
TECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18493

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

D-FLAT: Progress Report

DBAI-TR-2014-86

Michael Abseher Bernhard Bliem
Günther Charwat Frederico Dusberger

Markus Hecher Stefan Woltran

DBAI TECHNICAL REPORT

2014

DBAI TECHNICAL REPORT

DBAI TECHNICAL REPORT DBAI-TR-2014-86, 2014

D-FLAT: Progress Report

Michael Abseher 1 Bernhard Bliem 1 Günther Charwat 1

Frederico Dusberger 1 Markus Hecher 1 Stefan Woltran 1

Abstract. Complex reasoning problems over large amounts of data pose a great challenge
for Artificial Intelligence and Knowledge Representation. To cope with it, it is desirable to
use declarative approaches, as these offer high maintainability and are often easy to use for
domain experts. Especially Answer Set Programming (ASP) has become prominent due to
the existence of powerful solvers that offer high efficiency and rich modeling languages. To
overcome the obstacle of high computational complexity, exploiting structure by means of
tree decompositions has proved to be effective in many cases. However, the implementation
of suitable efficient algorithms is often tedious. D-FLAT is a software system that combines
ASP with problem solving on tree decompositions and can serve as a rapid prototyping tool
for such algorithms. Since we initially proposed D-FLAT, we have made major changes
to the system, improving its range of applicability and its usability. In this report, we
give a comprehensive overview of our software and provide many examples to illustrate its
versatility.

1TU Wien. E-mail: {abseher,bliem,gcharwat,dusberg,hecher,woltran}@dbai.tuwien.ac.at

Acknowledgements: This work has been supported by the Austrian Science Fund (FWF) under
grant P25607, and by the Vienna University of Technology special fund “Innovative Projekte”
(9006.09/008).

Copyright c© 2014 by the authors

Contents
1 Introduction 4

2 Background 6
2.1 Answer Set Programming . 6

2.1.1 Syntax . 6
2.1.2 Semantics . 7
2.1.3 Complexity and Expressive Power . 8
2.1.4 ASP in Practice . 9

2.2 Tree Decompositions . 10
2.2.1 Concepts and Complexity . 10
2.2.2 Dynamic Programming on Tree Decompositions 12

3 The D-FLAT System 14
3.1 System Overview . 14
3.2 Constructing a Tree Decomposition . 15
3.3 Item Trees . 17

3.3.1 Extension Pointers . 17
3.3.2 Item Tree Node Types . 19
3.3.3 Solution Costs for Optimization Problems 20

3.4 D-FLAT’s Interface for ASP . 20
3.4.1 General ASP Interface . 21
3.4.2 Simplified Interface for Problems in NP 25

3.5 D-FLAT’s Handling of Item Trees . 27
3.5.1 Constructing an Uncompressed Item Tree from the Answer Sets 27
3.5.2 Propagation of Acceptance Statuses and Pruning of Item Trees 28
3.5.3 Propagation of Optimization Values in Item Trees 29
3.5.4 Compressing the Item Tree . 29

3.6 Materializing Complete Solutions . 30
3.7 Default Join . 30
3.8 Command-Line Usage . 31

4 D-FLAT in Practice 34
4.1 A Selection of Problems in NP . 34

4.1.1 Boolean Satisfiability . 34
4.1.2 Minimum Dominating Set . 37
4.1.3 Connected Dominating Set . 38

4.2 A Selection of Problems beyond NP . 40
4.2.1 Subset-Minimal Boolean Satisfiability . 40
4.2.2 Subset-Minimal Dominating Set . 41

2

5 The D-FLAT Debugger 44
5.1 Command-Line Usage . 44
5.2 Features . 45

5.2.1 Visualization . 45
5.2.2 Search . 48
5.2.3 Item Tree Node Types . 48

5.3 Current Status and Developments . 50

6 Conclusion 52

3

1 Introduction
Complex reasoning problems over large amounts of data arise in many of today’s application do-
mains for computer science. Bio-informatics, where structures such as proteins or genomes have to
be analyzed, is one such domain; querying ontologies like SNOMED-CT is important in medicine,
another such domain. Applications like the ones mentioned provide a great challenge to push the
broad selection of logical methods from Artificial Intelligence and Knowledge Representation to-
ward practical use. To successfully face this challenge, the following considerations appear crucial.

First, for formalizing and implementing complex problems, declarative approaches are de-
sired. Not only do they lead to readable and maintainable code (compared to C code, for instance),
they also ease the discussion with experts from the target domain when it comes to specifying
their particular problems. Database query languages, which serve this purpose well in the business
domain, are often too weak to capture concepts required in other domains, for instance, reacha-
bility in structures. A particular candidate for such an advanced declarative approach is Answer
Set Programming (ASP) [16, 31] for which there are sophisticated solvers available that offer high
efficiency and rich languages for modeling the problems at hand. A particular feature of ASP is
the so-called Guess & Check methodology, where a guess is performed to open up the search space
non-deterministically and a subsequent check phase eliminates all guessed candidates that turn out
not to be solutions. Since complex problems often have a combinatorial structure, this method
allows for a succinct description of the problem to be solved.

Second, handling computationally complex queries over huge data is an insurmountable obsta-
cle for standard algorithms. One potential solution is to exploit structure. This is motivated by the
fact that, in reality, molecules are not random graphs and medical ontologies are not arbitrary sets
of relations.

A prominent approach to exploit structure is to employ tree decompositions (see, e.g., [14] for
an overview). This is particularly attractive because it allows to decompose any problem for which
a graph representation can be found. Even more important, via Courcelle’s famous result [20]
it is nowadays known that many problems can be efficiently solved with dynamic programming
(DP) algorithms on tree decompositions if the structural parameter “treewidth” is bounded, which
means, roughly, that the graph resembles a tree to a certain extent. The main feature of such an
approach is that what causes an explosion of a traditional algorithm’s runtime can be confined to
only this structural parameter instead of mere input size. Consequently, if the treewidth is bounded,
even huge instances of many problems can be solved without falling prey to the exponential explo-
sion. Empirical studies [1, 35, 37, 38, 44, 50, 51] indicate that in many practical applications the
treewidth is usually indeed small. However, the implementation of suitable efficient algorithms is
often done from scratch, if done at all.

All this calls for a suitable combination of declarative approaches on the one hand and structural
methods on the other hand.

We focus here on a combination of ASP and problem solving via DP on tree decompositions.
For this, we have implemented a free software system called D-FLAT1 for rapid prototyping of DP
algorithms in the declarative language of ASP. Since ASP is well suited for a lot of problems, it

1http://dbai.tuwien.ac.at/research/project/dflat/

4

http://dbai.tuwien.ac.at/research/project/dflat/

is often also well suited for parts of such problems, making it an appealing candidate to work on
decomposed problem instances.

The key features of D-FLAT are that

• ASP is used to specify the DP algorithm by declarative means (since ASP originated in part
from research on databases, it can be conveniently used to specify table transitions which are
the typical operations in DP);

• the burden of computation and optimization is delegated to existing tools for finding tree
decompositions and to ASP solvers;

• D-FLAT relieves the user from tedious non-problem-specific tasks, but stays flexible enough
to offer enough power to solve a a great number of problems.

D-FLAT is free software written in C++ and internally uses the answer set solving systems Gringo
and Clasp [30], as well as the htdecomp library for heuristically generating a tree decomposition
of the input [23].

Since we initially proposed D-FLAT in [9], we have made major changes to the system. Most
importantly, we have generalized the system in such a way that it can now solve any problem
expressible in monadic second-order logic, which significantly extends its range of applicability
[10]. We have used the tool for implementing decomposition-based algorithms for various prob-
lems from diverse application areas, which demonstrates the usability of the method. Furthermore,
for assisting users of D-FLAT, we have developed a debugging tool that allows one to inspect the
intermediate results of decomposition-based algorithms implemented in D-FLAT.

This work is structured as follows. We first provide background on Answer Set Programming
and tree decompositions in Section 2. In Section 3, we then present the current version 1.0.0 of
D-FLAT and describe its components in detail. Subsequently, we turn to practical applications in
Section 4, where we present D-FLAT encodings for several problems. In Section 5 we focus on
the D-FLAT Debugger and introduce its visualization and debugging capabilities. Finally, we give
a conclusion and an outlook in Section 6.

5

2 Background
This section describes the underlying concepts of the D-FLAT system. We largely follow the
presentation in [8]. Section 2.1 is devoted to Answer Set Programming and Section 2.2 covers tree
decompositions.

2.1 Answer Set Programming
Since NP-complete problems are believed not to be solvable in polynomial time, in principle we
probably cannot do better than an algorithm that guesses (potentially exponentially many) candi-
dates and then checks (each in polynomial time) if these are indeed valid solutions. Logic program-
ming under the answer set semantics is a formalism that allows us to succinctly specify programs
that follow such a Guess & Check approach [5, 31, 39]. Answer Set Programming (ASP) denotes
a programming paradigm in which one writes a logic program to solve a problem such that the
answer sets of this program correspond to the solutions of the problem. Easily accessible intro-
ductions are given in [16, 40]. In [46, 43], ASP is proposed as a paradigm for declarative problem
solving. A crucial observation is that the answer set semantics allows a logic program to have
multiple models, which allows for modeling non-deterministic computations in a natural way.

2.1.1 Syntax

In the following, we suppose a language with predicate symbols having a corresponding arity
(possibly 0), as well function symbols with a respective arity, and variables. Function symbols
with arity 0 are called constants. By convention, variables begin with upper-case letters while
predicate and function symbols begin with lower-case letters.

Definition 1. Each variable and each constant is a term. Also, if f is a function symbol with
arity n, and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term. A term is ground if it contains no
variables. If p is an m-ary predicate symbol and t1, . . . , tm are terms, then we call p(t1, . . . , tm)
an atom. A literal is either just an atom or an atom with the symbol “not” put in front of it. An
atom or literal is called ground if only ground terms occur in it.

Using these building blocks, we define the following central syntactical concept.

Definition 2. A logic program (sometimes just called “program” for short) is a set of rules of the
form

a← b1, . . . , bm, not bm+1, . . . , not bn

where a and b1, . . . , bn are atoms. Let r be a rule of a program Π. We call h(r) = a the head
of r, and b(r) = {b1, . . . , bn} its body which is further divided into a positive body, b+(r) =
{b1, . . . , bm}, and a negative body, b−(r) = {bm+1, . . . , bn}.

We call a rule r safe if each variable occurring in r is also contained in b+(r). In the following,
we only allow programs where all rules are safe.

6

If the body of a rule r is empty, r is called a fact, and the← symbol can be omitted. A rule (or
a program) is called ground if it contains only ground atoms. Note that we sometimes write

← b1, . . . , bm, not bm+1, . . . , not bn.

A rule of this form (i.e., without a head) is called an integrity constraint and is shorthand for

a← not a, b1, . . . , bm, not bm+1, . . . , not bn

where a is some new atom that exists nowhere else in the program.

The intuition behind a ground rule is the following: If we consider an answer set containing
each atom from the positive body but no atom from the negative body, then the head atom must be
in this answer set. An integrity constraint, i.e., a rule with an empty head, therefore expresses that
a set containing each atom from the positive body but none from the negative body cannot be an
answer set. Of course, we still need to define the notion of answer sets in a formal way, which we
will now turn to.

2.1.2 Semantics

Since the semantics of ASP, as we will see, deals only with variable-free programs, we first require
the notion of grounding a program, i.e., instantiating variables with ground terms, for which the
following definitions are essential.

Definition 3. Given a logic program Π, the Herbrand universe of Π, denoted by UΠ, is the set of all
ground terms occurring in Π, or, if no ground terms occur, the set containing an arbitrary constant
as a dummy element. The Herbrand base of Π, denoted by BΠ, is the set of all ground atoms
obtainable by using the elements of UΠ with the predicate symbols occurring in Π. The grounding
of a rule r ∈ Π, denoted by grΠ(r), is the set of rules that can be obtained by substituting all
elements of UΠ for the variables in r. The grounding of a program Π is the ground program
defined as

gr(Π) =
⋃
r∈Π

grΠ(r).

We now define the answer set semantics that have first been proposed in [32]. To this end, we
first introduce the notion of answer sets for ground programs.

Definition 4. Let Π be a ground logic program and I be a set of ground atoms (called an interpre-
tation). A rule r ∈ Π is satisfied by I if h(r) ∈ I or b−(r) ∩ I 6= ∅ or b+(r) \ I 6= ∅. I is a model
of Π if it satisfies each rule in Π. We call I an answer set of Π if it is a subset-minimal model of
the Gelfond-Lifschitz reduct of Π w.r.t. I , which is the program defined as

ΠI =
{
h(r)← b+(r) | r ∈ Π, b−(r) ∩ I = ∅

}
.

7

Having introduced the notion of answer sets for ground programs, we can now state the answer
set semantics for potentially non-ground programs by means of their groundings.

Definition 5. Let Π be a logic program and I ⊆ BΠ. I is an answer set of Π if I is an answer set
of gr(Π).

Therefore, answer sets of a program with variables can be computed by first grounding it
and then solving the resulting ground program. This is mirrored in ASP systems which typically
distinguish a grounding step from a subsequent solving step and can thus be divided into a grounder
and a solver component. D-FLAT uses the grounder Gringo and the solver Clasp [30].

2.1.3 Complexity and Expressive Power

Naturally, questions of computational complexity and expressive power of ASP arise. A survey of
results is given in [21]. We will now mention results that are especially important for our purposes.

The unrestricted use of function symbols leads to undecidability in general [17, 2]. In this
work, we therefore do not allow function symbols of positive arity to be nested, which is a very
restrictive condition but already gives us a convenient modeling language. In this case, deciding
whether a ground logic program has an answer set is NP-complete [42].

We are of course not only interested in the propositional case but also in the complexity in the
presence of variables. The use of variables allows us to separate the actual program from the input
data, so ASP can be seen as a query language where the (usually non-ground) program can be
considered a query over a set of facts as input.

This dichotomy between the actual program and the data serving as input should be taken
into account when studying the complexity of non-ground ASP. As mostly we are dealing with
situations where the program stays the same for variable data (cf. Section 2.1.4 for an example
encoding for the GRAPH COLORING problem), it is reasonable to consider the data complexity of
ASP. By this we mean the complexity when the program (consisting of a set of rules with possibly
non-empty bodies) is fixed whereas only the set of facts representing the data changes.

