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Normalization and Optimization of Schema Mappings

Georg Gottlob 1, Reinhard Pichler, Vadim Savenkov 2

Abstract. Schema mappings are high-level specifications that describe the relationship be-
tween database schemas. They are an important tool in several areas of database research,
notably in data integration and data exchange. However, a concrete theory of schema map-
ping optimization including the formulation of optimalitycriteria and the construction of
algorithms for computing optimal schema mappings is completely lacking to date. The
goal of this work is to fill this gap. We start by presenting a system of rewrite rules to min-
imize sets of source-to-target tuple-generating dependencies. Moreover, we show that the
result of this minimization is unique up to variable renaming. Hence, our optimization also
yields a schema mapping normalization. By appropriately extending our rewrite rule sys-
tem, we also provide a normalization of schema mappings containing equality-generating
target dependencies. An important application of such a normalization is in the area of
defining the semantics of query answering in data exchange, since several definitions in this
area depend on the concrete syntactic representation of themappings. This is, in particular,
the case for queries with negated atoms and for aggregate queries. The normalization of
schema mappings allows us to eliminate the effect of the concrete syntactic representation
of the mapping from the semantics of query answering. We discuss in detail how our results
can be fruitfully applied to aggregate queries.
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1 Introduction

Schema mappings are high-level specifications that de-
scribe the relationship between two database schemas.
They play an important role in data integration [13,18]
and data exchange [9]. A schema mapping is usually
given in the form M = 〈S,T, Σ〉, indicating the two
database schemas S and T plus a set Σ of dependencies.
These dependencies express conditions that instances of
S and T must fulfill. In data exchange, S and T are re-
ferred to as source and target schema. The dependencies
Σ specify, given a source instance (i.e., an instance of
S), what a legal target instance (i.e., an instance of T)
may look like. Similarly, in data integration, a schema
mapping M describes the relationship between a local
data source and a global mediated schema.

Over the past years, schema mappings have been
extensively studied (see [17,6] for numerous pointers to
the literature). However, only recently, the question of
schema mapping optimization has been raised. In [10],
the foundation for optimization has been laid by defin-
ing various forms of equivalence of schema mappings
and by proving important properties of the resulting
notions. However, a concrete theory of schema map-
ping optimization including the formulation of optimal-
ity criteria and the construction of algorithms for com-
puting optimal schema mappings is completely lacking
to date. The goal of this work is to fill this gap. Below,
we illustrate the basic ideas of our approach by a series
of simple examples, where it is clear “at a glance” what
the optimal form of the schema mappings should look
like. In fact, one would expect that a human user de-
signs these mappings in their optimal form right from
the beginning. However, as more and more progress is
made in the area of automatic generation and process-
ing of schema mappings [6,5] we shall have to deal with
schema mappings of ever increasing complexity. The
optimality of these automatically derived schema map-
pings is by no means guaranteed and schema mapping
optimization will become a real necessity.

For the most common form of schema mappings
considered in the literature, the dependencies in Σ are
source-to-target tuple-generating dependencies (or s-t
tgds, for short) of the form ∀x (ϕ(x )→ ∃y ψ(x,y )) ,
where the antecedent ϕ is a conjunctive query (CQ)
over S and the conclusion ψ is a CQ over T. The univer-
sal quantification is usually not denoted explicitly. In-
stead, it is assumed implicitly for all variables in ϕ(x ).

Example 1 Consider a schema mappingM = 〈S,T, Σ〉
with S = {L(·, ·, ·), P (·, ·)} and T = {C(·, ·)}, where
L,P , and C are abbreviations for the relational
schemas Lecture(title, year, prof), Prof(name, area), and
Course (title, prof-area), respectively. Moreover, suppose
that Σ consists of two rules expressing the following
constraints: If any lecture is specified in the source in-
stance, then the title of all lectures for 3rd year students

as well as the area of the professor giving this lecture
should be present in the Course-relation of the target
instance. Moreover, Σ contains a specific rule which
takes care of the lectures given by professors from the
database area. We get the following set Σ of s-t tgds:

L(x1, x2, x3) ∧ L(x4, 3, x5) ∧ P (x5, x6)→ C(x4, x6)

L(x1, 3, x2) ∧ P (x2, ’db’)→ C(x1, ’db’) �
The above schema mapping has a specific form called

GAV (global-as-view) [18], i.e., we only have s-t tgds
ϕ(x ) → A(x ), where the conclusion is a single atom
A(x ) without existentially quantified variables. In this
special case, we see a close relationship of schema map-
pings with unions of conjunctive queries (UCQs). In-
deed, given a source instance I over S, the tuples which
have to be present in any legal target instance J accord-
ing to the above schema mapping M are precisely the
tuples in the result of the following UCQ:

ans(x4, x6) :- L(x1, x2, x3) ∧ L(x4, 3, x5) ∧ P (x5, x6)
ans(x1, ’db’) :- L(x1, 3, x2) ∧ P (x2, ’db’).

The goal of UCQ-optimization is usually twofold [7,24],
namely to minimize the number of CQs and to mini-
mize the number of atoms in each CQ. In the above
UCQ, we would thus delete the second CQ and, more-
over, eliminate the first atom from the body of the first
CQ. In total, the above UCQ can be replaced by a sin-
gle CQ ans(x4, x6) :- L(x4, 3, x5) ∧ P (x5, x6). Analo-
gously, we would naturally reduce the set Σ of two s-t
tgds in Example 1 to the singleton Σ′ = {L(x4, 3, x5)∧
P (x5, x6)→ C(x4, x6)}.

As mentioned above, GAV mappings are only a spe-
cial case of schema mappings given by s-t tgds which,
in the general case, may have existentially quantified
variables and conjunctions of atoms in the conclusion.
Note that the existentially quantified variables are used
to represent incomplete data (in the form of marked
nulls [15]) in the target instance. Hence, as an addi-
tional optimization goal, we would like to minimize the
number of existentially quantified variables in each s-t
tgd. Moreover, we would now also like to minimize the
number of atoms in the CQ of the conclusion.

Example 2 We revisit Example 1 and consider a new
mapping M in the reverse direction so to speak: Let
M = 〈S,T, Σ〉 with S = {C(·, ·)} and T = {L(·, ·, ·),
P (·, ·)} where L,P , and C are as before. Moreover, let
Σ be defined as follows:

Σ = {C(x1, x2)→ (∃y1, y2, y3, y4)L(y1, y2, y3) ∧
L(x1, 3, y4) ∧ P (y4, x2),

C(x1, ’db’)→ (∃y1)L(x1, 3, y1) ∧ P (y1, ’db’)}
Clearly, Σ is equivalent to the singleton

Σ′ = {C(x1, x2)→ (∃y4)L(x1, 3, y4) ∧ P (y4, x2)}. �

The above schema mapping corresponds to the special
case of LAV (local-as-view) [18] with s-t tgds of the form
A(x ) → ∃y ψ(x,y ), where the antecedent is a single
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atom A(x ) and all variables in A(x ) actually do occur
in the conclusion. In the most general case (referred
to as GLAV mappings), no restrictions are imposed on
the CQs in the antecedent and conclusion nor on the
variable occurrences. In order to formulate an optimal-
ity criterion for schema mappings with s-t tgds of this
general form, the analogy with UCQs does not suffice.
Indeed, the following example illustrates that we may
get a highly unsatisfactory result if we just aim at the
minimization of the number of s-t tgds and of the num-
ber of atoms inside each s-t tgd.

Example 3 LetM = 〈S,T, Σ〉 with S = {L(·, ·, ·)} and
T = {C(·, ·), E(·, ·)} where L, and C are as before and
E denotes the schema Equal-Year(course1, course2), i.e.,
E contains pairs of courses designed for students in the
same year. Moreover, let Σ be defined as follows:

Σ = {L(x1, x2, x3)→ (∃y)C(x1, y),
L(x1, x2, x3) ∧ L(x4, x2, x5)→ E(x1, x4)}

Then Σ is equivalent to the singleton Σ′ with the tgd

L(x1, x2, x3)∧L(x4, x2, x5)→ (∃y)C(x1, y)∧E(x1, x4)

Now suppose that the title-attribute is a key in Lec-
ture. Let li denote the title of some lecture in a source
instance I and suppose that I contains m lectures for
students in the same year as li. Then the computation
of the canonical universal solution (for details, see Sec-
tion 2) yields two results of significantly different qual-
ity depending on whether we take Σ or Σ′: In case of
Σ, we get one tuple C(li, y) with this course title li. In
contrast, for Σ′, we get m tuples C(li, y1), . . . , C(li, ym)
with the same course title li. The reason for this is that
the s-t tgd “fires” for every possible combination of key
values x1 and x4, although for the conjunct C(x1, y) in
the conclusion, only the value of x1 is relevant. �

We shall refer to the two s-t tgds in Σ of the above
example as the split form of the s-t tgd in Σ′. We shall
formally define splitting of s-t tgds in Section 3. In-
tuitively, splitting aims at breaking up the conclusion
of an s-t tgd in smaller parts such that the variables
in the antecedent are indeed related to the atoms in
the conclusion. Without this measure, any target in-
stance would be artificially inflated with marked nulls
as we have seen with Σ′ in the above example. Split-
ting helps to avoid such anomalies. Indeed, it can be
seen as an analogous operation to the decomposition
of relational schemas into normal form where we also
want to exclude that some attributes are fully deter-
mined by parts of a key. Carrying over this idea to s-t
tgds, we want to exclude that some atoms in the con-
clusion are fully determined by parts of the atoms in
the antecedent. Our first optimization goal for schema
mappings will therefore be to minimize the number of
s-t tgds only to the extent that splitting should be ap-
plied whenever possible. Minimizing the size of each s-t
tgd and the number of existentially quantified variables

in the conclusion will, of course, be pursued as another
optimization goal. We thus have the following optimal-
ity criteria for sets Σ of s-t tgds:

– cardinality-minimality , i.e., the number of s-t tgds
in Σ shall be minimal;

– antecedent-minimality , i.e., the total size of the an-
tecedents of the s-t tgds in Σ shall be minimal;

– conclusion-minimality , i.e., the total size of the con-
clusions of the s-t tgds in Σ shall be minimal;

– variable-minimality , i.e., the total number of exis-
tentially quantified variables in the conclusions shall
be minimal.

Then a set of s-t tgds is optimal , if it is minimal w.r.t.
each of these four criteria. Following the above discus-
sion, we only take s-t tgds into consideration for which
no further splitting is possible. (We shall give a for-
mal definition of this property and of the four opti-
mality criteria in Section 3). Cardinality-minimality to-
gether with antecedent-minimality means that the cost
of the join-operations is minimized when computing a
canonical universal solution for some given source in-
stance. Conclusion-minimality and variable-minimality
mean that no unnecessary incomplete facts are introdu-
ced in the canonical universal solution. For the trans-
formation of arbitrary sets of s-t tgds into optimal ones,
we shall present a novel system of rewrite rules. More-
over, we shall show that the optimal form of a set of s-t
tgds is unique up to variable renaming .

In other words, our optimization of schema map-
pings is also a normalization of schema mappings. As
an immediate benefit of a normalization, we get a purely
syntactical criterion for testing the equivalence of two
schema mappings. Another, even more important ap-
plication of such a normalization is in the area of defin-
ing the semantics of query answering in data exchange.
Several definitions in this area depend on the concrete
syntactic representation of the s-t tgds. This is, in par-
ticular, the case for queries with negated atoms (see
e.g., [2,19]) and for aggregate queries (see [1]). This se-
mantical dependence on the syntax of a mapping clearly
is undesirable. Since the minimal set of s-t tgds pro-
duced by our rewrite rules is unique up to variable re-
naming, we can use it as the desired normal form which
eliminates the effect of the concrete representation of
the s-t tgds from the semantics of query answering.

Example 4 Consider a schema mappingM = 〈S,T, Σ〉
with S = {S(·, ·, ·)}, T = {L(·, ·, ·), P (·, ·)}, where L
and P are as in Example 2. S denotes the relational
schema Student(name, year, area). Moreover, let Σ ex-
press the following constraints: If there exists a student
in any year, then there should exist at least one lec-
ture for this year. Moreover, if a student specializes in
a particular area, then there should be a professor in
this area teaching at least one lecture for this year. We
thus have the following set Σ with a single s-t tgd:
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S(x1, x2, x3)→ (∃y1, y2, y3, y4, y5) L(y1, x2, y3) ∧
L(y4, x2, y5) ∧ P (y5, x3)

Clearly, the first atom in the conclusion may be deleted.

Now consider the source instance I = {S(′bob′, 3, ′db′)}
and suppose that we want to evaluate the query

ans(x2) :- L(x1, x2, x3),¬P (x3, x4)

over the target instance, i.e., we want to check if, in
some year, there exists a lecture which has not been
assigned to a professor. In [2,19], query answering via
the “canonical universal solution” (for details, see Sec-
tion 2) is proposed. Depending on whether the s-t tgd
in Σ has been simplified or not, we either get J =
{L(u1, 3, u2), L(u3, 3, u4), P (u4, ’db’)} or the core there-
of, J ′ = {L(u1, 3, u2), P (u2, ’db’)} as the canonical uni-
versal solution. In the first case, the query yields the
result {〈3〉} whereas, in the second case, we get ∅. �

Similarly, a unique normal form of the s-t tgds is
crucial for the semantics of aggregate queries in data ex-
change, whose investigation has been initiated recently
by Afrati and Kolaitis [1]. Aggregate queries are of the
form SELECT f FROMR, where f is an aggregate operator
min(R.A), max(R.A), count(R.A), count(∗), sum(R.A),
or avg(R.A), and where R is a target relation symbol
or, more generally, a conjunctive query over the target
schema and A is an attribute of R. On the one hand,
[1] defines an interesting and non-trivial semantics of
aggregate queries in data exchange. On the other hand,
it is shown that the most important aggregate queries
can be evaluated in polynomial time (data complexity).
In this paper, we shall show how aggregate queries can
benefit from our normalization of schema mappings.

So far, we have only mentioned mappings M =
〈S,T, Σ〉, where Σ is a set of s-t tgds. In addition, Σ
may contain constraints on the target instance alone.
One of the most important forms of target constraints
are equality-generating target-dependencies (egds, for
short), which can be considered as a generalization of
functional dependencies. Egds are formulas of the form
∀x (ϕ(x )→ xi = xj) where ϕ is a CQ over T and xi, xj
are variables in x.

Example 5 We modify the setting from Example 1 and
2. Let M = 〈S,T, Σ〉 with S = {C(·, ·, ·)} and T =
{P (·, ·, ·)} where C and P denote the relational schemas
Course (title, course-area, prof-area) and Prof(name, prof-area,

course-area). The P -relation thus contains information
on the area of the professor as well as on the area(s)
of the courses taught by him/her. The set Σ of s-t tgds
expresses the following constraints: For every course,
there exists a professor who teaches courses in his/her
own area of expertise and who teaches courses with this
combination of course- and prof-area. Moreover, there
exists a professor whose expertise matches the area of
the course and vice versa. We thus define Σ as a map-
ping with the following two s-t tgds:

C(x1, x2, x3)→ (∃y1, y2) P (y1, y2, y2)∧P (y1, x2, x3)

C(x1, x2, x3)→ (∃y1)P (y1, x3, x2)

This set of dependencies is minimal. However, suppose
that we add the egd P (x1, x2, x3) → x2 = x3, express-
ing that a professor only teaches courses in his/her own
area of expertise. Then P (y1, y2, y2) can be eliminated
from the conclusion of the first s-t tgd. Moreover, the
first and the second s-t tgd imply each other. Hence, Σ
can be replaced by either Σ′ or Σ′′ with

Σ′ = {C(x1, x2, x3)→ (∃y1) P (y1, x2, x3)} and

Σ′′ = {C(x1, x2, x3)→ (∃y1) P (y1, x3, x2)}. �

Example 5 illustrates that, in the presence of target
egds, our rewrite rules for the s-t tgds-only case are
not powerful enough. To deal with target egds, we will
introduce further rewrite rules. In particular, one of
these new rewrite rules will result in the introduction
of source egds to prevent situations where two sets of
s-t tgds only differ on source instances which admit no
target instance anyway. Indeed, in Example 5, Σ′ and
Σ′′ only differ if x2 6= x3 holds. But this is forbidden
by the egd. Hence, Σ should be replaced by Σ∗ with

Σ∗ = {C(x1, x2, x3)→ x2 = x3,
C(x1, x2, x2)→ (∃y1) P (y1, x2, x2)}.

In summary, we shall be able to prove that our ex-
tended set of rewrite rules again leads to a normal form
which is unique up to variable renaming . The main in-
gredients of our normalization and optimization are the
splitting and simplification of tgds. In the presence of
target egds, several pitfalls will have to be avoided when
defining appropriate splitting and simplification rules so
as not to destroy the uniqueness of the normal form.

Organization of the paper and summary of re-
sults. In Section 2, we recall some basic notions. A
conclusion and an outlook to future work are given in
Section 6. The main results of the paper are detailed in
the Sections 3 – 5, namely:

• Optimization and normalization of sets of s-t tgds.
In Section 3, we give a formal definition of the above
mentioned optimality criteria for sets of s-t tgds and
we present rewrite rules to transform any set of s-t tgds
into an optimal one (i.e., minimal w.r.t. to these crite-
ria). We shall also show that the normal form obtained
by our rewrite rules is unique up to variable renaming.
Moreover, we show that, if the length of each s-t tgd is
bounded by a constant, then this normal form can be
computed in polynomial time.

• Extension to target egds. In Section 4, the rewrite rule
system for s-t tgds is then extended to schema map-
pings comprising target egds. Several non-trivial exten-
sions (like the introduction of source egds) are required
to arrive at a unique normal form again. The extended
splitting and simplification rules will have to be defined
very carefully so as not destroy this uniqueness.
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• Semantics of aggregate operators. In Section 5, we
discuss in detail the application of our normalization of
schema mappings to the definition of a unique seman-
tics of aggregate operators in data exchange.

2 Preliminaries

A schema R = {R1, . . . , Rn} is a set of relation symbols
Ri each of a fixed arity. An instance over a schema R
consists of a relation for each relation symbol in R,
s.t. both have the same arity. We only consider finite
instances here.

Tuples of the relations may contain two types of
terms: constants and variables. The latter are often also
called marked nulls or labeled nulls. Two labeled nulls
are equal iff they have the same label. For every in-
stance J , we write dom(J), var(J), and Const(J) to
denote the set of terms, variables, and constants, re-
spectively, of J . Clearly, dom(J) = var(J) ∪ Const(J)
and var(J) ∩ Const(J) = ∅. If we have no particu-
lar instance J in mind, we write Const to denote the
set of all possible constants. We write x for a tuple
(x1, x2, . . . , xn). However, by slight abuse of notation,
we also refer to the set {x1, . . . , xn} as x. Hence, we
may use expressions like xi ∈ x or x ⊆ X, etc.

Let S = {S1, . . . , Sn} and T = {T1, . . . , Tm} be
schemas with no relation symbols in common. We call S
the source schema and T the target schema. We write
〈S,T〉 to denote the schema {S1, . . . , Sn, T1, . . . , Tm}.
Instances over S and T are called source and target
instances, respectively. If I is a source instance and J
a target instance, then their combination 〈I, J〉 is an
instance of the schema 〈S,T〉.
Homomorphisms and substitutions. Let I, I ′ be
instances. A homomorphism h: I → I ′ is a mapping
dom(I) → dom(I ′), s.t. (1) whenever a fact R(x ) ∈
I, then R(h(x )) ∈ I ′, and (2) for every constant c,
h(c) = c. If such h exists, we write I → I ′. Moreover, if
I ↔ I ′ then we say that I and I ′ are homomorphically
equivalent. In contrast, if I → I ′ but not vice versa,
we say that I is more general than I ′, and I ′ is more
specific than I.

If h: I → I ′ is invertible, s.t. h−1 is a homomorphism
from I ′ to I, then h is called an isomorphism, denoted
I ∼= I ′. An endomorphism is a homomorphism I → I.
An endomorphism is proper if it is not surjective (for fi-
nite instances, this is equivalent to being not injective),
i.e., if it reduces the domain of I.

If I is an instance, and I ′ ⊆ I is such that I → I ′

holds but for no other I ′′ ⊂ I ′: I → I ′′ (that is, I ′ can-
not be further “shrunk” by a proper endomorphism),
then I ′ is called a core of I. The core is unique up
to isomorphism. Hence, we may speak about the core
of I. Cores have the following important property: for
arbitrary instances J and J ′, J ↔ J ′ iff core(J) ∼=
core(J ′).

