root-

to-leaf path shall contain a reference to item tree node s.
length(l) The current root-to-leaf path has length l.
or(l)/and(l) The node at level l in the current root-to-leaf path has type “or”/“and”.
accept/reject The leaf in the current root-to-leaf path has type “accept”/“reject”.

tree is of type or. The nodes at level 1 are of type and. Here, the idea is to construct item trees,
such that some (or) solution candidate (stored at level 1) is accepted if there is no counterexample
(and) at level 2 that is smaller. For a row r ∈ R, we specify each item i ∈ D(r) by item(1, i)
(or auxItem(1, i), respectively). P(r) is represented by predicates extend(1, pi) where pi is a
row in the i-th child of R. For a subrow s ∈ S(r), i ∈ D(s) is given via item(2, i) predicates (or
auxItem(2, i)), and EPTs P(s) are given by extend(2, pi) for some pi. The inclusion status flag
inc(s) =⊂ is represented by auxItem(2, smaller), for inc(s) = eq no flag is stored.

Example 7. In the following we explain this concept on basis of ⊆-MINIMAL SAT. In D-FLAT, it
is again only required to specify a single ASP encoding, depicted in Listing 2. The encoding defines
that data for both solution candidates and counterexamples are computed as in the SAT problem.
Additionally, this encoding ensures that partial interpretations represented by counterexamples are
subsets of partial interpretations represented by solution candidates. Line 1 defines the structure
of the item trees used for the subset minimization problem. Similar to ΠSAT, Line 3 makes explicit
if an atom is false in the data of an item tree node. Exactly one root-to-leaf path of each child
item tree is extended (Lines 5-6). Then, for each level the truth assignment of introduced atoms is
guessed. True atoms are stored via item/2 in the data of the row or subrow (Line 8). Root-to-
leaf paths are only joined in case the respective item sets coincide on their partial interpretations
for current atoms (Line 10). Truth assignments of extended child (sub)rows for current atoms are

19



1 length(2). or(0). and(1).

2% D e f i n e f a l s e atoms
3 f(S,X) ← atNode(S,N), sub(_,S), childNode(N), bag(N,X), not childItem(S,X).

4% Guess roo t−to− l e a f p a t h s i n i t e m t r e e s t o be e x t e n d e d
5 extend(0,R) ← root(R).
6 1 { extend(L+1,S) : sub(R,S) } 1 ← extend(L,R), L<2.
7% Guess t r u t h v a l u e o f i n t r o d u c e d atoms
8 { item(2,A;1,A) : introduced(A) }.

9% Only j o i n roo t−to− l e a f p a t h s c o i n c i d i n g on atom t r u t h v a l u e s
10 ← extend(L,X;L,Y), atom(A), childItem(X,A), f(Y,A), L=1..2.

11% True atoms are k e p t
12 item(L,X) ← extend(L,R), childItem(R,X), current(X), L=1..2.

13% C u r r e n t c l a u s e s
14 notCurr(C) ← pos(C,A), not current(A).
15 notCurr(C) ← neg(C,A), not current(A).
16 curr(C) ← clause(C), not notCurr(C).
17% D e f i n e s a t i s f i e d c l a u s e s
18 sat(L,C) ← curr(C), pos(C,A), item(L,A), L=1..2.
19 sat(L,C) ← curr(C), neg(C,A), not item(L,A), L=1..2.
20% C u r r e n t c l a u s e s need t o be s a t i s f i e d
21 ← curr(C), not sat(L,C), L=1..2.

22% I n t e r p r e t a t i o n a t l e v e l 2 must be s u b s e t o f t h a t a t l e v e l 1
23 ← item(2,A), not item(1,A).

24% Update s u b s e t i n f o r m a t i o n ; r e j e c t l a r g e r models a t r o o t
25 auxItem(2,smaller) ← extend(2,S), childAuxItem(S,smaller).
26 auxItem(2,smaller) ← atom(A), item(1,A), not item(2,A).

27 reject ← final, auxItem(2,smaller).
28 accept ← final, not reject.

Listing 2: D-FLAT encoding for solving ⊆-MINIMAL SAT.

kept (Line 12). As in Listing 1, “current” clauses are computed (Lines 14-16), which have to be
satisfied both by the partial interpretation stored for the solution candidate and the counterexample
(Line 21). Line 23 guarantees that the truth assignment in a counterexample is a subset of (or
equal to) that of a solution candidate. Flag smaller denotes that the counterexample represents
a proper subset of the solution candidate (Lines 25-26). In the final (i.e., root) node of the TD,
solution candidates are rejected that still have a smaller counterexample, and accepted otherwise
(Lines 27-28).