Let Π be a logic program and ∆ be a set of facts. Deciding answer set existence of Π ∪ ∆ is
NP-complete w.r.t. the size of ∆ (i.e., when Π is fixed). This is because when Π is fixed and only
∆ varies, the size of gr(Π ∪∆) is polynomial in the size of ∆.

The aforementioned complexity results give us insight into how difficult it is to solve ASP
programs. A related question is which problems can actually be expressed in ASP. Informally,
when we say that ASP captures a complexity class, it means that for any problem in that class
we can write a uniform logic program (i.e., a single logic program that stays the same for all
instances) such that this program together with a set of facts describing an instance has an answer
set if and only if the instance is positive. It has been shown that ASP captures NP [49], and also
every search problem in NP can be expressed by a uniform ASP program [41]. There are various
generalizations of the presented ASP syntax and semantics in the literature. For instance, allowing
the use of disjunctions in rule heads (as in [33]) yields higher expressiveness at the cost of ΣP

2 -
completeness for the problem of deciding answer set existence for ground programs [25, 26].

8

a b c

d e f

Figure 1 A 3-colorable graph

color(red). color(grn). color(blu).
vertex(a). vertex(b). vertex(c). vertex(d). vertex(e). vertex(f).
edge(a,b). edge(a,d). edge(b,c). edge(b,d). edge(b,e). edge(d,e).

Listing 1 Declaration of a GRAPH COLORING instance containing the graph from Figure 1

2.1.4 ASP in Practice

Various systems are available [30, 39] which proceed according to the aforementioned approach
of grounding followed by solving and which offer auxiliary facilities (like aggregates and arith-
metics) to make modeling easier. In this work, we use the input language of Gringo [29, 28] in
the program examples and use a monospaced font for typesetting rules in that language. The
← symbol corresponds to :- and each rule is terminated by a period. In our listings, we will
perform “beautifications” such as using← instead of :- and 6= instead of != for the sake of better
readability.

As an introductory example, we will show how ASP can be applied to solve the GRAPH COL-
ORING problem. Figure 1 depicts the graph in a possible instance of the GRAPH COLORING

problem where the vertices shall be colored either in “red”, “grn” or “blu” such that adjacent ver-
tices never have the same color. This instance can be represented as a set of facts in the input
language of Gringo as seen in Listing 1. The following program solves the GRAPH COLORING

problem for instances specified in this way.

1 { map(X,C) : color(C) } 1 ← vertex(X).
← edge(X,Y), map(X,C;Y,C).

This program is to be grounded together with the facts describing the input graph using the predi-
cates vertex/1, edge/2 and color/1. The answer sets encode exactly the valid colorings of the
graph.

The first line uses a cardinality constraint in the head. The “:” symbol indicates a condition on
the instantiation of the variables. Conceptually, this line can be expanded as follows if we assume
the colors to be “red”, “grn” and “blu”:

1 { map(X,red), map(X,grn), map(X,blu) } 1 ← vertex(X).

The grounder will eventually expand this rule further by substituting ground terms for X. Roughly
speaking, a cardinality constraint l{L1, . . . , Ln}u is satisfied by an interpretation I if at least l and
at most u of the literals L1, . . . , Ln are true in I . Therefore, the rule in question expresses a choice

9

of exactly one of map(X,red), map(X,grn) and map(X,blu) for any vertex X.
The integrity constraint in the second line ensures that no answer set maps the same color to

adjacent vertices. This rule uses pooling (indicated by “;”) and is expanded by the grounder to the
equivalent rule:

← edge(X,Y), map(X,C), map(Y,C).

As another example, consider the propositional satisfiability problem (SAT). An instance in
CNF can be given by facts using the predicates atom/1 and clause/1, as well as pos(C,A) and
neg(C,A), denoting that the atom A occurs positively or, respectively, negatively in the clause C.
The following ASP program then solves the SAT problem.

{ true(A) : atom(A) }.
sat(C) ← pos(C,A), true(A).
sat(C) ← neg(C,A), not true(A).
← clause(C), not sat(C).

Note that the absence of bounds in the first rule indicates that this rule derives any subset of the
atoms in the input formula as the extension of true/1.

2.2 Tree Decompositions
Many computationally hard problems on graphs are easy if the instance is a tree. It would of
course be desirable if we could also efficiently solve instances that are “almost” trees. Fortunately,
it is indeed possible to exploit “tree-likeness” in many cases. Tree decompositions and the asso-
ciated concept of treewidth provide us with powerful tools for achieving this. They are also the
basis for the proposed problem solving methodology – not only are tree decompositions useful
for theoretical investigations, but they also serve as the structures on which the actual algorithms
function.

Lately, tree decompositions and treewidth have received a great deal of attention in computer
science. This interest was sparked primarily by [47]. Since then, it has been widely acknowledged
that treewidth represents a very useful parameter that is applicable to a broad range of problems.
There are several overviews of this topic, such as [13, 11, 4, 45].

2.2.1 Concepts and Complexity

Basically, a tree decomposition of a (potentially cyclic) graph is a certain kind of tree that can be
obtained from the graph. From now on, to avoid ambiguity, we follow the convention that the term
“vertex” refers to vertices in the original graph, whereas the term “node” refers to nodes in a tree
decomposition. (But note that in Section 3 we will need to introduce yet another kind of node.)

To give a very rough idea, the intuition behind a tree decomposition is that each node subsumes
multiple vertices, thereby isolating the parts responsible for the cyclicity. When we thus want to
turn a graph into a tree, we can think of contracting vertices (ideally in a clever way) until we end
up with a tree whose nodes represent subgraphs of the original graph. Our sought-for measure of

10

a

b

c

d e

{a, b, c} {d, e}

{b, c, d}

Figure 2 A graph with treewidth 2 and an (optimal) tree decomposition for it

a graph’s cyclicity can thereby be determined as “how extensive” such contractions must be at the
very least in order to get rid of all cycles. These intuitions will now be formalized.

Definition 6. Given a graph G = (V,E), a tree decomposition of G is a pair (T, χ) where T =
(N,F) is a (rooted) tree and χ : N → 2V assigns to each node a set of vertices (called the node’s
bag), such that the following conditions are satisfied:

1. For every vertex v ∈ V , there exists a node n ∈ N such that v ∈ χ(n).

2. For every edge e ∈ E, there exists a node n ∈ N such that e ⊆ χ(n).

3. For every v ∈ V , the set {n ∈ N | v ∈ χ(n)} induces a connected subtree of T .

We call maxn∈N |χ(n)|−1 the width of the decomposition. The treewidth of a graph is the minimum
width over all its tree decompositions.

Condition 3 is also called the connectedness condition and is equivalent to the requirement that
if a vertex occurs in the bags of two nodes n0, n1 ∈ N , then it must also be contained it the bag of
each node on the path between n0 and n1, which is uniquely determined because T is a tree.

Note that each graph admits a tree decomposition, namely at least the “decomposition” con-
sisting of a single node n with χ(n) = V . A tree has treewidth 1 and a cycle has treewidth 2.
Among other interesting properties is that if a graph contains a clique v1, . . . , vk, then in any of
its tree decompositions there is a node n with {v1, . . . , vk} ⊆ χ(n). Therefore the treewidth of a
graph containing a k-clique is at least k− 1. Furthermore, if the graph is a k× k grid, its treewidth
is k. Large cliques or grids within a graph therefore imply large treewidth.

Figure 2 shows a graph together with a tree decomposition of it that has width 2. This decom-
position is optimal because the graph contains a cycle and thus its treewidth is at least 2.

Many problems that are intractable in general are tractable when the treewidth is bounded by
a fixed constant. Considering treewidth as a parameter (compared to, say, solution size or the
maximum clause size in a CNF formula) means to study the structural difficulty of instances.
What makes treewidth especially attractive is that this parameter can be applied to all graph prob-
lems and even to many problems that do not work on graphs directly, by finding suitable graph
representations of the instances. For example, we can also decompose hypergraphs by building
a tree decomposition of the primal graph (also known as the Gaifman graph). Given a hyper-
graph H = (V,E), where V are the vertices and E ⊆ 2V \ {∅} are the hyperedges, the pri-
mal graph is defined as the graph G = (V, F) with the same vertices as H and with the edges

11

F =
{
{x, y} ⊆ V | ∃e ∈ E : {x, y} ⊆ e

}
; in other words, the graph where each pair of vertices

appearing together in a hyperedge is connected by an edge.
Furthermore, it has been observed that instances occurring in practical situations often exhibit

small treewidth (cf., e.g., [50, 1, 35, 37, 38, 44]). We have taken a look at some publicly available
datasets2 (from domains like co-authorship among scientists, electric power networks or biolog-
ical networks) and found that indeed often the treewidth is quite small. This appears to be very
promising, since it indicates that the D-FLAT approach might be practicable in many real-world
applications because the treewidth is crucial for the runtime and memory requirements of dynamic
programming algorithms on tree decompositions, as we will see in Section 2.2.2.

In general, determining a graph’s treewidth and constructing an optimal tree decomposition are
unfortunately intractable: Given a graph and a non-negative integer k, deciding whether the graph’s
treewidth is at most k is NP-complete [3]. However, the problem is fixed-parameter tractable w.r.t.
the parameter k, i.e., if we are given a fixed k in advance, the problem becomes tractable: For
any fixed k, deciding whether a graph’s treewidth is at most k, and, if so, constructing an optimal
tree decomposition, are feasible in linear time [12]. This has important implications when we
are dealing with a problem that can be efficiently solved given a tree decomposition of width
bounded by some fixed constant k, because it means that, given k, we can also construct such a
tree decomposition efficiently.

If no such bound on the treewidth can be given a priori, which is the case if we want to be able to
process problems even if their treewidth is large, we are not necessarily doomed. Although finding
an optimal tree decomposition is intractable in this case, there are efficient heuristics that produce
a reasonably good tree decomposition [15, 23, 34]. In practice, it is usually not necessary for
the used tree decomposition to be optimal in order to take significant advantage of decomposing
problem instances. In particular, having a non-optimal tree decomposition will typically imply
higher runtime and memory consumption, but the optimality of the computed solution is not at
stake.

2.2.2 Dynamic Programming on Tree Decompositions

Figure 3 shows how dynamic programming can be applied to a tree decomposition of a GRAPH

COLORING instance. Each of the tree decomposition nodes in Figure 3b has a corresponding table
in Figure 3c where there is a column for each bag element. Additionally, we have a column i that
is used to store an identifier for each row such that an entry in the column j of a potential parent
table can refer to the respective row. Eventually, each row will describe a proper coloring of the
subproblem represented by the bag.

Adhering to the approach of dynamic programming, the tables in Figure 3c are computed in
a bottom-up way. First all proper colorings for the leaf bags are constructed and stored in the
respective table. For each non-leaf node with already computed child tables, we then look at all
combinations of child rows and combine those rows that coincide on the colors of common bag
elements; that is to say we join the rows. In the example, the leaves have no common bag elements,
therefore each pair of child rows is joined. However, we must eliminate all results of the join that

2See, for instance, http://wiki.gephi.org/index.php/Datasets

12

http://wiki.gephi.org/index.php/Datasets

a

b

c

d e

(a) A GRAPH COLORING

instance (colors are “r”,
“g” and “b”)

{a, b, c} {d, e}

{b, c, d}

(b) A tree decomposition
of the instance

i a b c
0 r g b
1 r b g
2 g r b
3 g b r
4 b r g
5 b g r

i d e
0 r g
1 r b
2 g r
3 g b
4 b r
5 b g

i b c d j
0 r g b {(4, 4), (4, 5)}
1 r b g {(2, 2), (2, 3)}
2 g r b {(5, 4), (5, 5)}
3 g b r {(0, 0), (0, 1)}
4 b r g {(3, 2), (3, 3)}
5 b g r {(1, 0), (1, 1)}

(c) The computed dynamic programming
tables

Figure 3 Dynamic programming for GRAPH COLORING on a tree decomposition

violate a constraint, i.e., where adjacent vertices have the same color. For instance, the combination
of row 0 from the left child with row 2 from the right child is invalid because the adjacent vertices
b and d are colored with “g”; the left row 0 combined with the right row 0 is valid, however, and
gives rise to the row 3 in the root table. We store the identifiers of these child rows as a pair in the
j column. Note that the entry of j in row 3 not only contains (0, 0) but also (0, 1) because joining
these rows produces the same row as we project onto the current bag elements b, c and d. Storing
all predecessors of a row like this allows us to enumerate all proper colorings with a final top-down
traversal.

At any instant during the progress of a dynamic programming algorithm, the vertices in the
current bag (i.e., the bag of the node whose table the algorithm currently computes) are called the
current vertices. Current vertices that are not contained in any child node’s bag are also called
introduced vertices, whereas we call the vertices in a child node’s bag that are no longer in the
current bag removed vertices. Usually, a dynamic programming algorithm must not only decide
which child rows to join but also how to extend partial solutions, represented by child rows, to
account for the introduced vertices. In the case of GRAPH COLORING, we would simply guess a
color for each introduced vertex such that no adjacent vertices have the same color. In the example,
this only happens in the leaves.

Suppose the number of colors is fixed. Even then, this algorithm’s space and time requirements
are both exponential in the decomposition width. However, when the treewidth can be considered
bounded, this algorithm runs in linear space and time. This proves fixed-parameter tractability
of GRAPH COLORING parameterized by the treewidth and the number of colors. It is a general
property of the algorithms presented in this work that the width of the obtained decompositions is
crucial for the performance.

13

3 The D-FLAT System
This section first gives an overview of the D-FLAT system and then describes its components in
more detail. The system is free software and can be downloaded at http://dbai.tuwien.
ac.at/research/project/dflat/system/. Some examples of D-FLAT encodings can
be found in Section 4.

3.1 System Overview
D-FLAT3 is a framework for developing algorithms that solve computational problems by dynamic
programming on a tree decomposition of the problem instance. Such an algorithm typically en-
compasses the following steps.

1. It constructs a tree decomposition of the problem instance, thereby decomposing the instance
into several smaller parts.