A substitution σ is a mapping which sends variables
to other domain elements (i.e., variables or constants).
We write σ = {x1 ← a1, . . . , xn ← an} if σ maps each
xi to ai and σ is the identity outside {x1, . . . , xn}. The
application of a substitution is usually denoted in post-
fix notation, e.g., xσ denotes the image of x under σ.
For an expression ϕ(x), which in the following will nor-
mally refer to a conjunctive query with variables in x,
we write ϕ(xσ) to denote the result of replacing every
occurrence of every variable x ∈ x by xσ.

Schema Mappings and Data Exchange. A schema
mapping is given by a triple M = (S,T, Σ) where S is
the source schema, T is the target schema, and Σ is a
set of dependencies expressing the relationship between
S and T and possibly also local constraints on S and
T. The data exchange problem associated with M is
the following: Given a (ground) source instance I, find
a target instance J , s.t. 〈I, J〉 |= Σ. Such a J is called
a solution for I or, simply, a solution if I is clear from
the context. The set of all solutions for I under M
is denoted by SolM(I). If J ∈ SolM(I) is such that
J → J ′ holds for any other solution J ′ ∈ SolM(I),
then J is called a universal solution. Since the universal
solutions for a source instance I are homomorphically
equivalent, the core of the universal solutions for I is
unique up to isomorphism. It is the smallest universal
solution [11].

In the following, we will often identify a schema
mapping M = (S,T, Σ) with the set of dependencies
Σ, without explicitly mentioning the schemas, for the
sake of brevity.

Equivalence of schema mappings. Different notions
of equivalence of schema mappings have been recently
proposed by Fagin et al. [10]. In this paper, we will only
consider the strongest one, namely logical equivalence.

Definition 1 [10] Two schema mappings Σ and Σ′

over the schema 〈S,T〉 are logically equivalent (denoted
as Σ ≡ Σ′) if, for every source instance I and target
instance J , the equivalence 〈I, J〉 |= Σ ⇔ 〈I, J〉 |=
Σ′ holds. In this case, the equality SolΣ(I) =SolΣ

′
(I)

holds for every source instance I.

Dependencies. Embedded dependencies [8] over a re-
lational schema R are first-order formulas of the form

∀x
(
ϕ(x )→ ∃y ψ(x,y )

)
In case of tuple-generating dependencies (tgds), both
antecedent ϕ and conclusion ψ are conjunctive queries
(CQs) over the relation symbols from R such that all
variables in x actually do occur in ϕ(x ). Equality-
generating dependencies (egds) are of the form

∀x (ϕ(x )→ xi = xj)
with xi, xj ∈ x. Throughout this paper, we shall omit
the universal quantifiers: By convention, all variables
occurring in the antecedent are universally quantified
(over the entire formula). In the context of data ex-
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change, we are mainly dealing with source-to-target de-
pendencies consisting of tuple-generating dependencies
(or s-t tgds) over the schema 〈S,T〉 (the antecedent
is a CQ over S, the conclusion over T) and target de-
pendencies over T. In the scope of this paper, target
dependencies are restricted to equality-generating de-
pendencies (referred to as “target egds”). Moreover, in
Section 4, we shall also consider source dependencies
consisting of egds over S (referred to as “source egds”).

Database of a conjunctive query. Given a conjunc-
tive query χ, we write At(χ) to denote the database
comprising exactly the set of atoms of χ. If the vari-
ables of χ are instantiated with distinct fresh constants
in At(χ), this database is called frozen. However, unless
otherwise specified, we assume that At(χ) is not frozen,
and that the variables of χ are instantiated with distinct
labeled nulls in At(χ). If χ represents an antecedent or
conclusion of some dependency τ , At(χ) is called the
antecedent or, respectively, conclusion database of τ .

Chase. The data exchange problem can be solved by
the chase [4], a sequence of steps, each enforcing a single
constraint within some limited set of tuples. More pre-
cisely, let Σ contain a tgd τ :ϕ(x) → (∃y )ψ(x,y ), s.t.
I |= ϕ(a ) for some assignment a on x. Then we extend
I with facts corresponding to ψ(a, z ), where the ele-
ments of z are fresh labeled nulls. Note that this defini-
tion of the chase differs from the definition in [9], where
no new facts are added if I � ∃yψ(a,y ) is already ful-
filled. Omitting this check is referred to as oblivious [16]
chase. It is the preferred version of chase if the result of
the chase should not depend on the order in which the
tgds are applied (see e.g., [2,19,1]).

Now suppose that Σ contains an egd ε : ϕ(x ) →
xi = xj , s.t. I |= ϕ(a ) for some assignment a on x.
This egd enforces the equality ai = aj . We thus choose
a null a′ among {ai, aj} and replace every occurrence
of a′ in I by the other term; if ai, aj ∈ Const(I) and
ai 6= aj , the chase halts with failure. We write IΣ to
denote the result of chasing I with the dependencies Σ.

Consider an arbitrary schema mappingΣ = Σst∪Σt
where Σst is a set of source-to-target tgds and Σt is a
set of target egds. Then the solution to a source in-
stance I can be computed as follows: We start off with
the instance 〈I, ∅〉, i.e., the source instance is I and
the target instance is initially empty. Chasing 〈I, ∅〉
with Σst yields the instance 〈I, J〉, where J is called
the preuniversal instance. This chase always succeeds
since Σst contains no egds. Then J is chased with Σt.
This chase may fail on an attempt to unify distinct con-
stants. If the chase succeeds, we end up with U = JΣt ,
which is referred to as the canonical universal solution
CanSolΣ(I) or, simply CanSol(I). Both J and U can
be computed in polynomial time w.r.t. the size of the
source instance [9].

3 Normalization of s-t tgds

In this section, we investigate ways of optimizing sets
of s-t tgds. In the first place, we thus formulate some
natural optimality criteria. The following parameters of
a set of s-t tgds will be needed in the definition of such
criteria:

Definition 2 Let Υ be a set of s-t tgds. Then we define:

– |Υ | denotes the number of s-t tgds in Υ .
– AntSize(Υ ) = Σ{|At(ϕ(x ))|:ϕ(x ) → ∃y ψ(x,y ) is

an s-t tgd in Υ}, i.e., AntSize(Υ ) is the total number
of atoms in all antecedents of tgds in Υ .

– ConSize(Υ ) = Σ{|At(ψ(x,y ))|:ϕ(x ) → ∃yψ(x,y)
is an s-t tgd in Υ}, i.e., ConSize(Υ ) is the total
number of atoms in all conclusions of tgds in Υ .

– VarSize(Υ ) = Σ{|y |:ϕ(x ) → ∃y ψ(x,y) is in Υ},
i.e., VarSize(Υ ) is the total number of existentially
quantified variables in all conclusions of tgds in Υ .

We would naturally like to transform any set of s-t
tgds into an equivalent one where all the above param-
eters are minimal. Recall however our discussion on the
splitting of s-t tgds from Example 3. As we pointed
out there, the splitting of s-t tgds is comparable to
normal form decomposition of relational schemas. It
should clearly be applied in order to avoid anomalies
like the introduction of obviously irrelevant atoms in
the canonical universal solution as we saw in Exam-
ple 3, where the set Σ (with two split s-t tgds) was
certainly preferable to Σ′ even though |Σ′| < |Σ| and
AntSize(Σ′) < AntSize(Σ) hold. Note that in Exam-
ple 3, the equality ConSize(Σ′) = ConSize(Σ) holds.
Intuitively, the effect of splitting is that the atoms in
the conclusion of some s-t tgd are distributed over sev-
eral strictly smaller s-t tgds. Thus, our goal should be
to find an optimal set of s-t tgds (that is, a set where the
above mentioned parameters are minimal) among those
sets of s-t tgds for which no further splitting is possible.
We now make precise what it means that “no further
splitting” is possible and formally define optimality of
a set of s-t tgds.

Definition 3 Let Σ be a set of s-t tgds. We say that
Σ is split-reduced if there exists no Σ′ equivalent to Σ,
s.t. |Σ′| > |Σ| but ConSize(Σ′) = ConSize(Σ).

Definition 4 Let Σ be a set of s-t tgds. We say that Σ
is optimal if it is split-reduced, and if each of the param-
eters |Σ|, AntSize(Σ), ConSize(Σ), and VarSize(Σ) is
minimal among all split-reduced sets equivalent to Σ.

Of course, given an arbitrary set Σ of s-t tgds, it is
a priori not clear that an optimal set Σ′ equivalent to
Σ exists, since it might well be the case that some Σ′

minimizes some of the parameters while another set Σ′′

minimizes the other parameters. The goal of this sec-
tion is to show that optimality in the above sense can
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always be achieved and to construct an algorithm which
transforms any set Σ of s-t tgds into an equivalent op-
timal one. To this end, we introduce a rewrite system
which consists of two kinds of rewrite rules: rules which
simplify each s-t tgd individually and rules which are
applied to the entire set of s-t tgds. The following exam-
ple illustrates several kinds of redundancy that a single
s-t tgd may contain (and which may be eliminated with
our rewrite rules).

Example 6 Consider the following dependency:
τ :S(x1, x3) ∧ S(x1, x2)→ (∃y1, y2, y3, y4, y5)

P (x1, y2, y1) ∧R(y1, y3, x2) ∧R(2, y3, x2)

∧P (x1, y4, 2) ∧ P (x1, y4, y5) ∧Q(y4, x3)

Clearly, τ is equivalent to the set {τ1, τ2} of s-t tgds:
τ1:S(x1, x3) ∧ S(x1, x2)→ (∃y1, y2, y3)

P (x1, y2, y1) ∧R(y1, y3, x2) ∧R(2, y3, x2)

τ2:S(x1, x3) ∧ S(x1, x2)→ (∃y4, y5)
P (x1, y4, y5) ∧ P (x1, y4, 2) ∧Q(y4, x3)

Now the antecedents of τ1 and τ2 can be simplified:

τ ′1:S(x1, x2)→ (∃y1, y2, y3)
P (x1, y2, y1) ∧R(y1, y3, x2) ∧R(2, y3, x2)

τ ′2:S(x1, x3)→ (∃y4, y5)
P (x1, y4, y5) ∧ P (x1, y4, 2) ∧Q(y4, x3)

Finally, we may also simplify the conclusion of τ ′2:

τ ′′2 :S(x1, x3)→ (∃y4)P (x1, y4, 2) ∧Q(y4, x3)

In total, τ is equivalent to {τ ′1, τ ′′2 }. �

For the simplifications illustrated in Example 6, we
define the rewrite rules 1 – 3 in Figure 1. Rules 1 and
2 replace an s-t tgd τ by a simpler one (i.e., with fewer
atoms) τ ′, while Rules 3 replaces τ by a set {τ1, . . . , τn}
of simpler s-t tgds. These rules make use of the following
definitions of the core and the components of CQs.

Definition 5 Let χ(u,v ) be a CQ with variables in
u ∪ v and let A denote the structure consisting of the
atoms At(χ(u,v )), s.t. the variables u are considered
as constants and the variables v as labeled nulls. Let
A′ denote the core of A with A′ ⊆ A, i.e., there exists a
substitution σ: v→ Const ∪u ∪v s.t. At(χ(u, v σ)) =
A′ ⊆ At(χ(u,v )). Then we define the core of χ(u,v )
as the CQ χ(u,vσ).
Definition 6 Let χ(u,v ) be a CQ with variables in u∪
v. We set up the dual graph G(τ) as follows: The atoms
of χ(u,v ) are the vertices of G(τ). Two vertices are
connected if the corresponding atoms have at least one
variable from v in common. Let {C1, . . . , Cn} denote
the connected components of G(τ). Moreover, for every
i ∈ {1, . . . , n}, let vi with ∅ ⊆ vi ⊆ v denote those
variables from v, which actually occur in Ci and let
χi(u,vi) denote the CQ consisting of the atoms in Ci.
Then we define the components of χ(u,v ) as the set
{χ1(u,v1), . . . , χn(u,vn)}.

Rewrite rules to simplify a set of s-t tgds

Rule 1 (Core of the conclusion, see Definition 5).
τ :ϕ(x )→ (∃y )ψ(x,y ) =⇒
τ ′:ϕ(x )→ (∃y )ψ(x,yσ),
s.t. ψ(x,yσ) is the core of ψ(x,y).

Rule 2 (Core of the antecedent, see Definition 5).
τ :ϕ(x1,x2)→ (∃y )ψ(x1,y ) =⇒
τ ′:ϕ(x1,x2σ)→ (∃y)ψ(x1,y),
s.t. ϕ(x1,x2σ) is the core of ϕ(x1,x2).

Rule 3 (Splitting, see Definition 6).
τ : ϕ(x )→ (∃y )ψ(x,y ) =⇒ {τ1, . . . , τn}, s.t.
{ψ1(x,y1), . . . , ψn(x,yn)} are the components of ψ(x,y )
and τi: ϕ(x )→ (∃yi)ψi(x,yi) for i ∈ {1, . . . , n}.

Rule 4 (Implication of an s-t tgd).
Σ =⇒ Σ \ {τ}
if Σ \ {τ} |= τ .

Rule 5 (Implication of atoms in the conclusion).
Σ =⇒ (Σ \ {τ}) ∪ {τ ′}
if τ :ϕ(x )→ (∃y )ψ(x,y )
and τ ′:ϕ(x )→ (∃y ′)ψ′(x,y ′),
s.t. At(ψ′(x,y ′)) ⊂ At(ψ(x,y ))
and (Σ \ {τ}) ∪ {τ ′} |= τ .

Fig. 1 Redundancy elimination from a set of s-t tgds.

The splitting rule (i.e., Rule 3 in Figure 1) was al-
ready applied in Example 3. Rule 2 involving core com-
putation of the antecedent was applied in Example 1,
when we reduced L(x1, x2, x3)∧L(x4, 3, x5)∧P (x5, x6)
to its core L(x4, 3, x5) ∧ P (x5, x6). Likewise, in Ex-
ample 6, the simplification of τ1 and τ2 to τ ′1 and τ ′2
is due to Rule 2. In a similar way, Rule 1 involving
core computation of the conclusion allowed us to re-
duce L(y1, y2, y3) ∧ L(x1, 3, y4) ∧ P (y4, x2) in Example
2 to L(x1, 3, y4) ∧ P (y4, x2). In Example 6, Rule 1 was
applied when we replaced τ ′2 by τ ′′2 .

The following example illustrates that additional
rules are required in order to remove an s-t tgd or a
part of an s-t tgd whose redundancy is due to the pres-
ence of other s-t tgds.

Example 7 Consider the set Σ = {τ ′1, τ ′′2 , τ3}, where τ ′1
and τ ′′2 are the s-t tgds resulting from the simplification
steps in Example 6 and τ3 is given below:

τ ′1:S(x1, x2)→ (∃y1, y2, y3)
P (x1, y2, y1) ∧R(y1, y3, x2) ∧R(2, y3, x2)

τ ′′2 :S(x1, x3)→ (∃y4)P (x1, y4, 2) ∧Q(y4, x3)

τ3:S(2, x)→ (∃y)R(2, y, x)

The tgd τ3 generates only a part of the atoms that τ ′1
does, and fires in strictly fewer cases than τ ′1. Hence,
τ3 may be deleted. Moreover, considering the combined
effect of the rules τ ′1 and τ ′′2 , which fire on exactly the
same tuples, and a substitution {y1 ← 2, y2 ← y4}, we
notice that the first two atoms in the conclusion of τ ′1
are in fact redundant, and it is possible to reduce τ ′1 to
τ ′′1 : S(x1, x2) → (∃y3)R(2, y3, x2). In total, Σ may be
replaced by Σ′ = {τ ′′1 , τ ′′2 }. �
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S(x1, x3)→ (∃y4, y5)

S(x1, x3) ∧ S(x1, x2)→ (∃y1, y2, y3)

Rule 2

Lemma 3.1    Rule 4 

P (x1, y2, y1) ∧R(y1, y3, x2) ∧R(2, y3, x2)

Rule 5

S(2, x)→ (∃y)R(2, y, x)

τ1 :

τ ′2 :

τ3 :

Rule 1

P (x1, y4, y5) ∧ P (x1, y4, 2) ∧Q(y4, x3)

Fig. 2 Tgd optimization. Rectangles mark eliminated atoms,
arrows show justifications for elimination.

Rules 4 and 5 in Figure 1 allow us to eliminate such
redundancies from a set Σ of s-t tgds: By Rule 4, we
may delete an s-t tgd τ from Σ, if τ is implied by the
others, like τ3 in Example 7. Rule 5 allows us to replace
a rule τ by a strictly smaller rule (with fewer atoms
in the conclusion) if τ is implied by τ ′ together with
the remaining s-t tgds in Σ (cf. the replacement of τ ′1
with τ ′′1 in Example 7 above). Figure 2 illustrates the
elimination of redundant atoms via Rules 1, 2, 4 and 5
in a set {τ1, τ ′2, τ3} of tgds from Examples 6 and 7.

In principle, the implication of a tgd by a set of
dependencies can be tested by a procedural criterion
based on the chase [4]. For our purposes, the following,
declarative criterion is more convenient.

Lemma 1 Consider an s-t tgd τ :ϕ(x)→ (∃y )ψ(x,y )
and a set Σ of s-t tgds. Then Σ |= τ holds iff there
exist (not necessarily distinct) s-t tgds τ1, . . . , τk in Σ,
such that all s-t tgds τ, τ1, . . . , τk are pairwise variable
disjoint and the following conditions hold:

(a) For every i ∈ {1, . . . , k}, there exists a substitution
λi: xi → Const ∪ x, s.t. At(ϕi(xiλi)) ⊆ At(ϕ(x )).

(b) A substitution µ: y → Const ∪ x ∪ ⋃ki=1 yi exists,

s.t. At(ψ(x,yµ)) ⊆ ⋃ki=1 At(ψi(xiλi,yi)).

Proof For the “⇒”-direction, consider an arbitrary pair
〈S, T 〉 of source and target instance, s.t. 〈S, T 〉 |= Σ. It
is easy to show that, by conditions (a) and (b), then
also 〈S, T 〉 |= τ holds. For the “⇐”-direction, we take
the source instance S = At(ϕ(x)), where we consider
the variables x as constants. Moreover, let T denote the
target instance which results from the oblivious chase
of S with Σ. Let τ1, . . . , τk denote the (not necessarily
distinct) s-t tgds whose antecedent can be mapped into
S via substitutions λ1, . . . , λk. These substitutions sat-
isfy the condition (a). By 〈S, T 〉 |= Σ and Σ |= τ we
get the desired substitution µ for condition (b). �

Note that Rule 5 generalizes Rule 1 and, in prin-
ciple, also Rule 4. Indeed, if we restrict Σ in Rule 5

to the singleton Σ = {τ}, then the replacement of τ by
τ ′ means that we reduce ψ(x,y ) to its core. Moreover,
Rule 5 allows us to eliminate all atoms from the con-
clusion of τ iff τ may be deleted via Rule 4. Clearly, the
deletion of the conclusion of τ essentially comes down
to the deletion of τ itself. The correctness of Rules 1 –
5 is easily established (see Appendix A)

Lemma 2 The Rules 1 – 5 in Figure 1 are correct, i.e.:
Let Σ be a set of s-t tgds and τ ∈ Σ. Suppose that Σ is
transformed into Σ′ by applying one of the Rules 1 – 5
to τ , that is:

– τ is replaced by a single s-t tgd τ ′ (via Rule 1,2,5),
– τ is replaced by s-t tgds τ1, . . . , τn (via Rule 3),
– or τ is deleted (via Rule 4).

Then Σ and Σ′ are equivalent.

The following notion of a “proper instance” of an s-t
tgd plays an important role for proving that our Rules
1 – 5 lead to a unique normal form. A proper instance
of an s-t tgd τ is obtained from τ by eliminating at least
one existentially quantified variable in the conclusion of
τ , while keeping the antecedent unchanged.

Definition 7 Let τ :ϕ(x) → (∃y )ψ(x,y ) be an s-t
tgd. We call an s-t tgd τ ′ a proper instance of τ , if
there exists a strict subset y ′ ⊂ y and a substitution
σ: y → Const ∪ x ∪ y ′, such that τ ′ is of the form
τ ′: ϕ(x )→ (∃y ′)ψ(x,yσ).

Example 8 In the following three tgds, each next tgd is
a proper instance of the previous ones:

τ1: S(x1, x2)→ (∃y1, y2)Q(x1, y1, y2)

τ2: S(x1, x2)→ (∃y1)Q(x1, y1, y1)

τ3: S(x1, x2)→ Q(x1, x2, x2)

Moreover, observe that τ2 |= τ1 and τ3 |= τ2 holds. �

The importance of “proper instances” to our inves-
tigations comes from the following properties:

Lemma 3 Let τ and τ ′ be s-t tgds, s.t. τ ′ is a proper
instance of τ . Then the following properties hold:

(1) τ ′ |= τ .