Recall Figure 4 which contains the complete computation for our running example. Our encod-
ing guarantees that the algorithm behaves exactly as described in the previous section. Observe
that each model of the encoding matches a root-to-leaf path in the item tree, i.e., it contains exactly
one row and subrow entry.
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4.2 Towards D-FLATˆ2
We implemented our approach in a system called D-FLATˆ2 by extending D-FLAT. D-FLATˆ2
avoids redundant computations of solution candidates and potential counterexamples. It supports
minimization and maximization on user-specified items (e.g., for ⊆-MINIMAL SAT, on atoms).
D-FLATˆ2 directly makes use of aug(·) as given in Definition 15; it is thus a problem-independent
software framework for subset optimization whose input is (1) an algorithm A for solving a prob-
lem without subset minimization, (2) an instance of this problem and (3) a tree decomposition
(which actually can be generated from the input with the help of heuristics). By running A and
transforming the resulting computation C into aug(C), Theorem 1 guarantees that the solutions are
exactly the subset-minimal ones of C.
Interface. D-FLATˆ2 supports the simplified interface of D-FLAT. Internally, instead of using
item trees for representing rows and subrows that explicitly represent potential counterexamples,
D-FLATˆ2 refines them by using so-called reduced item trees. Recall item trees and the simplified
user interface for problems in NP, since reduced item trees work in a similar way. In a reduced
item tree every root-to-leaf path is of length one. For a table R, rows r ∈ R are stored as usual:
each item i ∈ D(r) is given by item(i) (or auxItem(i), respectively). P(r) is represented by
predicates extend(pi) where pi is a row in the i-th child ofR. Instead of storing subrows explicitly,
D-FLATˆ2 only retains a set of so-called counterexample pointers associated with r. For a subrow
s ∈ S(r), a counterexample pointer is a pair (c, inc(s)), where c is a pointer to some r′ ∈ R.
By using counterexample pointers, it is no longer required to store counterexamples explicitly.
Instead, solution candidates now also serve as countercandidates whenever they are referred to in
a set of counterexample pointers. With this, it suffices to update solution candidates during the
bottom-up traversal of the TD.
Program flow. Figure 5 illustrates the program flow of D-FLATˆ2. The system parses the input
instance and computes some tree decomposition heuristically using the Htdecomp library [13].
Then, in a first pass over the TD, solution candidates are computed as in D-FLAT. In contrast
to D-FLAT, which computes counterexample candidates directly during the first (and only) pass,
D-FLATˆ2 traverses the TD a second time. There, the counterexample pointers are computed
(along the lines of Definition 15). After the second pass, D-FLATˆ2 is able to decide the problem
or to materialize the solutions.

The two-pass approach allows us to exclude possible counterexamples that turn out not to
correspond to a solution candidate after all. First we compute all rows without their subtables, then
we delete rows that do not lead to solutions and finally we apply aug(·) to the resulting tables. This
way, we avoid storing pointers to counterexample candidates that appear in no extension at the root
table.
Extensions. D-FLATˆ2 generalizes our approach by also supporting problems where only a cer-
tain part of the data (instead of all data) is subject to minimization4. Towards this, D-FLATˆ2
supports a new output predicate optItem/1, where optItem(i) means that item i is subject to op-

4Note that in the previous section we provided definitions and proofs only for the special case where minimization
is applied to all data, as the generalization leads to more cumbersome notation but does not change the nature of the
approach.
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Figure 5: Flowchart for D-FLATˆ2.

timization. Using this generalization, we are able to obtain DP algorithms for further AI problems
like circumscription [29] (see the next section).

Beside minimization, D-FLATˆ2 also supports subset maximization over sets of items. Basi-
cally this works analogous to Section 3 by maintaining inclusion flags eq and ⊃ (instead of ⊂);
subtables are then used to store potential counterexamples to a solution candidate being subset-
maximal.

For some problems we require counterexample candidates that are not solution candidates at
the same time. An example will be given in Section 5, where we consider disjunctive ASP. There,
possible counterexamples are models of a program reduct and not the program itself. In such cases,
the rows representing such counterexample candidates can be marked with a special flag as “pseudo
solution candidates” by means of the atom auxItem(pseudo), which is taken into account by
D-FLATˆ2. Then, the only thing required from the user of D-FLATˆ2 is an ASP encoding where
each model corresponds to a single solution or counterexample candidate marked with pseudo.

22



5 Application to Common AI Problems
In the following we outline some practical applications where D-FLATˆ2 is well suited.

5.1 SAT
Program ΠoptAllItems = {optItem(X)←item(X).} uses the optItem/1 predicate in a trivial way.
With this single additional rule at hand, we obtain the D-FLATˆ2 encoding

Π⊆-MINIMAL SAT = ΠoptAllItems ∪ ΠSAT

which allows us to solve ⊆-MINIMAL SAT by simply using the existing encoding for SAT and
adding information on what to optimize. In this case, the basic specification ΠoptAllItems suffices,
as in⊆-MINIMAL SAT we consider all items for minimization. D-FLATˆ2 encoding Π⊆-MINIMAL SAT

gives several advantages over the traditional D-FLAT encoding (see Listing 2): It allows us to again
use the simplified interface (designed for problems in NP) and the overall length of the encoding
is greatly reduced.

5.2 Circumscription
In the propositional case of Circumscription [29], we are given a theory T and sets of atoms P
and Z, and we are interested in models M of T such that there is no model M ′ with M ′ ∩ P ⊂
M ∩ P and M ∩ Z = M ′ ∩ Z. The formula whose classical models correspond to exactly those
solutions is denoted by CIRC(T ;P ;Z). We can model Circumscription in our approach by a
slight modification of our ⊆-MINIMAL SAT algorithm: We only put an atom x in an optimization
item set if x ∈ P ; and for any x ∈ Z we add optimization items t(x) or f(x) if the item set
contains x or not, respectively (thus making solution candidates with different interpretations of Z
incomparable). By applying this technique we have that for any sibling rows r and r′ in a table of
the computation, the optimization item set of r is a subset of the one of r′ iff Mr ∩ P ⊆ Mr′ ∩ P
and Mr ∩ Z = Mr′ ∩ Z, where Mr is a partial interpretation for row r following the EPTs. The
program ΠoptForCirc (Listing 3) takes these considerations into account; moreover,

ΠCIRC = ΠoptForCirc ∪ ΠSAT

then gives a D-FLATˆ2 implementation of the DP algorithm for Circumscription. As input it
expects the theory T to be given as a CNF formula like for ΠSAT and the sets P and Z to be given
using the predicates p/1 and z/1, respectively.

1 optItem(X) ← item(X), p(X).
2 optItem(t(X)) ← item(X), z(X).
3 optItem(f(X)) ← not item(X), z(X), current(X).