2. It solves the sub-problems corresponding to these parts individually and stores partial solu-
tions in an appropriate data structure.

3. It combines the partial solutions following the principle of dynamic programming and prints
all thus obtained complete solutions.4

Among these tasks, the one that is really problem-specific is the second one – solving the
sub-problems. When faced with a particular problem, algorithm designers typically focus on this
step. The others – constructing a tree decomposition and combining partial solutions – are often
perceived as a distracting and tedious burden. This is why D-FLAT takes care of the first and third
step in a generic way and lets the programmer focus solely on the problem at hand.

Furthermore, it is often much more convenient to solve problems using a declarative language
when compared with an imperative implementation. Especially in the phase where the algorithm
designer wants to explore an idea for an algorithm, it is of great help to be able to quickly come
up with a prototype implementation that can easily be adapted if it turns out that some details
have been missed. Therefore, D-FLAT offers the possibility of using the declarative language of
Answer Set Programming (ASP) to specify what needs to be done for solving the sub-problem
corresponding to a node in the tree decomposition of the input.

To summarize, D-FLAT allows problems to be solved in the following way.

1. D-FLAT takes care of parsing a representation of the problem instance and automatically
constructing a tree decomposition of it using heuristic methods.

3The acronym stands for Dynamic Programming Framework with Local Execution of ASP on Tree Decompositions.
4Note that, depending on the problem, printing all solutions may not be required. Often we just want, e.g., to

decide whether a solution exists, to count the number of solutions, or to find an optimal solution. D-FLAT also offers
facilities for such cases.

14

http://dbai.tuwien.ac.at/research/project/dflat/system/
http://dbai.tuwien.ac.at/research/project/dflat/system/

Store
item tree ASP call

Parse
instance

Decompose Done?
no

yes

Visit next
node in

post-order

Materialize
solution

Figure 4 Control flow in D-FLAT

2. The framework provides a data structure (called item tree) that is suitable for representing
partial solutions for many problems. The only thing that the programmer needs to provide is
an ASP specification of how to compute the item tree associated with a tree decomposition
node.

3. D-FLAT automatically combines the partial solutions and prints all complete solutions. Al-
ternatively, it is also possible to solve decision, counting and optimization problems.

Regarding the applicability of D-FLAT, we have shown in [10] that any problem expressible in
monadic second-order logic can also be solved with D-FLAT in FPT time (i.e., in time f(w) ·nO(1),
where n is the size of the input, w is its treewidth and f(w) depends only on w). This includes
many problems from NP but also harder problems in PSPACE.

Figure 4 depicts the control flow during the execution of an algorithm with D-FLAT and illus-
trates the interplay of the system’s components.

3.2 Constructing a Tree Decomposition
D-FLAT expects the input that represents a problem instance to be specified as a set of facts in the
ASP language. For constructing a tree decomposition, D-FLAT first needs to build a hypergraph
representation of this input. Along with the facts describing the instance, the user therefore must
specify which predicates therein designate the hyperedge relation.5

Example 1. Suppose we want to solve the GRAPH COLORING problem where an instance consists
of a graphG together with a set of colors C. We want to find all proper colorings ofG using colors
from C.

Let an instance be given by the graph depicted in Figure 1 and the colors “red”, “grn” and
“blu”. This can be specified in ASP using the facts from Listing 1. Given the information that
the predicates vertex and edge shall denote hyperedges, D-FLAT builds a hypergraph repre-
sentation that has the same vertices as the graph, and edges in the graph correspond to binary

5Vertices not incident to any hyperedge can be included in the domain by adding unary hyperedges.

15

hyperedges. There is also a unary hyperedge relation induced by the predicate vertex, which is
only used to make all vertices of the hypergraph known to D-FLAT.

Once a hypergraph representation of the input has been built, the framework uses an external
library for heuristically constructing a tree decomposition of small width.6 This library relies on a
bucket elimination algorithm [22] that requires an elimination order of the vertices.

Given a hypergraph H and an elimination order σ, a tree decomposition T can be constructed
as follows. For each v ∈ σ: Make v simplicial (i.e., connect all its neighbors s.t. they form a
clique) and remove v from H . Consequently, a new tree decomposition node, whose bag contains
v and all its neighbors, is added to T . Connectedness is ensured by adding an edge to each already
existing node in T in whose bag v appears as well.

The following heuristics for finding elimination orders are currently supported:

Min-degree Initially, the vertex with minimum degree is selected as the first one in the order.
The heuristic then always selects the next vertex having the least number of not yet selected
neighbors and repeats this step until all vertices are eliminated.

Min-fill Always select the vertex whose elimination adds the smallest number of edges to H until
all vertices are eliminated.

Maximum Cardinality Search The first vertex is chosen randomly. Afterwards, the vertex hav-
ing the greatest number of already selected neighbors is selected. This step is repeated until
all vertices are eliminated.

In each heuristic, ties are broken randomly.
It is often convenient to presuppose tree decompositions having a certain normal form. This

usually makes algorithms easier to specify as fewer cases have to be considered. On the other hand,
the size of the tree decomposition thereby increases in general, but only linearly. The following
optional normalizations of tree decompositions are offered:

Weak normalization In a weakly normalized tree decomposition, each node with more than one
child is called a join node and must have the same bag elements as its children. We call
unary nodes (i.e., nodes with one child) exchange nodes.

Semi-normalization A semi-normalized tree decomposition is weakly normalized – additionally,
join nodes must have exactly two children.

Normalization A normalized (sometimes also called nice) tree decomposition is semi-normalized
– additionally, each exchange node must be of one of two types: Either it is a remove node
whose bag consists of all but one vertices from the child’s bag; Or it is an introduce node
whose bag consists of all vertices from the child bag plus another vertex.

D-FLAT additionally allows the user to choose whether the generated decomposition shall have
leaves with empty bags, and whether the root shall have an empty bag.

6The library currently used is called SHARP which internally uses a software called htdecomp [23].

16

3.3 Item Trees
D-FLAT equips each tree decomposition node with an item tree. An item tree is a data structure
that shall contain information about (candidates for) partial solutions. At each decomposition node
during D-FLAT’s bottom-up traversal of the tree decomposition, this is the data structure in which
the problem-specific algorithm can store data.

Most importantly, each node in an item tree contains an item set. The elements of this set, called
items, are arbitrary ground ASP terms. Beside the item set, an item tree node contains additional
information about the item set as well as data required for putting together complete solutions,
which will be described later in this section.

Item trees are similar to computation trees of Alternating Turing Machines (ATMs) [18]. Like
in ATMs, a branch can be seen as a computation sequence, and branching amounts to non-
deterministic guesses. We will repeatedly come back to the ATM analogy in the course of this
section.

Usually we want to restrict the information within an item tree to information about the current
decomposition node’s bag elements. More precisely, we want to make sure that the maximum size
of an item tree only depends on the bag size. The reason is that when this condition is satisfied and
the decomposition width is bounded by a constant, the size of each item tree is also bounded. This
allows us to achieve FPT algorithms.

Example 2. Consider again the GRAPH COLORING instance from Example 1. Figure 5 shows a
tree decomposition for the input graph (Figure 1) and, for each decomposition node, the corre-
sponding item tree that could result from an algorithm for GRAPH COLORING. For solving this
problem, we use item trees having a height of at most 1. Each item tree node at depth 1 encodes
a coloring of the vertices in the respective bag. The meaning of the symbols ∨, > and ⊥ will be
explained in Section 3.3.2.

3.3.1 Extension Pointers

In order to solve a complete problem instance, it is usually necessary to combine information from
different item trees. For example, in order to find out if a proper coloring of a graph exists, we do
not only have to check if a proper coloring of each subgraph induced by a bag exists but also if, for
each bag, we can pick a local coloring in such a way that each vertex is never colored differently
by two chosen local colorings.

For this reason each item tree node has a (non-empty) set of extension pointer tuples. The
elements of such a tuple are called extension pointers and reference item tree nodes from children
of the respective decomposition node. Roughly, an extension pointer specifies that the information
in the source and target nodes can reasonably be combined. We define these notions as follows. Let
δ be a tree decomposition node with children δ1, . . . , δn (possibly n = 0), and let I and I1, . . . , In
denote the item trees associated with δ and δ1, . . . , δn, respectively. Each extension pointer tuple
in any node ν of I has arity n. Let (e1, . . . , en) be an extension pointer tuple at a node at depth d
of I. For any 1 ≤ i ≤ n, it holds that ei is a reference to a node νi at depth d in Ii. We then say
that ν extends νi.

17

b, d, e

a, b, d b, c

f

∨

map(b,red)
map(d,red)
map(e,red)

⊥

...

map(b,red)
map(d,blu)
map(e,grn)

>

map(b,red)
map(d,blu)
map(e,grn)

⊥

...

map(b,blu)
map(d,blu)
map(e,blu)

⊥

∨

map(a,red)
map(b,red)
map(d,red)

⊥

...

map(a,red)
map(b,grn)
map(d,blu)

...

map(a,blu)
map(b,blu)
map(d,blu)

⊥

∨

map(b,red)
map(c,red) ⊥

...

map(b,blu)
map(c,blu) ⊥

∨

map(f,red)

map(f,grn)

map(f,blu)

Figure 5 A tree decomposition with item trees for GRAPH COLORING (not showing extension
pointers)

Example 3. Consider Figure 5 again. In this example, we use the notation δS to denote the
decomposition node whose bag is the set S, and we write IS to denote the item tree of that node.

Although the figure does not depict extension pointers, we will explain how they would look
like in this example. In I{a,b,d} and I{f}, all nodes have the same set of extension pointer tuples:
the set consisting of the empty tuple, as these decomposition nodes have no children.

18

In I{b,c}, the situation is more interesting: The root has a single unary extension pointer tuple
whose element references the root of I{f}. Each node at depth 1 of I{b,c} has three unary extension
pointer tuples – one for each node at depth 1 of I{f}.

The set of extension pointer tuples at the root of I{b,d,e} consists of a single binary tuple – one
element references the root of I{a,b,d}, the other references the root of I{b,c}. For a node ν at depth 1
of I{b,d,e}, the set of extension pointer tuples consists of all tuples (ν1, ν2) such that ν1 and ν2 are
nodes at depth 1 of I{a,b,d} and I{b,c}, respectively.

3.3.2 Item Tree Node Types

Like states of ATMs, item tree nodes in D-FLAT can have one of the types “or”, “and”, “accept”
or “reject”. Unlike ATMs, however, the mapping in D-FLAT is partial. The problem-specific
algorithm determines which item tree node is mapped to which type. The following conditions
must be fulfilled.

• If a non-leaf node of an item tree has been mapped to a type, it is either “or” or “and”.

• If a leaf node of an item tree has been mapped to a type, it is either “accept” or “reject”.

• If an item tree node extends a node with defined type, it must be mapped to the same type.

When D-FLAT has finished processing all answer sets and has constructed the item tree for the
current tree decomposition node, it propagates information about the acceptance status of nodes
upward in this item tree. This depends on the node types defined in this section, and is described in
Section 3.5.2. The node types also play a role when solving optimization problems – roughly, when
something is an “or” node, we would like find a child with minimum cost, and if something is an
“and” node, we would like to find a child with maximum cost. This is described in Section 3.5.3.

Example 4. The item trees in Figure 5 all have roots of type “or”, denoted by the symbol ∨.
This is because an ATM for deciding graph corolability starts in an “or” state, then guesses a
coloring and accepts if this coloring is proper. Therefore, we shall derive the type “reject” in our
decomposition-based algorithm whenever we determine that a guessed coloring is not proper, and
we derive “accept” once we are sure that a coloring is proper.7

In I{a,b,d} and I{f}, for instance, we have marked all leaves representing an improper coloring
with ⊥. The types of the other leaves are left undefined, as guesses on vertices that only appear
later could still lead to an improper coloring. At the root of the tree decomposition however,
we mark all item tree leaves having a yet undefined type with > because all vertices have been
encountered.

Note that it may happen that sibling nodes have equal item sets (like in I{b,d,e}). This is because
nodes with equal item sets but different types are considered unequal. Consider the two middle
leaves in I{b,d,e}, for instance: The reason for one being marked with > is that it extends only

7It should be noted that the algorithm could be optimized by not even creating nodes encoding improper colorings.
In order to remain faithful to the ATM analogy for the sake of presentation, we follow the habit of creating a branch
for each non-deterministic guess, even if this choice leads to a rejecting state.

19

nodes whose type has still been undefined, whereas the leaf marked with ⊥ extends at least one
“reject” node.

3.3.3 Solution Costs for Optimization Problems

When solving an optimization problem with an ATM, we assume that with each accepting run
we can associate some kind of cost that depends on which non-deterministic choices have been
made. Furthermore, we assume that the result of the ATM computation is now no longer “yes” or
“no”, depending on whether the root of the computation tree is accepting or rejecting, but rather a
number that shall represent the optimum cost, for a certain notion of optimality that we will now
define.

For a non-deterministic Turing machine without alternation, the straightforward result of a
computation is the minimum cost among all runs. When alternation is involved, we can easily
generalize this in the following way. Suppose each leaf of the computation tree is annotated with a
cost. (Rejecting nodes have cost∞.) The optimization value of a node ν can now be defined as (a)
its cost if ν is a leaf, (b) the minimum cost among all children in case ν is an “or” node, and (c) the
maximum cost among all children in case ν is an “and” node. The result of an ATM computation
for an optimization problem is then the optimization value of the root of its computation tree.

In analogy to this procedure of solving optimization problems, D-FLAT allows leaves of item
trees to contain a number that specifies the cost that the respective branch has accumulated so far.
That is, the cost that is stored in the leaf of an item tree refers not only to the non-deterministic
choices based on the current bag elements, but also on past choices (obtainable by following the
extension pointers) from item trees further down in the decomposition.

3.4 D-FLAT’s Interface for ASP
D-FLAT invokes an ASP solver at each node during a bottom-up traversal of the tree decompo-
sition. The user-defined, problem-specific encoding is augmented with input facts describing the
current bag as well as the bags and item trees of child nodes. Additionally, the original problem
instance is supplied as input.8 The answer sets of this ASP call specify the item tree that D-FLAT
shall construct for the current decomposition node.

