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Abstract.The original argumentation framework by Dung has been extended in various
ways, from adding values and preferences to more advanced relations. A number of such
generalizations studied the problem of positive interactions between argument, which has
led to the development of evidential, necessary and deductive supports and their respective
frameworks. It is thus natural to compare those relations and analyze whether one can
be translated into the other. Although a positive answer was given in the necessary and
deductive cases, it was claimed that evidential support cannot be expressed by any other
type and that it cannot be handled together with them in a single framework. In this paper we
show that it is not the case and that there exists a natural translation between argumentation
frameworks with necessities (AFNs) and evidential argumentation systems (EASs). We
provide a full translation of AFNs into EASs and one the other way around for a subclass
of EASs with binary attack. Finally, we introduce the concept of a minimal form of a
framework and prove it preserved the behavior of standard semantics.
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1 Introduction
In recent years, argumentation has become an influential field in Artificial Intelligence [2]. One of
its subareas is abstract argumentation, in which arguments are considered to be abstract entities and
thus only the relations between them are taken into account when evaluating a given argumentation
scenario. At the heart of abstract argumentation lies the Dung’s framework (AF for short) [7],
which focuses on the attack relation between arguments and the concept of defense derived from
it. Although they are quite powerful, for many applications Dung’s AFs appear too simple in order
to conveniently model all aspects of an argumentation problem. This has led to the development of
a wide range of their enrichments [4], which introduce concepts such as preferences and strengths
into the basic model, as well as a positive interaction between arguments, commonly referred to as
support.

The version of support introduced in [5] had several drawbacks, leading to the development of
several other more specialized frameworks with support, with the most recognized being deductive
[3], necessary [8], and evidential [11] supports. A natural question that arises concerns the relation
between these different frameworks, as well as whether one can be transformed into another, and
consequently if it is possible to express them all types of support within a single structure. [6]
provided a positive answer to these questions with regards to deductive and necessary support, but
claimed that evidential one cannot be represented via necessary (or deductive) type.

In this paper we show that there is an intuitive translation between evidential argumentation
systems and argumentation frameworks with necessities. We compare the properties of the differ-
ent support relations in the two frameworks, and discuss additional properties and similarities of
both the frameworks with each other, and with Dung’s original abstract argument system. Thus,
our results show that it is possible to construct an unified environment capable of handling the
available types of support and that due to its advanced structure, the evidential framework appears
to be a good candidate for further research in this direction. In this paper we also address some
of technical issues present in the framework’s original formulation and introduce the concept of a
minimal form of a framework.

The next section details Dung’s argumentation framework. Sections 3 and 4 then describe two
abstract frameworks containing both positive and negative argument interactions, namely eviden-
tial argument systems (EASs) and abstract frameworks with necessities (AFNs). Section 5 provides
a comparison of these systems, and describes a translation between them. Section 6 concludes the
paper with a discussion.

2 Dung’s Frameworks
We begin with a brief overview of Dung’s abstract argumentation framework [7].

Definition 2.1. A Dung’s abstract argumentation framework (AF for short) is a pair (A,R),
where A is a set of arguments and R ⊆ A× A represents an attack relation.

AFs can be simply represented as directed graphs. We will now briefly recall the available
semantics, for more details we refer the reader to [1].
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Definition 2.2. Let AF = (A,R) be a Dung’s framework. We say that an argument a ∈ A is
defended by a set S ⊆ A in AF 1, if for each b ∈ A s.t. (b, a) ∈ R, there exists c ∈ S s.t.
(c, b) ∈ R. A set S ⊆ A is:

• conflict–free in AF iff for each a, b ∈ S, (a, b) /∈ R.

• naive in AF iff it is maximal w.r.t. set inclusion conflict–free.

• admissible in AF iff it is conflict–free and defends all of its members.

• preferred in AF iff it is maximal w.r.t. set inclusion admissible.

• complete in AF iff it is admissible and all arguments defended by S are in S.

• stable in AF iff it is conflict–free and for each a ∈ A \ S there exists an argument b ∈ S s.t.
(b, a) ∈ R.

We close the list with the grounded semantics, formally defined by the means of the character-
istic function of AF :

Definition 2.3. The characteristic function FAF : 2A → 2A is defined as: FAF (S) = {a |
a is defended by S in AF}. The grounded extension is the least fixed point of FAF .

Lemma 2.4. A conflict–free set S is admissible iff S ⊆ FAF (S). A conflict–free set S is complete
iff S = FAF (S).

Finally, we would like to recall several important lemmas and theorems from the original paper
on AFs [7].

Lemma 2.5. Dung’s Fundamental Lemma Let S be an admissible extension, a and b two argu-
ments defended by S. Then S ′ = S ∪ {a} is admissible and b is defended by S ′.

Theorem 2.6. The following holds:

1. Every stable extension is a preferred extension, but not vice versa.

2. Every preferred extension is a complete extension, but not vice versa.

3. The grounded extension is the least w.r.t. set inclusion complete extension.

4. The complete extensions form a complete semilattice w.r.t. set inclusion. 2

1Defense is often substituted with acceptability: say that a is acceptable w.r.t. S if S is defends a.
2A partial order (A,≤) is a complete semilattice iff each nonempty subset of A has a greatest lower bound and

each increasing sequence of S has a least upper bound.
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3 Evidential Argumentation Systems
Unattacked arguments serve as the strongest source of defense within AFs. However, in many
cases, the lack of an attack is insufficient to consider an argument acceptable. In areas such as
legal reasoning and medicine, one is required to support a claim with facts or evidence so as to be
convincing. For example, it does suffice to claim that a given person committed a crime in order
to sentence them. Instead, the prosecution has to prove guilt, by means of evidence. Similarly,
medical diagnoses have to be supported by facts such as symptoms or test results.

We can therefore distinguish between two types of arguments. The special arguments, often
referred to as prima facie or evidence, act as an indisputable source of truth, while the standard
ones need to be supported by them in order to be considered acceptable. In order to handle such
reasoning, the evidential argumentation systems were created. Furthermore, since standard argu-
ments must be supported, evidential frameworks address a critical drawback of abstract support
in BAFs [5], namely that an argument could be present in an extension regardless of whether it is
supported or not (see [10] for details). In this section we introduce the framework and describe
some of its properties. In doing so, we provide corrections to the original formulation of these
systems, as presented in [11, 12].

Definition 3.1. An evidential argumentation system (EAS) is a tuple (A,R,E) where A is a set
of arguments, R ⊆ (2A \ ∅) × A is the attack relation, and E ⊆ (2A \ ∅) × A is the support
relation. We distinguish a special argument η ∈ A s.t. @(X, y) ∈ R where η ∈ X; and @X where
(X, η) ∈ R or (X, η) ∈ E.