(2) Suppose that τ is reduced with respect to Rule 1.
Then τ 6|= τ ′.

Proof (Sketch) The proof of the first claim is easy.
Consider two tgds τ : ϕ(x ) → (∃y ) ψ(x,y ) and

τ ′: ϕ(x ) → (∃y ′)ψ(x,yσ). Let 〈S, T 〉 be an arbitrary
pair of source and target instances with 〈S, T 〉 |= τ ′

and let λ: x → dom(S) be a substitution, such that
At(ϕ(xλ) ⊆ S. We show that then also T |= ψ(xλ,y )
holds. By 〈S, T 〉 |= τ ′, we get T |= ψ(xλ,yσ), i.e., there
exists a substitution µ, s.t. At(ψ(xλ,yσµ)) ⊆ T . But
then, for ν = σµ, we have At(ψ(x,yσ)) ⊆ T . Thus,
T |= ψ(xλ,y ) holds.
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For the second one, suppose that τ |= τ ′ holds. We
have to show that then Rule 1 is applicable to τ . Let
〈S, T 〉 denote a pair of source and target instance with
S = At(ϕ(x )) and T = At(ψ(x,y )). The variables in
x are thus considered as constants while y are labeled
nulls. Clearly, 〈S, T 〉 |= τ and S |= ϕ(x ). Thus, by
the assumption τ |= τ ′, also T |= ψ(x,yσ) holds, i.e.,
there exists a substitution µ: y ′ → dom(T ) such that
At(ψ(x,yσµ)) ⊆ T . Hence, also the following inclusion
holds: At(ψ(x,yσµ)) ⊆ At(ψ(x,y )). Note that y ′ =
yσ ⊂ y. Hence, also At(ψ(x,yσµ)) ⊂ At(ψ(x,y )). But
then At(ψ(x,y )) is not a core and, therefore, Rule 1 is
applicable to τ . �

Lemma 4 Let τ be an s-t tgd reduced w.r.t. the Rules
1 and 3 and let Σ be a set of s-t tgds. If Σ |= τ , then
one of the following two conditions is fulfilled: Either

– there exists a single s-t tgd τ0 ∈ Σ, s.t. τ0 |= τ , or
– there exists a proper instance τ ′ of τ , s.t. Σ |= τ ′.

Proof Let {τ1, . . . , τk} ⊆ Σ \{τ} with {τ1, . . . , τk} |= τ .
Suppose that k is minimal with this property and that
k ≥ 2. We show that then {τ1, . . . , τk} |= τ ′ holds
for some proper instance τ ′ of τ . For i ∈ {1, . . . , k},
let τi’s be pairwise variable disjoint and have the form
τi: ϕi(xi)→ (∃yi )ψi(xi,yi). By Lemma 1 and the def-
inition of Rule 4, the τi’s fulfill the following properties:

(a) For every i ∈ {1, . . . , k}, there exists a substitution
λi: xi → Const ∪ x, s.t. At(ϕi(xiλi)) ⊆ At(ϕ(x )).

(b) A substitution µ: y → Const ∪ x ∪ ⋃ki=1 yi exists

s.t. At(ψ(x,yµ)) ⊆ ⋃ki=1 At(ψi(xiλi,yi)).

Let At(ψ(x,y )) = {A1, . . . , An}. Clearly, n ≥ k ≥
2. Suppose that {A1µ, . . . , Aαµ} ⊆ At(ψ1(x1λ1,y1))

while {Aα+1µ, . . . , Anµ} ⊆
⋃k
i=2 At(ψi(xiλi,yi)). By

assumption, τ is reduced w.r.t. Rule 3, i.e., the conclu-
sion of τ either consists of a single atom without vari-
ables from y or of atoms forming a single connected
component of the dual graph G(τ). By n ≥ k ≥ 2,
the former case can be excluded. Hence, the atoms in
{A1, . . . , Aα} and {Aα+1, . . . , An} share at least one
variable y ∈ y, i.e., y occurs in some atom Ai with i ∈
{1, . . . , α} and in some atom Aj with j ∈ {α+1, . . . , n}.
Let ` 6= 1 denote the index, s.t. Ajµ ∈ At(ψ`(x`λ`,y`)).
In total, we thus have Aiµ ∈ At(ψ1(x1λ1,y1)) and,
therefore, yµ ∈ Const ∪ x ∪ y1. On the other hand,
Ajµ ∈ At(ψ`(x`λ`,y`)) and, therefore, yµ ∈ Const ∪
x ∪ y`. By assumption, y1 and y` are disjoint. Thus,
yµ ∈ Const ∪ x.

We construct the desired proper instance τ ′ of τ
as follows: Let y ′ := y \ {y} and define the substitu-
tion σ: y → Const ∪ x ∪ y ′, s.t. yσ = yµ and σ maps
all other variables in y onto themselves. Then we have
σµ = µ, i.e., for every yi ∈ y, yiσµ = yiµ. Clearly,
{τ1, . . . , τk} |= τµ and, therefore, also {τ1, . . . , τk} |= τσ
holds. Hence, τ ′ is the desired proper instance of τ . �

Lemma 5 Suppose that an s-t tgd τ ∈ Σ is reduced
w.r.t. Rules 1 and 3 and that τ cannot be deleted via
Rule 4. If there exists a proper instance τ ′ of τ , s.t.
Σ |= τ ′ holds, then there exists an s-t tgd τ ′′, s.t. τ
may be replaced by τ ′′ via Rule 5.

Proof Let τ ′:ϕ(x ) → (∃y ′)ψ′(x,y ′) and suppose that
Σ |= τ ′ holds. Then there exist s-t tgds τ1, . . . , τk in Σ
of the form τi:ϕi(xi)→ (∃yi )ψi(xi,yi), s.t. the condi-
tions (a) and (b) of Lemma 1 are fulfilled, i.e.:

(a) For every i ∈ {1, . . . , k}, there exists a substitution
λi: xi → Const ∪ x, s.t. At(ϕi(xiλi)) ⊆ At(ϕ(x )).
(b) There exists a substitution µ: y → Const ∪ x ∪⋃k
i=1 yi, s.t. At(ψ′(x,y ′µ)) ⊆ ⋃ki=1 At(ψi(xiλi,yi)).

Let τ :ϕ(x )→ (∃y )ψ(x,y ). We claim that at least
one of the τi coincides with τ (up to variable renaming).
Suppose to the contrary that τi ∈ Σ \ {τ} holds for
every i ∈ {1, . . . , k}. Then, the above conditions (a)
and (b) imply that Σ \ {τ} |= τ ′ holds by Lemma 1.
Moreover, τ ′ |= τ holds by Lemma 3, part (1). Thus,
Σ \ {τ} |= τ and τ could be deleted by Rule 4, which
is a contradiction.

Let I = {i | 1 ≤ i ≤ k, s.t. τi is obtained from τ via
variable renaming}. We define the CQ ψ′′(x,y ′′) of the
s-t tgd τ ′′:ϕ(x )→ (∃y ′′)ψ′′(x,y ′′) as follows:

Θ = {A(x,y ) | A(x,y ) ∈ At(ψ(x,y )) and ∃i, s.t. i ∈ I
and A(xλi,y ) ∈ At(ψ′(x,y ′µ)) ∩At(ψi(xiλi,yi))}.
Moreover, we set ψ′′(x,y ′′) =

∧
A(x,y )∈Θ A(x,y ).

Clearly, (Σ \ {τ})∪ {τ ′′} |= τ ′ by Lemma 1. Thus, also
(Σ \ {τ})∪ {τ ′′} |= τ , by Lemma 3, part (1). We claim
that At(ψ′′(x,y ′′)) ⊂ At(ψ(x,y )) holds. Suppose to
the contrary that At(ψ′′(x,y ′′)) = At(ψ(x,y )). Then,
by the above definition of Θ and by Lemma 1, τ |= τ ′

would hold. By Lemma 3, part (2), this implies that τ
is not reduced w.r.t. Rule 1, which is a contradiction.
Hence, τ ′′ is indeed the desired s-t tgd, s.t. τ may be
replaced by τ ′′ via Rule 5. �

We now define a normal form of s-t tgds via the
rewrite rules of this section. We will then show that
this normal form is unique up to isomorphism in the
sense defined below.

Definition 8 Let Σ be a set of s-t tgds and let Σ′

be the result of applying the Rules 1 – 5 of Figure 1
exhaustively to Σ. Then Σ′ is the normal form of Σ.

Definition 9 Let τ1: ϕ1(x1) → (∃y1 )ψ1(x1,y1) and
τ2: ϕ2(x2) → (∃y2 )ψ2(x2,y2) be two tgds. We say
that τ1 and τ2 are isomorphic if τ2 is obtained from τ1
via variable renamings η: x1 → x2 and ϑ: y1 → y2.

Let Σ1 and Σ2 be two sets of tgds. We say that Σ1

and Σ2 are isomorphic if |Σ1| = |Σ2|, every τ1 ∈ Σ1 is
isomorphic to precisely one τ2 ∈ Σ2 and every τ2 ∈ Σ2

is isomorphic to precisely one τ1 ∈ Σ1.
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We start by showing for two single s-t tgds τ1 and
τ2 that logical equivalence and isomorphism coincide,
provided that the s-t tgds are reduced via our rewrite
rules. This result will then be extended to sets Σ1 and
Σ2 of s-t tgds.

Lemma 6 Let τ1 and τ2 be two s-t tgds and suppose
that τ1 and τ2 are reduced w.r.t. Rules 1 – 3. Then τ1
and τ2 are isomorphic, iff τ1 and τ2 are equivalent.

Proof (Sketch) The “⇒”-direction follows immediately
from Lemma 1. For the “⇐”-direction, let τ1 and τ2 be
equivalent s-t tgds with τ1:ϕ1(x1, x2)→ (∃y )ψ1(x1,y )
and τ2:ϕ2(u1,u2) → (∃v )ψ(u1,v ).

By Lemma 1, there exist substitutions λ and ρ, s.t.
λ: x1 ∪ x2 → Const ∪ u1 ∪ u2, and
ρ: u1 ∪ u2 → Const ∪ x1 ∪ x2, such that
At(ϕ1(x1λ,x2λ)) ⊆ At(ϕ2(u1,u2)) and
At(ϕ2(u1ρ,u2ρ)) ⊆ At(ϕ1(x1,x2)).

By exploiting the equivalence of τ1 and τ2 and the fact
that these s-t tgds are reduced w.r.t. Rule 2, we can
show that the antecedents of τ1 and τ2 are isomorphic
(i.e., the above inclusions are in fact equalities). More-
over, by exploiting that the s-t tgds are reduced w.r.t.
Rule 1, we may conclude that τ1 and τ2 are isomorphic.
For details, see Appendix B. �

Theorem 1 Let Σ1 and Σ2 be equivalent sets of s-t
tgds, i.e., Σ1 |= Σ2 and Σ2 |= Σ1. Let Σ′1 and Σ′2
denote the normal form of Σ1 and Σ2, respectively.
Then Σ′1 and Σ′2 are isomorphic.

Proof Let Σ1 and Σ2 be equivalent. Moreover, let Σ′1
and Σ′2 denote the normal form of Σ1 and Σ2, respec-
tively. By the correctness of our rewrite rules 1 – 5, of
course, also Σ′1 and Σ′2 are equivalent.

We first show that every s-t tgd in Σ′1 is isomorphic
to some s-t tgd in Σ′2 and vice versa. Suppose to the
contrary that this is not the case. W.l.o.g., we assume
that there exists a τ ∈ Σ′1 which is not isomorphic to
any s-t tgd in Σ′2. By the equivalence of Σ′1 and Σ′2, the
implication Σ′2 |= τ clearly holds. By Lemma 4, either
τ0 |= τ for a single s-t tgd τ0 ∈ Σ′2 or there exists a
proper instance τ ′ of τ , s.t. Σ′2 |= τ ′.

We start by considering the case that τ0 |= τ for a
single s-t tgd τ0 ∈ Σ′2. By the equivalence of Σ′1 and Σ′2,
the implication Σ′1 |= τ0 holds and we can again apply
Lemma 4, i.e., either τ1 |= τ0 for a single s-t tgd τ1 ∈ Σ′1
or there exists a proper instance τ ′0 of τ0, s.t. Σ′1 |= τ ′0.
Again we consider first the case that a single s-t tgd
is responsible for the implication. Actually, if τ1 were
identical to τ then we had the equivalence τ1 |= τ and
τ |= τ1. Since both τ and τ1 are reduced w.r.t. Rules 1
– 3, this would mean (by Lemma 6) that τ1 and τ are
isomorphic. This contradicts our original assumption
that τ is not isomorphic to any s-t tgd in Σ′2. Hence, the

case that τ1 |= τ0 for a single s-t tgd τ1 ∈ Σ′1 means that
τ1 is different from τ . In total, we thus have τ1 |= τ0 and
τ0 |= τ and, therefore, τ1 |= τ for a s-t tgd τ1 ∈ Σ′1\{τ}.
Hence, τ can be deleted from Σ′1 via Rule 4, which
contradicts the normal form of Σ′1.

It thus remains to consider the cases that there ex-
ists a proper instance τ ′ of τ , s.t. Σ′2 |= τ ′ or there
exists a proper instance τ ′0 of τ0, s.t. Σ′1 |= τ ′0. We only
show that the first one leads to a contradiction. The
second case is symmetric. So suppose that there exists
a proper instance τ ′ of τ , s.t. Σ′2 |= τ ′. By the equiva-
lence of Σ′1 and Σ′2, we have Σ′1 |= Σ′2 and, therefore,
also Σ′1 |= τ ′. But then τ can be replaced in Σ′1 by τ ′

via Rule 5. Hence, by Lemma 5, τ can be replaced in
Σ′1 by some s-t tgd τ ′′ via Rule 5. But this contradicts
the assumption that Σ′1 is in normal form.

Hence, it is indeed the case that every s-t tgd in Σ′1
is isomorphic to some s-t tgd in Σ′2 and vice versa. We
claim that every s-t tgd in Σ′1 is isomorphic to precisely
one s-t tgd in Σ′2 and vice versa. Suppose to the con-
trary that there exists a s-t tgd τ which is isomorphic to
two s-t tgds τ1 and τ2 in the other set. W.l.o.g., τ ∈ Σ′1
and τ1, τ2 ∈ Σ′2. Clearly, τ1 and τ2 are isomorphic since
they are both isomorphic to τ . Hence, τ1 |= τ2 and,
therefore, Σ′2 \ {τ2} |= τ2, i.e., Rule 4 is applicable to
Σ′2, which contradicts the assumption that Σ′2 is in nor-
mal form. �

We now consider the complexity of computing the
normal form of a set of s-t tgds. Of course, the applica-
tion of any of the Rules 1, 2, 4, and 5 is NP-hard, since
they involve CQ answering. However, below we show
that if the length of each s-t tgd (i.e., the number of
atoms) is bounded by a constant, then the normal form
according to Definition 8 can be obtained in polynomial
time.

Note that a constant upper bound on the length of
the s-t tgds is a common restriction in data exchange
since, otherwise, even the most basic tasks like, com-
puting a target instance fulfilling all s-t tgds, would be
intractable.

Theorem 2 Suppose that the length (i.e., the num-
ber of atoms) of the s-t tgds under consideration is
bounded by some constant b. Then there exists an al-
gorithm which reduces an arbitrary set Σ of s-t tgds
to normal form in polynomial time w.r.t. the total size
||Σ|| of (an appropriate representation of) Σ.

Proof (Sketch) First, the total number of applications
of each rule is bounded by the total number of atoms
in all s-t tgds in Σ. Indeed, Rule 4 deletes an s-t tgd.
The Rules 1, 2, and 5 delete at least one atom from an
s-t tgd. Rule 3 splits the conclusion of an s-t tgd in 2 or
more parts. Hence, also the total number of applications
of Rule 3 is bounded by the total number of atoms in
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Σ. Finally, the application of each rule is feasible in
polynomial time since the most expensive part of these
rules is the CQ answering where the length of the CQs
is bounded by the number of atoms in a single s-t tgd.

For details, see Appendix C. �

The restriction on the number of atoms in each s-t
tgd is used in the above proof only in order to show that
each rule application is feasible in polynomial time. The
argument that the total number of rule applications is
bounded by the total number of atoms in all s-t tgds in
Σ applies to any set Σ of s-t tgds. We thus get:

Corollary 1 The rewrite rule system consisting of
Rules 1 – 5 is terminating, i.e., Given an arbitrary set
Σ of s-t tgds, the non-deterministic, exhaustive appli-
cation of the Rules 1 – 5 terminates.

It can be shown that the unique normal form pro-
duced by our rewrite rules is indeed optimal .

Theorem 3 Let Σ be a set of s-t tgds in normal form.
Then Σ is optimal according to Definition 4.

Proof The proof proceeds in three stages:

(1) Σ is split-reduced. Suppose to the contrary that
it is not. Then there exists a set Σ′ with Σ ≡ Σ′,
|Σ| < |Σ′| and ConSize(Σ) = ConSize(Σ′). Let Σ∗

denote the result of exhaustively applying our rewrite
rules to Σ′. By Theorem 1, Σ and Σ∗ are isomor-
phic. Hence, we have ConSize(Σ) = ConSize(Σ∗) and
|Σ| = |Σ∗|. An inspection of the Rules 1 – 5 reveals that
they may possibly decrement the value of ConSize() (by
either deleting an atom in the conclusion or deleting
an entire s-t tgd) but they never increment the value
of ConSize(). By ConSize(Σ) = ConSize(Σ′) together
with ConSize(Σ) = ConSize(Σ∗), we immediately have
ConSize(Σ′) = ConSize(Σ∗). Hence, when transform-
ing Σ′ into Σ∗, we never decrement ConSize() and,
thus, we never delete an s-t tgd. But then |Σ′| = |Σ∗|
and, therefore, |Σ′| = |Σ|, which contradicts the as-
sumption that |Σ| < |Σ′| holds.

(2) ConSize(Σ) and VarSize(Σ) are minimal. It is easy
to verify that by no application of any of the Rules
1 – 5 the parameters ConSize() or VarSize() can in-
crease, i.e., if a set Υ of s-t tgds is obtained from some
set Υ ′ by an application of one of the Rules 1 – 5,
then ConSize(Υ ) ≤ ConSize(Υ ′) and VarSize(Υ ) ≤
VarSize(Υ ′).

Now let Σ′ be a set of s-t tgds equivalent to Σ,
and let Σ∗ denote the result of exhaustively apply-
ing our rewrite rules to Σ′. By Theorem 1, Σ and Σ∗

are isomorphic. Hence, we have the following relations:
ConSize(Σ) = ConSize(Σ∗) ≤ ConSize(Σ′) and also
VarSize(Σ) = VarSize(Σ∗) ≤ VarSize(Σ′).

(3) |Σ| and AntSize(Σ) are minimal. Let Σ′ be an ar-
bitrary split-reduced set of s-t tgds equivalent to Σ.

We first show that |Σ| ≤ |Σ′|. Suppose to the contrary
that |Σ| > |Σ′|. We derive a contradiction by showing
that then Σ′ is not split-reduced. By (2), we know that
ConSize(Σ) ≤ ConSize(Σ′) holds. Analogously to the
proof of Lemma 7, we can transform Σ into Σ̄ with
ConSize(Σ̄) = ConSize(Σ′) simply by choosing an s-t
tgd τ in Σ and inflating its conclusion by sufficiently
many atoms of the form P (u1, . . . , uk). In total, we
then have Σ̄ ≡ Σ′, ConSize(Σ̄) = ConSize(Σ′), and
|Σ̄| > |Σ′|. Hence, Σ′ is not split-reduced.

It remains to prove AntSize(Σ) ≤ AntSize(Σ′) as
the final inequality. It is easy to verify that the pa-
rameter AntSize() can never increase when one of the
Rules 1, 2, 4, or 5 is applied. Moreover, by Lemma 7,
we know that Rule 3 is never applicable when we trans-
form a split-reduced set of s-t tgds into normal form.
Now let Σ∗ denote the normal form of Σ′. By The-
orem 1, Σ and Σ∗ are isomorphic. Hence, we have
AntSize(Σ) = AntSize(Σ∗) ≤ AntSize(Σ′). �

An important motivation for seeking a conclusion-
minimal mapping Σ is to keep the redundancies in the
target instance small when using Σ in data exchange.
The following theorem establishes that our normal form
indeed serves this purpose.