In Section 3.4.1 we describe the interface to the user’s ASP encoding, i.e., the input and output
predicates that are used for communicating with D-FLAT. Note that there is also a simplified
version of the ASP interface, which we describe in Section 3.4.2, for dealing with problems in NP.

In all D-FLAT listings presented in this document, we use colors to highlight input and output
predicates.

8Note that this means that the input in each ASP solver invocation has always at least linear size in the current
implementation of D-FLAT. For really obtaining fixed-parameter linear (instead of quadratic) algorithms, however,
the input of each call must not depend on the problem instance size. It is left for future work to only supply the bag-
specific part of the problem instance to the ASP solver. We suspect that this is, however, only a minor improvement in
practice, as we have observed that the main performance bottlenecks lie elsewhere.

20

3.4.1 General ASP Interface

D-FLAT provides facts about the tree decomposition as described in Table 1. Additionally, it
defines the integer constant numChildNodes to be the number of children of the current tree
decomposition node. The item trees of these nodes are declared using predicates described in
Table 2.

The answer sets of the problem-specific encoding together with this input give rise to the item
tree of the current tree decomposition node. Each answer set corresponds to a branch in the new
item tree. The predicates for specifying this branch are described in Table 3. We use the term
“current branch” in the table to denote the branch that the respective answer set corresponds to;
the “child item tree” shall denote an item tree that belongs to a child of the current tree decompo-
sition node. One should keep in mind, however, that D-FLAT may merge subtrees as described in
Section 3.5. Therefore, after merging, one branch in the item tree may comprise information from
multiple answer sets.

Example 5. A possible encoding for the GRAPH COLORING problem is shown in Listing 2. Note
that it makes more sense to encode this problem using the simplified ASP interface for problems in
NP, which we describe in Section 3.4.2.

The first line in the listing is a modeline, which is explained in Section 3.8. Line 2 specifies
that each answer set declares a branch of length 1, whose root node has the type “or”. Line 3
guesses a color for each current vertex. The “reject” node type is derived in line 4 if this guessed
coloring is improper. Lines 5 and 6 guess a branch for each child item tree. Due to line 7, the
guessed combination of predecessor branches only leads to an answer set if it does not contradict
the coloring guessed in line 3. This makes sure that only branches are joined that agree on all
common vertices, as each vertex occurring in two child nodes must also appear in the current node
due to the connectedness condition of tree decompositions. If a guessed predecessor branch has
led to a conflict (denoted by a “reject” node type), this information is retained in line 8.9 Finally,
line 9 derives the “accept” node type if no conflict has occurred. The last two lines instruct the
ASP solver to only report facts with the listed output predicates, and we will justify their use later
in this section.

Note that some of the rules in Listing 2 can be used (with small modifications) for any problem
that is to be solved with D-FLAT. In particular, lines 5 and 6 are applicable to all problems after
adapting them to the item tree depth of the problem. Usually rules similar to line 3 are used for
performing a guess on bag elements (which of course depends on the problem), and checks are
done with rules similar to lines 4 and 7.

9Unless the user disables D-FLAT’s pruning of rejecting subtrees (cf. Section 3.5.2), this rule in fact never fires,
but we list it anyway for a clearer presentation and to be consistent with the item trees in Figure 5.

21

Input predicate Meaning

initial The current tree decomposition node is a leaf.

final The current tree decomposition node is the root.

currentNode(N) N is the identifier of the current decomposition node.

childNode(N) N is a child of the current decomposition node.

bag(N, V) V is contained in the bag of the decomposition node N .

current(V) V is an element of the current bag.

introduced(V) V is a current vertex but was in no child node’s bag.

removed(V) V was in a child node’s bag but is not in the current one.

Table 1 Input predicates describing the tree decomposition

Input predicate Meaning

atLevel(S, L) S is a node at depth L of an item tree.

atNode(S,N) S is an item tree node belonging to decomposition node N .

root(S) S is the root of an item tree.

rootOf(S,N) S is the root of the item tree at decomposition node N .

leaf(S) S is a leaf of an item tree.

leafOf(S,N) S is a leaf of the item tree at decomposition node N .

sub(R, S) R is an item tree node with child S.

childItem(S, I) The item set of item tree node S contains I .

childAuxItem(S, I) The auxiliary item set (for the default join) of item tree node
S contains I .

childCost(S,C) C is the cost value corresponding to the item tree leaf S.

childOr(S) The type of the item tree node S is “or”.

childAnd(S) The type of the item tree node S is “and”.

childAccept(S) The type of the item tree leaf S is “accept”.

childReject(S) The type of the item tree leaf S is “reject”.

Table 2 Input predicates describing item trees of child nodes in the decomposition

22

Output predicate Meaning

item(L, I) The item set of the node at level L of the current branch
shall contain the item I .

auxItem(L, I) The auxiliary item set (for the default join) of the node at
level L of the current branch shall contain the item I .

extend(L, S) The node at level L of the current branch shall extend the
child item tree node S.

cost(C) The leaf of the current branch shall have a cost value of C.

currentCost(C) The leaf of the current branch shall have a current cost value
of C.

length(L) The current branch shall have length L.

or(L) The node at level L of the current branch shall have type
“or”.

and(L) The node at level L of the current branch shall have type
“and”.

accept The leaf of the current branch shall have type “accept”.

reject The leaf of the current branch shall have type “reject”.

Table 3 Output predicates for constructing the item tree of the current decomposition node

1 %d f l a t : −e v e r t e x −e edge −−no−empty−l e a v e s −−no−empty−r o o t
2 length(1). or(0).
3 1 { item(1,map(X,C)) : color(C) } 1 ← current(X).
4 reject ← edge(X,Y), item(1,map(X,C;Y,C)).
5 extend(0,S) ← rootOf(S,_).
6 1 { extend(1,S) : sub(R,S) } 1 ← rootOf(R,_).
7 ← item(1,map(X,C0)), childItem(S,map(X,C1)), extend(_,S), C0 6= C1.
8 reject ← childReject(S), extend(_,S).
9 accept ← final, not reject.

10 #show item/2. #show extend/2. #show length/1.
11 #show or/1. #show accept/0. #show reject/0.

Listing 2 D-FLAT encoding for GRAPH COLORING using the general ASP interface

23

Errors and Warnings. In order to support its users, D-FLAT issues errors and warnings to avoid
unintended behavior. To list the most important ones, an error is raised if one of the following
conditions is violated.

• All output predicates from Table 3 are used with the correct arity.

• All atoms involving the extend/2 predicate refer to valid child item tree nodes.

• Each answer set contains exactly one atom involving length/1.

• Items, extension pointers or node types are placed at levels between 0 and the current branch
length.

• All extension pointer tuples specified in an answer set have arity n, where n is the number
of children in the decomposition.

• Items and auxiliary items are disjoint.

• Each extension pointer for level 0 points to the root of an item tree.

• Each extension pointer at level n+ 1 points to a child of an extended node at level n.

• All answer sets agree on the (auxiliary) item sets and extension pointers at level 0.

• If a node type is specified for a leaf, it is “or” or “and”.

• If a node type is specified for a non-leaf, it is “accept” or “reject”.

• A node is assigned at most one type.

• In the final decomposition node, each “and” and “or” node must have at least one child with
defined node type, or (in case such children have been pruned by D-FLAT) there must be
some node reachable from that node via extension pointers that has a child with a defined
node type.

• Only one (current) cost value is specified.

• Costs are specified only if all types of non-leaf nodes are defined.

• If in an answer set a currentCost/1 atom is contained, so must be an atom with cost/1.

Furthermore, a warning is printed if one of the following conditions is violated.

• At least one #show statement occurs in the user’s encoding. (It should be used for perfor-
mance reasons, and because D-FLAT can then check for specific #show statements, as de-
scribed next. This is in order to check if the user has not forgotten about an output predicate
that is usually required for obtaining reasonable results.)

• A #show statement for length/1 occurs in the program.

24

• A #show statement for item/2 occurs in the program.

• A #show statement for extend/2 occurs in the program.

• A #show statement for or/1 or and/1 occurs in the program.

• A #show statement for accept/0 or reject/0 occurs in the program.

• All predicates used in a #show statement are recognized by D-FLAT.

3.4.2 Simplified Interface for Problems in NP

When dealing with problems in NP, the user of D-FLAT can choose to use a simpler interface
than the one in Section 3.4.1. The reason for providing a second, less general, interface is that for
problems in that class it is usually sufficient to not use a tree-shaped data structure to store partial
solutions, but rather to use just a “one-dimensional” data structure: a table.

For instance, for the GRAPH COLORING problem we could just store a table at each tree de-
composition node. Each row of such a table would then encode a coloring of the bag vertices.

Answer sets in D-FLAT’s table mode describe the rows of the current decomposition node’s
table. A table is an item tree of height 1 where the root always has the type “or” and an empty item
set.10 Each item tree node at depth 1 corresponds to a row in the table. At the final decomposition
node, the type of each item tree node at level 1 is automatically set to “accept” by D-FLAT. The
user therefore cannot (and does not need to) explicitly set item tree node types. Computations
leading to a rejecting state should – instead of deriving “reject” – simply not yield an answer set,
which can be achieved by means of a constraint.

This way, algorithms for problems in NP can be achieved that are usually quite easy to read
(and write).

The input predicates describing the decomposition are the same as in the general case, listed in
Table 1. The input predicates declaring the child item trees (which we now call “child tables”) are
different, though, and described in Table 4. The output predicates specifying the current table are
also different in table mode. They are described in Table 5.

Example 6. The GRAPH COLORING problem admits a D-FLAT encoding using the simplified ASP
interface for problems in NP. A possible encoding using this table mode is shown in Listing 3.

The first line differs from that in Listing 2 in the additional presence of the --tables option
to enable D-FLAT’s table-mode interface. Line 2 guesses a predecessor row whose coloring of the
current vertices is retained due to line 3. Line 4 makes sure that only compatible rows are joined.
For the new vertices introduced into the current bag, line 5 guesses a coloring. The constraint in
line 6 makes sure that the resulting coloring of the bag elements is proper. This way, each table
will only contain rows that can be extended to proper colorings of the whole subgraph induced by
the current bag and all vertices from bags further down in the decomposition. Line 7 again makes
the ASP solver report only the relevant output predicates.

10The case that tables in D-FLAT are empty cannot occur: As soon as a call to the ASP solver does not yield any
answer sets (presumably because the respective part of the problem does not allows for a solution), D-FLAT terminates
and reports that no solutions exist.

25

Input predicate Meaning

childRow(R,N) R is a table row belonging to decomposition node N .

childItem(R, I) The item set of table row R contains I .

childAuxItem(R, I) The auxiliary item set (for the default join) of table row R
contains I .

childCost(R,C) C is the cost value corresponding to the table row R.

Table 4 Input predicates (in table mode) describing tables of child nodes in the decomposition

Output predicate Meaning

item(I) The item set of the current table row shall contain the item
I .

auxItem(I) The auxiliary item set (for the default join) of the current
table row shall contain the item I .

extend(R) The current table row shall extend the child table row R.

cost(C) The current table row shall have a cost value of C.

currentCost(C) The current table row shall have a current cost value of C.

Table 5 Output predicates (in table mode) for constructing the table of the current decomposition
node

1 %d f l a t : −− t a b l e s −e v e r t e x −e edge −−no−empty−l e a v e s −−no−empty−r o o t
2 1 { extend(R) : childRow(R,N) } 1 ← childNode(N).
3 item(map(X,C)) ← extend(R), childItem(R,map(X,C)), current(X).
4 ← item(map(X,C0;X,C1)), C0 6= C1.
5 1 { item(map(X,C)) : color(C) } 1 ← introduced(X).
6 ← edge(X,Y), item(map(X,C;Y,C)).
7 #show item/1. #show extend/1.

Listing 3 D-FLAT encoding for GRAPH COLORING using the table-mode ASP interface

26

Some of the rules in Listing 3 are suited (after small adjustments) for any problem that is to be
solved with D-FLAT in table mode. In particular, a rule like in line 2 is usually part of all table-
mode encodings. Such encodings typically guess over the current vertices and then check that this
guess does not conflict with extended rows. Alternatively, as can be seen in the listing, it is often
possible to retain information from extended rows (line 3) and only guess on introduced vertices
(line 5). In any case, it has to be made sure that the extended rows do not contradict each other or
the guessed information on the bag elements (line 4).

Errors and Warnings. In table mode, an error is raised if any of the following conditions is
violated:

• All output predicates from Table 5 are used with the correct arity.

• All atoms involving the extend/2 predicate refer to valid child item tree nodes.

• All extension pointer tuples specified in an answer set have arity n, where n is the number
of children in the decomposition.

• Items and auxiliary items are disjoint.

• Only one (current) cost value is specified.

3.5 D-FLAT’s Handling of Item Trees
Every time the ASP solver reports an answer set of the user’s program for the current tree decom-
position node, D-FLAT creates a new branch in the current item tree, which results in a so-called
uncompressed item tree. This step is described in Section 3.5.1. Subsequently D-FLAT prunes
subtrees of that tree that can never be part of a solution, as described in Section 3.5.2, in order
to avoid unnecessary computations in future decomposition nodes. For optimization problems,
D-FLAT then propagates information about the optimization values upward in the uncompressed
item tree. This is described in Section 3.5.3. The item tree so far is called uncompressed because
it may contain redundancies that are eliminated in the final step, as described in Section 3.5.4.

3.5.1 Constructing an Uncompressed Item Tree from the Answer Sets

In an answer set, all atoms using extend, item, or and and with the same depth argument, as
well as accept and reject, constitute what we call a node specification. To determine where
branches from different answer sets diverge, D-FLAT uses the following recursive condition: Two
node specifications coincide (i.e., describe the same item tree node) iff

1. they are at the same depth in the item tree,

2. their item sets, extension pointers and node types (“and”, “or”, “accept” or “reject”) are
equal, and

27

3. both are at depth 0, or their parent node specifications coincide.

In this way, an (uncompressed) item tree is obtained from the answer sets.

3.5.2 Propagation of Acceptance Statuses and Pruning of Item Trees

In Section 3.3.2 we have defined the different node types that an item tree node can have (“un-
defined”, “or”, “and”, “accept” and “reject”). When D-FLAT has processed all answer sets and
constructed the uncompressed item tree, these types come into play. That is to say, D-FLAT then
prunes subtrees from the uncompressed item tree.