Listing 3: ΠoptForCirc: used for solving Circumscription via ΠCIRC = ΠoptForCirc ∪ ΠSAT.
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5.3 Disjunctive ASP
While a traditional TD-based DP algorithm for solving disjunctive ASP can be found in [24],
here we solve the problem with D-FLATˆ2. We first do so via reduction to Circumscription. In
the following, for any interpretation, rule or set of atoms X , we write X ′ to denote the result of
replacing each atom a in X with a new atom a′. Given a disjunctive logic program Π consisting
of rules of the form a1 ∨ a2 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn, we use the notation
h(r) :=

∨
1≤i≤k ai, b

+(r) :=
∧

1≤i≤m bi and b−(r) :=
∧
m+1≤i≤n ¬bi.

As shown in [31], an interpretation I is an answer-set of Π iff I∪I ′ is a model of
∧
p∈HB(Π)(p ≡

p′)∧ CIRC(
⋃
r∈Π{((b+(r)∧ b−(r′))→ h(r))};HB(Π);HB(Π)′), where HB(Π) denotes the Her-

brand base of Π. In order to compute models of this formula, we can first calculate models of
the Circumscription part and then remove those models (using the “pseudo” item for marking
pseudo solution candidates), where the truth value of some atom a is different from the one of
a′. This amounts to ΠpseudoForASP (Listing 4), which can be used for solving disjunctive ASP by
means of the combined program ΠASP = ΠpseudoForASP ∪ΠCIRC. The predicate cor in this encoding
is assumed to be symmetric and occurring in input facts in order to associate each atom a with
its corresponding primed variant a′. (We require that a and a′ always occur together in some bag,
which can be achieved by adding an edge (a, a′) to the input graph.)

1 auxItem(pseudo) ← cor(A,B), current(A;B), item(A), not item(B).
2 auxItem(pseudo) ← extend(R), childAuxItem(R,pseudo).

Listing 4: ΠpseudoForASP: used for solving disjunctive ASP via ΠASP = ΠpseudoForASP ∪ ΠCIRC.

In Listing 5, we present an alternative approach to solving disjunctive ASP, which does not
resort to Circumscription. In this encoding, Π′ASP, we generate solution candidates for all inter-
pretations that are candidates for being a classical model of the input program, which is specified
by means of the predicates head, pos and neg. A classical model M of a program P might be
no answer set because some M ′ ⊂ M is a model of the reduct PM . To check this, we generate
additional rows that only serve as counterexample candidates (like M ′) to the rows representing
classical model candidates (like M ). For any atom a from the current bag, if an item set contains
a, then the corresponding interpretation sets a to true (otherwise to false). The rows representing
potential counterexamples can additionally contain items of the form r(a). This signifies that the
atom a is false in the respective counterexample candidate but true in the classical model candi-
dates that reference this counterexample candidate (by means of their counterexample pointers). In
Lines 22 and 24, we make sure that any row containing an item r(a) is marked with the “pseudo”
item and will therefore not be considered as a solution but rather serves as a counterexample can-
didate only. Lines 27 and 28 are required to ensure that any counterexample candidate C of any
solution candidate M only contains r(a) for atoms a that are also contained in M .
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1 1 { extend(R) : childRow(R,N) } 1 ← childNode(N).
2% Guess t r u t h v a l u e / r u l e f l a g o f i n t r o d u c e d atoms
3 0 { item(A;r(A)) : atom(A), introduced(A) } 1.
4% Make e x p l i c i t when an atom i s f a l s e or a r u l e i s u n s a t
5 false(R,X) ← childRow(R,N), bag(N,X), not childItem(R,X).
6 falser(R,X) ← childRow(R,N), bag(N,X), not childItem(R,r(X)).
7 unsat(R,X) ← childRow(R,N), bag(N,X), not childAuxItem(R,X).

8% Only j o i n c h i l d i t e m s e t s t h a t c o i n c i d e on common atoms
9 ← extend(X;Y), atom(A), childItem(X,A), false(Y,A).

10 ← extend(X;Y), atom(A), childItem(X,r(A)), falser(Y,A).

11% Only e x t e n d c h i l d i t e m s e t s s a t i s f y i n g a l l removed r u l e s
12 ← extend(S), rule(X), removed(X), unsat(S,X).
13% True atoms and s a t i s f i e d r u l e s remain so u n l e s s removed
14 item(X) ← extend(S), childItem(S,X), current(X).
15 item(r(X)) ← extend(S), childItem(S,r(X)), current(X).

16% Through t h e guess , r u l e s may become s a t i s f i e d
17 auxItem(R) ← current(R;A), head(R,A), item(A).
18 auxItem(R) ← current(R;A), pos(R,A), not item(A).
19 auxItem(R) ← current(R;A), neg(R,A), item(A).

20% Rule i s n o t i n r e d u c t i f a n e g a t i v e body atom i s s e t t o t r u e
21 auxItem(R) ← current(R;A), neg(R,A), item(r(A)).

22 auxItem(pseudo) ← item(r(X)), current(X).
23% I n h e r i t pseudo f l a g from c h i l d nodes
24 auxItem(pseudo) ← extend(R), childAuxItem(R,pseudo).

25 optItem(S) ← atom(S), item(S).
26% P r e v e n t s r ( S ) a t l e v e l 2 ( r e d u c t ) i f S i s n o t t r u e a t l e v e l 1
27 optItem(r(S)) ← atom(S), item(S), not auxItem(pseudo).
28 optItem(r(S)) ← atom(S), item(r(S)).

Listing 5: Π′ASP: D-FLATˆ2 encoding for solving disjunctive ASP directly.

5.4 Abstract Argumentation
Problems from abstract argumentation [15] are further examples where our approach is reasonable.
Given an object (A,R), where A is a set of arguments and R ⊆ A × A, we call a set S ⊆ A
admissible if (1) (a, b) /∈ R for all a, b ∈ S and (2) for each s ∈ S and r ∈ A, (r, s) ∈ R implies
that there is some q ∈ S with (q, r) ∈ R. S is preferred if it is a subset-maximal admissible set.
For any C ⊆ A, we call C+ = C ∪ {a | ∃b ∈ C s.t. (b, a) ∈ R} the range of C. A set S is
semi-stable if it is admissible and for every admissible S ′ ⊂ S, S+ 6⊂ S ′+ holds.