The special argument η serves as a representation of the prima facie arguments and is referred
to as evidence or environment. The difference between this and the definition from [12] is the
removal of the restriction that there should be no argument x and set X s.t. XRx and XEx.

The core idea of evidential argument systems is that valid arguments (and attackers) need to
trace back to the environment. It is captured with the notions of e–support and e–supported attack.
The following formulations are the corrected versions of the ones available in [11, 12].

Definition 3.2. An argument a ∈ A has evidential support (e–support) from a set S ⊆ A iff a = η
or there is a non-empty S ′ ⊆ S such that S ′Ea and ∀x ∈ S ′, x has evidential support from S \{a}.

An argument a has minimal e–support from a set S if there is no set S ′ ⊂ S such that a has
e–support from S ′.

Remark. Note that by this definition η has evidential support from any set.

Example 3.3. In its original version [11], the definition of being e–supported by a set S re-
quired that either SEa where S = {η} or that ∃T ⊂ S s.t. TEa and ∀x ∈ T , x is e–
supported by S \ {x}. Although the provided intuition on what it means to be supported by
evidence were correct, this formulation did not fully reflect it. Let us assume a framework
({η, a, b, c}, ∅, {({a, b}, c), ({η}, a), ({η}, b)}). Since both a and b, which are required for c, are
supported by η, it should naturally be the case that the set {η, a, b} e–supports c. If we proceed
with the original definition, we see that we need to verify whether {η, a} e–supports b and {η, b} e–
supports a. This then brings us to verifying whether η is e–supported by {a} and {b} respectively,
which produces a result that c is not e–supported.
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Definition 3.4. A set S ⊆ A carries out an evidence supported attack (e–supported attack) on a
iff (S ′, a) ∈ R where S ′ ⊆ S, and for all s ∈ S ′, s has e–support from S.

An e–supported attack by S on a is minimal iff there is no S ′ ⊂ S that carries out an e–
supported attack on a.

Given these notions, we can define semantics for EASs built around the notion of acceptability
in a manner similar to those of Dung’s. However, in the latter, only the attack relation was con-
sidered. For EASs, not only must arguments be defended from attacks, but they must also have
sufficient support in order to be acceptable.

Definition 3.5. An argument a is acceptable with respect to a set of arguments S ⊆ A iff

• a is e–supported by S; and

• given a minimal e–supported attack by a set T ⊆ A against a, it is the case that S carries
out an e–supported attack against a member of T .

Remark. [11] required that S attacked T on arguments T ′ s.t. T \ T ′ is no longer an e–supported
attack on a. However, it is easy to see that if S attacked T on T ′ in a way that T \ T ′ is still an
e–supported attack on a, then by Definition 3.4 T could not have been a minimal attack in the first
place. Thus, the simpler definition above is sufficient.

Definition 3.6. A set of arguments S ⊆ A is:

• self–supporting iff all arguments in S are e–supported by S.

• conflict–free iff there is no a ∈ S and S ′ ⊆ S such that S ′Ra.

• admissible iff it is conflict–free and all elements of S are acceptable w.r.t. S.

• preferred iff it is maximal w.r.t. set inclusion admissible.

• complete iff it is admissible and all arguments acceptable w.r.t S are in S.

• stable iff it is conflict–free, self–supporting, and for any argument a e–supported by A where
a /∈ S, S e–support attacks either a or every set of arguments minimally e–supporting a.

Just like in the Dung setting, the grounded semantics is defined via the characteristic function.
Also the properties of admissibility and completeness carry on to EASs.

Definition 3.7. The characteristic function FES : 2A → 2A is defined as: FES(S) = {a |
a is acceptable w.r.t. S in ES}. The grounded extension of a finitary framework ES = (A,R,E)
is the least fixed point of FES .

Lemma 3.8. A conflict–free set of arguments S is admissible iff S ⊆ FES(S). A conflict–free set
S of arguments is complete iff S = FES(S).
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Proof. Proof for admissibility can be found in [10]. Completeness follows straightforwardly from
it and from the definitions of the semantics and characteristic function. 2

While there are many analogies between EASs and AFs, some of the properties have never
been proven. Therefore, we will now formally introduce and confirm them and recall the existing
ones presented in [10, 11].

Lemma 3.9. If a set of arguments S ⊆ A is a minimal e–support for some argument a ∈ A, then
it is self–supporting.

Lemma 3.10. If S ⊆ A is admissible, then it is self–supporting.

Lemma 3.11. EAS Fundamental Lemma Let S be an admissible set and x, y two arguments
acceptable w.r.t. S. Then S ∪ {x} is admissible and y is acceptable w.r.t. S ∪ {x}.

Lemma 3.12. A set S is an e–stable extension iff
S = {a | a is not e–support attacked by S and is e–supported by S}.

Lemma 3.13. If a set of arguments S ⊆ A carries out a minimal e–supported attacked on some
argument a ∈ A, then it is self–supporting.

Proof. Results directly from Definition 3.4 and Lemma 3.9. 2

Theorem 3.14. The following holds:

1. Every stable extension is a preferred extension, but not vice versa.

2. Every preferred extension is a complete extension, but not vice versa.

3. The grounded extension is the least complete extension w.r.t. set inclusion.

Proof.

1. It is easy to see that a stable extension S is also admissible, since it attacks (valid) arguments
that are not included in it. Consequently, there can be no admissible extension S ⊂ S ′ –
it would simply break the conflict–freeness. Example 3.15 illustrates a preferred extension
which is not stable.

2. If a preferred extension S was not complete, then by Lemma 3.11 we would be able to
include more arguments into it and obtain an admissible extension S ′ such that S ⊂ S ′.
Thus, S could not have been preferred in the first place. A case of complete, but not preferred
extensions is shown in Example 3.15.

3. Obvious by the definition of the semantics and Lemma 3.8.

2
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Example 3.15. Let ({η, a, b, c, d, e, f}, {({b}, a), ({b}, c), ({c}, b), ({c}, d), ({d}, f), ({f}, f)},
{({η}, b), ({η}, c), ({η}, d), ({η}, f), ({d}, e)}) be the EAS depicted in Figure 1. The admissible
extensions are ∅, {η}, {η, b}, {η, c}, {η, b, d} and {η, b, d, e}, with {η}, {η, c} and {η, b, d, e} being
the complete ones. Obviously, the latter two are preferred. However, only {η, b, d, e} is stable.
Since a is not a valid argument (it is not e–supported in the framework), we do not have to attack
it. Although {η, c} attacks b and d (and by this, also e), it is not in any way in conflict with f . The
grounded extension is just {η}.

a b c d e

fη

Figure 1: Sample EAS

Finally, in order to make certain proofs more feasible, we would like to propose an alternative
definition of e–support, more in line with the sequence style found in other frameworks with sup-
port [8, 13], and in the argument chains of [12]. We will also show that a given EAS is equivalent
to its minimal form w.r.t. the standard semantics.