First of all, if the current tree decomposition node is the root, D-FLAT prunes from the uncom-
pressed item tree any subtree rooted at a node whose type is still undefined.11 Then, regardless of
whether the current decomposition node is the root, D-FLAT prunes subtrees of the uncompressed
item tree depending on the acceptance status of its nodes. The acceptance status of a node can
either be “undefined”, “accepting” or “rejecting”, which we define now.

A node in an item tree is accepting if (a) its type is “accept”, (b) its type is “or” and it has an
accepting child, or (c) its type is “and” and all children are accepting. A node is rejecting if (a) its
type is “reject”, (b) its type is “or” and all children are rejecting, or (c) its type is “and” and it
has a rejecting child. Nodes that are neither accepting nor rejecting are said to have an undefined
acceptance status.

After having computed the acceptance status of all nodes in the current item tree, D-FLAT
prunes all subtrees rooted at a rejecting node, as we can be sure that these nodes will never be part
of a solution.

Note that in case the current decomposition node is the root, there are no nodes with undefined
acceptance status because D-FLAT has pruned all subtrees rooted at nodes with undefined type.
Therefore, in this case, the remaining tree consists only of accepting nodes. For decision problems,
we can thus conclude that the problem instance is positive iff the remaining tree is non-empty.
For enumeration problems, we can follow the extension pointers down to the leaves of the tree
decomposition in order to obtain complete solutions by combining all item sets along the way.
This is described in more detail in Section 3.6. Recursively extending all item sets in this way
would yield a (generally very big) item tree that usually corresponds to the accepting part of a
computation tree that an ATM would have when solving the complete problem instance. (But of
course D-FLAT does not materialize this tree in memory.)

Example 7. Consider again Figure 5. Because I{b,d,e} is the final item tree in the decomposition
traversal, D-FLAT would subsequently remove all nodes with undefined types (but there are none
in this case). Then it would prune all rejecting nodes and conclude that the root of I{b,d,e} is
accepting because it has an accepting child. Therefore the problem instance is positive. At the
decomposition root, we are then left with an item tree having only three leaves, each encoding a
proper coloring of the vertices b, d and e, and storing extension pointers that let us extend the
respective coloring for these vertices to proper colorings on all the other vertices, too.

11In order to keep the semantics meaningful, D-FLAT issues an error if an “and” or “or” node has only children
with undefined type in the final decomposition node. It is the responsibility of the user to exclude such situations.

28

3.5.3 Propagation of Optimization Values in Item Trees

For optimization problems, after an uncompressed item tree has been computed, an additional
step is done in addition to what we described in Section 3.5.2. Each leaf in the item tree stores
an optimization value (or “cost”) that has been specified by the user’s program. D-FLAT now
propagates these optimization values from the leaves toward the root of the current uncompressed
item tree in the following way:

• The optimization value of a leaf node is its cost.

• The optimization value of an “or” node is the minimum among the optimization values of its
children.

• The optimization value of an “and” node is the maximum among the optimization values of
its children.

Note that D-FLAT currently raises an error if costs are specified for a leaf that has some ancestor
with undefined node type.

3.5.4 Compressing the Item Tree

The uncompressed item tree obtained in the previous step may contain redundancies that must be
eliminated in order to avoid an explosion of memory and runtime. The following two situations
can arise where D-FLAT eliminates redundancies:

• There are two isomorphic sibling subtrees where all corresponding nodes have equal item
sets, node types and (when solving an optimization problem) optimization values.

In this case, D-FLAT merges these subtrees into one and unifies their sets of extension point-
ers.

• An optimization problem is being solved and there are two isomorphic sibling subtrees where
all corresponding nodes have equal item sets and node types, but the root of one of these
sibling subtrees is “better” than the root of the other subtree. In this context, a node n1 is
“better” than one of its siblings, n2, if the parent of n1 and n2 either has type “or” and the
cost of n1 is less than that of n2, or their parent has type “and” and the cost of n1 is greater
than that of n2.

In this case, D-FLAT retains only the subtree rooted at the “better” node.

Note that in table mode this redundancy elimination can be done on the fly. That is, every
time an answer set is reported, it can be detected right away if this leads to a new table row or if
a table row with the same item set already exists. This way, D-FLAT does not need to build an
uncompressed item tree that can only be compressed once all answer sets have been processed.
However, if item trees have a height greater than 1, this is not possible, as multiple answer sets
constitute a subtree in general.

29

3.6 Materializing Complete Solutions
After all item trees have been computed, it remains to materialize complete solutions. We first
describe how D-FLAT does this in the case of enumeration problems.

In the item tree at the root of the decomposition there are only accepting nodes left after the
pruning described in Section 3.5.4. Starting with the root of this item tree, D-FLAT extends each
of the nodes recursively by following the extension pointers, as we will describe next.

To obtain a complete extension of an item tree rooted at a node n, we first pick one of the
extension pointer tuples of n. We then extend the item set of n by unifying it with all items in the
nodes referenced by these extension pointers. Then we again pick one extension pointer tuple for
each of the nodes that we have just used for extending n and repeat this procedure until we have
reached a leaf of the tree decomposition. This gives us one of the possible extensions of n. For
each of the children of n we also perform this procedure and add all possible extensions of that
child to the list of children of the current extension of n. When extending a node m with parent n
in this way, however, D-FLAT takes care to only pick an extension pointer tuple of m if every node
that is being pointed to in this tuple is a child of a node that is used for the current extension of n.

When an optimization problem is to be solved, D-FLAT only materializes optimal solutions.
That is, if n is an “or” node with optimization value c, D-FLAT only extends those children of n
that actually have cost c. This is because, due to D-FLAT’s propagation of optimization values (cf.
Section 3.5.3), the optimization value of an “or” node is the minimum of the optimization values
of its children. For “and” nodes this is symmetric.

D-FLAT allows the depth until which the final item tree is to be extended to be limited by
the user. This is useful if, e.g., only existence of a solution shall be determined. In such a case,
we could limit the materialization depth to 0. This would lead to only the root of the final item
tree being extended. If D-FLAT yields an extension, a solution in fact exists. This is because
the final item tree would have no root in case no solutions existed (cf. Section 3.5.4). Limiting
the materialization depth in this case saves us from potentially materializing exponentially many
solutions when all we are only interested in knowing if there is a solution.

Moreover, limiting the materialization depth is also helpful for counting problems. If the user
limits this depth to d and in the final item tree there is a node at depth d having children, D-FLAT
prints for each extension of this node how many extended children would have been materialized.
This behavior can be disabled to increase performance, but for the most common case, where
the materialization depth is limited to 0, it is not required to disable this feature. The reason is
that in such cases D-FLAT is able to calculate the number of possible extensions while doing the
main bottom-up traversal of the decomposition for computing the item trees. Hence, for classical
counting problems, D-FLAT offers quite efficient counting.

3.7 Default Join
In weakly normalized, semi-normalized and normalized tree decompositions, nodes with more
than one child are called join nodes. Such nodes have the same bag as each of its children (see
Section 3.2). For join nodes, D-FLAT offers a default implementation for computing the item tree.

30

This default join implementation combines the item trees from the child nodes in the following
way. For each child node, an item tree branch is selected such that for each pair of selected branches
and each pair of nodes at the same depth in these branches it holds that the item sets and node types
are equal. This is done for all possible combinations of item tree branches.

Once D-FLAT finds a combination of joinable branches, it inserts a branch whose item sets are
equal to those of the selected branches into the new item tree. In case costs have been specified,
D-FLAT first sets the cost of this new branch to the sum of costs of the selected predecessors, but –
similar to the inclusion-exclusion principle – costs that have been counted multiple times must be
subtracted. This is why D-FLAT recognizes the output predicate currentCost/1, which is used
for quantifying the part of the cost (specified by cost/1) that is due to current bag elements. If
there are n child nodes in the decomposition, D-FLAT subtracts n− 1 times the current cost value
from the sum of the predecessor costs.12

Example 8. Consider again the GRAPH COLORING problem and the encoding from Listing 3.
Suppose we only want to consider weakly normalized decompositions (or even stronger) and use
the default join implementation for all nodes with more than one child. Then we could remove
line 4 from Listing 3 because the default join takes care of only combining item tree nodes (i.e., in
this case, table rows) with equal item sets. The resulting encoding in combination with the default
join would always yield the same results as Listing 3.

Sometimes it is desired to join two branches even though they only agree on some part of the
contained information. That is, we would like to express that some items are critical in determining
whether two branches are joinable while some other items are irrelevant for this because they are
some kind of auxiliary information.

For such situations, D-FLAT offers the possibility of using auxiliary items. Every item tree
node thus contains, beside the ordinary item set, an auxiliary item set (that is disjoint from the
ordinary one). Whenever we want to store an item in a node without preventing this node to be
joined with nodes that do not contain this item, we can declare it as an auxiliary item. D-FLAT
joins two branches even if their auxiliary item sets are different as long as their ordinary item sets
and item tree node types are equal. The auxiliary item sets in the branch resulting from the join is
then set to the union of the respective auxiliary item sets of the nodes of the joined branches.

The same behavior could also be achieved in an ASP program. The default join implementation
is, however, much more efficient than using an ASP solver. Firstly, of course the default join
implies less overhead as it is implemented directly in D-FLAT using C++. Secondly, it can make
use of the fact that D-FLAT stores item trees using a certain order that allows for very quick joining.
This is similar to the sort-merge join algorithm in relational database management systems.

3.8 Command-Line Usage
In this section we present how D-FLAT can be used from the command line. We first describe the
most important command-line options. For a complete list of options along with descriptions, the

12D-FLAT assumes that equality of item sets implies the same current cost value, so each branch in a joinable
combination features the same current cost value.

31

-h option can be passed to D-FLAT for displaying a help message.

General options

• -h: Print usage information and exit.

• --depth <d>: Print only item sets of depth at most <d>.
(This is explained in Section 3.6.)

• -e <edge>: Predicate <edge> declares (hyper)edges in the input facts.
(This is explained in Section 3.2.)

• -f <file>: Read the problem instance from <file>. By default, standard input is used.

• --no-pruning: Prune rejecting subtrees only in the decomposition root (for instance for
debugging).

• --print-decomposition: Print the generated decomposition.

• --output <module>: Print information during the run using <module>, which is one
of the following.

– quiet: Only print the final result of the computation.

– progress: Print a progress report. (This is the default.)

– human: Human-readable debugging output.

– machine: Machine-readable debugging output for the debugging tool described in
Section 5.

Options for Constructing a Tree Decomposition

• -n <normalization>: Use the normal form <normalization>, which is one of the
following.

– none: No normalization. (This is the default.)

– weak: Weak normalization.

– semi: Semi normalization.

– normalized: Normalization.

The different kinds of normalization are described in Section 3.2.

• --elimination <h>: Use the heuristic <h> for the bucket elimination algorithm. The
following values are supported.

– min-degree: Minimum degree ordering. (This is the default.)

32

– min-fill: Minimum fill ordering.

– mcs: Maximum cardinality search.

These heuristics are briefly described in Section 3.2.

• --no-empty-root: By default, D-FLAT constructs tree decompositions with an empty
bag at the root. This option disables that behavior.

• --no-empty-leaves: By default, D-FLAT constructs tree decompositions with an
empty bag at every leaf. This option disables that behavior.

Options for the ASP Solver Invocation

• -p <program>: Use <program> as the ASP encoding that is to be called at each tree
decomposition node. This option may be used multiple times, in which case all specified
programs are jointly used.

• --default-join: Use the built-in default implementation for join nodes instead of in-
voking the ASP solver there. This is described in Section 3.7.

• --tables: Use the table mode described in Section 3.4.2, i.e., the simplified ASP interface
when a table suffices for storing problem-specific data. If this option is absent, D-FLAT uses
the general interface described in Section 3.4.1.

Modelines Usually a D-FLAT encoding only produces meaningful results if it is used in combi-
nation with certain command-line options. For instance, usually an encoding relies on a specific
name of the (hyper)edge predicate or maybe a certain normalization of the tree decomposition.
Because it is tedious to always specify these options, D-FLAT supports so-called modelines in the
ASP encodings.

D-FLAT scans the first line of each encoding specified via -p. If this line starts with %dflat:
(followed by a space), the rest of the line is treated as if it were supplied to the command line.

For instance, an encoding that requires the table mode ASP interface (cf. Section 3.4.2), semi-
normalized tree decompositions and an edge predicate called edge (as well as vertex for in-
cluding isolated vertices in the decomposition – cf. Section 3.2), might start with the following
modeline.

%dflat: --tables -e vertex -e edge -n semi

This way, D-FLAT only needs to be called with -p together with the encoding’s filename.

33

4 D-FLAT in Practice
In this section we demonstrate the applicability of D-FLAT to a wide variety of computational
problems. Table 6 shows a non-exhaustive listing of problems (grouped by their domain) encoded
so far with D-FLAT.13 For each problem, the computational complexity14 is given. Furthermore,
we give the maximum height of the item tree that we used for solving the problem. The column
Normalization gives the degree of normalization of the tree decompositions (Normalized, Semi,
Weak or None) for which the encoding is designed. Finally – if available – a reference to an FPT
algorithm for the problem is given. In case the algorithm is presented in this report, a reference to
the section is given in the respective column.

In Section 4.1 some representative problems in NP are described in detail. The same is done
in Section 4.2 for problems harder than NP. For each problem, a D-FLAT encoding is listed and
explained. Note that for actually running these encodings, #show statements should be added in
order to avoid getting a warning (cf. Section 3.4). We omitted these statements for the sake of
brevity.

4.1 A Selection of Problems in NP
In this section, we present D-FLAT encodings for selected problems in NP.

4.1.1 Boolean Satisfiability

The Boolean Satisfiability problem (SAT) is the prototypical NP-complete problem and is defined
as follows.

Input: A formula φ in CNF.

Task: Compute all models of φ.

ASP allows a very succinct modeling of the problem and also formulating it for D-FLAT yields
a very simple encoding. In order to solve the problem with D-FLAT, we construct the incidence
graph of φ: Each atom A and each clause C is represented by a vertex of the graph, denoted by
facts atom(A) and clause(C) respectively. An edge between an atom and a clause means that
the atom appears positively or negatively in the clause. A positive (negative) occurrence of atom
A in clause C is represented by the fact pos(C,A) (neg(C,A)).