Listing 6 shows an encoding Πadmissible for computing admissible sets. At first glance, it
seems to be overcomplicated compared to the algorithm in [16]: For computing admissible sets it
actually suffices to guess which introduced arguments are in S, whereas we guess in Πadmissible

which arguments are in the set, attackers or neither. In order for a guessed set to be a solution,
every attacker has to be defeated by the time it is removed from the bag. Once it can be determined
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that an attacker is defeated, its status changes from “attc” to “def”. This additional complexity
allows us to reuse Πadmissible for computing semi-stable sets later on.

1 1 { extend(R) : childRow(R,N) } 1 ← childNode(N).
2% Guess whe ther an e l e m e n t i s in , o u t or a t t a c k i n g ( a t t c )
3 0 { item(in(A)); attc(A) } 1 ← introduced(A).

4% J o i n o n l y argument s w i t h c o m p a t i b l e s t a t u s
5 nIn(S,A) ← childRow(S,N), bag(N,A), not childItem(S,in(A)).
6 nDef(S,A) ← childRow(S,N), bag(N,A), not childAuxItem(S,def(A)), not

childAuxItem(S,attc(A)).
7 ← extend(S1), extend(S2), childItem(S1,in(A)), nIn(S2,A).
8 ← extend(S1), extend(S2), childAuxItem(S1,def(A)), nDef(S2,A).
9 ← extend(S1), extend(S2), childAuxItem(S1,attc(A)), nDef(S2,A).

10% I n h e r i t argument s t h a t are in , d e f e a t e d or a t t a c k e r s
11 item(in(A)) ← extend(S), childItem(S,in(A)), current(A).
12 chdef(A) ← extend(S), childAuxItem(S,def(A)), current(A).
13 attc(A) ← extend(S), childAuxItem(S,attc(A)), current(A).
14% S e t d e f e a t e d argument s
15 auxItem(def(A)) ← current(A;B), att(B,A), item(in(B)).
16 auxItem(def(A)) ← chdef(A).
17% S t i l l r e m a i n i n g ( u n d e f e a t e d ) a t t a c k e r s
18 auxItem(attc(A)) ← attc(A), not auxItem(def(A)).

19% Out−arguments are n o t a l l o w e d t o be d e f e a t e d / a t t a c k e r s
20 out(A) ← not attc(A), not chdef(A), current(A).
21 ← auxItem(def(A)), out(A).
22 ← out(A), current(A), item(in(B)), att(A,B).

23% As su re t h a t t h e s e t i s c o n f l i c t −f r e e
24 ← item(in(A)), item(in(B)), att(A,B).

25% Remove c a n d i d a t e s t h a t l e a v e a t t a c k e r s u n d e f e a t e d
26 ← extend(S), childAuxItem(S,attc(A)), removed(A).

Listing 6: Πadmissible: D-FLAT encoding for admissible sets.

Using Πadmissible, we can compute preferred sets by simple subset maximization via

Πpreferred = ΠoptAllItems ∪ Πadmissible.

Furthermore, it is now also easy to compute semi-stable sets by means of ΠoptForSemiStable (List-
ing 7), using

ΠsemiStable = ΠoptForSemiStable ∪ Πadmissible.

Although the code Πadmissible could have been simplified for computing preferred sets, here it is
indeed required because we need to find those admissible sets that have maximal range.

1 optItem(A) ← item(in(A)).
2 optItem(A) ← auxItem(attc(A)).
3 optItem(A) ← auxItem(def(A)).

Listing 7: ΠoptForSemiStable: used for computing semi-stable sets.
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6 Evaluation
In this section we compare our new system D-FLATˆ2 (version 1.0.2) with D-FLAT (version 1.0.1).
Both frameworks internally use ASP grounder Gringo 4.4.0 and solver Clasp 3.1.1. Additionally,
we compare the performance to well-established systems for the respective problem domains.

6.1 Abstract Argumentation
This part focuses on experiments for problems from the area of abstract argumentation. In
addition to D-FLAT and D-FLATˆ2, we benchmarked the ASPARTIX system [17] that solves
argumentation-related problems directly via ASP. The results for ASPARTIX were produced with
Gringo 3.0.5, as it is not fully compatible with newer versions of Gringo. For evaluation we used
so-called “grid-based” instances, where vertices are arranged on a n×mmatrix, and edges connect
horizontally, vertically and diagonally neighboring vertices. Each instance was run five times with
different TDs, and every run was limited to one hour and three GB of memory.
System comparison. We considered the problem of enumerating all preferred extensions and
compared the systems on grid-based instances with 40 to 65 nodes and treewidth 4. Figure 6
illustrates average runtimes and allocated memory together with the 95 % confidence interval.
D-FLATˆ2 showed the best performance, while D-FLAT is slightly slower and requires more mem-
ory. For ASPARTIX we observed timeouts for instances having more than 55 nodes.
Problem comparison. As D-FLATˆ2 is based on D-FLAT, we compared these systems on several
problems using grid-based instances with treewidth 4. Moreover, we analyzed the cost of comput-
ing preferred and semi-stable sets compared to only obtaining admissible sets. As instances have
much more admissible sets than preferred sets, which would bias a performance comparison when
doing explicit enumeration, we considered the counting variants of these problems. Results are
summarized in Figure 7.

When counting admissible sets, D-FLATˆ2 requires slightly more time and memory than
D-FLAT due to the overhead imposed by using reduced item trees instead of item trees. For
preferred sets, the inefficiency of computing redundant counter candidates in D-FLAT becomes
evident. On the contrary, in D-FLATˆ2 the difference in runtime for counting preferred instead of
admissible sets is barely measurable (i.e. within the 95% confidence interval). Here, we observed
that subset maximization comes for free for instances of small treewidth. Finally, for semi-stable
sets, D-FLAT was not able solve instances with 500 vertices within the given memory limits. One
reason is that for this problem many potential counter candidates have to be computed that turn
out to be not even admissible. Thus, our two-phased approach of first computing (not necessarily
maximal) solutions and then performing maximization obviously pays off in this case.