Definition 3.16. Given a set of arguments X ⊆ A, an evidential sequence for an argument a ∈ X
is a sequence of distinct elements of X (a0, .., an) s.t. an = a, a0 = η, and if n > 0, then ∀ni=1 there
exists a nonempty T ⊆ {a0, ..., ai−1} s.t. TEai.

Theorem 3.17. Let X ⊆ A be a set of arguments and a ∈ A. a is e–supported by X iff there exists
an evidential sequence for a on X ∪ {a}.

Proof. Without the loss of generality, let us focus on the minimal case. Let a be e–supported by
X . If a = η, then we trivially obtain an evidential sequence. Therefore, assume a 6= η. Since a
is e–supported, then it is also supported and there exists a set of arguments T ⊆ X s.t. TEa. If
a ∈ T , then since all elements of T (and thus a) are e–supported by X \ {a}, then there has to
exist a suitable T ′ ⊆ X \ {a} s.t. T ′Ea and T ′ can be used for e–support. Thus, from now on we
assume that a /∈ T .

We now have a pair (X \{a}, (a)), with each argument x ∈ X \{a} e–supported byX \{a, x}
(see reasoning above). We now have to show that there exists an argument a′ ∈ X \ {a} that can
be safely ”removed”, i.e. every x ∈ X \ {a, a′} is e–supported by x ∈ X \ {a, a′, x}. if X \ {a}
consists out of η only, then we are trivially done. Thus, let us assume there are more elements.

Assume there is no such a′ that can be safely removed. This means that for every a′ ∈ X \{a},
there exists a different argument a′′ ∈ X \ {a} s.t. it is not e–supported by X \ {a, a′}. We can
now ”trace” this removal. Let us start with an arbitrary argument and denote it x1, the argument it
removes by x2 and so on. We then have that x1 removes (at least) x2, x2 removes x3,..., xn removes
a certain xi. Simply speaking, we obtain a cycle within this removal. It is easy to see that the set
could not have possibly contained only e–supported arguments and we reach a contradiction with
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our assumptions: we have that xn is e–supported by X \ {a}. By definition, at least xn−1 has to be
e–supported byX\{a, xn}, and then xn−2 byX\{a, xn, xn−1}. We can continue this way until we
reach that xi has to be e–supported by X \ {a, xn, xn−1, ..., xi+1} and thus obtain a contradiction.
We can repeat the process starting with any argument from the set to show that this holds for the
whole set X \ {a}. Hence, we can conclude that if the set is e–supported, there needs to exist
an argument ”safe for removal”. We can now then retrieve this argument, say b, and obtain a pair
(X \ {a, b}, (b, a)). We can repeat retrieving the ”safe” elements and expanding our pair until we
have only one element left. It is easy to see, that it has to be η and our evidential sequence can be
easily obtained through the pair.

The other way around is straightforward. 2

Theorem 3.18. Let ES = (A,R,E) be an EAS. The minimal form of ES is a framework
ESmin = (A,R′, E ′), where R′ ⊆ R (respectively E ′ ⊆ E) consists of those elements (T, a)
in R (E) s.t. @T ′ ⊆ T, (T ′, a) ∈ R (E). Then a set S is a σ–extension in ES where
σ ∈ {admissible, preferred, complete, grounded,stable} iff it is a σ–extension in ESmin.

Proof. First of all, we prove that a set of arguments S attacks an argument a in ES iff it attacks
it in ESmin. Based on the way R′ is obtained, it holds that ∀(X, a) ∈ R, ∃(X ′, a) ∈ R′ s.t.
X ′ ⊆ X . This means that if there exists S ′ ⊆ S s.t. SRa, then there exists S ′′ ⊆ S s.t. S ′′R′a.
Thus, an argument attacked by S in ES also has to be attacked by S in ESmin. Since R′ ⊆ R, it
trivially follows that an argument attacked by S in ESmin is also attacked by S in ES. In a similar
fashion we can show that a is supported by S in ES iff it is supported by S in ESmin. From this
correspondence of e–support follows; if set S supports a by S ′ and S ′ is e–supported by S \ {a}
in ES, then naturally S supports a by S ′′ ⊆ S ′ in ES and since S ′ is e–supported by S \ {a}, so is
S ′′. The other way around is trivial since E ′ ⊆ E. Based on this and the correspondence between
the attacks, we can show the equivalence between e–supported attacks. Finally, it also holds that
S is a minimal e–support/ e-supported attack on a in ES iff it is one in ESmin. Should S be a
minimal e–support for a in ES but not in ESmin, then it means there exists S ′ ⊂ S e–supporting a
in ESmin. However, this also means that S ′ ⊂ S e–supports a in ES and we reach a contradiction.
We can prove that it cannot be the case that S is minimal in ESmin but not in ES in the same way.
From this and the correspondence between the attacks in both frameworks, equivalence of minimal
e–supported attacks follows.

Based on this, it follows straightforwardly that a set S is conflict–free in ES iff it is conflict–
free in ESmin. Using the correspondence between e–support and e–supported attacks, it is easy to
prove that a set S is stable in ES iff it is such in ESmin and that an argument a is acceptable w.r.t.
S in ES iff it is acceptable in ESmin. Consequently, admissible, complete and preferred semantics
produce the same extensions in both frameworks. Based on completeness and Theorem 3.14, the
same can be shown for the grounded semantics. 2

4 Abstract Frameworks with Necessities
The necessary support introduced in [9] aimed at exposing the intuition that if an argument a
necessarily supports b, then acceptance of a is required for the acceptance of b. Although initially
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defined in a binary manner, in a more recent work [8] it was dropped in favor of the set form.
Moreover, some of the problems with the previous semantics were fixed and additional labeling–
based formulations were introduced. The new definition is thus as follows.

Definition 4.1. An abstract argumentation framework with necessities (AFN) is a tuple (A,R,N)
where A is a set of arguments, R ⊆ A × A represents the attack relation and N ⊆ (2A \ ∅) × A
represents the necessity relation.

We say that a attacks b iff aRb. Abusing notation, we will write SRC to denote that there exists
an argument a ∈ S and b ∈ C such that aRb.