Theorem 4 Let M = 〈S,T, Σ〉 be a schema mapping
where Σ is a set of s-t tgds and Σ is in normal form.
Moreover, let Σ′ be another set of s-t tgds, s.t. Σ and Σ′

are equivalent and let I be an arbitrary source instance.
Then there exists a variable renaming λ on the vari-
ables in the canonical universal solution CanSolΣ(I),

s.t. CanSolΣ(I)λ ⊆ CanSolΣ
′
(I) holds, i.e., the canon-

ical instance produced by Σ is subset-minimal up to
variable renaming.

Proof It is easy to verify that every application of any
of the Rules 1 – 5 either leaves the corresponding canon-
ical universal solution unchanged or prevents the intro-
duction of some atoms in the canonical universal so-
lution, i.e., let the set Υ of s-t tgds be obtained from
some set Υ ′ by an application of one of the Rules 1 – 5,
then there exists a substitution µ, s.t. CanSolΥ (I)µ ⊆
CanSolΥ

′
(I) holds. The theorem follows by an easy in-

duction argument. �

We conclude this section by two remarks on the
splitting rule:

(1) The purpose of the splitting rule is to enable a fur-
ther simplification of the antecedents of the resulting s-t
tgds. Of course, it may happen that no further simpli-
fication is possible. As an example, consider a schema
mapping Σ = {R(x, y) ∧ R(y, z) → S(x, z) ∧ T (z, x)}.
Splitting yields Σ′ = {R(x, y) ∧ R(y, z) → S(x, z);
R(x, y) ∧ R(y, z) → T (z, x)}, which cannot be further
simplified. In cases like this, one may either “undo” the
splitting or simply keep track of s-t tgds with identical
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(possibly up to variable renaming) antecedents in order
to avoid multiple evaluation of the same antecedent by
the chase.

(2) Definition 3 gives a “semantical” definition of “split
reduced” while the splitting rule is a “syntactical” cri-
terion. The following lemma establishes the close con-
nection between them.

Lemma 7 Let Σ be a split-reduced set of s-t tgds and
let Σ∗ denote the normal form of Σ. Then, for every
possible sequence of rewrite rule applications, this nor-
mal form Σ∗ is obtained from Σ without ever applying
Rule 3 (i.e., splitting).

Proof Suppose to the contrary that there exists a se-
quence of rewrite rule applications including the split-
ting rule on the way from Σ to Σ∗. An inspection of
the rewrite rules shows that an application of Rule 4
(i.e., deletion of an s-t tgd) is never required as a pre-
condition in order to be able to apply another rule.
Hence, w.l.o.g., we may assume that Rule 4 is applied
at the very end of the transformation of Σ into Σ∗,
so that Rule 4 does not precede the application of any
other rule. Let Σ0, . . . , Σn with Σ0 = Σ and Σn =
Σ∗ denote the sequence of intermediate results along
this transformation of Σ into Σ∗. Then there exists
an i ∈ {1, . . . , n}, s.t. Σi is obtained from Σi−1 by
an application of Rule 3. Moreover, suppose that this
is the first application of Rule 3 along this transfor-
mation of Σ into Σ∗. Since we are assuming that all
applications of Rule 4 occur at the very end of this
transformation from Σ to Σ∗, we have |Σi−1| = |Σ|
and, therefore, |Σi| > |Σ|. An inspection of the Rules
1, 2, 3, and 5 reveals that they may possibly decre-
ment the value of ConSize() (by deleting an atom in the
conclusion via Rule 1 or 5) but they never increment
the value of ConSize(). Hence, we have ConSize(Σi) ≤
ConSize(Σ). We derive a contradiction by construct-
ing a set Σ′ equivalent to Σi (and, hence, to Σ), with
ConSize(Σ′) = ConSize(Σ) and |Σ′| > |Σ|. In other
words, we show that Σ is not split-reduced.

Let τ with τ :ϕ(x )→ ∃y ψ(x,y ) be an arbitrary s-t
tgd in Σi and let P (z1, . . . , zk) with {z1, . . . , zk} ⊆ x∪y
be an atom in the conclusion of τ . Clearly, we may
add atoms of the form P (u1, . . . , uk) for fresh, existen-
tially quantified variables u1, . . ., uk to the conclusion
without changing the semantics of Σ. Indeed, any such
atom could be removed again by our Rule 1 (Core of
the conclusion). Then we transform Σi into Σ′ with
ConSize(Σ′) = ConSize(Σi) simply by inflating the
conclusion of τ in Σi by sufficiently many atoms of the
form P (u1, . . . , uk). In total, we then have Σ′ ≡ Σi ≡
Σ, ConSize(Σ′) = ConSize(Σ), and |Σ′| = |Σi| > |Σ′|.
Hence, Σ is not split-reduced, which contradicts the
assumption of this lemma. �

If a mapping Σ contains redundancies in the sense
that one of the Rules 1, 4, 5 is applicable, then the
notion of “split-reduced” according to Definition 3 and
the non-applicability do not necessarily coincide as the
following example illustrates. However, if Rules 1, 4, 5
are not applicable, then Definition 3 is exactly captured
by the splitting rule (Rule 3).

Example 9 Consider the set Σ = {τ} of s-t tgds with
τ :P (x1, x2)→ (∃y1, y2)R(x1, x2, y1)∧R(x1, y1, y2). On
the one hand, Rule 3 is not applicable because the con-
clusion of τ consists of a single connected component.

On the other hand, τ may be also simplified (via
Rule 1 or Rule 5) to τ ′:P (x1, x2) → (∃y)R(x1, x2, y).
Now let Σ′ consist of two “copies” of τ ′, i.e., Σ′ =
{τ ′, τ ′′} with τ ′′:P (z1, z2)→ (∃y)R(z1, z2, y). Then we
have the equivalence Σ ≡ Σ′. Moreover, |Σ′| > |Σ|
and ConSize(Σ′) = ConSize(Σ). Hence, Σ is not split-
reduced in the sense of Definition 3. �

Lemma 8 Let Σ be a set of s-t tgds, s.t. Σ is re-
duced w.r.t. Rules 1, 4, 5. Then the following equiv-
alence holds: Σ is split-reduced (according to Defini-
tion 3) iff Rule 3 (i.e., splitting) is not applicable.

Proof If Rule 3 is applicable to Σ, then Σ can obviously
be transformed into an equivalent set Σ′ with |Σ′| >
|Σ| and ConSize(Σ′) = ConSize(Σ), i.e., Σ is not split-
reduced according to Definition 3.

Now suppose that the splitting rule is not applicable
to Σ. We have to show that then Σ is split-reduced.
Suppose to the contrary that it is not split-reduced, i.e.,
there exists an equivalent set Σ′ with |Σ′| > |Σ| and
ConSize(Σ′) = ConSize(Σ). We derive a contradiction
by exploiting Theorem 1 (i.e., the uniqueness of the
normal form according to Definition 8).

First, we observe that the normal form Σ∗ of Σ can
be obtained via Rule 2 only. Indeed, by assumption,
none of Rules 1, 3, 4, 5 is applicable to Σ. Hence, ei-
ther Σ already is in normal form (i.e., Rule 2 is not
applicable either) or Σ can be simplified via Rule 2.
Clearly, an application of Rule 2 does not enable the
application of any of the other rules. Hence, Σ∗ is ob-
tained by iterated applications of Rule 2 only. Note
that Rule 2 has no influence on the cardinality and
on the conclusion-size of a mapping. Hence, we have
|Σ| = |Σ∗| and ConSize(Σ) = ConSize(Σ∗).

Second, let us transform Σ′ into normal form. By
Theorem 1, this normal form is unique up to isomor-
phism. Hence, w.l.o.g., this normal form of Σ′ is Σ∗. As
far as the cardinality of the involved mappings is con-
cerned, we have |Σ′| > |Σ| and |Σ| = |Σ∗|. Hence, dur-
ing the transformation of Σ′ into |Σ∗|, eventually Rule
4 or 5 must be applied thus reducing the conclusion-size.
Hence, we have ConSize(Σ′) > ConSize(Σ∗). But this
is a contradiction to the above equalities ConSize(Σ′) =
ConSize(Σ) and ConSize(Σ) = ConSize(Σ∗) �
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4 Extension to Target Egds

We now extend our rewrite rule system to schema map-
pings with both s-t tgds and target egds. Several addi-
tional considerations and measures are required to ar-
rive at a unique normal form and a basis for the s-t
tgd optimization also in this case. The outline of this
section is as follows:

(1) We have already seen in Example 5 that the pres-
ence of egds may have an effect on the equivalence
between two sets of s-t tgds. We shall therefore first
present a method of “propagating” the effects of the
egds into the s-t tgds.

(2) Splitting has played an important role in all our con-
siderations so far. It will turn out that splitting via Rule
3 as in the tgd-only case is not powerful enough if egds
are present. We shall therefore present a generalization
of the notion of “split-reduced” and of the splitting rule
to the case when also egds are present. This will lead
to the notion of “egd-split-reduced” mappings.

(3) The intuition of “egd-split-reduced” mappings is
that it is not possible to generate the atoms in the
conclusion of some tgd by means of several tgds. The
antecedent may thus possibly be left unchanged. It can
easily be shown that, in general, there does not exist a
unique “egd-split-reduced” normal form. We therefore
restrict this notion to “antecedent-split-reduced” map-
pings, i.e.: a tgd is replaced by new tgds only if the new
tgds have strictly smaller antecedent than the original
one. With this concept, we shall manage to prove that
there always exists a unique (up to isomorphism) nor-
mal form also in the presence of egds.

(4) Finally, we leave aside the considerations on split-
ting and concentrate on the optimization of the set of
s-t tgds according to the criteria of Section 3. We shall
show that grouping the s-t tgds by homomorphically
equivalent antecedents is the key to any optimization
tasks in this area.

(5) We also look at the operation opposite to splitting:
namely, merge of s-t tgds with homomorphically equiv-
alent antecedents. As we will show, unlike the s-t tgds
only case, in presence of target dependencies the split-
ting of s-t tgds can cause an increase in the total number
of conclusion atoms. Hence, for some cases the merge
opeartion can be a reasonable alternative. We will show,
however, that with respect to the unique normal form,
the “merged” form of the mappings is no more useful
than the “egd-split-reduced” form.

Propagating the effect of egds into s-t tgds. An
important complication introduced by the egds has al-
ready been hinted at in Section 1, namely the equiv-
alence of two sets of s-t tgds may be affected by the
presence of egds:

Example 10 (Example 5 slightly extended).

Σst = {C(x1, x2, x3)→
(∃y1, y2) P (y1, y2, y2)∧P (y1, x2, x3)

C(x1, x2, x3)→ (∃y1)P (y1, x3, x2)

C(x1, x2, x2)→ Q(x1)}

Σ′st = {C(x1, x2, x3)→ (∃y1) P (y1, x2, x3)
C(x1, x2, x3)→ Q(x1)}

Σt = {P (x1, x2, x3)→ x2 = x3}
We have Σst ∪Σt ≡ Σ′st ∪Σt. Moreover, both Σst and
Σ′st are in normal form w.r.t. the Rules 1 – 5 from
Section 3. However, Σst 6≡ Σ′st holds. �

In contrast, the equivalence of two sets of target
egds is not influenced by the presence of s-t tgds, as the
following lemma shows.

Lemma 9 Suppose that Σ = Σst∪Σt and Υ = Υst∪Υt
are two logically equivalent sets of s-t tgds and target
egds. Then, Σt and Υt are equivalent.

Proof W.l.o.g. assume that there exists an ε : ϕ(x) →
σ(x) ∈ Υt s.t. Σt 6|= ε. That is, the set L = At(ϕ(x))Σt

of atoms of the antecedent of ε chased with Σt does not
satisfy ε. However, it does satisfy Σt. Now, consider the
pair of instances 〈∅, L〉. Since L |= Σt, 〈∅, L〉 |= Σ and
〈∅, L〉 6|= Υ , which is a contradiction. �

Recall that we are only considering logical equivalence
of dependencies here. The study of weaker notions of
equivalence [10] which only take attainable target in-
stances into account (which is not the case for L in the
above proof) has been initiated in [23].

In order to work with logical equivalence, we need
a way to test logical implication of mappings. How-
ever, since we are now dealing with s-t tgds and egds,
the declarative implication criterion from Lemma 1 no
longer works. Instead, we take the chase-based proce-
dure by Beeri and Vardi [4], applicable to any embedded
dependencies that cannot cause an infinite chase (which
is clearly the case when all tgds are s-t tgds).

Lemma 10 [4] Let Σ be a set of acyclic tgds and egds
and let δ be either a tgd or an egd. Let ϕ(x ) denote the
antecedent of δ and let T denote the database obtained
by chasing At(ϕ(x )) with Σ. The variables in x are
considered as labeled nulls. Then Σ |= δ iff T |= δ holds.

Analogously to Rule 4 in Figure 1, we also need a
rule for deleting redundant tgds in the presence of tar-
get egds. We shall refer to this rule as the Rule E1 in
the rewrite rule system to be constructed in this sec-
tion, which is specified in Figure 4. As in the tgd-only
case, the primary goal of such a rewrite rule system is
the definition of a unique normal form of the s-t tgds –
but now taking also the target egds into account. The
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Procedure Propagate
Input: A set of s-t tgds and target egds Σ = Σst ∪Σt
Output: Sets of source egds Σs and rewritten s-t tgds Σst∗

1. Set Σs = Σst∗ = ∅;
2. for each s-t tgd τ :ϕ(x )→ (∃y )ψ(x,y ) in Σst do

/* (a) non-frozen antecedent database */
I := At(ϕ(x ));

/* (b) chase with Σ = Σst ∪Σt */
〈JS , JT 〉 := 〈I, ∅〉Σ ;

/* (c) transform s-t tgd τ into τ ′ */
Let J∗ = core(JT ), whereby the terms occurring in JS

are considered as constants.
Let y be a tuple of all variables from var(JT ) \ var(JS);

τ ′ :=
(∧

A∈JS
A
)
→ (∃y )

∧
B∈J∗ B;

Σst∗ := Σst∗ ∪ {τ ′};
/* (d) generate source egds */

Compute a substitution λ s.t. At(ϕ(xλ)) = JS ;
for each pair of variables xj , xk ∈ x do

if xjλ = xkλ then
Σs := Σs ∪ {ϕ(x )→ xj = xk};

end for;

Fig. 3 Procedure Propagate.

first step towards this goal is to incorporate the effects
of egds into s-t tgds. As we have already pointed out in
Section 1, this may require the introduction of source
egds. Since we only consider source instances contain-
ing no variables (and not the recent semantics of [12]),
there will be no source chase. The source egds are only
meant to capture the failure conditions which cannot be
detected otherwise after the rewriting of the s-t tgds.

In Figure 3, we present the procedure Propagate,
which incorporates, to some extent, the effect of the
target egds into the s-t tgds and thereby possibly gen-
erates source egds. The idea of this procedure is that,
for every s-t tgd τ , we identify all egds that will be
applicable whenever τ is. Moreover, we want that all
equalities enforced by these egds should already be en-
forced in the s-t tgd. Note that the chase in step 2.(b)
is not the usual chase in data exchange. Here, in order
to propagate backwards the effect of the target egds, in
step 2.(b) we chase the database I = At(ϕ(x)) with la-
beled nulls, which instantiate the variables from x. We
assume that this chase always succeeds: the only reason
for failure on I could be constants occurring in s-t tgds
of Σ. If this is the case, however, the chase is certain to
fail on any source instance satisfying the antecedent of
τ . Thus, such a τ can be simply replaced by a source
egd of the form ϕ(x ) → ⊥ to rule out instances on
which τ would fire.

Example 11 We now apply the Propagate procedure
to Σ = Σst ∪ Σt from Example 10. We start the loop
in step 2 of the procedure with the first tgd of Σst
τ : C(x1, x2, x3)→ (∃y1, y2) P (y1, y2, y2)∧P (y1, x2, x3).

(a) I := {C(x1, x2, x3)}. (We now consider every xi as
a labeled null).

(b) Chasing 〈I, ∅〉 with Σst yields I ′ = {C(x1, x2, x3),
P (y′1, y

′
2, y
′
2), P (y′1, x2, x3), P (y′′1 , x3, x2)}. The egd of

Σt is then applied, resulting in I ′′ = {C(x1, x2, x2),
P (y′1, y

′
2, y
′
2), P (y′1, x2, x2), P (y′′1 , x2, x2)}. Note, that

the egd application affected the “source” atom C. Now,
the third tgd in Σst becomes applicable, producing the
ultimate instance 〈JS , JT 〉 = 〈I, ∅〉Σ = {C(x1, x2, x2),
P (y′1, y

′
2, y
′
2), P (y′1, x2, x2), P (y′′1 , x2, x2), Q(x1)}.

(c) We got instances JS = {C(x1, x2, x2)} and JT =
{P (y′1, y

′
2, y
′
2), P (y′1, x2, x2), P (y′′1 , x2, x2), Q(x1)}. Core

computation of JT yields J∗ = {P (y′1, x2, x2), Q(x1)}.
The s-t tgd τ is thus transformed into the following τ ′:
C(x1, x2, x2)→ ∃y′1 P (y′1, x2, x2) ∧Q(x1).

(d) We compute the substitution λ = {x3 ← x2}, which
maps the only atom C(x1, x2, x3) in ϕ(x ) onto instance
JS = {C(x1, x2, x2)}. Hence, we get one source egd
C(x1, x2, x3)→ x2 = x3.

Finally, after the first iteration of the loop, we have
Σst
∗ = {C(x1, x2, x2) → (∃y′1)P (y′1, x2, x2) ∧ Q(x1)}

and Σs = {C(x1, x2, x3) → x2 = x3}. The remaining
two iterations do not change the tgds of Σ (and thus
also introduce no further source egds). �

The Propagate procedure never increases the size
of the antecedents of s-t tgds. Hence, the cost of the
join-operations when computing the canonical univer-
sal solution is not affected. On the other hand, the size
of the conclusions is normally increased by this proce-
dure. Note however that all atoms thus accumulated in
the conclusion of some s-t tgd τ would be generated in
a target instance anyway, whenever τ fires. We will ul-
timately discuss the deletion of redundant atoms from
the conclusion of the s-t tgds (via a rule similar to Rule
5 from Figure 1). However, for the time being, it is con-
venient to have all these atoms present. This ensures
that dependencies resulting from the Propagate pro-
cedure possess the following essential properties.

Lemma 11 Consider a set Σ = Σst ∪ Σt of s-t tgds
Σst and target egds Σt. Moreover, let (Σs, Σst

∗) denote
the result of Propagate(Σst, Σt). Then, the following
conditions hold:

(1) For every s-t tgd τ ∈ Σst
∗, let Iτ be a database

obtained from the antecedent ϕ(x) of τ by instantiating
the variables of x with fresh distinct constants. Then,
the chase of Iτ with Σst ∪Σt is successful.

(2) For every source instance I: if I 6|= Σs then the
chase of I with Σst ∪Σt fails.

Proof (1) After the successful completion of the chase
in step 2.(b) of the Propagate procedure, all necessary
unifications in the antecedent relations have been per-
formed. Hence, the instance 〈At(ϕ(x )), At(ψ(x,y )) 〉
for an s-t tgd ϕ(x) → (∃y )ψ(x,y ) in Σst

∗ satisfies
both Σst and Σt. Freezing the variables in At(ϕ(x ))
(i.e., taking them as constants) makes no difference.
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(2) An inspection of steps 2.(b) and (d) of the Prop-
agate procedure reveals that Σs enforces only those
equalities which are implied by Σst ∪ Σt. Therefore, a
violation of Σs means that also Σst ∪Σt is violated. �

Lemma 12 The Propagate procedure is correct, i.e.:
let Σ = Σst ∪ Σt and let (Σs, Σst

∗) result from a call
of Propagate(Σst, Σt). Then Σ ≡ Σ′ for Σ′ = Σs ∪
Σst
∗ ∪Σt.

Proof The Propagate procedure leaves the set Σt un-
changed. Moreover, Lemma 11, part (2), implies Σ |=
Σs. It thus remains to show Σ |= τ ′ for every τ ′ ∈ Σst∗
and Σ′ |= τ for every τ ∈ Σst. These relationships
are proved by inspecting the loop in Propagate (in
particular, step 2.b) and checking that the implication
criterion of [4] recalled in Lemma 10 is fulfilled.

[Σ |= τ ′] Let τ ′:ϕ′(x ′) → (∃y ′)ψ′(x ′,y ′) be obtained
by applying the loop of Propagate to some s-t tgd
τ ∈ Σst with τ :ϕ(x ) → (∃y )ψ(x,y ). The unifications
applied to ϕ(x ) in order to get ϕ′(x ′) are precisely the
ones enforced by the chase of At(ϕ(x )) with Σ in step
2.(b) of Propagate. Therefore, chasing At(ϕ′(x ′)) with
Σ yields the same result as the chase of I = At(ϕ(x ))
withΣ, namely IΣ . Hence, the conjunction of the atoms
in the set JT in step 2.(b) is satisfied by IΣ . Now con-
sider the conclusion ψ′(x ′,y ′) of τ ′, which is obtained
via core computation from JT . ψ′(x ′,y ′) is the con-
junction of a subset of JT , which is clearly also satisfied
by IΣ .