6.2 Subset-minimal SAT

Comparison to QBF. We also performed experiments for counting minimal models of randomly
generated 3-CNF instances (conjunctive normal form with 3 literals in every clause). Results were
compared to depQBF 4 [28], a state-of-the-art QBF solver and bloqqer 35 [22] in combination with
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depQBF, a tool for preprocessing QBFs. We considered randomly generated, satisfiable instances
with 26 clauses and a varying number of variables. For each number of variables, five instances
were generated and run three times. The treewidth of all generated instances did not exceed the
value of 9. Figure 8 illustrates the obtained results, including the 95% confidence interval. The
number of variables is shown on the x-axis.

Although bloqqer with depQBF is extremely fast, the preprocessing potentially yields simpli-
fications which are not equivalence-preserving. Thus, bloqqer might not be well-suited for some
applications. Furthermore, we let depQBF and bloqqer only output the first satisfying assign-
ment (marked with an asterisk in the legend of the plot), since counting solutions is not directly
supported by these tools. The actual runtime would, of course, increase in case of counting (via
enumeration) since these tools require to incrementally call the solver until the formula (modified
by previously computed solutions) is unsatisfiable. Figure 8 also reveals that (for instances of small
treewidth) subset optimization in D-FLATˆ2 almost comes for free, since SAT and ⊆-MINIMAL

SAT require approximately the same amount of resources. Note that we are going to conduct
further experiments for the most recent version of depQBF released after submission deadline.
Comparison to ASP. In addition to before, we also counted minimal models by means of ASP.
We used Potassco (Gringo 4.4.0 and Clasp 3.1.1) as a representative candidate among ASP solvers.
Here, we again considered satisfiable 3-CNF instances. To guarantee an upper bound of 4 for the
treewidth, we generated the instances following a grid-based structure (as above). Each bar in
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Figure 9 presents the average time (or memory) over the five instances per number of variables and
three runs per instance assuming a timeout of one hour. Additionally, the 95% confidence interval
is given.

Again, Potassco only had to print the first satisfying assignment (marked with an asterisk), i.e.
the actual runtime would increase in case of enumeration/counting. Note that the ASP approach is
quite fast, but with instances of small treewidth, D-FLATˆ2 quickly shows its advantage. Moreover,
observe that compared to D-FLATˆ2, Potassco shows potentially increased runtime consumption
and a huge runtime deviation.

7 Conclusion
To put FPT results for bounded treewidth to use in the AI domain, often DP algorithms for prob-
lems involving tasks like subset minimization have to be designed. These algorithms exhibit com-
mon properties that are tedious to specify but can be automatically taken care of, as we have shown
in this paper. In fact, we have provided a translation that turns a given DP algorithm for computing
a set S of solution candidates (say, models of a formula) into a DP algorithm that computes only
the subset-minimal elements of S (e.g., minimal models). We have shown the translation to be
sound and to remain FPT whenever the original DP is. This is indeed superior to a naive way
that computes all elements from S first and then filters out minimal ones in a post-processing step,
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which would not yield an FPT algorithm in general.
We presented the D-FLATˆ2 system for DP on TDs realizing this idea with further generaliza-

tions (e.g., performing minimization only on a given set of atoms). Users of D-FLATˆ2 are only
required to provide an ASP program that specifies an algorithm for a version of the problem with-
out optimization. Our method then performs the optimization tasks in an automatic and uniform
way, thus making the development of such algorithms significantly easier. Preliminary experi-
ments indicate that our new approach brings significant advantages in terms of time and memory
compared to previous solutions.

For future work, we would like to investigate the potential of other built-ins for DP algorithms;
for instance, checks for connectedness could be treated in a similar way. In the long run, we
anticipate a system that facilitates implementing DP algorithms but (in contrast to related systems
such as Sequoia) keeps the overall design of the concrete DP algorithm in the user’s hands.
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A Appendix: Proofs
Lemma 1. If a table R is normal, then so is compr(R).

Proof. Let R be a normal table, let R′ = compr(R), and let R1, . . . , Rk denote the child tables
of R (and R′). As for the first condition of normality of R′, let r′ ∈ R′, s′ ∈ S(r′), X ′ ∈ E(r′)
and Y ′ ∈ EX′(s′). For 1 ≤ i ≤ k, the set X ′ ∩ Ri consists of a single element ri, as can be seen
via Definition 3. Similarly, there is a subrow si such that Y ′ ∩

⋃
t∈Ri

S(t) = {si}. As Y ′ is an
extension relative to X ′, si ∈ S(ri) holds. The fact that ri and si are part of extensions of r′ and
s′, respectively, entails that (r1, . . . , rk) ∈ P(r′) and (s1, . . . , sk) ∈ P(s′). From the definition of
compr(·) we infer that then there is a row r ∈ R having a subrow s ∈ S(r) such that r ≈ r′,
s ≈ s′ and (s1, . . . , sk) ∈ P(s). It must hold by Definition 2 that (r1, . . . , rk) ∈ P(r) because
s ∈ S(r), (s1, . . . , sk) ∈ P(s) and si ∈ S(ri). As (r1, . . . , rk) ∈ P(r) and (s1, . . . , sk) ∈ P(s),
there are X ∈ E(r) and Y ∈ EX(s) with X ≈ X ′ and Y ≈ Y ′. As R is normal, Y ≤ X holds,
which proves that Y ′ ≤ X ′. By definition of compr(·), it holds that inc(s) = ⊂ if and only if
inc(s′) = ⊂. Furthermore, due to normality of R, Y < X holds if and only if inc(s) = ⊂. This
proves that Y ′ < X ′ holds if and only if inc(s′) = ⊂.