Note that although the support relations of EASs and AFNs are structurally the same, the
intuition behind what it means to be supported by a set is different. In EASs, we say that a set of
arguments S ⊆ A supports an argument a ∈ A if ∃X ⊆ S s.t. XEa. In AFNs, we are presented
with a dual situation. S supports a if ∀X ⊆ S s.t. XNa, X ∩ S 6= ∅. This will be especially
visible when we present the definition of a powerful sequence (Defn 4.2) and a translation between
the two frameworks.

While EAS semantics imply acyclicity of the support relation among the accepted arguments
through the requirement for evidence η, AFNs make this requirement explicit. One of the possible
formulations for doing so is by the means of the powerful sequence:

Definition 4.2. An argument a is powerful in S ⊆ A iff a ∈ S and there is a sequence a0, ..., ak of
elements of S such that:

• ak = a

• there is no E ⊆ A s.t. ENa0

• for 1 ≤ i ≤ k: for each E ⊆ A, if ENai then E ∩ {a0, ..., ai−1} 6= ∅.

A set of arguments S ⊆ A is coherent iff each a ∈ S is powerful in S. A set of arguments is
strongly coherent iff it is coherent and conflict–free w.r.t. R.

Remark. There is a subtle difference between the sequences in AFNs (Defn. 4.2) and EASs
(Defn. 3.16). The former states that if a supporter set exists, then it has an element in the sequence.
The evidential sequence requires that a supporter exists and is contained in the sequence. This
results from the fact that every valid argument (apart from η) needs to be supported by some set in
the first place to even have a chance of tracing back to evidence. Thus, unsupported arguments are
”filtered out” immediately.

Just like in EASs, the definition of defense (acceptability) in AFNs extends Dung’s definition
by introducing support requirements. Semantics are then defined as usual.

Definition 4.3. Let S ⊆ A and a ∈ A. We say that S defends a iff S ∪ {a} is coherent and for
each b ∈ A, if bRa then for each coherent C ⊆ A that contains b, S RC.

A set of arguments S ⊆ A is :

• admissible iff it is strongly coherent and defends all of its arguments.

9



• preferred iff it is maximal w.r.t. set inclusion admissible.

• complete iff it is admissible and all arguments defended by S are in S.

The grounded semantics is again defined via the characteristic function.

Definition 4.4. The characteristic function FFN : 2A → 2A is defined as F (S) =
{a |S defends a in FN}. The grounded extension is the least fixed point of FFN .

We can now define the stable semantics, and show some properties of AFNs. Just like we did in the
case of EASs, we will show that a given AFN is equivalent to its minimal form w.r.t. the standard
semantics.

Definition 4.5. The set of arguments deactivated by S is defined by S+ = {a |
SRa or there exists E ⊆ A s.t. ENa and S ∩ E = ∅}. Then a complete extension S is stable
iff S+ = A \ S.

Theorem 4.6. The following properties holds:

1. Every stable extension is a preferred extension, but not vice versa.

2. Every preferred extension is a complete extension, but not vice versa.

3. The grounded extension is the least w.r.t. set inclusion complete extension.

Example 4.7. Let ({a, b, c, d, e}, {(b, a), (e, a), (c, d)}, {({b}, b), ({b, d}, e), ({a}, c)}) be an AFN
depicted in Figure 2. The admissible (and at the same time complete) extensions of this framework
would be {d, e}, {a, c} and ∅. The first two are the preferred and stable ones. ∅ is the grounded
extension.

a e cb d

Figure 2: Sample AFN

Theorem 4.8. Let FN = (A,R,N) be an AFN. The minimal form of FN is a framework
FNmin = (A,R,N ′), where N ′ ⊆ N consists of those elements (T, a) in N s.t. @T ′ ⊆
T, (T ′, a) ∈ N . Then a set S is a σ–extension in FN where σ ∈ {admissible, preferred, complete,
grounded,stable} iff it is a σ–extension in FNmin.

Proof. Let us first show that a has a powerful sequence on S in FN iff it has one in FNmin.
Let (a0, ..., an) be a sequence for a in FN . Since no arguments are removed and there is no
support in N ′ that would not come from N , it is easy to see that the conditions that an = a and
@T ⊆ A s.t. TN ′a0 are easily satisfied. Given a nonzero ai, it holds that for all T ⊆ A s.t.
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TNa, T ∩ {a0, ..., ai−1} 6= ∅. Since it holds for all such T ′s, then it also holds only for those that
were included in N ′. Thus, the sequence is also powerful in FNmin. Now, assume a is powerful
in S in FNmin. The sequence from FNmin trivially meets the endpoint requirements also in FN .
By the definition of N ′, it is easy to see that ∀(X, a) ∈ N , ∃(X ′, a) ∈ N ′ s.t. X ′ ⊆ X . Therefore,
if given a nonzero ai it holds that ∀T ⊆ A s.t. TN ′a, T ∩ {a0, .., ai−1} 6= ∅, then it also has to be
the case that ∀T ⊆ A s.t. TNa, T ∩ {a0, ..., ai−1} 6= ∅. Thus, the sequence is also powerful in
FN .

Consequently, it holds that every coherent in FN is coherent in FNmin and vice versa. Since
the attack relation is unchanged, strong coherence follows. Based on the equivalence of coherence
and attack, defense can be proved easily. Consequently, the admissible, complete and preferred
semantics produce the same extensions on FN and FNmin. By completeness and Theorem 4.6 it
also holds that grounded extensions coincide. Let us not show that the same follows for stability.
Since complete extensions coincide, what remains to be shown is that the deactivated sets are the
same. Let S be a stable extension in FN and a ∈ S+. Since the complete extensions coincide,
what remains to be shown is that the deactivated sets are the same. If a is in the deactivated set due
to attack, then naturally it also is in the deactivated set in FNmin. If there exists T ⊆ A s.t. TNa
and S ∩ T = ∅, then naturally for every T ′ ⊆ T , S ∩ T ′ = ∅. Thus, there has to exist such a T ′

s.t. T ′N ′a and S ∩ T ′ = ∅ and a qualifies for the deactivated set in FNmin. Since an argument
deactivated by attack in FNmin is also deactivated in FN and N ′ ⊆ N , it is easy to see that an
extension stable in FNmin is also stable in FN . 2