[Σ′ |= τ ] Let τ :ϕ(x ) → (∃y )ψ(x,y ) be an s-t tgd in
Σst and let τ ′:ϕ′(x ′)→ (∃y ′)ψ′(x ′,y ′) denote the re-
sult of applying the loop of Propagate to τ . Consider
the (non-frozen) antecedent database At(ϕ(x )) of τ .
Chasing I with Σ′ comes down to enforcing Σs (which
transforms At(ϕ(x )) into At(ϕ′(x ′))) followed by chas-
ing At(ϕ′(x ′)) with τ ′. The result of this chase is I∗ =
At(ϕ′(x ′)) ∪ At(ψ′(x ′,y ′)). Note that At(ψ′(x ′,y ′))
is the core of the chase of At(ϕ(x )) with Σ. Hence,
I∗ must satisfy τ , from which the claim follows, by
Lemma 10. �

The following property is easy to see and will be
helpful subsequently.

Lemma 13 Let Σ = Σst ∪ Σt, and let (Σs, Σst
∗) de-

note the result of Propagate(Σst, Σt). Moreover, let
τ ∈ Σst∗ with τ :ϕ(x ) → ∃(y ) ψ(x,y ), and let I be a
source instance with I ⊆ At(ϕ(x)), such that elements
of x are instantiated with distinct fresh constants in I.

Then the chase of I both with Σ = Σst ∪ Σt and with
Σ∗ = Σs ∪ Σst∗ ∪ Σt succeeds. Moreover, core(IΣ) =
core(IΣ

∗
).

Proof By condition (1) of Lemma 11, the chase with Σ
and withΣ∗ succeeds on the frozen antecedent database

Iτ of τ . Hence, the chase must also succeed for any sub-
set of Iτ . The equality core(JΣ) = core(JΣ

∗
) immedi-

ately follows from the correctness of the Propagate
procedure, see Lemma 12. �

Splitting in the presence of egds. The following
example illustrates that the splitting rule (i.e., Rule 3
in Figure 1) does not suffice to detect the possibility of
splitting a “bigger” tgd into smaller ones in the presence
of target egds:

Example 12 Consider the following mappingΣ = {τ, ε}
τ : S(x, z1) ∧ S(x, z2)→ R(z1, y) ∧Q(z2, y)

ε: R(x1, y1) ∧Q(x2, y2)→ y1 = y2

It is easy to check that Σ is equivalent to the mapping
Σ′ = {τ1, τ2, ε} with the same target egd and two s-t
tgds, each containing only a subset of the antecedent
and conclusion atoms of τ :

τ1: S(x, z1)→ R(z1, y)

τ2: S(x, z2)→ Q(z2, y)

The Rule 3 from Section 3 does not allow such a split-
ting, however. �

In some sense, the splitting in the above example
still had significant similarities with splitting in the ab-
sence of egds, namely: the basic idea of distributing
the conclusion atoms over several dependencies is still
present when target egds have to be taken into account.
However, we have to deal with a significant extension
here: Without egds it would never be possible to split
the connected component (w.r.t. the existential vari-
ables) of the conclusion of a tgd. As we have seen in the
above example, egds may allow us to tear a connected
component apart. Moreover, splitting in the presence of
egds is not merely distributing atoms of the conclusion
of some dependency over several ones. The following ex-
ample illustrates that we may also have to copy atoms
in order to further split the conclusion of a tgd.

Example 13 Consider the following mapping Σ

τ : S(x1, x2) ∧ S(x1, x3)→
R(x2, y) ∧ P (y, x2) ∧Q(y, x3)

ε : R(x, y1) ∧R(x, y2)→ y1 = y2
The s-t tgd τ can be rewritten in the following way:
τ1 : S(x1, x2) ∧ S(x1, x3)→ R(x2, y) ∧Q(y, x3)
τ2 : S(x1, x2)→ R(x2, y) ∧ P (y, x2)

Both τ1 and τ2 must contain an R-atom. �

We observe that the total number of atoms in all
conclusions in the resulting mapping in Example 13 has
increased. But compared with the original mapping τ ,
each conclusion is strictly smaller than the original one.
(i.e., is obtained by deletion of at least one atom and
possibly the renaming of some variable occurrences).
We thus generalize the notion of split-reduced mappings
from the s-t tgd-only case:
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Definition 10 Let Σ = Σst ∪ Σt be a mapping. The
tgd τ :ϕ(x̄, z̄) → ψ(x̄, ȳ) ∈ Σst is egd-split-reduced, if
it is not possible to replace it by a set of new s-t tgds
τi with antecedent ϕi and conclusion ψi, s.t. At(ϕi) ⊆
At(ϕ) and |At(ψi)| < |At(ψ)|. Σst is said to be egd-
split-reduced iff each dependency in it is.

The above notion of egd-split-reduced mappings
generalizes the notion of split-reduced mappings from
Definition 3 to mappings with target egds. The connec-
tion between the two notions of splitting is formalized
by the following lemma:

Lemma 14 Let Σ = Σst ∪ Σt with Σt = ∅ and sup-
pose that Σst cannot be simplified by any of the Rules
1,4, and 5 from Figure 1 (i.e., the rules which would
reduce ConSize(Σst) are not applicable). Then the fol-
lowing equivalences hold: Σst is egd-split-reduced iff Σst
is split-reduced iff Rule 3 (i.e., splitting) cannot be ap-
plied.

Proof The second equivalence was already shown in
Lemma 8. Below we show that Σst is egd-split-reduced
iff Rule 3 (i.e., splitting) cannot be applied.

First suppose that Rule 3 (i.e., splitting) actually
can be applied to Σst. Then some τ ∈ Σst can be re-
placed by tgds τ1, . . . , τn, s.t. the antecedent of each τi
coincides with the antecedent of τ and the conclusion of
each τi is a proper subset of the conclusion of τ . Hence,
Σst is not egd-split-reduced.

Now suppose that Σst is not egd-split-reduced. We
have to show that then Rule 3 can be applied. Suppose
to the contrary that Rule 3 cannot be applied. We de-
rive a contradiction by showing that then one of the
Rules 1, 4, 5 is applicable to Σ: Since Σst is not egd-
split-reduced, there exists a τ ∈ Σst with antecedent ϕ
which can be replaced by a set of new tgds {τ1, . . . , τn},
s.t. for every i, At(ϕi) ⊆ At(ϕ) and |At(ψi)| < |At(ψ)|
hold, where ϕi and ψi respectively denote the antecedent
and conclusion of τ . Moreover, Σ ≡ Σ′ holds with
Σ′ = (Σ \ {τ}) ∪ {τ1, . . . , τn}. In particular, Σ′ |= τ .
By Lemma 4, then either (1) Σ′ |= τ ′ holds for some
proper instance τ ′ of τ (see Definition 7) or (2) τ is
already implied by a single tgd σ ∈ Σ′.

In case (1), we clearly also have Σ |= τ ′ for the
proper instance τ ′ of τ . But then, by Lemma 5, Rule
5 is applicable to τ , which is a contradiction. It re-
mains to consider case (2). Clearly, σ 6∈ Σ \ {τ} since
otherwise τ could be deleted from Σ via Rule 4. So
let σ = τj for some j. We thus have Σ̄ |= τ with
Σ̄ = (Σ\{τ})∪τj and, therefore, also Σ̄ ≡ Σ. Moreover,
|At(ψj)| < |At(ψ)| holds, which implies ConSize(Σ̄) <
ConSize(Σ). Now suppose that we transform both Σ
and Σ̄ into the unique (up to isomorphism) normal
form Σ∗ according to Definition 8. By assumption, none
of the Rules 1, 3, 4, and 5 is applicable to Σ. Hence,

by the same considerations as in the proof of Lemma
8, Σ∗ is obtained by successive applications of Rule
2, which leaves the conclusions of the tgds unchanged.
Hence, we have ConSize(Σ∗) = ConSize(Σ). On the
other hand, if we transform Σ̄ into the normal form Σ∗,
then we never increase the conclusion size. Hence, from
the inequality ConSize(Σ̄) < ConSize(Σ) we may in-
fer ConSize(Σ∗) < ConSize(Σ), which contradicts the
equality that we have just derived. �

In Figure 4 we present the Rule ES, whose exhaus-
tive application obviously transforms any mapping into
an egd-split-reduced one. Alas, the following example
shows that we cannot hope to get a unique egd-split-
reduced mapping.

Example 14 Consider the schema mapping Σ consist-
ing of a single s-t tgd and a number of target egds:

S(1, x) ∧ S(1, 2) ∧ S(y, 2)→ T (x, y, z)∧
P (x, z) ∧R(y, z) ∧Q(z, v, w)

T (x, y, z) ∧ P (x, z) ∧Q(z, v, w)→ v = w
T (x, y, z) ∧R(y, z) ∧Q(z, v, w)→ v = w

T (x, y, z1) ∧ P (x, z2) ∧Q(w, v, v)→ z1 = z2
T (x, y, z1) ∧R(y, z2) ∧Q(w, v, v)→ z1 = z2

This mapping is not in the egd-split-reduced form, since
the antecedent of the s-t tgd can be shrunk by extract-
ing either the P or the Q atom from the conclusion.
Σ′st and Σ′′st are two possible transformations of Σ into
egd-split-reduced form via the Rule ES.
Σ′st = { S(1, x) ∧ S(1, 2) ∧ S(y, 2)→ T (x, y, z)∧

R(y, z) ∧Q(z, v, w),

S(1, x) ∧ S(1, 2)→ P (x, z)} and

Σ′′st = { S(1, x) ∧ S(1, 2) ∧ S(y, 2)→ T (x, y, z)∧
P (x, z) ∧Q(z, v, w),

S(1, 2) ∧ S(y, 2)→ R(y, z)} �

Clearly, the problem in Example 14 is not just due
to the definition of the Rule ES. Instead, it is an in-
trinsic problem of the notion of egd-split-reduced map-
pings. Apparently this extent of splitting is too strong.
We shall therefore relax the notion of egd-split-reduced.
This will be the topic of the next paragraph.

Antecedent-split-reduced mappings. In Example
14 we observed that certain antecedent atoms may be
freely distributed between several tgds, if the idea of
splitting from Section 3 is directly adopted in the set-
ting with target constraints. Therefore, in order to ar-
rive at an intuitive definition of a unique normal form,
we shift our focus to the antecedents:

Definition 11 Let Σ = Σst ∪ Σt be a mapping. The
s-t tgd τ :ϕ(x̄, z̄) → ψ(x̄, ȳ) ∈ Σst is antecedent-split-
reduced, if it is not possible to replace it with a set of
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Rewrite Rules in the Presence of Egds

Rule E1 (General implication).
Σ =⇒ Σ \ {τ}
if Σ \ {τ} |= τ .

Rule E2 (Restriction of an antecedent to endomorphic images).
Σ =⇒ (Σ \ {τ}) ∪ {τ1, . . . , τn}
if τ :ϕ(x )→ (∃y )ψ(x,y )
and (Σ \ {τ}) ∪ {τ1, . . . , τn} |= τ
and for each i ∈ {1, . . . , n}

τi:ϕi(xi)→ (∃yi)ψi(xi,yi),
s.t. ∃λ, At(ϕ(xλ)) = At(ϕi(xi)) ⊂ At(ϕ(x))
and ψi(xi,yi) = core(At(ϕi(xi))

Σ).

Rule E3 (Implication of atoms in the conclusion).
Σ =⇒ (Σ \ {τ}) ∪ {τ ′}
if τ :ϕ(x )→ (∃y )ψ(x,y )
and τ ′:ϕ(x )→ (∃y ′)ψ′(x,y ′),
s.t. At(ψ′(x,y ′)) ⊂ At(ψ(x,y ))
and (Σ \ {τ}) ∪ {τ ′} |= τ .

Rule ES (generalized splitting in the presence of egds).
Σ =⇒ (Σ \ {τ}) ∪ {τ1, . . . , τn}
if τ :ϕ(x )→ (∃y )ψ(x,y )
and (Σ \ {τ}) ∪ {τ1, . . . , τn} |= τ
and for each i ∈ {1, . . . , n}

τi:ϕi(xi)→ (∃yi)ψi(xi,yi),
s.t. ∅ ⊂ At(ϕi(xi)) ⊆ At(ϕ(x))
and At(ψi(xi,yiµi)) ⊂ At(ψ(x,y)) for a substitution µi.

Rule E2-eager (Restriction of an antecedent to subsets).
Σ =⇒ (Σ \ {τ}) ∪ {τ1, . . . , τn}
if τ :ϕ(x )→ (∃y )ψ(x,y )
and (Σ \ {τ}) ∪ {τ1, . . . , τn} |= τ
and for each i ∈ {1, . . . , n}

τi:ϕi(xi, )→ (∃yi)ψi(xi,yi),
s.t. ∅ ⊂ At(ϕi(xi)) ⊂ At(ϕ(x))
and ψi(xi,yi) = core(At(ϕi(xi))

Σ).

Fig. 4 Rewrite rules in the presence of egds.

new s-t tgds τi each having strictly smaller antecedent,
i.e., for the antecedents ϕi, we get |At(ϕi)| < |At(ϕ)|.
Σst is said to be antecedent-split-reduced iff each de-
pendency in it is.

In order to transform a mapping into an antecedent-
split-reduced one, we define the rule E2-eager in Fig-
ure 4. It can be shown that any normal form under a
rule rewrite system containing Rule E2-eager is antece-
dent-split-reduced and vice versa. In this rule, we have
to inspect all subsets of the antecedent database of each
tgd. Actually, we will show that it suffices to check all
subsets ϕi of an antecedent ϕ(x), such that ϕi is a
proper endomorphic image of ϕ(x). This is what the
Rule E2 in Figure 4 does. Clearly, the number of en-
domorphic images is, in general, far smaller than the
number of all subsets. In particular, we never have to
check antecedents smaller than the core of the already
present antecedents (here we mean the core of the con-
junctive query – without distinguishing two groups of
variables as we did in the definition of the Rules 1 and
2). The following Theorem shows that both, the rule
E2-eager and the rule E2 exactly capture the notion of
antecedent-split-reduced mappings.

Theorem 5 Let Σ = Σst ∪ Σt be a schema mapping
in which no tgd can be deleted via the Rule E1. Then
the following properties are equivalent:

1. Σ is antecedent-split-reduced.
2. Σ is reduced w.r.t. Rule E2-eager.
3. Σ is reduced w.r.t. Rule E2.

Proof (1) ⇔ (2) follows directly from the definition of
antecedent-split-reduced form.

(2)⇒ (3) is trivial, as every proper endomorphic image
of a set of atoms At(ϕ) is a proper subset of At(ϕ).

(3)⇒ (2). Consider an application of the rule E2-eager,
in which it substitutes some s-t tgd τ in Σ with a set
of s-t tgds T , s.t. Σ ≡ Σ \ {τ} ∪ T . Let now ϕ be the
antecedent of τ , and ϕi be the antecedent of some tgd
τi ∈ T . By definition of E2-eager, At(ϕi) ⊂ At(ϕ). We
have to show that At(ϕi) is an endomorphic image of
At(ϕ). Suppose to the contrary that it is not. We show
that then τi is “superfluous” in T : Namely, the property
(Σ \ {τ})∪T \ {τi} ≡ (Σ \ {τ})∪T holds. Of course, if
T only contains such tgds which are superfluous, then
the tgd τ itself can be deleted by the E1 rule, which is
a contradiction to the assumption of this theorem. On
the other hand, if T is non-empty and contains only
tgds whose antecedent is an endomorphic image of ϕ
then also the E2 Rule is applicable.

To show that τi is superfluous in T , consider the
following two cases:

(a) There exists no homomorphism ϕ→ ϕi. Then, τi is
superfluous in T , in a sense that the property (Σ\{τ})∪
T \ {τi} |= τ holds. Indeed, according to E2-eager, the
conclusion of τi was created by chasing At(ϕi) with Σ.
Since ϕ 6→ ϕi, τ played no role in that chase, and thus
Σ \ {τ} |= τi holds, and hence τi is indeed superfluous.

(b) There exists a homomorphism ϕ→ ϕi. Let Λ denote
the set of all homomorphisms ϕ → ϕi. Then we define
Tϕ ⊂ T , s.t. Tϕ = {τj ∈ T | At(ϕj) = ϕλ for some λ ∈
Λ}, i.e., the antecedents of the tgds in Tϕ are subsets
of ϕi and, at the same time, endomorphic images of
ϕ. Similarly to the previous case, one can show that
(Σ \ {τ}) ∪ Tϕ |= τi holds. Thus τi is superfluous.

By construction of τi, we have Σ |= τi. Indeed, con-
sider the implication test of Lemma 10, in which the
database At(ϕi), obtained from the antecedent of τi, is
chased by Σ. The effect of τ in this chase is exactly
the generation of conclusion atoms by instantiating the
existentially quantified variables y in ψ(xλ,y), where
ψ(x,y) is the conclusion of τ and λ is an endomorphism
sending the antecedent ϕ(x) of τ on its part, which is
the antecedent of τi. But then, by definition of E2, there
exists a substitution µ such that ψ(xλi,yµ) is a sub-
formula of the conclusion of some τϕ ∈ Tϕ: Indeed, E2
takes exactly all endomorphic images of ϕ and performs
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the chase with Σ to derive the conclusion of an s-t tgd
in Tϕ. Note that the substitution µ captures the effect
of egds possibly fired by the chase which derives the
conclusion of τϕ from its antecedent ϕλ; these egds will
surely be also fired in the chase of At(ϕi).

Let the chase of At(ϕi) with τ yield the target in-
stance J , and the chase of At(ϕi) with Tϕ yield J ′.
Then, it is easy to see that a homomorphism J → J ′

must exist. But then, At(ϕi)
Σ |= τi only if At(ϕi)

Σ′ |=
τi with Σ′ = (Σ \ {τ})∪ Tϕ Hence, it must be the case
that (Σ \ {τ})∪ Tϕ holds and, therefore, τi is superflu-
ous. �

There is a close connection between antecedent-split-
reduced mappings and the split-reduced form from Def-
inition 3:

Lemma 15 Let Σ = Σst ∪ Σt with Σt = ∅ and sup-
pose that Σst cannot be simplified by any of the Rules
1,4, and 5 from Figure 1 (i.e., the rules which would
reduce ConSize(Σst) are not applicable). Then the fol-
lowing equivalence holds: Σst is antecedent-split-reduced
iff Rule 3 (i.e., splitting) cannot be applied in such a
way that the antecedents of all resulting dependencies
can be further simplified (by Rule 2).

Proof First suppose that Rule 3 (i.e., splitting) followed
by a simplification of the antecedent of each new tgd is
applicable. Then, in the first place, some τ ∈ Σst can be
replaced by tgds τ1, . . . , τn, s.t. the antecedent of each τi
coincides with the antecedent of τ and the conclusion
of each τi is a proper subset of the conclusion of τ .
Moreover, each τi can then be transformed via Rule 2
into τ ′i , s.t. the antecedent of τ ′i is a proper subset of
the antecedent of τ and, therefore, also of τ . Hence, Σst
is not antecedent-split-reduced.

For the opposite direction, suppose that Σst is not
antecedent-split-reduced. We have to show that then
Rule 3 can be applied followed by applying Rule 2 to
each of the new tgds. Since Σst is not antecedent-split-
reduced, there exists a τ ∈ Σst with antecedent ϕ which
can be replaced by a set of new tgds {τ1, . . . , τn}, s.t. for
every i, At(ϕi) ⊂ At(ϕ) and |At(ψi)| < |At(ψ)| hold,
where ϕi and ψi respectively denote the antecedent and
conclusion of τ . Moreover, Σ ≡ Σ′ holds with Σ′ =
(Σ \ {τ}) ∪ {τ1, . . . , τn}.