To prove the second condition, let r′ ∈ R′, s′ ∈ S(r′) and Y ′ ∈ E(s′). Using the same
reasoning as before, we can see that there is a subrow s of some row in R such that s ≈ s′, and
there are elements si ∈ Y ′ such that (s1, . . . , sk) ∈ P(s). Hence there is an extension Y ∈ E(s)
with Y ≈ Y ′. By normality of R, there is a row t ∈ R with t ≈ s and an extension T ∈ E(t)
with T ≈ Y . Similar to before, then there are elements ti ∈ T such that (t1, . . . , tk) ∈ P(t). By
definition of compr(·), then there is a row t′ ∈ R′ with t′ ≈ t and (t1, . . . , tk) ∈ E(t′). Furthermore,
there are Ti ∈ E(ti) such that T = {t} ∪ T1 ∪ · · · ∪ Tk. We can construct T ′ = (T \ {t}) ∪ {t′}
and observe that T ′ ∈ E(t′) and T ′ ≈ T = Y ≈ Y ′ as well as t′ ≈ s′.

As for the third condition, let q′, r′ ∈ R′, Z ′ ∈ E(q′) andX ′ ∈ E(r′) such that Z ′ ≤ X ′. Similar
to before, then there are rows q, r ∈ R such that q ≈ q′ and r ≈ r′, there are elements qi ∈ Z ′

such that (q1, . . . , qk) ∈ P(q), and there are elements ri ∈ X ′ such that (r1, . . . , rk) ∈ P(r). Hence
there are Z ∈ E(q) and X ∈ E(r) with Z ≈ Z ′ and X ≈ X ′, so Z ≤ X . By normality of R, then
there exist u ∈ S(r) and U ∈ EX(u) such that u ≈ q and U ≈ Z, and there are ui ∈ U such that
(u1, . . . , uk) ∈ P(u). Then by definition of compr(·), there is a subrow u′ ∈ S(r′) with u′ ≈ u and
(u1, . . . , uk) ∈ P(u′). So u′ ≈ q′ and there is an extension U ′ ∈ EX′(u′) with U ′ ≈ U = Z ≈ Z ′,
which concludes the proof.

Furthermore, we show that the extensions from rows in a tableR are in a one-to-one correspon-
dence to the extensions of rows from compr(R) such that the data of corresponding extensions is
the same.

Lemma 4. Let R be a table. Then for any r ∈ R and X ∈ E(r) there are r′ ∈ compr(R) and
X ′ ∈ E(r′) such that r′ ≈ r and X ′ ≈ X . Also, for any r′ ∈ compr(R) and X ′ ∈ E(r′) there are
r ∈ R and X ∈ E(r) such that r ≈ r′ and X ≈ X ′.

Proof. Let R be a table and R′ = compr(R). For the first statement, let r ∈ R and X ∈ E(r).
Then there are (r1, . . . , rk) ∈ P(r) and Xi such that X = {r} ∪X1 ∪ · · · ∪Xk. By definition of
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compr(·), there is r′ ∈ R′ with r′ ≈ r and (r1, . . . , rk) ∈ P(r′). Then X ′ = {r′} ∪X1 ∪ · · · ∪Xk

is in E(r′) and X ′ ≈ X . The second statement is proved symmetrically.

As explained after our definition of aug(·), each row and subrow in the (compressed) augmen-
tation result has a unique originating row. We formalize this as follows.

Definition 16. Let R be a table in some augmentable computation, let Q = aug(R) and Q′ =
compr(Q). We define a function origR(·) that maps each row or subrow in Q or Q′ to a row in R.
For q ∈ Q ∪ Q′ we define origR(q) to be the unique r ∈ R with r ≈ q. For s ∈ S(q) we define
origR(s) to be the unique r ∈ R with r ≈ s.

Let R be a table from an augmentable computation. The following lemma formalizes that
for each (sub)row q in aug(R) with (q1, . . . , qk) ∈ P(q), the originating row origR(q) in R has a
corresponding EPT (r1, . . . , rk) such that each qi is resulting from ri. This will later be useful to
establish that for each extension in Q we can also obtain one in R having the same data.

Lemma 5. Let R be a table from an augmentable computation and let the child tables of R be
called R1, . . . , Rk. We have

(
origR1

(q1), . . . , origRk
(qk)

)
∈ P(origR(q)) for any q ∈ aug(R)

and (q1, . . . , qk) ∈ P(q). Furthermore, for any s ∈ S(q) and (s1, . . . , sk) ∈ P(s) it holds that(
origR1

(s1), . . . , origRk
(sk)

)
∈ P(origR(s)).

Proof. Let R be a table in some augmentable computation such that R1, . . . , Rk denote the child
tables of R, and let Q = aug(R) with child tables Qi = compr(aug(Ri)). Moreover, let q ∈ Q
and (q1, . . . , qk) ∈ P(q). By construction of aug(R), then there are r ∈ R and (r1, . . . , rk) ∈ P(r)
such that r ≈ q and qi ∈ res(ri) for each 1 ≤ i ≤ k. But then qi ≈ ri, so origRi

(qi) = ri
holds. Furthermore, origR(q) = r holds since q ≈ r. Because of (r1, . . . , rk) ∈ P(r), this entails(

origR1
(q1), . . . , origRk

(qk)
)
∈ P(origR(q)).

As for the second statement, let s ∈ S(q) and (s1, . . . , sk) ∈ P(s). By construction of aug(R),
then there are q′ ∈ Q and (q′1, . . . , q

′
k) ∈ P(q′) such that q′ ≈ s and q′i ≈ si for each 1 ≤ i ≤ k.

We know that this entails
(

origR1
(q′1), . . . , origRk

(q′k)
)
∈ P(origR(q′)) by the first statement of

this lemma. As we have seen that q′i ≈ si and q′ ≈ s, it must hold that origR(s) = origR(q′) and
origRi

(si) = origRi
(q′i), which proves the second statement.