5 Comparison of evidential and necessary support
We now consider how necessary support can be expressed as evidential support. We show how to
translate a given AFN into an EAS and prove that the process preserves the semantics. Clearly,
moving attack from binary to set–form is trivial. The support, however, requires some comments.
First of all, recall our explanation concerning the differences between support in AFNs and EASs,
i.e. the N vs E relation. Let A1, ..., An be sets supporting an argument a in N . We say that a
set of arguments S supports a iff for every such Ai, S ∩ Ai 6= ∅. Verifying whether S supports
a corresponds to checking whether S satisfies a propositional formula

∨
A1 ∧ ... ∧

∨
An, where∨

Ai should be understood as a disjunction of elements of Ai. Should A1, ..., An be supporting
a by E, we would produce a formula

∧
A1 ∨ ... ∨

∧
An, where

∧
Ai stands for the conjunction

of elements of Ai. Therefore, a translation between these relations can be seen as a conversion
between CNF and DNF. The important question is, on how arguments should be tied to evidence.
In EASs, evidence is the sole confirmation of validity and arguments need to be able to trace back
to it (as the evidential sequence makes explicit). In AFNs, validity is obtained through acyclicity
— we must be able to trace back from a valid argument to arguments that require no support (as
per the powerful sequence). Therefore, if we want unsupported arguments to be able to provide
validity in the EAS setting, it is easy to see that they (and only they) should be backed up by η.
This observation allows us to define a translation as follows.

11



Translation 1. Let FN = (A,R,N) be an AFN. The corresponding EAS ESFN = (A′, R′, E) is
created as follows:

• A′ = A ∪ {η}.

• For every two arguments a, b s.t. (a, b) ∈ R, put ({a}, b) in R′.

• Let a be an argument in A and Z = {Z1, .., Zn} be a collection of all sets Zi s.t. ZiNa. If Z
is empty, add ({η}, a) to E. Otherwise, for every subset Z ′ of

⋃n
i=1 Zi s.t. ∀ni=1 Z

′ ∩ Zi 6= ∅,
add (Zi, a) to E.

Although the translation of support presented above is correct and the semantics return the
desired extensions in the obtained framework, it is not the most optimal one. By this we mean that
it can create redundant elements in E. For example, given argument a s.t. {a, b}Na and {c}Na,
our intent would be to receive {a, c}Ea and {b, c}Ea. However, the translation would also give us
{a, b, c}Ea. Although the framework behaves in the desired way (see Theorems 3.18), a cleaner
transformation would be more desirable. Please note that it cannot be fixed by assuming that we
take into account only minimal sets Z ′, since the elements of N might not be incomparable in
the first place. Even though again the produced extensions of a framework produced by such a
minimal transformation would be satisfactory (see Theorems 3.18 and 4.8 on minimal forms), we
would ”lose” some of the relations. Therefore, we would like to propose another way of translating
the support:

Translation 1 (Continued). Let a be an argument in A and Z = {Z1, .., Zn} be a collection of all
sets Zi s.t. ZiNa. If Z is empty, add ({η}, a) to E. Otherwise, for all Z ′ in Z1 × ... × Zn, add
(Z ′S, a) to E, where Z ′S is the set of all elements in Z ′.

Theorem 5.1. An argument a is powerful in S ∪ {a} ⊆ A in FN iff it is e–supported by S ∪ {η}
in ESFN .

Proof. Let (a0, ..., an), where an = a, be a powerful sequence for a on S∪{a}. Then (η, a0, .., an)
is an evidential sequence for a on S ∪ {a, η}. Since a0 requires no support in FN , then by
Translation 1 it is supported by η in ESFN and the evidential condition is satisfied. Let ai be
an arbitrary, nonzero element of the powerful sequence. For any set X s.t. XNai, we know
that X ∩ {a0, .., ai−1} 6= ∅. Thus, if at least one such supporting set X exists, it is easy to see
by Translation 1 (and its continuation) that there is X ′ ⊆ {a0, .., ai−1} s.t. X ′Eai and that the
evidential condition is satisfied. If no supporting set X exists, then we have that ai is supported by
η, and the condition is again satisfied. Thus, we have a valid evidential sequence on S ∪{a, η} and
by Theorem 3.17, e–support from S ∪ {η}. The other way around is straightforward, though we
note the requirement on a0: if an argument is supported by η in ESFN , then it requires no support
in FN and thus the powerful condition on a0 is met. 2

Theorem 5.2. A set of arguments S ⊆ A is coherent in FN iff S ∪ {η} is self–supporting in
ESFN .
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Proof. Follows straightforwardly from Theorem 5.1 and the fact that η is e–supported by an
arbitrary set. Although here we consider only sets that contain at least η, please note that ∅ is also
self–supporting in ESFN and obviously coherent in FN . 2

There is an important difference between the definitions of defense (acceptability) in EASs and
AFNs concerning support. In EASs, an argument a has to be e–supported by the set S. Conse-
quently, it does not have to be the case that S ∪ {a} is self–supporting. In AFNs it is required that
S ∪ {a} is coherent, which by Theorem 5.2 is visibly a stronger restriction. However, in order
to have a chance to be an extension, a set has to be coherent (self–supporting) in the first place.
Therefore, we focus on such sets in our analysis.

Theorem 5.3. Let S ⊆ A (S ∪ {η} once translated into an EAS) be a coherent (self–supporting)
set in FN (ESFN ). An argument a ∈ A is defended by S in FN iff it is acceptable w.r.t S ∪ {η}
in ESFN .

Proof. We begin with the support part of defense/acceptability. If a is defended by S, then S∪{a}
is coherent, and by Theorem 5.2 S ∪ {a, η} is self–supporting in ESFN . Thus, a has an evidential
sequence on S ∪ {a, η}, and by Theorem 3.17 e–support from S ∪ {η}. The other way around,
it is easy to see that if S ∪ {η} is a self–supporting set and e–supports a, then S ∪ {a, η} is also
self–supporting.Thus, by Theorem 5.2 S ∪ {a} coherent.

Let us now continue with the attack. Let a ∈ A and b be an argument in A s.t. bRa. Since
a is defended by S in FN , then for each coherent set C ⊆ A s.t. b ∈ C, SRC. Thus, after
Translation 1, we have that for {b}R′a and for every (and thus also minimal) self–supporting set
C ∪ {η} containing b, S ∪ {η} attacks C ∪ {η}. It is easy to see that C ∪ {η} is an e–supported
attack against a and since S∪{η} is assumed to be self–supporting, the attack it carries out against
C ∪ {η} is also e–supported. As all attacks, and only those attacks, in ESFN come from FN and
η cannot attack or be attacked in the framework, acceptability follows straightforwardly.