Analogously to the proof of Theorem 5, we may as-
sume w.l.o.g., that each of the new antecedents ϕi is
an endomorphic image of ϕ. Moreover, we may assume
w.l.o.g., that each ψi contains only one connected com-
ponent since otherwise we simply split τi further via
Rule 3. We claim that for every connected component
of ψ, there is one i, s.t. this connected component cor-
responds to ψi. Suppose to the contrary that there is
a connected component χ of ψ which does not have
a corresponding ψi. Then we derive a contradiction as
follows. The tgd τ ′ obtained from τ by reducing the

conclusion ψ to χ is clearly implied by Σ′. Hence, by
Lemma 4, either (1) Σ′ |= τ ′′ holds for some proper
instance τ ′′ of τ ′ (see Definition 7) or (2) τ ′ is already
implied by a single tgd σ ∈ Σ′. In case (1), we thus have
Σ |= τ ′′ for the proper instance τ ′′ of τ ′. But then, also
Σ |= τ∗, where τ∗ denotes the tgd obtained from τ by
replacing the connected component χ by the conclu-
sion of τ ′′ (i.e., a proper instance of χ) and leaving all
other connected components unchanged. By Lemma 5,
Rule 5 is applicable to τ ∈ Σ, which is a contradiction.
Now consider case (2), i.e., τ ′ is implied by a single tgd
σ ∈ Σ′. Clearly, σ cannot be contained in Σ \ {τ} since
this would mean that the connected component χ of the
conclusion of τ could be deleted from Σ via Rule 5. So
suppose that σ = τj for some j, i.e., we have τj |= τ ′. By
Lemma 10, this means that the conclusion χ of τ ′ can
be obtained by chasing the antecedent ϕ of τ ′ with χ.
Note however that χ is a single connected component.
Hence, all of χ is obtained in a single chase step, since
otherwise we conclude that also a proper instance of τ ′

is implied by τj and we proceed as in case (1). Since χ
is obtained in a single chase step, the conclusion of τj
indeed comprises all of χ.

To conclude the proof, recall the above observation
that each of the antecedents ϕi is an endomorphic im-
age of ϕ. But then we can indeed apply the Rule 2 in
the reverse direction to extend each ϕi to ϕ. Let the
resulting tgds be called {τ̄1, . . . , τ̄n}. Then we indeed
have that τ ∈ Σ may be replaced by {τ̄1, . . . , τ̄n} via
Rule 3 and each τ̄i may be further simplified via Rule
2 to τi with strictly smaller antecedent. �

Most importantly, the notion of antecedent-split-
reduced mappings allows us to define a unique (up to
isomorphism) normal form of the set of s-t tgds. To
this end, we consider the transformation of an arbi-
trary mapping consisting of s-t tgds and target egds by
the Propagate procedure from Figure 3 followed by
exhaustive application of the rules E1 and E2 from Fig-
ure 4. Below we show that the resulting normal form is
indeed unique up to isomorphism:

Lemma 16 The rewrite rules E1 and E2 in Figure 4
are correct, i.e.: Let Σ be a set of dependencies and let
Σ′ be the result of applying one of the rules E1 or E2
to Σ. Then Σ ≡ Σ′.
Proof The correctness follows directly from the fact
that a logical implication test is built into the rules
E1 and E2. �

Theorem 6 Let Σ = Σst∪Σt and Υ = Υst∪Υt be two
logically equivalent equivalent sets consisting of s-t tgds
and target egds and let 〈Σs, Σst∗, Σt〉 and 〈Υs, Υ ∗st, Υt〉
be obtained from Σ respectively Υ by first applying the
Propagate procedure and then exhaustively applying
the rules E1 and E2 to these mappings. Then Σt ≡ Υt
holds and Σst

∗ and Υ ∗st are isomorphic.



20

Proof The equivalence Σt ≡ Υt was shown in Lemma 9.
It remains to show that Σst

∗ and Υ ∗st are isomorphic.
Let σ ∈ Σst

∗ be an arbitrary s-t tgd in Σst
∗. We

have to show that it has an isomorphic analogue in Υ ∗st
(and vice versa). Let Σ̄σ denote the set of s-t tgds whose
antecedents are the proper subsets of σ and whose con-
clusions are obtained by chasing the corresponding an-
tecedent database with Σst

∗ ∪ Σt (i.e., we get s-t tgds
analogous to the τi’s in Rule E2). By Lemma 13, this
is the same as chasing these particular source instances
with Σ.

By Υ |= σ, there exists a subset T ⊆ Υs ∪ Υ ∗st ∪ Υt,
s.t. T ∪Σs ∪ Σ̄σ ∪Σt ∪Σst∗ \ {σ} |= σ. We claim that
there even exists a set Tσ ⊆ Υ ∗st with Tσ∪Σs∪Σ̄σ∪Σt∪
Σst
∗ \ {σ} |= σ, s.t. every τ ∈ Tσ fulfills the following

properties:

1. The antecedents ϕτ (xτ ) of τ and ϕσ(xσ) of σ are
homomorphically equivalent;

2. there exists a substitution λ, such that ϕτ (xτλ) =
ϕσ(xσ). That is, the antecedent of τ can be mapped
onto the entire antecedent of σ;

3. τ is not equivalent to any dependency in Σst \ {σ}

In order to prove this claim, we start with a set T ⊆
Υs∪Υ ∗st∪Υt, s.t. T ∪Σs∪ Σ̄σ ∪Σt∪Σst∗ \{σ} |= σ and
remove all parts from T until a subset Tσ ⊆ T with the
desired properties is obtained. It is convenient to write
Σ∗ as a short-hand for Σs ∪ Σ̄σ ∪Σt ∪Σst∗ \ {σ}.
(a) Eliminate Υs from T . This is justified by the fact
that Υ ∗st ∪ Υt |= σ holds. Suppose to the contrary that
this fact does not hold: that is, let I be an instance over
the schema S ∪ T, in which the only non-empty rela-
tions are those of the antecedent database At(ϕσ(xσ))
of σ. Then, chasing I with Υst ∪ Υt leads to an in-
stance IΥst∪Υt 6|= σ, whereas IΥs∪Υst∪Υt |= σ. Since
source dependencies in Υs are only applicable to rela-
tions of the source schema, it must hold that Υs modifies
At(ϕσ(xσ)); otherwise there would be no difference be-
tween the two chase results. That is, At(ϕσ(xσ)) 6|= Υs.
By Lemma 11, part (2), this means that the chase of
At(ϕσ(xσ)) with Υ fails. Thus, also the chase with Σ
fails, which contradicts Lemma 11, part (1).

(b) Eliminate Υt from T . The correctness of this step
follows immediately from the equivalence Υt ≡ Σt that
we showed in Lemma 9.

(c) Eliminate every tgd τ from T which is equivalent to
some σ′ ∈ Σst∗\{σ}. Clearly, after such a reduction, we
still have T∪Σ∗ |= σ withΣ∗ = Σs∪Σ̄σ∪Σt∪Σst∗\{σ}.
(d) Eliminate from T all dependencies with the an-
tecedent ϕi(xi) which is not homomorphically equiva-
lent to the antecedent ϕσ(xσ) of σ. Indeed, for every s-t
tgd τi ∈ Υ ∗st with the antecedent “more specific” than
ϕσ(xσ), we may conclude that for arbitrary Σ′, such
that Σ′ |= σ, it holds that Σ′ \ {τi} |= σ. For every τj
with the antecedent “more general” than ϕσ(xσ), we

have that Σ∗ \{σ} |= τj , and therefore, τj is redundant
in T ∪Σ∗ \ {σ}.
(e) Eliminate from T all s-t tgds with the antecedents
ϕk(xk) such that there exists no variable substitution
λ: ϕk(xkλ) = ϕσ(xσ), where ϕσ(xσ) again denotes the
antecedent of σ. First observe that there are no depen-
dencies in T whose antecedents under any variable sub-
stitution are supersets of ϕσ(xσ), since they are “more
specific” than ϕσ(xσ) and have therefore been removed
in the previous step.

Now consider the substitutions λki: ϕk(xkλki) ⊂
ϕσ(xσ) and the corresponding s-t tgds τk ∈ T . We claim
that the following property holds:

For any set of dependencies K such that τk ∈ K, K |=
σ iff (K \ {τk}) ∪ Kτk |= σ, where Kτk is the set of
all instantiations of τk with λki: τki = ϕk(xkλki) →
∃yk ψ(xkλki,yk).

The claim follows from the consideration of the implica-
tion test by Beeri and Vardi [4]: to chase the antecedent
database At(ϕσ(xσ)) of σ, τk is instantiated by every
λki and thus has the same effect in the chase as Kτk .
Hence, every τk in T whose antecedent cannot be pro-
jected onto the entire ϕσ(xσ) may be replaced by the
respective instantiations Kτk .

We now recall that the antecedents of the s-t tgds
ρl ∈ Σ̄σ ⊂ Σ∗ range over all possible subsets of ϕσ(xσ).
That is, for each τki with the antecedent ϕk(xkλki)
there exists ρki with the identical antecedent and with
the conclusion obtained by chasing ϕk(xkλki) with Σ.
Since Σ and Υ are equivalent, we conclude that ρki |=
τki, and thus Σ∗ |= Kτk for every τk. Hence, it is in-
deed allowed to eliminate from T all s-t tgds with the
antecedents ϕk(xk) such that there exists no variable
substitution λ: ϕk(xkλ) = ϕσ(xσ).

After the above five elimination steps, T is indeed re-
duced to a set Tσ of the desired form. Note that Tσ is
non-empty. This can be seen as follows: The s-t tgd σ is
reduced w.r.t. rules E1 and E2. Hence, Σs ∪ Σ̄σ ∪Σt ∪
Σst
∗ \ {σ} 6|= σ and, therefore, Tσ must be non-empty.
By obvious symmetry reasons, the same holds for

any s-t tgd τ ∈ Υ ∗st as well: each τ must also have such a
corresponding non-empty set Sτ ⊆ Σst∗, with elements
satisfying the conditions 1–3.

We now construct a directed bipartite graph G =
(V1, V2, E) as follows: We associate the s-t tgds in Σst

∗

and Υ ∗st with the vertices, s.t. V1 = Σst
∗ and V2 = Υ ∗st.

Moreover, whenever τ ∈ Tσ (resp. σ ∈ Sτ ), then there
is an edge from τ to σ (resp. from σ to τ).

The conditions 1–3 of Tσ and Sτ translate into the
following properties of the graph G:

a. Every vertex has an incoming edge, since the sets
Tσ and Sτ are non-empty.

b. Cycles in G have length at most 2. Indeed, by prop-
erty 2, an edge from τ to σ implies that the size
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of the antecedent of τ is no less than the size of σ.
But then all s-t tgds associated to the vertices in a
cycle must have antecedents of equal size. By prop-
erties 1 and 2, all such antecedents are isomorphic.
This means that the conclusions are isomorphic as
well, since they are obtained as cores of the chase of
isomorphic source instances with equivalent sets of
dependencies (procedure Propagate).

c. Vertices that participate in such a two-edge cycle
are disconnected from the rest of the graph. This
follows from the fact that the corresponding s-t tgds
are equivalent, and thus any other edge would con-
tradict the property 3.

We obtained a graph, of which each vertex should
be connected by an incoming path to a cycle (there is
only a finite number of vertices, and from each vertex
an infinite incoming path can be traced, by the prop-
erty “a”). Considering “c”, this is only possible if each
vertex itself belongs to a cycle, and, by “b”, G must
consist of connected components of size 2. In total, this
means, that every s-t tgd σ ∈ Σst∗ has an isomorphic
counterpart τ ∈ Υ ∗st and vice versa. �

The question now is how to further simplify the set
of s-t tgds. Due to the egds, we could strengthen Rule 5
from Section 3 (i.e., deletion of redundant atoms from
some conclusion) to the Rule E3 in Figure 4. Unfortu-
nately, this would again lead to a non-unique normal
form as the following example illustrates.

Example 15 Consider the mapping consisting of two s-t
tgds and one egd:

S(x, y)→ P (x, z) ∧Q(x, z)
S(x, y)→ R(x, z) ∧Q(x, z)
P (x, z1) ∧R(x, z2)→ z1 = z2

It is easy to verify that the atom Q can be eliminated
by the rule E3 from the conclusion of any of the two
tgds, but not from both. �

However, if we content ourselves with the simplifica-
tions from the s-t tgds only case (i.e,. Rules 1 – 5 from
Section 3), then we get an intuitive normal form which
is simplified to a large extent and which is guaranteed to
be unique up to isomorphism. As was mentioned earlier,
it is sometimes important in data exchange to arrive at
a unique canonical universal solution (this is in partic-
ular the case for defining the semantics of queries in
a way that the semantics does not not depend on the
syntax of the dependencies). In these situations, the
normal form defined below should be chosen.

Definition 12 Consider a set Σ = Σst∪Σt of s-t tgds
Σst and target egds Σt and let the result of Propa-
gate(Σst, Σt) be denoted by (Σs, Σst

′) Moreover, let
Σst
∗ denote the set of s-t tgds resulting from Σst

′ by
exhaustive application of the rules E1, E2 as well as the

rules 1–5 from Section 3 and let Σ∗s denote the result
of exhaustive reduction of Σs via rule E1. Then we call
〈Σ∗s , Σst∗, Σt〉 the normal form of Σ.

Theorem 7 Let Σ = Σst ∪ Σt and Υ = Υst ∪ Υt be
equivalent sets consisting of s-t tgds and target egds
and let 〈Σ∗s , Σst∗, Σt〉 and 〈Υ ∗s , Υ ∗st, Υt〉 be the corre-
sponding normal forms. Then Σst

∗ and Υ ∗st are isomor-
phic. Moreover, Σt ≡ Υt holds.

Proof The fact that Σst
∗ and Υ ∗st are isomorphic follows

immediately from Theorems 1 and 6. The equivalence
Σt ≡ Υt was proved in Lemma 9. �

Homomorphically equivalent components. The
normal form obtained by the Propagate procedure
followed by the Rules E1 and E2 is not optimal in all
respects yet. In particular, both the Propagate proce-
dure and the Rule E2 may have introduced more atoms
than needed in the conclusion of s-t tgds. Moreover, by
the E2 rule, we may have split the antecedent of tgds
into several smaller ones, such that the total number
of atoms in the antecedents is increased. Of course, we
may now simply apply the rules from Figure 1 to fur-
ther simplify the set of s-t tgds. However, in the final
part of this section, we want to look in a principled way
at further optimizations of the normal form of s-t tgds
in the presence of egds. The following concept is crucial.

Definition 13 Let Σ = Σst ∪ Σt. We say that two
tgds τ1 and τ2 in Σst are homomorphically equivalent if
their antecedents are. Moreover, we say two sets S, S′ of
tgds are homomorphically equivalent if the tgds in one
set and the tgds in the other set are homomorphically
equivalent.

Obviously, homomorphical equivalence is indeed an
equivalence relation on Σst. We refer to the equivalence
classes of this relation as the HE-components of Σst.

We now define a partial order on the HE-compo-
nents of a set of s-t tgds by considering a “more general”
component as greater than a “more specific” one (i.e.,
there are homomorphisms from the more general one
into the “more specific” one but not vice-versa). More-
over, we also consider the closure under the greater-
than relation. Below, we show that the closure of each
HE-component is unique up to logical equivalence.

Definition 14 Let Σ = Σst∪Σt be a mapping and let
S = {S1, . . . , Sm} denote the HE-components of Σst.
We define a partial order as follows: for any pair of
indices i, j, we define Si ≥ Sj if for every antecedent
ϕ(x) of the tgds in Si and every antecedent χ(z) of the
tgds in Sj , At(ϕ(x)) → At(χ(z)) holds (i.e., there is a
homomorphism from ϕ(x) to χ(z)). If Sj 6≥ Si, Si is
said to be strictly greater than Sj , Si > Sj .

For i ∈ {1, . . . , n}, we define the closure of Si above
as Cl≥(Si, Σ) = {τ | τ ∈ Sj for some j with Sj ≥ Si}.
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Fig. 5 Antecedents of τ1 (left) and τ2 (right), Example 16

Example 16 Consider a source schema consisting of a
single relation symbol P (·, ·) and a schema mapping
Σ = {τ1, τ2, τ3, τ4}, where the τi’s are defined as follows:

τ1 : P (x1, x2) ∧ P (x2, x3) ∧
P (y1, y2) ∧ P (y2, y3) ∧ P (y′2, y3)→ Q(x1, y3)

τ2 : P (u1, u2) ∧ P (u2, u3) ∧ P (u2, u
′
3)→ Q(u3, u

′
3)

τ3 : P (v1, v2)→ T (v1, v2)
τ4 : P (v1, v1)→ Q(v1, v1)

Intuitively, the binary relation symbol P (·, ·) can be
thought of as defining edges of a directed graph. Then
the antecedent of the tgd τ1 consists of two connected
components: two paths of length two, one having an ad-
ditional edge pointing to the peak. The antecedent of
the tgd τ2 corresponds to a Y-shaped graph (see Fig-
ure 5). The antecedent of τ3 consists of a single edge,
and the antecedent of τ4 consists of a single self-loop.

The antecedents of τ1 and τ2 have the same cores (a
path of length 2) and thus are homomorphically equiva-
lent. Hence, τ1 and τ2 are part of the same
HE-component S1. The tgd τ3 belongs to a different
HE-component S2 with S2 > S1. Indeed, there is a ho-
momorphism sending P (v1, v2) either to the antecedent
of τ1 or the antecedent of τ2, but not vice versa. For the
same reason, τ4 gives rise to yet another HE-component
S3 with S1 > S3. In total, Σ has three HE-components.
As far as the “closure above” is concerned, we thus
have Cl≥(S1, Σ) = {τ1, τ2, τ3}, Cl≥(S2, Σ) = {τ3}, and
Cl≥(S3, Σ) = Σ.

Lemma 17 Let Σ = Σst ∪ Σt and Υ = Υst ∪ Υt be
two logically equivalent mappings. Moreover, let S be an
HE-component in Σst and let T be an HE-component
in Υst, s.t. S and T are homomorphically equivalent.
Then Cl≥(S,Σ) ∪Σt ≡ Cl≥(T, Υ ) ∪ Υt holds.

Proof By Lemma 9 we have Σt ≡ Υt. It remains to
show that, for every τ ∈ Cl≥(T, Υ ), the implication
Cl≥(S,Σ)∪Σt |= τ holds. The implication Cl≥(T, Υst)∪
Υt |= σ for every σ ∈ S follows by symmetry.

By Σ ≡ Υ , we clearly have Σ |= τ . Let ϕ(x) de-
note the frozen antecedent of τ and let I = At(ϕ(x)).
Now consider the result IΣst of chasing I with Σst:
Clearly, only those tgds σ ∈ Σst fire, s.t. there is a ho-
momorphism from the antecedent of σ to ϕ(x). These
are precisely the tgds in Cl≥(S,Σst). Hence, we have
IΣst = ICl≥(S,Σ). But then, by the implication cri-
terion of [4] recalled in Lemma 10, Σ |= τ holds iff
Cl≥(S,Σ) ∪Σt |= τ holds. �

The following lemma shows that, unless a mapping
contains redundant dependencies, the HE-components
of a mapping are in a sense invariant under logical
equivalence. Moreover, HE-components may be exchan-
ged between logically equivalent mappings.

Lemma 18 Let Σ = Σst ∪ Σt and Υ = Υst ∪ Υt be
two logically equivalent mappings, s.t. Rule E1 is not
applicable to them. Let S = {S1, . . . , Sm} denote the
HE-components of Σst and T = {T1, . . . , Tn} the HE-
components of Υst. Then the following properties hold:
n = m and for every Si ∈ S, there exists exactly one
j, s.t. the tgds in Si are homomorphically equivalent to
the tgds in Tj.

Proof W.l.o.g. suppose that there exists an HE-compo-
nent Si of Σst which is not homomorphically equivalent
to any HE-component Tj of Υst. By assumption, Σ ≡
Υ . Hence, Υ |= Si. Let T ∗ ⊆ T with T ∗ =

⋃{Tj |
Tj ≥ Si}. By the same considerations as in the proof of
Lemma 17, only the HE-components in T ∗ are used to
test the implication Υ |= Si via Lemma 10. Hence, we
have T ∗ |= Si.

On the other hand, also Σ |= T ∗. Now define S∗ =⋃{Sk | Sk ≥ Tj for some Tj ∈ T ∗}. Again, we may
conclude S∗ |= T ∗ and, therefore, also S∗ |= Si By as-
sumption, Υ does not contain an HE-component whose
tgds are homomorphically equivalent to Si. Therefore,
all HE-components in T ∗ are strictly greater than Si.
But then, all HE-components Sk in S∗ are also strictly
greater than Si. Thus, Σ \Si |= Si. In other words, ev-
ery dependency in Si can be removed from Σst by the
Rule E1, which contradicts the assumption that the E1
Rule is not applicable. �

Lemma 19 Let Σ = Σst ∪Σt and Υ = Υst ∪ Υt be two
logically equivalent mappings, s.t. the E1 Rule is not ap-
plicable to them. Moreover, let S be an HE-component
in Σst and let T be an HE-component in Υst, s.t. S
and T are homomorphically equivalent. Then the logi-
cal equivalence Σ ≡ (Σst \ S) ∪ T ∪ Σt holds (i.e., we
may replace the HE-component S from Σ by the corre-
sponding HE-component T from Υ ).