Lemma 2. Let R be a table from an augmentable computation and Q = aug(R). Then for any
r ∈ R and Z ∈ E(r) there are q ∈ Q and X ∈ E(q) such that r ≈ q and Z ≈ X . Also, for any
q ∈ Q and X ∈ E(q) there are r ∈ R and Z ∈ E(r) such that q ≈ r and X ≈ Z.

Proof. Let R be a table in some augmentable computation such that R1, . . . , Rk denote the child
tables of R, and let Q = aug(R) with child tables Qi = compr(aug(Ri)). We prove the lemma by
induction. First suppose R and Q are leaf tables. Then it can be easily verified using the definition
of Q that the rows in Q and R are in a one-to-one correspondence. Formally, |Q| = |R| holds and
for each r ∈ R there is a q ∈ Q with q ≈ r. As the EPTs in R and Q always consist of just the
empty tuple, the data of any extension of a row in R or Q coincides with the data of that row.

Now suppose R and Q are arbitrary tables and both statements from the lemma hold for all Ri.
We first attend to the first statement. Let r ∈ R and Z ∈ E(r). Then there are (r1, . . . , rk) ∈ P(r)
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and Zi ∈ E(ri) such that Z = {r} ∪ Z1 ∪ · · · ∪ Zk. By the induction hypothesis, there are
qi ∈ Qi and Xi ∈ E(qi) such that ri ≈ qi and Xi ≈ Zi. As ri ≈ qi, it holds that qi ∈ res(ri).
Hence condition 1 from the construction of Q ensures that there is a row q ∈ Q with q ≈ r and
P(q) = {(q1, . . . , qk)}. Now clearly X = {q} ∪X1 ∪ · · · ∪Xk is contained in E(q), and X ≈ Z.

As for the second statement, let q ∈ Q and X ∈ E(q). Then there are (q1, . . . , qk) ∈ P(q)
and Xi ∈ E(qi) such that X = {q} ∪ X1 ∪ · · · ∪ Xk. By the induction hypothesis, there are
ri ∈ Ri and Zi ∈ E(ri) such that qi ≈ ri and Xi ≈ Zi. Then origRi

(qi) = ri holds because
of qi ≈ ri. Let r = origR(q), so obviously q ≈ r. By Lemma 5, (q1, . . . , qk) ∈ P(q) entails(

origR1
(q1), . . . , origRk

(qk)
)
∈ P(origR(q)), i.e., (r1, . . . , rk) ∈ P(r). Now clearly Z = {r} ∪

Z1 ∪ · · · ∪ Zk is contained in E(r), and X ≈ Z.

For subrows we show a result similar to the second statement from Lemma 2.

Lemma 6. Let R be a table from an augmentable computation and Q = aug(R). Then for any
q ∈ Q, s ∈ S(q) and Y ∈ E(s) there are r ∈ R and Z ∈ E(r) such that s ≈ r and Y ≈ Z.

Proof. Let R be a table in some augmentable computation such that R1, . . . , Rk denote the child
tables of R, and let Q = aug(R) with child tables Qi = compr(aug(Ri)). We prove the lemma by
induction. First suppose R and Q are leaf tables. By definition of Q, for each subrow s in Q there
is some q′ ∈ Q with s ≈ q′. Obviously, q′ ≈ origR(q′) and origR(s) = origR(q′), so s ≈ origR(s),
which proves the base case.

Now suppose R and Q are arbitrary tables and the statement holds for all Ri. Let q ∈ Q,
s ∈ S(q), Y ∈ E(s) and r = origR(s). Then there are (s1, . . . , sk) ∈ P(s) and Yi ∈ E(si) such
that Y = {s} ∪ Y1 ∪ · · · ∪ Yk. By the induction hypothesis, there are ri ∈ Ri and Zi ∈ E(ri)
such that si ≈ ri and Yi ≈ Zi. Then origRi

(si) = ri. By Lemma 5, (s1, . . . , sk) ∈ P(s) entails(
origR1

(s1), . . . , origRk
(sk)

)
∈ P(origR(s)), so (r1, . . . , rk) ∈ P(r). Now clearly Z = {r}∪Z1∪

· · · ∪ Zk is contained in E(r), and Y ≈ Z.

Lemma 3. Let R be a table from an augmentable computation. Then the table aug(R) is normal.

Proof. Let R be a table in some augmentable computation such that R1, . . . , Rk denote the child
tables of R and let Q = aug(R). We inductively show that Q is normal if each aug(Ri) is normal.

Suppose R and Q are leaf tables. Then the EPTs of each row in R consist of just the empty
tuple, which makes the definition of Q in this case equivalent to the following: For any r ∈ R,
there is a row q ∈ Q with q ≈ r and P(q) = {()}. Furthermore, for each q, q′ ∈ Q with q′ ≤ q,
there is a subrow s ∈ S(q) with s ≈ q′ and P(s) = {()}. Moreover, inc(s) = ⊂ if q′ < q, otherwise
inc(s) = eq. It can now easily be verified using Definition 6 that Q is normal.

Now suppose R and Q are arbitrary tables and all aug(Ri) are normal. Let also Qi =
compr(aug(Ri)). By Lemma 1, allQi are normal. Let q ∈ Q, s ∈ S(q), X ∈ E(q) and Y ∈ EX(s)
be arbitrary, and let P(q) = {(q1, . . . , qk)} and P(s) = {(s1, . . . , sk)}. It follows that there are
extensions Xi ∈ E(qi) such that X = {q} ∪X1 ∪ · · · ∪Xk, and there are extensions Yi ∈ EXi

(si)
such that Y = {s}∪Y1∪· · ·∪Yk. To introduce auxiliary terminology, for any x ∈ Q and y ∈ S(q),
we write x̄ to denote origR(x) and ȳ for origR(y). Furthermore, for any x ∈ Qi and y ∈ S(x), we
write x̄ to denote origRi

(x) and ȳ to denote origRi
(y).
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To prove the first part of condition 1 of normality forQ, recall that property 2 from the definition
of Q states that s ≈ q′ for some q′ ∈ Q with q′ ≤ q. Hence s ≤ q. By normality of Qi it holds that
Yi ≤ Xi. This proves Y ≤ X .