The encoding (see Listing 4) implements a simple Guess & Check approach, guessing the truth
values for the atoms introduced to the current bag (line 13), and checking if the clauses that are
removed from the bag are satisfied (line 11). Note that due to the connectedness condition of tree

13A package containing the respective encodings is available at http://dbai.tuwien.ac.at/proj/
dflat/system/examples/encodings-dbai-tr-2014-86.tar.gz.

14Note that the complexity illustrated in the table not necessarily coincides with the complexity of the respective
decision problem (i.e., asking whether a solution exists). For instance, deciding if a subset-minimal model for a
formula exists is clearly not harder than deciding whether the formula is satisfiable, but reasoning over subset-minimal
models can raise the complexity to ΣP

2 .

34

http://dbai.tuwien.ac.at/proj/dflat/system/examples/encodings-dbai-tr-2014-86.tar.gz
http://dbai.tuwien.ac.at/proj/dflat/system/examples/encodings-dbai-tr-2014-86.tar.gz

Problem Complexity Levels Normalization Ref.
Logic
SAT NP-c. 1 None S. 4.1.1
⊆-MINIMAL SAT ΣP

2 -c. 2 None S. 4.2.1
QSAT PSPACE-c. unbounded None -
MSO MODEL CHECKING PSPACE-c. unbounded Semi [10]
Graph Theory
GRAPH COLORING NP-c. 1 None S. 3.4.1
LIST COLORING NP-c. 1 None [27]
MINIMUM VERTEX COVER NP-hard 1 None -
CONNECTED VERTEX COVER NP-c. 1 Weak -
MINIMUM DOMINATING SET NP-hard 1 Weak S. 4.1.2
CONNECTED DOMINATING SET NP-c. 1 Weak S. 4.1.3
⊆-MINIMAL DOMINATING SET ΣP

2 -c. 2 Weak S. 4.2.2
PERFECT DOMINATING SET NP-c. 1 Semi -
STEINER TREE NP-c. 1 Weak -
INDEPENDENT SET NP-c. 1 Semi -
HAMILTONIAN CYCLE NP-c. 1 Semi -
FEEDBACK VERTEX SET NP-c. 1 Semi -
ODD CYCLE TRANSVERSAL NP-c. 1 Semi -
MAX-CUT NP-c. 1 Weak -
DAG PARTITIONING NP-hard 1 Normalized [7]
DISJOINT PATHS NP-c. 1 Semi [48]
MIN-DEGREE DELETION NP-hard 1 None [6]
Bioinformatics
MIC DETECTION DP-c. 3 Semi -
METAB. NETWORK COMPLET. ? 2 Semi -
Argumentation
ADMISSIBLE SETS NP-c. 1 None [19, 24, 36]
STABLE EXTENSIONS NP-c. 1 None [19, 36]
COMPLETE EXTENSIONS NP-c. 1 None [19, 36]
PREFERRED EXTENSIONS ΠP

2 -c. 2 None [19, 24, 36]

Figure 6 The (non-exhaustive) list of problems encoded for D-FLAT by the authors

35

1 % Make e x p l i c i t t h a t a row i n t e r p r e t s an atom as f a l s e o r a c l a u s e as u n s a t i s f i e d .
2 false(R,A) ← childRow(R,N), bag(N,A), atom(A), not childItem(R,A).
3 unsat(R,C) ← childRow(R,N), bag(N,C), clause(C), not childAuxItem(R,C).

4 1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

5 % Only j o i n rows t h a t c o i n c i d e on common atoms .
6 ← extend(R1;R2), atom(A), childItem(R1,A), false(R2,A).

7 % True atoms and s a t i s f i e d c l a u s e s remain so u n l e s s removed .
8 item(A) ← extend(R), childItem(R,A), current(A).
9 auxItem(C) ← extend(R), childAuxItem(R,C), current(C).

10 % A c h i l d row c a n n o t be e x t e n d e d i f i t c o n t a i n s an u n s a t i s f i e d c l a u s e t h a t i s removed .
11 ← clause(C), removed(C), extend(R), unsat(R,C).

12 % Guess t r u t h v a l u e o f i n t r o d u c e d atoms .
13 { item(A) : atom(A), introduced(A) }.

14 % Through t h e guess , c l a u s e s may become s a t i s f i e d .
15 auxItem(C) ← current(C;A), pos(C,A), item(A).
16 auxItem(C) ← current(C;A), neg(C,A), not item(A).

Listing 4 D-FLAT encoding for the SAT problem

decompositions, a removed clause can never occur again in the following nodes’ bags and thus can
indeed not be satisfied.

Observe that in this encoding only item trees of height 1 are needed, which allows for the
use of the table-based D-FLAT interface. As described in Section 3.4.2, the input predicates
childNode/1, childRow/2 specify the child nodes in the decomposition and the rows in their
tables, and current/1, introduced/1 and removed/1 denote the vertices that are in the cur-
rent bag, have been newly introduced in it or have appeared in a child node’s bag but no longer are
contained in the current bag, respectively. The output predicate item/1 (and auxItem/1) defines
the (auxiliary) item set of the current row, and extend/1 determines for each child node the row
to be extended by the current row. The additional predicate false/2 denotes the atoms that got
assigned the truth value “false”. Line 6 then assures that only those rows are joined which agree
on the truth assignments of common atoms. Furthermore, unsat/2 is used to make explicit that a
clause was not satisfied in a child row.

Note that due to the separation of item set (containing only the atoms that are set to true) and
auxiliary item set (containing the satisfied clauses), the default join (cf. Section 3.7) can be applied
to this encoding. In this case the join constraint in line 6 will never fire as the join is done directly
in D-FLAT.

36

1 % Make e x p l i c i t t h a t edges a r e u n d i r e c t e d .
2 edge(X,Y) ← current(X;Y), edge(Y,X).

3 % Make e x p l i c i t t h a t a v e r t e x i s n o t s e l e c t e d i n a row .
4 out(R,X) ← childRow(R,N), bag(N,X), not childItem(R,sel(X)).

5 1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

6 % Only j o i n rows t h a t c o i n c i d e on s e l e c t e d v e r t i c e s .
7 ← extend(R1;R2), childItem(R1,sel(X)), out(R2,X).

8 % R e t a i n r e l e v a n t i n f o r m a t i o n .
9 item(sel(X)) ← extend(R), childItem(R,sel(X)), current(X).

10 item(dom(X)) ← extend(R), childItem(R,dom(X)), current(X).

11 % Ensure t h a t removed v e r t i c e s a r e s e l e c t e d o r domina ted .
12 ← removed(X), extend(R), not childItem(R,sel(X)), not childItem(R,dom(X)).

13 % Guess s e l e c t e d v e r t i c e s .
14 { item(sel(X)) : introduced(X) }.

15 % A v e r t e x i s domina ted i f i t i s a d j a c e n t t o a s e l e c t e d v e r t e x .
16 item(dom(Y)) ← item(sel(X)), edge(X,Y), current(X;Y).

17 % Leaf node c o s t s .
18 cost(NC) ← NC = #count{ X : item(sel(X)), introduced(X) }, initial.
19 % Exchange node c o s t s .
20 cost(CC + NC) ← extend(R), childCost(R,CC),

NC = #count{ X : item(sel(X)), introduced(X) }, numChildNodes == 1.
21 % J o i n node c o s t s .
22 cost(CC - (LC * (EP - 1))) ← CC = #sum { C,R : extend(R), childCost(R,C) },

LC = #count { X : item(sel(X)) }, EP = numChildNodes, EP >= 2.

Listing 5 D-FLAT encoding for the MINIMUM DOMINATING SET problem

4.1.2 Minimum Dominating Set

Input: An undirected graph G = (V,E).

Task: Compute all cardinality-minimal dominating sets of G. A subset X of V is a
dominating set of G if for each v ∈ V the vertex is part of X or v is adjacent to
at least one u ∈ X .

The encoding (see Listing 5) represents one possibility of how to encode the optimization
variant of DOMINATING SET in D-FLAT. Note that this encoding only requires item trees of
height 1. Again, the code defines the recipe of how the information has to be handled in a node of
the tree decomposition. Similar to the previous encoding, we have to guess rows to be extended
(line 5) and check whether these rows coincide on vertices contained in the dominating set (line 7).
Information contained in a child row has to be retained in case that the corresponding vertex is
still present in the current decomposition node (lines 9–10). In case a vertex is removed that is
neither selected nor dominated, the respective solution candidate is discarded (line 12). For each
introduced vertex we guess if it is selected to be part of a dominating set (line 14), and we derive
which vertices are now dominated (line 16).

37

Up to now, there is no optimization involved. This task is done by employing the output
predicate cost/1 in lines 17–22 of the encoding. For leaf nodes, the cost simply coincides with the
number of selected vertices. For exchange nodes we add the number of selected introduced vertices
to the extended child row’s cost. For join nodes we have to compute the sum of all the child rows’
costs and subtract numChildNodes − 1 times the current costs due to the inclusion-exclusion
principle. Here, numChildNodes is a constant provided as input by D-FLAT (cf. Section 3.4).
Note that we require the tree decomposition to be weakly normalized, as we assume in our cost
function that the bag of a join node coincides with the bags of its child nodes.

4.1.3 Connected Dominating Set

Input: An undirected graph G = (V,E).

Task: Compute all connected dominating sets of G. A subset X of V is a connected
dominating set of G if the sub-graph G′ of G induced by X is connected and
for each v ∈ V the vertex is part of X or v is adjacent to at least one u ∈ X .

As seen before, D-FLAT allows one to implement dynamic programming algorithms in a very
succinct way. To underline that D-FLAT is also suitable for solving problems where the inter-
nal data structure, i.e., the information that is propagated through the decomposition nodes, is
more complicated, we show how the CONNECTED DOMINATING SET problem can be solved with
D-FLAT.

The encoding is given in Listing 6. Observe that lines 1–16 are the same as in the encoding
for MINIMUM DOMINATING SET. We additionally use the function symbols stop/0, con/2 and
est/2. For any pair of selected vertices, con/2 is derived if the vertices are connected (lines 18–
20), while predicate est/2 denotes that there has not been any evidence of their connectedness yet
(lines 22–23). Once a vertex x is removed, we check if x still needs to be connected to another
selected vertex y in the current bag and if no connection to another selected vertex z in the current
bag exists, the solution candidate is eliminated (line 24).

To avoid solutions containing isolated components, we denote by the function symbol stop/0
that the last selected vertex is removed from the bag (line 28). We then remove every solution
candidate where a new vertex is introduced after stop was derived (line 29) or two rows are to be
joined that both contain stop (line 30).

38

1 % Make e x p l i c i t t h a t edges a r e u n d i r e c t e d .
2 edge(X,Y) ← current(X;Y), edge(Y,X).

3 % Make e x p l i c i t t h a t a v e r t e x i s n o t s e l e c t e d i n a row .
4 out(R,X) ← childRow(R,N), bag(N,X), not childItem(R,sel(X)).

5 1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

6 % Only j o i n rows t h a t c o i n c i d e on s e l e c t e d v e r t i c e s .
7 ← extend(R1;R2), childItem(R1,sel(X)), out(R2,X).

8 % R e t a i n r e l e v a n t i n f o r m a t i o n .
9 item(sel(X)) ← current(X), extend(R), childItem(R,sel(X)).

10 item(dom(X)) ← current(X), extend(R), childItem(R,dom(X)).

11 % Ensure t h a t removed v e r t i c e s a r e s e l e c t e d o r domina ted .
12 ← removed(X), extend(R), not childItem(R,sel(X)), not childItem(R,dom(X)).

13 % Guess s e l e c t e d v e r t i c e s .
14 { item(sel(X)) : introduced(X) }.

15 % A v e r t e x i s domina ted i f i t i s a d j a c e n t t o a s e l e c t e d v e r t e x .
16 item(dom(Y)) ← item(sel(X)), edge(X,Y), current(X;Y).

17 % C o n n e c t e d n e s s .
18 item(con(X,Y)) ← current(X;Y), extend(R), childItem(R,con(X,Y)).
19 item(con(X,Y)) ← current(X;Y), item(sel(X;Y)), edge(X,Y).
20 item(con(X,Z)) ← current(X;Y;Z), item(con(X,Y)), item(con(Y,Z)).

21 % I f no c o n n e c t i o n between two s e l e c t e d v e r t i c e s e x i s t s , i t has t o be e s t a b l i s h e d l a t e r .
22 item(est(X,Y)) ← current(X;Y), X 6= Y, item(sel(X;Y)), not item(con(X,Y)).
23 item(est(X,Y)) ← current(X;Y), extend(R),

childItem(R,est(X,Y)), not item(con(X,Y)).

24 ← removed(X), extend(R), childItem(R,est(X,Y)),
not childItem(R,con(X,Z)) : current(Z).

25 % ’ s top ’ i s used t o t r a c k and a v o i d g e t t i n g s e v e r a l i s o l a t e d components .
26 item(stop) ← extend(R), childItem(R,stop).
27 ok(X) ← removed(X), current(Y), extend(R), childItem(R,con(X,Y)).
28 item(stop) ← removed(X), extend(R), childItem(R,sel(X)), not ok(X).

29 ← current(X), item(stop), introduced(X).
30 ← extend(R1;R2), childItem(R1,stop), childItem(R2,stop), R1 < R2.

Listing 6 D-FLAT encoding for the CONNECTED DOMINATING SET problem

39

4.2 A Selection of Problems beyond NP
In this section, we present D-FLAT encodings for selected problems from the polynomial hierarchy
beyond NP.

4.2.1 Subset-Minimal Boolean Satisfiability

⊆-MINIMAL SAT is an extension of the Boolean Satisfiability problem where the aim is not only
to decide if the given set of clauses is satisfiable (and to enumerate the respective models) but to
compute only the subset-minimal models of it.

Input: A formula φ in CNF.

Task: Compute all subset-minimal models of φ.