Proof Let S = {S1, . . . , Sn} denote the HE-components
of Σst and T = {T1, . . . , Tn} the HE-components of Υst.
By Lemma 18, we may assume w.l.o.g., that every Si
is homomorphically equivalent to Ti. Now let S and
T of this lemma correspond to Sj and Tj , for some
j ∈ {1 . . . n}.

We apply Lemma 17 to all HE-components that are
strictly greater than Sj resp. Tj : Let I = {i | Si > Sj}.
Clearly, I = {i | Ti > Tj}. For every i ∈ I, we have
Cl≥(Si, Σ)∪Σt ≡ Cl≥(Ti, Υ )∪ Υt by Lemma 17. Then
also (

⋃
i∈I Cl≥(Si, Σ)) ∪ Σt ≡ (

⋃
i∈I Cl≥(Ti, Σ)) ∪ Υt

holds, i.e.: (Cl≥(Sj , Σ)\Sj)∪Σt ≡ (Cl≥(Tj , Σ)\Tj)∪Υt,
i.e., the HE-components strictly greater than Sj and Tj
lead to logical equivalence.



23

Now if we apply Lemma 17 to Sj and Tj , we may
conclude Cl≥(Sj , Σ) ∪ Σt ≡ Cl≥(Tj , Υ ) ∪ Υt. By the
above considerations, we may exchange in Cl≥(Tj , Υ )
all HE-components that are strictly greater than Tj
by the corresponding HE-components from Σ. That
is, Cl≥(Sj , Σ) ∪ Σt ≡ (Cl≥(Sj , Σ) \ Sj) ∪ Tj ∪ Υt. By
adding all remaining HE-components of Σ to both sides
of the equivalence, we get the desired equivalence Σ ≡
(Σst \ S) ∪ T ∪Σt. �

HE-components will turn out to be crucial for op-
timizing the s-t tgds. Indeed we show that for all op-
timization criteria considered here, local optimization
inside every HE-component yields a global optimum.

Definition 15 An optimization problem on sets of de-
pendencies is called a sum-minimization problem if the
goal of the optimization is to minimize a function F
with the following property: (1) F (Σ) ≥ 0 holds for ev-
ery set of dependencies Σ and (2) for any two sets of de-
pendencies Σ,Σ′ with Σ∩Σ′ = ∅, we have F (Σ∪Σ′) =
F (Σ) + F (Σ′).

Clearly, all optimization criteria studied here (like
cardinality-minimality, antecedent-minimality, conclu-
sion-minimality, and variable-minimality, see Definition 2)
are sum-minimization problems.

Definition 16 Let Σ = Σst ∪ Σt be a mapping, s.t.
the E1 Rule is not applicable to it, i.e., Σ contains
no s-t tgd that may be deleted. Now consider a sum-
minimization problem whose goal is to minimize some
function F over sets of s-t tgds.

We say that Σ is globally optimal (or simply opti-
mal) if, for every mapping Υ = Υst ∪ Υt with Σ ≡ Υ ,
we have F (Σ) ≤ F (Υ ).

We say that Σ is locally optimal if the following
conditions are fulfilled: let Υ = Υst ∪Υt be an arbitrary
mapping with Σ ≡ Υ . Moreover, let S be an arbitrary
HE-component of Σ and let T be the corresponding
HE-component of Υst, s.t. S and T are homomorphi-
cally equivalent. Then F (S) ≤ F (T ) holds.

Theorem 8 Let Σ = Σst ∪ Σt be a mapping, s.t. the
E1 Rule is not applicable to it. Now consider a sum-
minimization problem whose goal is to minimize some
function F over sets of s-t tgds. Then Σ is globally
optimal iff it is locally optimal.

Proof Let Υ = Υst ∪ Υt be an arbitrary mapping with
Σ ≡ Υ . By Lemma 18, there exist sets of s-t tgds S =
{S1, . . . , Sn} and T = {T1, . . . , Tn}, s.t. S denotes the
set of HE-components of Σst, T denotes the set of HE-
components of Υst, and for every i, the tgds in Si are
homomorphically equivalent to the tgds in Ti.

First suppose that Σ is globally optimal . We have to
show that then Σ is also locally optimal. Assume to the
contrary that F (Si) > F (Ti) holds for some i. We define

Σ′ = (Σst \Si)∪Ti∪Σt. By Lemma 19, Σ ≡ Σ′. More-
over, since we are considering a sum-minimization prob-
lem, we clearly have: F (Σst) = F (Σst \ Si) + F (Si) >
F (Σst \Si) +F (Ti) = F ((Σst \Si)∪Ti) = F (Σ′). This
contradicts the assumption that Σ is globally optimal.

Now suppose that Σ is locally optimal . We have to
show that then Σ is also globally optimal The local
optimality implies that F (Si) ≤ F (Ti) holds for every
i. Since F defines a sum-minimization problem, we have
F (Σst) =

∑n
i=1 F (Si) and F (Υst) =

∑n
i=1 F (Ti). But

then also F (Σst) ≤ F (Υst) holds, i.e., Σ is globally
optimal. �

Theorem 8 says, that for the optimization of an
HE-component, it does not matter how and if other
HE-components have already been optimized. However,
this does not mean that one can optimize a single HE-
component in isolation. In particular, the closure above
must be considered.

As demonstrated by the Examples 14 and 15, ag-
gressive splitting and conclusion optimization lead to
a non-unique normal form. In the rest of the section,
we consider an operation opposite to splitting: Namely,
merging of multiple s-t tgds, to enforce cardinality-
minimality. As we will see, also this approach leads to
non-unique normal forms. The following theorem con-
tains a property that any merge operation must fulfill:

Theorem 9 Consider a mapping Σ = Σs ∪ Σst ∪ Σt
created by the Propagate procedure, and additionally
reduced by the rules E1 and E2. Assume that depen-
dency τ ∈ Σst with the antecedent ϕ can be substituted
by the dependency τ ′ with the antecedent ϕ′, such that
Σ ∪ {τ ′} \ {τ} ≡ Σ holds, and At(ϕ′) does not cause
a chase failure under Σ. Then, ϕ must coincide (up to
isomorphism) with some endomorphic image of ϕ′.

Proof By Theorem 6, exhaustive application of the
rules E1 and E2 allows us to obtain a unique nor-
mal form of s-t dependencies. Hence, if the mapping
Σ′ = Σ ∪ {τ ′} \ τ is logically equivalent to Σ, it is pos-
sible to bring it back in the form isomorphic to Σ by
applying the procedure Propagate, followed by the
rules E1 and E2.

Since At(ϕ′) does not cause a chase failure, we know
that Propagate does not affect ϕ′ in any way. More-
over, all the remaining rules in Σ \ {τ} remain un-
changed after Σ′ is transformed by E1 and E2. Hence,
it must be the case that one can obtain τ from τ ′ by
(possibly successive) applications of E2, and hence ϕ
has to be among the endomorphic images of ϕ′. �

To achieve cardinality-minimality, we will replace
each HE-component with a single tgd. As Theorem 9
suggests, the antecedent of this tgd must contain ev-
ery antecedent from the original HE-component as an
endomorphic image. The following example illustrates
that there is no unique minimal “merged” antecedent.
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Fig. 6 Possible merges of antecedents ϕ1, ϕ2, Example 17

Example 17 Recall the mapping Σ from Example 16,
with the HE-component S1 containing tgds τ1, τ2:

τ1 : P (x1, x2) ∧ P (x2, x3)∧
P (y1, y2) ∧ P (y2, y3) ∧ P (y′2, y3)→ Q(x1, y3)

τ2 : P (u1, u2) ∧ P (u2, u3) ∧ P (u2, u
′
3)→ Q(u3, u

′
3)

Let ϕ1, ϕ2 denote the antecedents of τ1 and τ2, respec-
tively. Recall the graphical representation of ϕ1 and ϕ2

that was given in Figure 5. Obviously, ϕ1 and ϕ2 are
not isomorphic.

Now, there are two ways of adding a single edge
to ϕ1 in order to get a minimum conjunctive query
containing both antecedents as its endomorphic images
namely, ϕ′1 = ϕ1 ∧P (x2, z) and ϕ′′1 = ϕ1 ∧P (y2, z), see
Figure 6. Clearly, the resulting antecedents ϕ′1 and ϕ′′1
are not isomorphic. �

Example 17 shows that there is no unique optimal
way of merging s-t tgds from a single HE-component.
Notably, egds play no role here. On the other hand, an
obvious unique (though hardly optimal) way of merging
would be to take a conjunction of all antecedents in a
HE-component of a mapping resulting from the exhaus-
tive application of the rules E1 and E2, and renaming
apart the variables in distinct tgds.

We conclude this discussion by presenting a proce-
dure that merges several homomorphically equivalent
conjunctive queries in one, of reasonable size and sat-
isfying the condition of Theorem 9. At every iteration,
the procedure Merge takes two conjunctive queries ϕi
and ϕj , finds a greatest common (up to isomorphism)
endomorphic image in them, which in the worst case
is the core, and renames the variables of ϕi in such a
way that it is stitched to ϕj along this greatest common
endomorphic subquery. The resulting query ϕij is thus
sure to have an endomorphism to ϕi as well as to ϕj .

This operation is then used in the Procedure Mer-
geTgds, which produces a s-t tgd to substitute a given
HE-component in a mapping Σ. To build the conclusion
of such a merged tgd, MergeTgds uses the Propa-
gate procedure, which chases the merged antecedent
with Σ and then takes the conjunction of atoms in the
core of the resulting target instance as the conclusion.

Procedure Merge

Input. A set Φ of homomorphically equivalent CQs;
Output. CQ ϕ having endomorphism onto each ϕi ∈ Φ.

while |Φ| > 1 do
Choose distinct ϕi, ϕj ∈ Φ.
Find an endomorphism ei for ϕi and ej for ϕj , such that
ei(ϕi) ∼= ej(ϕj) and |ei(ϕi)| is maximized.

Let λ be a variable renaming ei(ϕi)→ ej(ϕj).
Set ϕij := ϕiλ ∧ ϕj .
Set Φ := Φ ∪ {ϕij} \ {ϕi, ϕj}.

od;
return the element remaining in Φ;

Procedure MergeTgds

Input. A mapping Σ = Σs ∪Σst ∪Σt, a CQ χ;
Output. A tgd τ and set Σ′s of source egds, such that

the equality Σ ≡ (Σ \Σ[χ]) ∪Σ′s ∪ {τ} holds.

/*(a) collect and merge the antecedents of Σ[χ] */
Set Φ = {ϕi| (ϕi(xi)→ (∃yi)ψ(xi,yi) ∈ Σst) ∧ϕi ↔ χ};
I := At(Merge (Φ))Σs

/*(b) initialize τ ′ */
J := IΣst .
Let y be a tuple of all labeled nulls from var(J) \ var(I)
τ ′ :=

∧
A∈I A→ (∃y)

∧
B∈J B.

/*(c) propagate Σt through τ ′ */

(Σ′s, Σ
∗
st) := Propagate (Σ ∪ {τ ′}).

/*(d) return the result */

Let τ be the s-t tgd in Σ∗st corresponding to τ ′.
return (τ , Σ′s);

Fig. 7 Procedures Merge and MergeTgds.

Definition 17 Let Σ be a set of s-t tgds and let χ be
a conjunctive query. Then we write Σ[χ] to denote the
HE-component of those tgds in Σ, whose antecedents
are homomorphically equivalent to χ.

Theorem 10 Let Σ = Σs ∪ Σst ∪ Σt be a mapping
consisting of source egds, s-t tgds and target egds, Σs
and Σst being produced by the Propagate procedure,
and let χ be a CQ. Moreover, let (τ,Σ′s) be the output
of MergeTgds (Σ,χ). Then, the following equivalence
holds: Σ ≡ (Σ \Σ[χ]) ∪Σ′s ∪ {τ}.

Proof First, the new s-t tgd τ ′ was created in step (b) of
MergeTgds by chasing with Σ, so Σ |= τ ′ holds and
thus Σ ≡ Σ ∪ {τ ′}. But then, also Σ |= Σ ∪ Σ′s ∪ {τ}
follows by Lemma 12, as both Σ′s and τ were produced
by applying Propagate Procedure to Σ ∪ {τ ′} ≡ Σ.

In the other direction, the merged antecedent ϕ(x)
is at least as “powerful” as any of the antecedent ϕi(xi)
in Σ[χ], in the following sense: whenever a substitution
λ for the variables xi exists, such that At(ϕi(xiλ)) = I,
then also for some substitution µ for x, At(ϕ(xµ)) = I.

Indeed, suppose that at step (a) of MergeTgds,
the property Merge (Φ) |= Σ holds. Then, the claim
is immediate, since Merge is designed to deliver a CQ
that satisfies Theorem 9. If, however, Merge (Φ) has to
be updated with Σs, the unifications performed by Σs
do not affect the property that every CQ ϕi in Φ is an
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endomorphic image of ϕ. Indeed, let µ be an endomor-
phism of ϕ(x) = Merge (Φ) transforming it into some
ϕi ∈ Φ. For every such µ, we have At(ϕ(xµ)) |= Σs, so
whenever two nulls v, w ∈ dom(At(ϕ)) are to be uni-
fied by Σs, necessarily vµ = wµ holds. In total, also
the instance I created in step (a) of MergeTgds has
endomorphisms onto every At(ϕi).

Then, also the tgd τ ′, created in the step (b), is as
powerful as τi, as for each τi ∈ Σst[χ], we know that the
chase with Σst has produced at least all the conclusion
atoms of τi in the conclusion of τ .

The step (c) with Propagate procedure does not
affect dependencies other than τ ′, since, by precondi-
tion of the theorem, Σst results from Propagate pro-
cedure, and thus, no frozen antecedent database of Σst
can cause chase failure under Σ. Moreover, an appli-
cation of Propagate to τ ′ cannot deteriorate any en-
domorphism, which makes the antecedent ϕ′(x′) of τ ′

isomorphic to some ϕi ∈ Φ. Indeed, suppose this hap-
pens and the unification of variables x′k, x

′
l ∈ x′ cancels

some endomorphism λ. That is, λ is such that ϕ′(x′λ) =
ϕi(xi), and x′kλ 6= x′lλ. Then, in step 2.(d) of the Prop-
agate procedure, the source egd ε: ϕ′(x′) → x′k = x′l
is produced, and At(ϕi) 6|= ε must be the case. Hence,
by Σ ≡ Σ ∪ {τ ′} and Claim 2 of Lemma 11, the chase
of frozen At(ϕi) with Σ fails, which contradicts Claim
1 of Lemma 11 and the fact that Σst is the output of
Propagate. �

Example 18 Recall the tgds τ1 and τ2 with the an-
tecedents ϕ1 and ϕ2 from Example 17. As illustrated by
that example, there are two possible ways to merge ϕ1

and ϕ2, resulting in two possible merged antecedents
ϕ′1 = ϕ1 ∧ P (x2, z) and ϕ′′1 = ϕ1 ∧ P (y2, z). The corre-
sponding outputs of the procedure MergeTgds are

τ ′1 : P (y1, y2) ∧ P (y2, y3) ∧ P (y′2, y3) ∧
P (x1, x2)∧P (x2, x3)∧P (x2, z)→ Q(x1, y3)∧Q(x3, z)

and

τ ′′1 : P (y1, y2) ∧ P (y2, y3) ∧ P (y′2, y3) ∧ P (y2, z) ∧
P (x1, x2)∧P (x2, x3)→ Q(x1, y3)∧Q(y3, z),

respectively. �

Summary. To sum up, the following lessons have been
learned from our analysis of the normalization and op-
timization of s-t tgds in the presence of egds: In con-
trast to the tgd-only case, we have seen that one has
to be very careful with the definition of splitting and
optimization so as not to produce a non-unique normal
form: If we aim at a strict generalization of the splitting
rule from Section 3 via the Rule ES in Figure 4, then
there does not exist a unique normal form. This also
happens if we aim at a strict generalization of the Rule 5
(deletion of redundant atoms from the conclusion of a
tgd) via the Rule E3 in Figure 4. For most purposes,
we therefore consider the transformation of an arbitrary
mapping (consisting of s-t tgds and target egds) via the

Propagate procedure and exhaustive application of
the rules E1 and E2 from Figure 4 followed by the Rules
1 – 5 from Section 3 as the best choice: The resulting
normal form is unique up to isomorphism and incorpo-
rates a reasonable amount of splitting and simplifica-
tion. From the splitting point of view, the resulting nor-
mal form is referred to as “antecedent-split-reduced”.
This corresponds to a restriction of the splitting rule in
the tgd-only case to those situations where subsequent
antecedent simplifications of all resulting dependencies
are possible. Such a restriction is justifiable by the fact
that one of the main motivations for splitting is indeed
to further reduce the antecedents. From the optimiza-
tion point of view, the Rules 1–5 guarantee that we do
not perform worse than in the tgd-only case. But of
course, this leaves some additional potential of further
optimization in the presence of egds (in particular the
Rule E3) unexploited.

We have also identified the HE-components (com-
ponents of tgds with homomorphically equivalent an-
tecedents) as an important handle for the most com-
mon optimization tasks on the s-t tgds (in particular,
for all optimization criteria according to Definition 2).
We have seen that a global optimum according to the
optimization criteria studied here is obtained by locally
optimizing the s-t tgds inside each HE-component. In
particular, this allowed us to define a simple procedure
which transforms a mapping into an equivalent one with
the smallest possible number of s-t tgds. Of course, also
in this case, uniqueness is not guaranteed.

We have entirely concentrated on the normalization
and optimization of the s-t tgds, while a transformation
of the egds has not been considered. Indeed, a normal
form of the (source or target) egds is not important for
our purposes since we will show in Theorem 11 that
the unique (up to isomorphism) canonical universal so-
lution in data exchange only depends on the normaliza-
tion of the s-t tgds – the equivalence of the source egds
and the concrete syntax of the egds are irrelevant.

5 Aggregate Queries

As an application for the schema mappings normaliza-
tion, in this chapter we discuss the semantics and evalu-
ation of aggregate queries in data exchange, i.e., queries
of the form SELECT f FROMR, where f is an aggregate
operator min(R.A), max(R.A), count(R.A), count(∗),
sum(R.A), or avg(R.A), and where R is a target re-
lation symbol or, more generally, a conjunctive query
over the target schema and A is an attribute of R. For
this purpose, we first recall some basic notions on query
answering in data exchange as well as some fundamen-
tal results on aggregate queries from [1].

Certain Answers. Though any target database satis-
fying the schema mapping and local constraints is called
a “solution”, a random choice of a candidate for ma-
terializing a target database is not satisfactory: query



26

answering in data exchange cannot be reduced to eval-
uating queries against random solutions. The widely
accepted approach is based on the notion of certain an-
swers:

Definition 18 Let Σ be a schema mapping over the
schema 〈S,T〉, and let I be an instance over S. Then,
the certain answer for a query q over T and for I is
certain(q, I,W(I)) =

⋂{q(J)|J ∈ W(I)}, where W(I)
is the set of possible worlds for I and Σ.

Several proposals can be found in the literature [9,14,
19,20] as to which solutions should be taken as possi-
ble worlds W(I). Typical examples are the set of all
solutions, the set of universal solutions, the core of the
universal solutions, or the CWA-solutions. For conjunc-
tive queries, all these proposals lead to identical results.

Aggregate Certain Answers. Afrati and Kolaitis [1]
initiated the study of the semantics of aggregate queries
in data exchange. They adopted the notion of aggregate
certain answers for inconsistent databases of Arenas et
al. [3] to data exchange:

Definition 19 [1] Let query q be of the form SELECT

f FROM R, where R is a target relation symbol or, more
generally, a first-order query over the target schema
T, and f is one of the following aggregate operators:
min(R.A), max(R.A), count(R.A), count(∗), sum(R.A),
or avg(R.A) for some attribute A of R. For all aggre-
gate operators but count(∗), tuples with a null value in
attribute R.A are ignored in the computation.

– Value r is a possible answer of q w.r.t. I andW(I) if
there exists an instance J ∈ W(I) for which
f(q)(J) = r.

– poss(f(q), I,W(I)) denotes the set of all possible
answers of the aggregate query f(q) w.r.t. I and
W(I).

– For the aggregate query f(q), the aggregate certain
answer agg-certain(f, I,W(I)) w.r.t. I and W(I) is
the interval
[glb(poss(f(q), I,W(I))), lub(poss(f(q), I,W(I)))] ,
where glb and lub stand, respectively, for the great-
est lower bound and the least upper bound.