For the second part of condition 1 of normality for Q, first suppose Y < X while inc(s) = eq.
The reason for the latter is that inc(si) = eq for all si. For all 1 ≤ i ≤ k, this entails that Yi ≈ Xi

due to the normality of Qi. So Y < X must be caused by s < q, but this would entail inc(s) = ⊂,
which is a contradiction.

On the other hand, suppose Y ≈ X while inc(s) = ⊂. If there is some d ∈ D(q) \ D(s), then
for Y ≈ X to hold also d ∈ D(Yj) for some 1 ≤ j ≤ k. But then d has been illegally removed
at s̄, which contradicts R being augmentable. More precisely, d ∈ D(q̄) \ D(s̄) holds, and due to
Y ∈ E(s) and Lemma 6 there is some Z ∈ E(s̄) such that d ∈ D(Z).

So q ≈ s and for some 1 ≤ j ≤ k there is a d ∈ D(Xj) \D(Yj). For Y ≈ X to hold, d ∈ D(s)
or there is some 1 ≤ h ≤ k such that d ∈ D(Yh).

In case d ∈ D(s), d has been illegally introduced at s̄, which contradicts R being augmentable.
More precisely, d ∈ D(s̄), (s̄1, . . . , s̄k) ∈ P(s̄) (by Lemma 5) and d /∈ D(s̄j) hold while d ∈
D∗(Rj) due to d ∈ D(Xj), which amounts to d ∈ D(Z) for some Z ∈ E(q̄j).

In case d ∈ D(Yh) for some 1 ≤ h ≤ k, we have h 6= j since d /∈ D(Yj). Then also d ∈ D(Xh)
because Yh ≤ Xh by normality of Qh. Then, by Lemma 2, there are H ∈ E(q̄h) and J ∈ E(q̄j)
such that d ∈ D(H) and d ∈ D(J). Because R is augmentable, also d ∈ D(q̄) and thus d ∈ D(q).
As q ≈ s, also d ∈ D(s). But then d has been illegally introduced at s̄, as we have have already
seen. This concludes the proof of the second part of condition 1 of normality for Q.

Now we show condition 2 of normality for Q. The reason for s ∈ S(q) is that there is some
q′ ∈ Q with P(q′) = {(q′1, . . . , q′k)} and, for all 1 ≤ i ≤ k, there is some si ∈ S(qi) such that
si ≈ q′i. Let r = origR(q′) and ri = origRi

(q′i) and Z ∈ E(s) be arbitrary. Then there are
extensions Zi ∈ E(si) such that Z = {s} ∪ Z1 ∪ · · · ∪ Zk. By the induction hypothesis, for any
1 ≤ i ≤ k there is a row q′′i ∈ Qi and an extension X ′′i ∈ E(q′′i ) such that q′′i ≈ si ≈ q′i and
X ′′i ≈ Zi. As q′i and q′′i have the same data and augmentable tables have at most one row having a
certain data, also (q′′1 , . . . , q

′′
k) ∈ res(r1) × · · · × res(rk) holds. By construction of Q, this entails

that there is some q′′ ∈ Q with P(q′′) = {(q′′1 , . . . , q′′k)} and q′′ ≈ r = q′ ≈ s. We can construct
X ′′ = {q′′} ∪X ′′1 ∪ · · · ∪X ′′k and observe that X ′′ ∈ E(q′′). From Zi ≈ X ′′i , for all 1 ≤ i ≤ k, and
s ≈ q′′ it follows that Z ≈ X ′′, which proves condition 2 of normality for Q.

Finally we show condition 3 of normality for Q. Suppose there are q, q′ ∈ Q with P(q) =
{(q1, . . . , qk)} and P(q′) = {(q′1, . . . , q′k)}, and there are X ∈ E(q) and X ′ ∈ E(q′) such that
X ′ ≤ X .

Now for all 1 ≤ i ≤ k let Xi ∈ E(qi) and X ′i ∈ E(q′i). We first show that X ′i ≤ Xi. Suppose to
the contrary that for some 1 ≤ j ≤ k there is a d ∈ D(X ′j)\D(Xj). For X ′ ≤ X to hold, d ∈ D(q)
or there is some 1 ≤ h ≤ k such that d ∈ D(Xh).

In case d ∈ D(q), d has been illegally introduced at q̄, which contradicts R being augmentable.
More precisely, d ∈ D(q̄), (q̄1, . . . , q̄k) ∈ P(q̄) and d /∈ D(q̄j) hold while d ∈ D∗(Rj) due to
d ∈ D(X ′j), which amounts to d ∈ D(Z) for some Z ∈ E(origRj

(q′j)).
In case d ∈ D(Xh) for some 1 ≤ h ≤ k, we have h 6= j since d /∈ D(Xj). Then there are

H ∈ E(q̄h) and J ∈ E(q̄j) such that d ∈ D(H) and d ∈ D(J). Because R is augmentable, also
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d ∈ D(q̄) and thus d ∈ D(q). But then d has been illegally introduced at q̄, as we have have already
seen.

Hence X ′i ≤ Xi for any 1 ≤ i ≤ k. By the induction hypothesis, this entails that there are
si ∈ S(qi) and Yi ∈ EXi

(si) with si ≈ q′i and Yi ≈ X ′i. By construction ofQ, then there is a subrow
s ∈ S(q) with s ≈ q′ and P(s) = {(s1, . . . , sk)}. We can now construct Y = {s}∪ Y1 ∪ . . . Yk and
observe that Y ∈ EX(s) and Y ≈ X ′, which concludes the proof.
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