Now let a ∈ A be an argument acceptable w.r.t. S ∪ {η}. Thus, given any set C ⊆ A that
carries out a minimal e–supported attack on a, S ∪ {η} support attacks a member of C. Since
S ∪ {η} is self–supporting, any attack carried out by it will be e–supported. By Lemma 3.13, C
is self–supporting, and thus C \ {η} is coherent in FN . Since C attacks a, there exists C ′ ⊆ C
s.t. C ′R′a. By Translation 1 all such sets C ′ consist of exactly one element and if {c}R′a in
ESFN , then cRa in FN . The attack by S ∪ {η} against C follows a similar analysis. Please note
that although technically we attack only minimal e–supported attacks on a, it is easy to see that it
cannot be the case that there exists an unattacked e–supported attack on a. Every such attack either
contains a minimal one, or is one – either case, it still remains attacked. Consequently, it holds that
for every coherent set C \ {η} s.t. CRa, SRC in FN . Defense follows straightforwardly.

2

Theorem 5.4. Let FN = (A,R,N) be an AFN and ESFN = (A′, R′, E) its correspond-
ing EAS. Then a set S is a σ–extension in FN where σ ∈ {admissible, preferred, complete,
grounded,stable} iff S ∪ {η} is a σ–extension in ESFN .
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Proof. It it is easy to see by Translation 1 that a given set is conflict–free in FN iff it is conflict–
free in ESFN . Then admissible, preferred and complete semantics follow straightforwardly from
Lemma 3.10, Theorems 5.2 and 5.3. Please note that although we consider sets that have at least
η in ESFN , ∅ is trivially conflict–free and admissible as well. Since complete extensions coincide
and the grounded extensions are the least w.r.t. set inclusion complete both in FN and ESFN by
Theorems 3.14 and 4.6, then grounded extensions coincide as well. Thus, we focus on the stable
semantics. First, note that by Theorem 3.14 every stable extension in ESFN is also complete.
Since complete extensions coincide in FN and ESFN , what remains to be done is the analysis of
the elements not present in the extension.

Let S+ be the deactivated set and a ∈ S+. If a is in the set because SRa, then naturally S∪{η}
carries out an e–supported attack on a, whether a is valid or not. Let us focus on the case when
a is in the set due to lack of support. If a is powerful in A, this means that for every powerful
sequence, part of the sequence is not accepted in the set. If a is not powerful, then by Theorem 5.1
it is not e–supported in A∪ {η} in ESFN and thus does not affect the stable extension of the EAS.
Therefore, let us assume there exists at least one powerful sequence (a0, ..., an, a) for A. Without
the loss of generality, we can assume this sequence is minimal. Let 0 ≤ i ≤ n be the position of
the first argument in the sequence that does not belong to S. If it is i = 0, then since a0 requires no
support and is in S+, it has to be the case that SRa0. For other t 6= 0, since all the required support
for ai is in S but ai ∈ S+, then again it has to be the case that SRai. This minimal powerful
sequence for a in FN gives rise to a minimal evidential sequence in ESFN (see proof of Theorem
5.1), from which by Theorem 3.17 we can obtain a minimal set e–supporting a. Since it is the case
that for any sequence S carries out an attack, then by Translation 1 so does S ∪ {η} and as it is
a self–supporting set, the attack is e–supported. Consequently, stability conditions in ESFN are
satisfied.

Assume now that S ∪ {η} is stable in ESFN , but S is not stable in FN . This means there
exists an argument a ∈ A \ S that is not in the deactivated set. Consequently, it has to be the case
that a is not attacked by S (and thus not e–support attacked by S ∪ {η}) and either requires no
support or is supported by S (which means it has to be supported by S ∪ {η} in ESFN ). Since
a either does not need support or is sufficiently supported by St, it has a powerful on S ∪ {a} in
FN . Consequently, it is e–supported by S ∪ {η} in ESFN by Theorem 5.1. Since a is not in the
stable extension in ESFN , either it or all of the sets minimally e–supporting it are attacked. In
the first case, a is also attacked in FN and we reach a contradiction. If a required no support in
FN , then it is supported by η in ESFN , and as η cannot be attacked, it has to be the case that a is,
again yielding a contradiction. If S ∪ {η} attacks all sets minimally e–supporting a, then naturally
all coherent sets containing a are also attacked in FN . Since S ∪ {a} is a coherent set and S is
conflict–free, it cannot be the case that at the same time all powerful sequences of a are attacked
(through an element different than a) and S supports a. Thus, S has to be stable in FN .

2

Example 4.7 (Continued). Recall the AFN ({a, b, c, d, e}, {(b, a), (e, a), (c, d)}, {({b}, b),
({b, d}, e), ({a}, c)}). By Translation 1 we obtain its EAS (({η, a, b, c, d, e}, {({b}, a),
({e}, a), ({c}, d)}, {({b}, b), ({b}, e), ({d}, e), ({a}, c)}), ({η}, a), ({η}, d)}). The maximal self–
supporting sets are {η, a, c} and {η, d, e}, thus b is correctly recognized as invalid. Our admissible
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extensions are ∅, {η}, {η, a, c} and {η, d, e}. It is easy to see they satisfy the completeness criterion
as well. The latter two are also preferred. Since {η, a, c} attacks d and thus cuts off support of e, it
is stable, and similarly for {η, d, e}. Our grounded extension is just η. Thus, it is easy to see that
our results agree for both the AFN and translated EAS.

Let us now consider a possible translation from EASs to AFNs. Since AFNs employ only
binary attacks, a full translation procedure would require the introduction of additional, virtual,
arguments and would further blur our analysis of support. Instead, we focus on translating support
between the two frameworks and illustrate the process through an example.

The differences between the E and N sets require a shift between relations similar to the one
in Translation 1. The biggest difficulty here is the handling of η. We note that η is the sole
confirmation of ”truth” in an EAS — its presence at the start of an evidential sequence is required
for an argument to be valid. Any argument not supported by η effectively attempts to justify its own
truth, thus acting as a self–supporter. Due to acyclicity requirements in AFNs, such an argument
would (correctly) not be treated as valid. Note that an argument supported by at least one set
(argument) will always trace back to some elements of the framework. If it can only trace to such
a self–supporter or to itself, it would again be discarded in AFNs as intended.

This intuition can also be considered from a more structural point of view. Since any powerful
sequence originates at an argument that requires no support, the translation from EASs to AFNs
should simply ensure that η is the only argument meeting this requirement. Consequently, any
other argument that requires no support in the EAS should be disqualified in its corresponding
AFN, which is achieved easily by using a support cycle.

In order to omit the attack issues between EASs and AFNs, let us focus on a subclass of EASs
that uses only binary conflicts, i.e. where every set of arguments S s.t. SRa for some a ∈ A,
consists of a single element. We denote it by EASbin.