The graph is constructed the same way as for the SAT problem. Also the basic idea of guessing
a truth assignment for the variables and checking if the clauses are satisfied remains the same.
However, to ensure subset-minimality we have to additionally guess all possible subsets of this
truth assignment and verify that those do not satisfy the clauses. This leads to the increased com-
plexity which is reflected in D-FLAT by the necessity of adding an additional level to the item
trees. Listing 7 shows that this is done by specifying the predicates length/2, and/1 and or/1.
Via the predicate length/2, D-FLAT is instructed to create item tree branches of length 2. The
facts or(0) and and(1) are used to inform D-FLAT that the problem instance is positive if there
is an accepting node at depth 1 such that all its children are accepting.

The use of item tree branches of length greater than 1 requires slight modifications to the
original encoding for SAT. Syntactically, the arity of some predicates (among them are extend,
item and auxItem) increases by one because we need to specify at which item tree branch level
we want to store, e.g., an item. Clearly, we also need additional code for checking the subset-
minimality of a guess on the first level. As we want to compute satisfying truth assignments at
both levels, we could simply copy most of the rules from the encoding of SAT and then adapt
them. Here, the modeling language of Gringo comes into play and allows us to simply reuse
almost all existing rules without the need for duplicated code. In this example, this is achieved
by adding L=1..2 to the relevant rules where a level specification is needed. The variable L is
then instantiated to both constants 1 and 2 by the grounder, allowing us to capture both levels by
writing only one rule.

In order to have only subsets on the second level we rule out every candidate containing an
element on the second level that is not on the first level (line 20). The item smaller is stored on
the second level if the solution candidate on the second level is a strict subset of the assignment
of the first level (lines 25–26). Again, we have to eliminate all solution candidates constituting no
satisfying truth assignment and, in addition, we now have to take care of subset-minimality. This
can be done very easily with D-FLAT. In the final node of the decomposition we simply reject all
candidates where a satisfying truth assignment remains on the second level that is a strict subset of
the guess on the first level (line 28). Other branches of the item tree are accepted (line 29). As the

40

1 length(2).
2 or(0).
3 and(1).

4 % Make e x p l i c i t t h a t an i t em s e t i n t e r p r e t s an atom as f a l s e o r a c l a u s e as u n s a t i s f i e d .
5 false(S,A) ← atNode(S,N), not rootOf(S,N), bag(N,A), atom(A), not

childItem(S,A).
6 unsat(S,C) ← atNode(S,N), not rootOf(S,N), bag(N,C), clause(C), not

childAuxItem(S,C).

7 % Guess i t em t r e e nodes t o e x t e n d .
8 1 { extend(0,R) : rootOf(R,N) } 1 ← childNode(N).
9 1 { extend(L+1,S) : sub(R,S) } 1 ← extend(L,R), L < 2.

10 % Only j o i n i t em t r e e nodes t h a t c o i n c i d e on common atoms .
11 ← extend(L,X), extend(L,Y), atom(A), childItem(X,A), false(Y,A), L=1..2.

12 % True atoms and s a t i s f i e d c l a u s e s remain so u n l e s s removed .
13 item(L,A) ← extend(L,S), childItem(S,A), current(A), L=1..2.
14 auxItem(L,C) ← extend(L,S), childAuxItem(S,C), current(C), L=1..2.

15 % A c h i l d i t em t r e e node c a n n o t be e x t e n d e d i f i t c o n t a i n s an u n s a t . c l a u s e t h a t i s removed .
16 ← clause(C), removed(C), extend(L,R), unsat(R,C), L=1..2.

17 % Guess t r u t h v a l u e f o r i n t r o d u c e d atoms .
18 {item(L,A) : atom(A), introduced(A), L=1..2}.

19 % Remove (p a r t i a l) s o l u t i o n s where i n l e v e l 2 a s u p e r s e t o f l e v e l 1 has been g u e s s e d .
20 ← atom(A), item(2,A), not item(1,A).

21 % Through t h e guess , c l a u s e s may become s a t i s f i e d .
22 auxItem(L,C) ← current(A;C), pos(C,A), item(L,A), L=1..2.
23 auxItem(L,C) ← current(A;C), neg(C,A), not item(L,A), L=1..2.

24 % S t o r e i f a p r o p e r s u b s e t has been g u e s s e d f o r t h e second l e v e l .
25 item(2,smaller) ← extend(2,S), childItem(S,smaller).
26 item(2,smaller) ← introduced(A), atom(A), item(1,A), not item(2,A).

27 % Ensure s u b s e t−m i n i m a l i t y .
28 reject ← final, item(2,smaller).
29 accept ← final, not reject.

Listing 7 D-FLAT encoding for the ⊆-MINIMAL SAT problem

second level is universally quantified, one rejected branch suffices to remove the solution candidate
of the branch’s first level. Hence, only subset-minimal models of the formula remain.

4.2.2 Subset-Minimal Dominating Set

Input: An undirected graph G = (V,E).

Task: Compute all subset-minimal dominating sets of G. A subset X of V is a dom-
inating set of G if for each v ∈ V the vertex is part of X or v is adjacent to at
least one u ∈ X .

41

1 length(2).
2 or(0).
3 and(1).

4 % Make e x p l i c i t t h a t edges a r e u n d i r e c t e d .
5 edge(X,Y) ← current(X;Y), edge(Y,X).

6 % Make e x p l i c i t t h a t a v e r t e x i s n o t s e l e c t e d i n an i t em s e t .
7 out(S,X) ← childNode(N), bag(N,X), atNode(S,N), not rootOf(S,N), not

childItem(S,sel(X)).

8 % Guess i t em t r e e nodes t o e x t e n d .
9 1 { extend(0,R) : rootOf(R,N) } 1 ← childNode(N).

10 1 { extend(L+1,S) : sub(R,S) } 1 ← extend(L,R), L < 2.

11 % Only j o i n i t em t r e e nodes t h a t c o i n c i d e on s e l e c t e d v e r t i c e s .
12 ← extend(L,R1), extend(L,R2), childItem(R1,sel(X)), out(R2,A), L=1..2.

13 % R e t a i n r e l e v a n t i n f o r m a t i o n .
14 item(L,sel(X)) ← extend(L,R), childItem(R,sel(X)), current(X), L=1..2.
15 item(L,dom(X)) ← extend(L,R), childItem(R,dom(X)), current(X), L=1..2.

16 % Ensure t h a t removed v e r t i c e s a r e s e l e c t e d o r domina ted .
17 ← removed(X), extend(L,R), not childItem(R,sel(X)), not childItem(R,dom(X)),

L=1..2.

18 % Guess s e l e c t e d v e r t i c e s , s t . s e t on l e v e l 2 i s a s u b s e t .
19 { item(1,sel(X)) : introduced(X) }.
20 { item(2,sel(X)) } ← introduced(X), item(1,sel(X)).

21 % A v e r t e x i s domina ted i f i t i s a d j a c e n t t o a s e l e c t e d v e r t e x .
22 item(L,dom(Y)) ← item(L,sel(X)), edge(X,Y), current(X;Y), L=1..2.

23 % S t o r e i f a p r o p e r s u b s e t has been g u e s s e d f o r t h e second l e v e l .
24 item(2,smaller) ← extend(2,S), childItem(S,smaller).
25 item(2,smaller) ← item(1,sel(X)), not item(2,sel(X)).

26 % Ensure s u b s e t−m i n i m a l i t y .
27 reject ← final, item(2,smaller).
28 accept ← final, not reject.

Listing 8 D-FLAT encoding for the ⊆-MINIMAL DOMINATING SET problem

Another example of a problem above NP is ⊆-MINIMAL DOMINATING SET. As the problem
is located at the second level of the polynomial hierarchy, we can again rely on the capabilities
of D-FLAT which allow an easy representation of these levels. Similar to ⊆-MINIMAL SAT, also
⊆-MINIMAL DOMINATING SET is tackled by guessing a solution candidate for the basic problem
variant on the first level. On the second level, for each subset of the selected vertices of level 1 it
has to hold that it is no dominating set unless the subset and the original selection coincide.

In the first lines of the encoding, we specify item tree branches of length 2, and we define that
the first level is, notionally, existentially quantified, while the second one is universally quantified.
As we have seen in the previous encoding, this way we can capture problems in ΣP

2 . Note that
the tasks which have to be performed in the two levels are very similar, therefore we again use the

42

abbreviation L=1..2 in some of the rule bodies.
In detail, the algorithm presented in Listing 8 works as follows. Similar to the encoding for the

classical DOMINATING SET problem, we guess for each level which item tree node is extended,
and via a constraint we ensure that the selected vertices coincide. Afterwards, we guess for each
introduced vertex if it is selected at the first level and if this is the case, we guess if it is also selected
at the second level. This way, it is ensured that the selection on the second level is always a subset
of the selection on the first level and we derive the atom item(2,smaller) when it is a strict
subset. To remove all solution candidates that are not subset-minimal, we derive reject in the
final node of the tree decomposition whenever there is evidence of a smaller dominating set. All
remaining candidates are then known to be indeed valid solutions and we derive accept for them.

43

5 The D-FLAT Debugger
As we have seen, the D-FLAT framework supports rapid prototyping of dynamic programming
algorithms on tree decompositions. In particular, the user just provides a declarative specification
of the problem at hand together with an input instance, and the framework automatically handles
decomposition, ASP solver invocation and printing of solutions.

However, it is sometimes desirable to gain a deeper insight into the course of computation in
a run of D-FLAT. A visual representation of the decomposed instance and intermediate results
computed during the traversal of the decomposition can help in understanding what is going on in
the user-specified algorithm. Furthermore, interactive inspection of item trees and their extension
pointers (see Section 3.3) allow for a deeper understanding of how erroneous results come about.
This is particularly useful when developing new algorithms, since it can be be quite tedious to find
errors in the encodings.

These aspects are tackled in the D-FLAT Debugger, a tool for visualization and inspection of
algorithms specified in D-FLAT. It is designed to be an easy-to-use, yet powerful, tool which
provides support for writing D-FLAT encodings. From our perspective it turned out that this tool
can be quite useful in practice. It can be downloaded at http://dbai.tuwien.ac.at/
research/project/dflat/debugger/.

In the following we present version 0.15 of the D-FLAT Debugger. It is written in Python 2 and
it requires GTK+ ≥ 2.24. The goal of the tool is to provide support for finding errors in D-FLAT
encodings. To this end it can be seen as a static analysis tool and visualizer; it neither interacts
directly with D-FLAT, nor performs changes on the decomposition or intermediate results.

In Section 5.1 we show how the debugger can be invoked. Section 5.2 then presents the main
features of the tool. Finally, possible future developments are discussed in Section 5.3.

5.1 Command-Line Usage
In order to use the debugger, D-FLAT has to provide machine-readable debugging information.
This is achieved by calling D-FLAT with the parameter --output machine. For more details
about the parameters of D-FLAT, the reader is referred to Section 3.8. A succinct overview is also
given in the help output (-h) of D-FLAT. The debugger relies only on this output of D-FLAT and
runs otherwise independently. That is, one can just use pipes for the inter-process communication.
An example call is given in the following.

dflat --output machine -p problem.lp < instance.lp | python DflatDebugger.py

Of course, it is also possible to store a specific “dump” and use it in a debugging session later. For
this, one would usually make two calls as follows.

dflat --output machine -p problem.lp < instance.lp > dump.dbg
python DflatDebugger.py < dump.dbg

Such a strategy might be useful if, for instance, the call to D-FLAT takes quite some time or one
would like to debug several times with the same tree decomposition. In addition, it is also possible
to pass option --seed to D-FLAT in order to achieve deterministic behaviour. Since a D-FLAT

44

http://dbai.tuwien.ac.at/research/project/dflat/debugger/
http://dbai.tuwien.ac.at/research/project/dflat/debugger/

call may take quite some time, one might come across the need for interrupting it. This is possible
by pressing Ctrl+C. In this case, the debugger will still visualize the data computed so far. Note
that this result might not be a tree, but a forest instead.

5.2 Features
In this section we give an overview of the debugging tool’s features. We focus on visualization
of item trees, search for item tree nodes with specific contents, and the representation of different
item tree node types.

5.2.1 Visualization

One of the most important features of the debugging tool is visualization. It is a lot easier to find
flaws within a D-FLAT encoding by looking at the output of the debugger than at the raw data
printed to the console. Figure 7 shows a debugging session for the Boolean Satisfiability problem
(cf. Section4.1.1), including representation of the tree decomposition and item trees with item sets,
auxiliary item sets and item tree node types.

Tree decomposition The main view of the debugging-tool is labeled by the tab “decomposi-
tion”, which shows the nodes of the used tree decomposition as boxes (tree view); their IDs and
bag contents are displayed in the headline of the boxes. The view supports both visualization of
programs using the simplified ASP interface (see Section 3.4.2) and the general item-tree-based
interface (see Section 3.4.1). Within a node of the decomposition, one can expand the nodes of the
item tree by clicking on the “expand” symbol of the respective node. Thereby, for each item tree
node at some level, the corresponding child nodes of the next, i.e. higher, level are expanded. The
problem visualized in Figure 7 just uses item tree branches of length 1. Note that the root node of
each item tree is also represented, reflecting the D-FLAT-internal data structure of item trees. In
the example, the item sets of these root nodes are always empty.

Showing extension pointers In order to visualize extension pointers, the user can mark a spe-
cific item tree node by clicking on it. The debugger will then (recursively) mark all nodes that
are extended by the selected node. In Figure 7 the leaf of the item tree at the root node of the de-
composition has been selected, and the debugger recursively marked all the extended nodes. This
feature covers the rather frequently occurring use case of finding out how an item tree node came
to be. It is quite useful in combination with the visualization of solution candidates (see below).
Additionally, the tool makes all marked nodes visible by expanding the relevant parts of the item
trees.

Solution candidates At the bottom of the debugger window there is a pane consisting of the tabs
“solution candidates” and “search results”. The latter one will be discussed in more detail later on;
the former one is quite useful in combination with the extension pointer visualization described
above. Since the debugging tool allows one to click on any item tree node for marking all the

45

Figure 7 Visualization of the decomposition and intermediate results

extended nodes, it is very helpful to also know which solution candidates are represented by the
currently selected item tree node. These candidates appear in the first tab of the bottom pane. In
Figure 7 the leaf node at the root of the decomposition is selected. This item tree node represents
five solution candidates, which are the solutions of the problem instance to be solved in this ex-
ample. In particular, if the decomposition and the item trees are very large, this feature comes in
handy, as it provides the solution candidates at a glance. As seen in Figure 8, the tab “solution
candidates” even allows the user to select one specific candidate, for which it then highlights all
constituting item tree nodes.