Translation 2. Let ES = (A,R,E) be an EASbin. The corresponding AFN FNES = (A,R′, N)
is created as follows:

• The set of arguments remains the same.

• For every two arguments a, b s.t. ({a}, b) ∈ R, put (a, b) in R′.

• Let a 6= η be an argument in A and Z = {Z1, .., Zn} be a collection of all sets Zi s.t.
ZiEa. If Z is empty, add ({a}, a) to N . Otherwise, for every subset Z ′ of

⋃n
i=1 Zi s.t.

∀ni=1 Z
′ ∩ Zi 6= ∅, add (Zi, a) to N .

Although the translation is correct in the sense that extensions produced by the frameworks
coincide, just like in the case of Translation 1 we can obtain redundant information. Again, as-
suming minimality of Z ′ sets would ”drop” some relations in case the original framework was not
in minimal form, though still the provided results would be correct (see Theorems 4.8 and 3.18).
Unfortunately, the optimization in this case is still a task for future work.

Theorem 5.5. An argument a e–supported by S ⊆ A in ES iff it is powerful in S ∪ {a} in FNES .
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Proof. Since a is e–supported by S, it has an evidential sequence on S∪{a} by Theorem 3.17. Let
(η, a0, ..., an), where an = a, be an evidential sequence for a. Then it is also a powerful sequence
for a on S ∪ {a} in FNES . Since by the definition of EAS @T ⊆ A s.t. TEη and Translation
2 adds no additional support relation to η, it holds that @T ⊆ A s.t. TNη in FNES . Therefore,
the first two requirements of the powerful sequence are satisfied. By the evidential sequence, we
know that {η}Ea0. Hence, by Translation 2, every set Z ⊆ A s.t. ZNa0 contains η, and thus
a0 satisfies the powerful requirement. Let ai, where 1 ≤ i ≤ n, be an element of the evidential
sequence. We know that for every such ai, there exists a nonempty T ⊆ {η, a0, .., ai−1}s.t. TEai.
Since by Translation 2 for every Z ⊆ A s.t. ZNa0, T ∩ Z 6= ∅, it holds that for every Z,
Z ∩ {η, a0, .., ai−1} 6= ∅ and thus the powerful requirements are satisfied.

Let now (a0, ..., an), where an = a, be a powerful sequence for a on S ∪ {a} in FNES . Then
it is also an evidential sequence for a on S ∪{a} in ES. By Translation 2, it is easy to see that η is
the only argument that requires no support in FNES and thus it is the only candidate for a0. Thus,
the first two requirements of an evidential sequence are satisfied. Let ai be an arbitrary, nonzero
argument. This means that for every Z ⊆ A s.t. ZNai, Z ∩ {a0, ..., ai−1} 6= ∅. Please note that
Translation 2 guarantees the existence of at least one supporting set Z. Let us assume that ai does
not satisfy the evidential requirements, i.e. ∀T ⊆ A s.t. TEai, T 6⊆ {a0, ..., ai−1}. This means that
for every such T , there is some argument t ∈ T s.t. t /∈ {a0, ..., ai−1}. However, by Translation 2,
from such t′s we can construct a set Z s.t. ZNai. For this set it holds that Z ∩ {a0, ..., ai−1} = ∅,
which breaks the powerful requirement and we reach a contradiction. Therefore, the evidential
conditions are satisfied and (a0, ..., an) is an evidential sequence. Thus, by Theorem 3.17, a is
e–supported by S. 2

Theorem 5.6. A set of arguments S ⊆ A is self–supporting in ES iff it is coherent FNES .

Proof. Follows straightforwardly from Theorem 5.5. 2

Theorem 5.7. Let S ⊆ A be a self–supporting (coherent) set in ES (FNES). An argument a ∈ A
is acceptable w.r.t. S in ES iff it is defended by S in FNES .

Proof. We begin with the support part of defense/acceptability. If S is a self–supporting set and
e–supports a, then S ∪ {a} is also self–supporting and by Theorem 5.6 coherent. The other way
around is also simple; if S ∪ {a} is coherent, then it is also self–supporting. This means that a has
an evidential sequence on S ∪ {a}, and by Theorem 3.17 is e–supported by S.

Let us now continue with the attack. Please note that by Translation 2, an argument a attacks b
in FNES iff {a} attacks b in ES.

Let a ∈ A be an argument acceptable w.r.t. S. This means that given any set C ⊆ A that
carries out a minimal e–supported attack on a, S support attacks a member of C. Since S is self–
supporting, any attack carried out by it will be e–supported. Please note that although technically
we attack only minimal e–supported attacks on a, it is easy to see that it cannot be the case that
there exists an unattacked e–supported attack on a. Every such attack either contains a minimal
one, or is one – either case, it still remains attacked. By Lemma 3.13, C is self–supporting, and
thus coherent in FNES . Since C attacks a, then by the fact that ES in an EASbin, ∃c ∈ C s.t.
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{c}Ra. By Translation 2, it follows that cR′a in FNES . The attack by S against C follows a
similar analysis. Thus, we have that for every coherent set C s.t. CR′a, SR′C in FNES . Defense
follows straightforwardly.

Now let a ∈ A be defended by S in FNES . This means that for any argument b ∈ A s.t. bR′a,
every coherent set C ⊆ A containing b is attacked by S. By Translation 2, if bR′a in FNES , then
{b}Ra in ES. Similar follows for attack of S on C. Since every C is coherent, then by Theorem
5.6 it is also self–supporting. Consequently, it is an e–supported attack against a in ES and as S is
assumed to be self–supporting, the attack it carries out against C is also e–supported. Therefore,
S can respond to every (and thus also minimal) e–supported attack on a and thus, a is acceptable
w.r.t. S.

2

Theorem 5.8. Let ES = (A,R,E) be an EASbin and FNES = (A,R′, N) its correspond-
ing AFN. Then a set S is a σ–extension in ES where σ ∈ {admissible, preferred, complete,
grounded,stable} iff it is a σ–extension in FNES ..

Proof. It it is easy to see by Translation 2 that a given set is conflict–free in ES iff it is conflict–
free in FNES . Then admissible, preferred and complete semantics follow straightforwardly from
Lemma 3.10, Theorems 5.6 and 5.7. Since complete extensions coincide and the grounded exten-
sions are the least w.r.t. set inclusion complete both in ES and FNES by Theorems 3.14 and 4.6,
then grounded extensions coincide as well. Thus, we focus on the stable semantics. First, note
that by Theorem 3.14 every stable extension in FNES is also complete. Since complete extensions
coincide in ES and FNES , what remains to be done is the analysis of the elements not present in
the extension.