Collapse and expand operations Apart from the already mentioned auto-expand feature when
clicking at some specific item tree node, the debugger provides additional expand operations.
Global operations are available at the top of the main view, while operations related to a decompo-

46

Figure 8 Construction of a solution candidate – A blue item tree node indicates that it was con-
structed on basis of the blue item tree node(s) in the child nodes of the decomposition

sition node are accessible by right-clicking on the respective node, as shown in Figure 9.
There are four collapse and expand operations, which are described below.

• expand all: All item trees are expanded (i.e., all item tree nodes are shown).

• collapse all: All item trees are collapsed (i.e., only the root nodes of item trees are shown).

• expand item tree: The item tree of the currently selected tree decomposition node is ex-
panded.

• collapse item tree: The item tree of the currently selected tree decomposition node is col-
lapsed.

47

Figure 9 Collapse and expand operations at work

5.2.2 Search

In case there are many solution candidates, items or auxiliary items, the search function might be
helpful. It is possible to use regular expressions to search for specific candidates or nodes. As seen
in Figure 10, the results are listed in the tab “search results”. When searching for solution candi-
dates, current candidates can be filtered and their corresponding item tree nodes are highlighted.
For (auxiliary) items, the respective matching item tree nodes are highlighted. In Figure 11, one
can see how regular expressions can be used in order to find specific item sets.

5.2.3 Item Tree Node Types

If the used encoding assigns some type (i.e., “accept”, “reject”, “and” or “or”; cf. Section 3.3.2)
to an item tree node, this is represented in the debugger by a corresponding icon (, ×, ∧ or ∨,

48

Figure 10 Searching for all items

respectively) next to the (auxiliary) items. By selecting some item tree node of a specific type and
selecting “hide selected type”, all item tree nodes of the chosen type will become invisible. By
choosing “show all types”, this filter gets reverted. For example, if in Figure 12 “hide selected
type” were selected, all the item tree nodes of type “accept” would be made invisible.

In particular, this feature is useful for debugging when rejecting item tree nodes are not pruned
right away. In D-FLAT this can be achieved by specifying the option --no-pruning. Com-
plementing the extension pointer visualization for inspecting how reported solutions came into
existence, this feature gives indications at which point during the traversal of the decomposition a
solution candidate was discarded. Note that this is a common and important use case, since errors
in encodings often lead to expected solutions not being reported. Furthermore, it is often useful
to remove nodes of a particular type from the debugging view in order to keep the visualization
compact.

49

Figure 11 Searching for nodes with regular expressions

5.3 Current Status and Developments
The debugger in its current version supports static analysis of programs. That is, program runs
can be retraced but there is no direct interaction with D-FLAT. It gathers debugging information
provided by D-FLAT, and uses this to draw an appealing representation of the tree decomposition
and item trees. With this, time needed for error detection, and therefore development time, of
encodings can be significantly reduced. In a nutshell, the main features of the D-FLAT Debugger
are (a) visualization of the tree decomposition and item trees; (b) interactive display of extension
pointers to let users easily see where solution candidates originated; (c) diverse collapse and expand
operations in order to keep the number of expanded nodes small; (d) search, including support for
regular expressions when searching for specific solution candidates or item sets; (e) visualization
of (auxiliary) items and item tree node types; (f) identifying reasons why solution candidates are
rejected.

50

Figure 12 Representation of different item tree node types in the D-FLAT Debugger

The debugger can be extended in many promising directions. In order to better cope with large
item trees, zooming features and further display options might be helpful. Moreover, dynamic
integration with D-FLAT would allow for a “what-would-be-if” analysis, which interacts with
D-FLAT and allows to change specific data of some item tree nodes already during computation.
This would help in understanding the reasons behind unexpected behavior of the ASP encoding.
Similar to common debugging tools, it could be helpful to provide the possibility of going through
the computation step-by-step. With such a feature we could support breakpoints, which, in this
context, can bee seen as special events like the introduction of a specific item tree node.

51

6 Conclusion
In this report we presented the D-FLAT system in version 1.0.0 for developing algorithms that
employ dynamic programming on tree decompositions. The key feature of D-FLAT is that it lets
the user specify such algorithms in the declarative language of ASP. This makes it well suited for
rapid prototyping.

After presenting the background on ASP and tree decompositions, we explained the different
components of D-FLAT in detail, as well as the interface that is used for communication between
the system and the problem-specific encodings. Then we showed how D-FLAT can be applied to a
selection of problems to underline the usability of our approach. Furthermore, we introduced a tool
for debugging D-FLAT encodings that visualizes the intermediate results of the user’s algorithm
and can help to explain the presence of certain undesired results.

The fact that we have been able to come up with relatively simple D-FLAT encodings for
various different problems shows that our system is indeed well suited for rapid prototyping of
decomposition-based algorithms. The proposed ASP interface is general enough to accommodate
quite different kinds of problems, and the debugging tool greatly improves usability.

Future work This work shows that D-FLAT has by now reached a level of maturity that allows it
to be effectively applied to many problems. In the future, we would like to work on the performance
of our approach. In previous performance tests (see, e.g., [9, 36]) we have observed that the
overhead of repeatedly calling the ASP system poses a problem if we are not only interested in
a rapid prototyping system but also wish to use D-FLAT in competitive settings. Therefore we
would like to investigate whether and how this can be improved. Furthermore, we plan to apply
D-FLAT to problems from bio-informatics and description logics in order to take advantage of
decomposition-based approaches also in these areas.

52

References
[1] Rachit Agarwal, Philip Brighten Godfrey, and Sariel Har-Peled. Approximate distance

queries and compact routing in sparse graphs. In Proc. INFOCOM, pages 1754–1762. IEEE,
2011.

[2] Mario Alviano, Francesco Calimeri, Wolfgang Faber, Giovambattista Ianni, and Nicola
Leone. Function symbols in ASP: Overview and perspectives. In NMR – Essays Celebrating
Its 30th Anniversary, pages 1–24. College Publications, London, 2011.

[3] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding em-
beddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277–284, 1987.

[4] Markus Aschinger, Conrad Drescher, Georg Gottlob, Peter Jeavons, and Evgenij
Thorstensen. Structural decomposition methods and what they are good for. In Proc. STACS,
volume 9 of LIPICS, pages 12–28. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2011.

[5] Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

[6] Nadja Betzler, Hans L. Bodlaender, Robert Bredereck, Rolf Niedermeier, and Johannes
Uhlmann. On making a distinguished vertex of minimum degree by vertex deletion. Al-
gorithmica, 68(3):715–738, 2014.

[7] René Bevern, Robert Bredereck, Morgan Chopin, Sepp Hartung, Falk Hüffner, André
Nichterlein, and Ondrěj Suchý. Parameterized complexity of DAG partitioning. In Proc.
Algorithms and Complexity, volume 7878 of LNCS, pages 49–60. Springer, 2013.

[8] Bernhard Bliem. Decompose, Guess & Check: Declarative problem solving on tree decom-
positions. Master’s thesis, Vienna University of Technology, 2012.

[9] Bernhard Bliem, Michael Morak, and Stefan Woltran. D-FLAT: Declarative problem solving
using tree decompositions and answer-set programming. TPLP, 12(4-5):445–464, 2012.

[10] Bernhard Bliem, Reinhard Pichler, and Stefan Woltran. Declarative dynamic programming
as an alternative realization of Courcelle’s theorem. In Proc. IPEC, volume 8246 of LNCS,
pages 28–40. Springer, 2013.

[11] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1–22, 1993.

[12] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

[13] Hans L. Bodlaender. Discovering treewidth. In Proc. SOFSEM, volume 3381 of LNCS, pages
1–16. Springer, 2005.

53

[14] Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. Comput. J., 51(3):255–269, 2008.

[15] Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computations I. Upper bounds. Inf.
Comput., 208(3):259–275, 2010.

[16] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set programming at a
glance. Commun. ACM, 54(12):92–103, 2011.

[17] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone. Computable
functions in ASP: Theory and implementation. In Proc. ICLP, volume 5366 of LNCS, pages
407–424. Springer, 2008.

[18] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J. ACM, 28(1):114–
133, 1981.

[19] Günther Charwat. Tree-decomposition based algorithms for abstract argumentation frame-
works. Master’s thesis, Vienna University of Technology, 2012.

[20] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

[21] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and ex-
pressive power of logic programming. ACM Comput. Surv., 33(3):374–425, 2001.

[22] Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artif. Intell., 113(1–
2):41–85, 1999.

[23] Artan Dermaku, Tobias Ganzow, Georg Gottlob, Benjamin J. McMahan, Nysret Musliu, and
Marko Samer. Heuristic methods for hypertree decomposition. In Proc. MICAI, volume 5317
of LNCS, pages 1–11. Springer, 2008.

[24] Wolfgang Dvořák, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter tractable
algorithms for abstract argumentation. Artif. Intell., 186:1–37, 2012.

[25] Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive logic program-
ming: Propositional case. Ann. Math. Artif. Intell., 15(3-4):289–323, 1995.

[26] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog. ACM Trans.
Database Syst., 22(3):364–418, 1997.

[27] Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket
Saurabh, Stefan Szeider, and Carsten Thomassen. On the complexity of some colorful prob-
lems parameterized by treewidth. Inf. Comput., 209(2):143–153, 2011.

[28] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub, and
Sven Thiele. A user’s guide to gringo, clasp, clingo, and iclingo. Preliminary Draft. Available
at http://potassco.sourceforge.net, 2010.

54

http://potassco.sourceforge.net

[29] Martin Gebser, Roland Kaminski, Max Ostrowski, Torsten Schaub, and Sven Thiele. On the
input language of ASP grounder gringo. In Proc. LPNMR, volume 5753 of LNCS, pages
502–508. Springer, 2009.

[30] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten Schaub,
and Marius Thomas Schneider. Potassco: The Potsdam answer set solving collection. AI
Commun., 24(2):107–124, 2011.

[31] Michael Gelfond and Nicola Leone. Logic programming and knowledge representation –
The A-Prolog perspective. Artif. Intell., 138(1-2):3–38, 2002.

[32] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Proc. ICLP/SLP, pages 1070–1080. The MIT Press, 1988.

[33] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Comput., 9(3/4):365–386, 1991.

[34] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and
tractable queries. J. Comput. Syst. Sci., 64(3):579–627, 2002.

[35] Jens Gramm, Arfst Nickelsen, and Till Tantau. Fixed-parameter algorithms in phylogenetics.
Comput. J., 51(1):79–101, 2008.

[36] Markus Hecher. Abstract argumentation with D-FLAT: Encodings & experimental results.
Bachelor’s thesis, Vienna University of Technology, 2013.

[37] Xiuzhen Huang and Jing Lai. Parameterized graph problems in computational biology. In
Proc. IMSCCS, pages 129–132. IEEE, 2007.

[38] Matthieu Latapy and Clémence Magnien. Measuring fundamental properties of real-world
complex networks. CoRR, abs/cs/0609115, 2006.

[39] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning. ACM
Trans. Comput. Log., 7(3):499–562, 2006.

[40] Vladimir Lifschitz. What is answer set programming? In Proc. AAAI, pages 1594–1597.
AAAI Press, 2008.

[41] Victor W. Marek and Jeffrey B. Remmel. On the expressibility of stable logic programming.
TPLP, 3(4-5):551–567, 2003.

[42] Victor W. Marek and Mirosław Truszczyński. Autoepistemic logic. J. ACM, 38(3):588–619,
1991.

[43] Victor W. Marek and Mirosław Truszczyński. Stable models and an alternative logic pro-
gramming paradigm. In The Logic Programming Paradigm: A 25-Year Perspective, pages
375–398. Springer, 1999.

55

[44] Guy Melançon. Just how dense are dense graphs in the real world? A methodological note.
In Proc. BELIV, pages 1–7. ACM Press, 2006.

[45] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Math-
ematics And Its Applications. Oxford University Press, 2006.

[46] Ilkka Niemelä. Logic programs with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell., 25(3-4):241–273, 1999.

[47] Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. J. Comb. Theory,
Ser. B, 36(1):49–64, 1984.

[48] Petra Scheffler. A practical linear time algorithm for disjoint paths in graphs with bounded
tree width. Fachbereich Mathematik - Report, 396, 1994.

[49] John S. Schlipf. The expressive powers of the logic programming semantics. J. Comput. Syst.
Sci., 51(1):64–86, 1995.

[50] Mikkel Thorup. All structured programs have small tree-width and good register allocation.
Inf. Comput., 142(2):159–181, 1998.

[51] Atsuko Yamaguchi, Kiyoko F. Aoki, and Hiroshi Mamitsuka. Graph complexity of chemical
compounds in biological pathways. Genome Inform., 14:376–377, 2003.

56

	Introduction
	Background
	Answer Set Programming
	Syntax
	Semantics
	Complexity and Expressive Power
	ASP in Practice

	Tree Decompositions
	Concepts and Complexity
	Dynamic Programming on Tree Decompositions

	The D-FLAT System
	System Overview
	Constructing a Tree Decomposition
	Item Trees
	Extension Pointers
	Item Tree Node Types
	Solution Costs for Optimization Problems

	D-FLAT's Interface for ASP
	General ASP Interface
	Simplified Interface for Problems in NP

	D-FLAT's Handling of Item Trees
	Constructing an Uncompressed Item Tree from the Answer Sets
	Propagation of Acceptance Statuses and Pruning of Item Trees
	Propagation of Optimization Values in Item Trees
	Compressing the Item Tree

	Materializing Complete Solutions
	Default Join
	Command-Line Usage

	D-FLAT in Practice
	A Selection of Problems in NP
	Boolean Satisfiability
	Minimum Dominating Set
	Connected Dominating Set

	A Selection of Problems beyond NP
	Subset-Minimal Boolean Satisfiability
	Subset-Minimal Dominating Set

	The D-FLAT Debugger
	Command-Line Usage
	Features
	Visualization
	Search
	Item Tree Node Types

	Current Status and Developments

	Conclusion