Assume that S is stable inES, but not in FNES . This means there exists an argument a ∈ A\S
that is not in the deactivated set. Consequently, a is not attacked by S in FNES and either requires
no support at all or sufficient support is provided by S. If a requires no support, by Translation
2 it has to be the case that a = η. However, since S is self–supporting/coherent, η has to be in
S and we reach a contradiction. If a is supported by S, it is easy to see that we can construct a
powerful sequence for it on S ∪ {a} and by Theorem 5.5 a is e–supported by S in ES. However,
by definition of stability in ES, it means that there is s ∈ S s.t. {s}Ra in ES or that every set
minimally supporting a is attacked. Consequently, either sR′a or every coherent set containing a
is attacked in FN . If it is the first case, then a has to be in the deactivated set and we reach a
contradiction. If it is the latter, it means that since S ∪ {a} is coherent and S does not attack a, S
has to attack itself. This breaches the conflict–freeness assumption and we reach a contradiction.
Hence, there is no a ∈ A \ S that is not in the deactivated set and S is AFN stable.

Now assume that S is stable in FNES , but not in ES. This means there exists an argument
a ∈ A\S that is e–supported byA and neither it nor every set of arguments minimally e–supporting
it is attacked by S. Since a is in the deactivated set, then either SR′a or ∃E ⊆ A s.t. ENa and
S ∩ E − ∅. If it is the first case, then obviously SRa in ES and we reach a contradiction. Let
us focus on the case when a is in the set due to lack of support. Since a is e–supported by A, by
Theorem 5.5 it is powerful in A. Lack of support means that for every powerful sequence, part of
the sequence is not in S. Without the loss of generality, we can assume this sequence is minimal.
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Let 1 ≤ i ≤ n be the position of the first argument in the sequence that does not belong to S. Since
a0 = η, it cannot be the case that it does not belong to S. As all the required support for ai is in S
but ai ∈ S+, then it has to be the case that SR′ai and thus SRai and we reach a contradiction. This
minimal powerful sequence for a in FNES gives rise to a minimal evidential sequence in ES (see
proof of Theorem 5.5), from which by Theorem 3.17 we can obtain a minimal set e–supporting
a. Since it is the case that for any sequence S carries out an attack in FNES , then by Translation
2 it also carries out an attack in ES and as it is a self–supporting set, the attack is e–supported.
Consequently, we reach a contradiction and S is stable in ES.

2

Example 3.15 (Continued). Recall the framework ({η, a, b, c, d, e, f}, {({b}, a), ({b}, c),
({c}, b), ({c}, d), ({d}, f), ({f}, f)}, {({η}, b), ({η}, c), ({η}, d), ({η}, f), ({d}, e)}). We can
now construct its corresponding AFN (A,R,N). The set of arguments remains the same and
A is simply {η, a, b, c, d, e, f}. Since the EAS has only binary attacks, we can copy them across
from the EAS to R. In this example, the necessity relation is N = E ∪ {(a, a)}. a is the only
argument that is not supported by anything at all in the EAS. Our admissible extensions are now
∅, {η}, {η, b}, {η, b, d}, {η, b, d, e} and {η, c}, which are exactly the same as in for the EAS. The
AFN’s complete extensions are {η}, {η, b, d, e} and {η, c} and again we obtain correspondence.
The same trivially follows for the preferred semantics. It is easy to see that the stable set is also
{η, b, d, e} and the grounded {η}.

Example 4.7 (Continued). Recall the AFN FN1 = ({a, b, c, d, e}, {(b, a), (e, a), (c, d)}, {({b}, b),
({b, d}, e), ({a}, c)}) and its EAS (({η, a, b, c, d, e}, {({b}, a), ({e}, a), ({c}, d)}, {({b}, b),
({b, }, e), ({d}, e), ({a}, c)}), ({η}, a), ({η}, d)}). Let us now shift it back to AFN form via Trans-
lation 2. The produced framework is FN2 = ({η, a, b, c, d, e}, {(b, a), (e, a), (c, d)}, {({b}, b),
({b, d}, e), ({a}, c)}), ({η}, a), ({η}, d)}). Therefore, we retrieve the original AFN extended with
evidence and the resulting relations. We obtain four admissible extensions – ∅, {η}, {η, a, c} and
{η, d, e}, out of which only ∅ is not complete. {η, a, c} and {η, d, e} are the preferred and stable
extensions. It is easy to see that by removing η from the sets we retrieve the extensions of FN1.

Please note that a translation removing η from the framework can exist, however, it would
require more attention than the one we presented. This comes from the fact that removing support
from η to some argument a does not mean that a becomes an argument that requires no support.
If it were the case that there is also an argument b supporting a s.t. {η}Eb, in the EAS approach
a would have two sequences. Should we translate this example to AFN without evidence, we
would have that a now has only one sequence (through b), as ∅ is not permitted in N . Even if this
restriction was relaxed, we would still obtain the same answer due to the definition of the powerful
sequence. Although it can of course be adapted to treat ”requires no support” and ”requires no
support/is supported by ∅” in the same manner, it is easy to see that an translation that requires
changing the formal definitions of the target structure is by no means desirable. Moreover, should
an implementation of AFNs exist, it would no longer be usable as a solver for EASs.
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6 Discussion and Conclusions
This paper’s examined the differences and similarities between support as used within Evidential
Argument Systems and Argumentation Frameworks with Necessities.

We provided a translation between AFNs and EASs and analyzed a possible translation going
in the other direction, thus completing and correcting the analysis carried out in [6]. Additionally,
we identified correspondences between the properties of both of these systems to the properties
obtained in Dung’s argumentation system. We have also introduced the notion of a minimal form
of a framework, which although not required in binary frameworks like AFs, can be interesting
when faced with structures using set–form relations. Finally, we corrected some important errors
in the definitions of EASs.

We are pursuing several avenues of future work. First, as suggested above, we intend to fully
formalize the translation from EASs to AFNs. Second, we wish to provide a mapping between
the remaining types of support (deductive and abstract) to the systems discussed here (c.f. [6,12]).
Finally, we intend to investigate a more pragmatic issue: given the different types of support in
the literature, we will examine which framework (if any) is able to facilitate support between
arguments as found in real domains, and if needed, construct a system to provide this type of
support to a knowledge engineer.

Support is an important, if somewhat controversial concept in argumentation. This paper serves
to unify some of the most popular approaches to its representation. Doing so not only provides
important theoretical contributions, but also helps in the representation of real world domains.
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