Semantics of aggregate queries via endomorphic
images. A key issue in defining the semantics of queries
in data exchange is to define which set of possible worlds
should be considered. In [1], Afrati and Kolaitis showed
that all previously considered sets of possible worlds
yield a trivial semantics of aggregate queries. There-
fore, they introduced a new approach via the endo-
morphic images of the canonical universal solution. Let
Endom(I,M) denote the endomorphic images of the
canonical universal solution J∗ = CanSol(I), i.e.: J ∈
Endom(I,M) if there exists an endomorphism h: J∗ →
J∗, s.t. J = h(J∗). As shown in [1], taking W(I) =

Endom(I,M) leads to an interesting and non-trivial se-
mantics of aggregate queries. However, in general, the
semantics definition depends on the concrete syntactic
representation of the s-t tgds.

Example 19 Consider the source schema S = {P}, tar-
get schema T = {R} and the pair of schema mappings
M1 = 〈S, T, Σ1〉 and M2 = 〈S,T, Σ2〉 with the fol-
lowing s-t tgds:

Σ1 = {P (x)→ (∃y)R(1, x, y)} and
Σ2 = {P (x)→ (∃y1 . . . yn)R(1, x, y1)∧ . . .∧R(1, x, yn)}
Clearly,M1 andM2 are logically equivalent. However,
for the source instance I = {P (a)}, they yield differ-
ent canonical universal solutions J1 = {R(1, a, y)} and
J2 = {R(1, a, y1), . . . , R(1, a, yn)}. Let A denote the
name of the first attribute of R. Then all of the three
aggregate queries count(R.A), count(∗), and sum(R.A)
have the range semantics [1, 1] inM1 and [1, n] inM2,
i.e.: M1 admits only one possible world and the three
aggregate queries evaluate to 1 in this world. In con-
trast, M2 gives rise to a number of possible worlds
with {R(1, a, y1), . . . , R(1, a, yn)} being the biggest one
and {R(1, a, y)} the smallest. Thus, the three aggregate
queries may take values between 1 and n. �

In order to eliminate the dependence on the concrete
syntactic representation of the s-t tgds, we have defined
a new normal form of s-t tgds in Definition 12. Below,
we show that we thus get a unique canonical universal
solution also in the presence of target egds.

Theorem 11 Let M = 〈S,T, Σst ∪Σt〉 be a schema
mapping and let Σs ∪ Σ∗st ∪ Σt be the normal form of
Σst ∪ Σt. Moreover, let I be a source instance and J∗

the canonical universal solution for I underM obtained
via an oblivious chase with Σ∗st followed by a chase with
Σt in arbitrary order. Then J∗ is unique up to isomor-
phism. We denote J∗ as CanSol∗(I).

Proof (Sketch) By Theorem 6, the normal form of the
s-t tgds is unique up to isomorphism. Hence, also the re-
sult of the oblivious chase with the s-t tgds is unique up
to isomorphism. Finally, also the chase with equivalent
sets of egds produces isomorphic canonical universal in-
stances. This property is proved by induction on the
length of one of the chase sequences: see Appendix D
for details. �

To obtain a unique range semantics of the aggregate
functions min, max, count, count(∗), sum, and avg, we
therefore propose to follow the approach of [1], with the
only difference that we take the unique target instance
CanSol∗(I) from Theorem 11.

6 Conclusion

We have initiated the study of a theory of schema map-
ping optimization. We have thus presented several nat-
ural optimality criteria and a rewrite rule system for
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transforming any set of s-t tgds into an equivalent op-
timal one. Recently, several other works have also pre-
sented rewrite rules for transforming a set of s-t tgds
into an equivalent one with better computational prop-
erties. In [22] and [25], the authors aim at the transfor-
mation of a set Σ of s-t tgds into an equivalent set Σ′,
s.t. chasing a source instance with Σ′ directly yields
the core of the universal solutions of the correspond-
ing data exchange problem. In [21], this transforma-
tion of s-t tgds is extended to mappings which com-
prise also functional dependencies as target dependen-
cies. The transformations in [22,25,21] insert negated
atoms and/or inequalities in the antecedents of some
s-t tgds so as to block certain forms of applying these
s-t tgds in the chase. The goal pursued by these trans-
formations is to avoid the expensive core computation
by post-processing of the canonical universal solution
and to obtain the core directly as the chase result. Nor-
malization and optimization of the mappings are not in
the scope of those transformations.

In order to extend our rewrite rule system to sche-
ma mappings including target egds, the most impor-
tant ingredients of our transformation (namely split-
ting and simplification of tgds) had to be defined very
carefully so as not to destroy the uniqueness of the
normal form. We have investigated several forms of
splitting and of optimization and we have identified
a rewrite rule system which indeed guarantees to pro-
duce a normal form that is again unique up to vari-
able renaming. Finally, we have applied the normal-
ization of schema mappings containing target egds to
aggregate queries in data exchange. An implementa-
tion of the presented algorithms is freely available from
http://www.dbai.tuwien.ac.at/proj/sm.

In this paper, we have only considerd the optimiza-
tion of mappings with respect to logical equivalence. As
pointed out in [10], weaker notions of equivalence such
as “data exchange equivalence” and “conjunctive query
equivalence” may sometimes be more appropriate. Un-
fortunately, many optimization tasks in these relaxed
settings are undecidable [23].

As future work, our results should be extended to
more expressive schema mappings, including second-
order s-t tgds or target tgds. Not surprisingly, a unique
normal form via redundancy elimination is not feasible
for the target tgds: Consider the set of target tgds Σt =
{P (x) → R(x) ∧ S(x), R(x) → S(x), S(x) → R(x)}.
Now the tgd P (x)→ R(x)∧S(x) can be either reduced
to P (x) → R(x) or to P (x) → S(x). Of course, even
if no unique normal form of the tgds exists, it is still
conceivable that one may obtain a unique (up to iso-
morphism) canonical universal solution via redundancy
elimination from the tgds.
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Appendix

A Proof of Lemma 2

Lemma 2 The Rules 1 – 5 in Figure 1 are correct, i.e.: Let Σ
be a set of s-t tgds and τ ∈ Σ. Suppose that Σ is transformed
into Σ′ by applying one of the Rules 1 – 5 to τ , that is:

– τ is replaced by a single s-t tgd τ ′ (via Rule 1,2,5),
– τ is replaced by s-t tgds τ1, . . . , τn (via Rule 3),
– or τ is deleted (via Rule 4).

Then Σ and Σ′ are equivalent.

Proof
Rule 1. Suppose that an s-t tgd τ is replaced by τ ′ via Rule 1.
Then the s-t tgds τ and τ ′ are of the form τ : ϕ(x)→ (∃y )ψ(x,y )
and τ ′:ϕ(x ) → (∃y )ψ(x,yσ), s.t. At(ψ(x,yσ)) ⊂ At(ψ(x,y)).
In particular, τ ′ is a “proper instance” of τ according to Defini-
tion 7. Hence, by Lemma 3, τ ′ |= τ holds.

On the other hand, let 〈S, T 〉 be an arbitrary pair of source
and target instance with 〈S, T 〉 |= τ and let λ:x→ dom(S) be a
substitution, s.t. At(ϕ(xλ) ⊆ S. We have to show that then also
T |= ψ(xλ,yσ) holds. By assumption, 〈S, T 〉 |= τ . Hence, T |=
ψ(xλ,y ), i.e., there exists a substitution µ, s.t. At(ψ(xλ,yµ)) ⊆
T . But then, since At(ψ(x,yσ)) ⊆ At(ψ(x,y )) holds, we also
have At(ψ(xλ,yσµ)) ⊆ T . Thus, τ |= τ ′ indeed holds.

Rule 2. Suppose that τ : ϕ(x1,x2) → (∃y )ψ(x1,y ) is replaced
by τ ′ via Rule 2. Then τ ′ must be of the form τ ′: ϕ(x1,x2σ)
→ (∃y )ψ(x1,y ), with At(ϕ(x1,x2σ)) ⊂ At(ϕ(x1,x2)). We show
both implications τ |= τ ′ and τ ′ |= τ separately.

[τ |= τ ′] Let 〈S, T 〉 be a pair of source and target instance
with 〈S, T 〉 |= τ . If S 6|= ϕ(x1,x2σ) then 〈S, T 〉 |= τ ′ holds vacu-
ously. It remains to consider the case that S |= ϕ(x1,x2σ) holds,
i.e., there exists a substitution λ′, s.t. At(ϕ(x1λ′,x2σλ′)) ⊆ S.
Consider the substitution λ:x1 ∪x2 → dom(S), s.t. xλ = xλ′ for
every x ∈ x1 and xλ = xσλ′ for every x ∈ x2. Then the equality
At(ϕ(x1λ,x2λ)) = At(ϕ(x1λ′,x2σλ′)) ⊆ S holds. Thus, we con-
clude that T |= (∃y )ψ(x1λ,y ), since 〈S, T 〉 |= τ holds. Hence,
since λ and λ′ coincide on x1 also T |= (∃y )ψ(x1λ′,y ) and,
therefore, 〈S, T 〉 |= τ ′.

[τ ′ |= τ ] Now let 〈S, T 〉 be a pair of source and target in-
stance with 〈S, T 〉 |= τ ′ and S |= ϕ(x1,x2), i.e., there exists a
substitution λ, s.t. At(ϕ(x1λ,x2λ)) ⊆ S. By definition of Rule
2, the inclusion At(ϕ(x1,x2σ)) ⊆ At(ϕ(x1,x2)) holds. Hence,
At(ϕ(x1λ,x2σλ)) ⊆ S is true as well. But then, by 〈S, T 〉 |= τ ′,
we know that also T |= (∃y )ψ(x1λ,y ) holds and, therefore,
〈S, T 〉 |= τ .

Rule 3. This rule is based on two general equivalences in first-
order logic:

– (∃z )(A(z )∧B(z )) ≡ (∃z1)A(z1)∧(∃z2)B(z2) if the variables
z1 actually occurring in A and the variables z2 actually oc-
curring in B are disjoint.

– We clearly have the equivalence A → (B1 ∧ B2) ≡ (A →
B1) ∧ (A→ B2).

Rule 4. Suppose that τ is deleted from Σ via Rule 4, i.e., Σ is
transformed into Σ′ with Σ′ = Σ \ {τ} and Σ′ |= τ . Hence,
Σ′ |= Σ holds. Moreover, Σ |= Σ′ holds by the monotonicity of
“|=”. Hence, Σ ≡ Σ′ clearly holds.
Rule 5. Suppose that τ ∈ Σ is replaced by τ ′ via Rule 5. Then
τ ′ is of the form τ ′:ϕ(x)→ (∃y ′)ψ′(x,y ′), s.t. At(ψ′(x, y ′)) ⊂
At(ψ(x,y )). By the latter condition, τ |= τ ′ clearly holds. Hence,
Σ is equivalent to (Σ ∪ {τ ′}). By the definition of Rule 5, (Σ ∪
{τ ′})\{τ}) |= τ holds. Hence, Σ is also equivalent to (Σ∪{τ ′})\
{τ}). �

B Full proof of Lemma 6

Lemma 6 Let τ1 and τ2 be two s-t tgds and suppose that τ1 and
τ2 are reduced w.r.t. Rules 1 – 3. Then τ1 and τ2 are isomorphic,
iff τ1 and τ2 are equivalent.

Proof The “⇒”-direction is an immediate consequence of
Lemma 1. For the “⇐”-direction, consider two equivalent s-t tgds
τ1: ϕ1(x1, x2)→ (∃y )ψ1(x1,y ) and
τ2: ϕ2(u1,u2)→ (∃v )ψ(u1,v ).

Observe that the antecedents of τ1 and τ2 must be homomor-
phically equivalent, i.e., by Lemma 1, there exist substitutions λ
and ρ, s.t.
λ:x1 ∪ x2 → Const ∪ u1 ∪ u2, and
ρ:u1 ∪ u2 → Const ∪ x1 ∪ x2, such that
At(ϕ1(x1λ,x2λ)) ⊆ At(ϕ2(u1,u2)) and
At(ϕ2(u1ρ,u2ρ)) ⊆ At(ϕ1(x1,x2)).

We show that the antecedents of τ1 and τ2 are in fact isomorphic.
In particular, we claim that there exist substitutions λ and ρ, s.t.
the above inclusions are equalities, i.e.,
λ:x1 ∪ x2 → Const ∪ u1 ∪ u2, and
ρ:u1 ∪ u2 → Const ∪ x1 ∪ x2, such that
At(ϕ1(x1λ,x2λ)) = At(ϕ2(u1,u2)) and
At(ϕ2(u1ρ,u2ρ)) = At(ϕ1(x1,x2)).

Assume the converse is true, and, w.l.o.g., the antecedent of τ1
cannot be mapped onto the entire antecedent of τ2, i.e., for ev-
ery substitution λi:x1 ∪ x2 → Const ∪ u1 ∪ u2, the inclusion
Sλi = At(ϕ1(x1λi,x2λi)) ⊂ At(ϕ2(u1,u2)) holds.

For every such λi, consider the s-t dependency of the form
τ i1:ϕ1(x1λi, x2)→ (∃y )ψ1(x1λi,y ). Let T denote the complete
set of all such τ i1. It is easy to see that τ1 |= τ2 iff T |= τ2.
Moreover, by construction of T , τ1 |= T and, therefore, we get
{τ1} ≡ {τ2} ≡ T .

Also note that the antecedent database of each τ i1 ∈ T is
an endomorphic image of the antecedent database of τ2. Indeed,
assume that for some j, there is no homomorphism projecting
ϕ2(u1, u2) onto the antecedent ϕj1(xj1,x

j
2) of τ j1 ∈ T . Then, the

combined instance
〈At(ϕj1(xj1,x

j
2), ∅〉 satisfies τ2 but not T , which is a contradic-

tion.
By Lemma 4 we know that the following two cases are pos-

sible: either (i) some τ i1 |= τ2, or (ii) T implies a proper instance
of τ2.

The latter case contradicts Lemma 3, part (2), since we im-
mediately get that τ2 implies a proper instance of itself. We may
therefore assume that (i) is the case: There exists some rule τ ′ ∈ T
such that τ ′ ≡ τ2 and moreover, the antecedent of τ ′ is a proper
endomorphic image of the antecedent ϕ2(u1, u2) of τ2.

We also assume that τ ′ is the smallest “endomorphic” (w.r.t.
the antecedent of τ2) dependency possible. Indeed, let τ ′ itself
admit an equivalent s-t tgd with the proper endomorphically
equivalent antecedent: then we just focus on this smaller s-t tgd
instead of τ ′. Thus, we consider the dependency τ∗ whose an-
tecedent ϕ∗(u∗1,u

∗
2) which is minimal in the following sense: no

dependency logically equivalent to τ2 (and thus to τ∗) exists, with
the antecedent database being a proper endomorphic instance of
At(ϕ∗(u∗1,u

∗
2)).

We show that also the conclusion of τ∗ must be smaller than
the conclusion of τ2: that is, the inequality |At(ϕ2(u1,u2))| >
|At(ϕ∗(u∗1,u

∗
2))| holds. Let σ be a substitution, such that

ϕ2(u1σ,u2σ) = ϕ∗(u∗1,u
∗
2) holds. Since τ∗ is minimal, there

must also exist a substitution µ:At(ψ∗(u∗1,v
∗µ)) ⊆ At(ψ(u1σ,v)).

Note that σ necessarily “lumps together” two elements of
u1: otherwise, τ2 would be not reduced w.r.t. Rule 2 (Core of
the antecedent). But then also the inequality |ψ∗(u∗1,v∗µ)| <
|ψ(u1σ,v)| holds. This means that there exists a dependency
equivalent to τ2 but with fewer conclusion atoms. This contra-
dicts the assumption that {τ2} is reduced w.r.t. Rule 5.



29

That is, we have shown that the antecedents of τ2 and τ1
are isomorphic. But since these dependencies are equivalent and
reduced w.r.t. Rule 1 (Core of the conclusion), we also have that
the entire τ1 and τ2 must be isomorphic as well. �

C Full proof of Theorem 2

Theorem 2 Suppose that the length (i.e., the number of atoms)
of the s-t tgds under consideration is bounded by some constant
b. Then there exists an algorithm which reduces an arbitrary set
Σ of s-t tgds to normal form in polynomial time w.r.t. the total
size ||Σ|| of (an appropriate representation of) Σ.

Proof Let constant b limit the number of atoms in each s-t tgd
and let ||Σ|| = n denote the number of s-t tgds inΣ. Moreover, let
α denote the maximum arity of the relation symbols in the source
and target schema. We define the following simple algorithm:

1. Obtain Σ′ by applying Rules 1 – 3 exhaustively to {τ}, for
each τ ∈ Σ.

2. For each τ in the current set Σ′ of s-t tgds do

– Try to delete τ via Rule 4.
– If τ was not deleted, try to replace τ by some τ ′ via Rule

5.
– If Rule 5 was applicable, apply Rule 3 to τ ′.

Note that the Rules 1 and 2 do not become applicable anymore
after an application of Rule 5 provided that we replace τ by an
s-t tgd τ ′ such that the set of atoms in the conclusion of τ ′ is
minimal.

In order to establish the polynomial-time upper
bound, we proceed in 2 steps. That is, we prove (1) an upper
bound on the total number of rule applications and (2) an upper
bound on the cost of each single rule application.

(1) Total number of rule applications. Rule 4 deletes an s-t tgd.
Hence, it can be applied at most n times. The Rules 1, 2, and 5
delete at least one atom from an s-t tgd. Hence, in total, these
rules can be applied at most b∗n times. Finally, Rule 3 splits the
conclusion of an s-t tgd in 2 or more parts. Hence, also the total
number of applications of Rule 3 is bounded by b ∗ n. We thus
get the upper bound O(b∗n) on the total number of applications
of any rule. Moreover, it should be noted that at no stage of the
algorithm, the current set Σ′ of s-t tgds contains more than b ∗n
s-t tgds.

(2) Cost of a single rule application. In Rules 1 and 2, we compute
the core of the atoms in the conclusion resp. in the antecedent.
Rules 1 and 2 thus essentially come down to CQ answering of a
query with ≤ b atoms over a database with ≤ b atoms. The cost
of a single application of these rules is therefore in O(αbb).

Rule 3 is the cheapest one in that it only requires the compu-
tation of the connected components of a graph with ≤ b vertices.
For setting up this graph, we have to inspect at most α∗b variable
occurrences in an s-t tgd. The cost of an application of Rule 3 is
thus in O(αb2).

To apply Rule 4 to an s-t tgd τ` in the current set Σ′, we
compare τ`:ϕ(x ) → (∃y )ψ(x,y ) with every τi ∈ Σ′, such that
i 6= `. With τi:ϕi(xi)→ (∃yi )ψi(xi,yi), we proceed as follows:

1. For each i 6= `, compute all possible substitutions λij , s.t.
At(ϕi(xiλij)) ⊆ At(ϕ(x )).
Every such λij is uniquely determined by an assignment of
the ≤ b atoms of ϕi(xi) to the ≤ b atoms of ϕ(x ). Hence, for
every i, there are at most bb possible substitutions λij .

2. For all i, j, compute Aij = At(ψi(xiλij ,yij)), where yij is
a set of fresh variables, i.e., we apply the substitutions λij
computed in the first step to the conclusion of τi and rename
the variables yi apart.

3. Let A =
⋃
i 6=`
⋃
j Aij . Try to find a substitution µ, s.t.

At(ψ(x,yµ)) ⊆ A. If such a µ exists, delete τ`.

In Step 1, we compute all solutions of a CQ with ≤ b atoms over
a database with ≤ b atoms. In total, we apply this step to at most
b2n2 pairs (τ`, τi), which is feasible in total time O(b2n2αbb). As
a result, we get A as the union of at most b2n2bb sets Aij , each
consisting of ≤ b atoms. Hence, A contains ≤ n2bb+3 atoms. Step
2 is then feasible in time O(αn2bb+3). Finally, in Step 3, we have
to evaluate a Boolean CQ with ≤ b atoms over a database A
consisting of ≤ n2bb+3 atoms. This is feasible in O(α(n2bb+3)b).
In total, the entire computation required for an application of
Rule 4 thus fits into time O(||Σ||f(b)) for some function f(.),
which depends only on b but not on the size of the input.

An application of Rule 5 is very similar to Rule 4. The first
two steps above are identical. Only in Step 3 we do not search for
a µ with At(ψ(x,yµ)) ⊆ A. At this stage, we know that such a
µ does not exist. Instead, we search for a µ, s.t. At(ψ(x,yµ)) ⊆
A∪At(ψ(x,y)) and At(ψ(x,yµ))∩A 6= ∅. If such a µ exists, we
choose µ, s.t. At(ψ(x,yµ)) ∩A is maximal (w.r.t. set inclusion).
Note that the desired s-t tgd τ ′ for replacing τ is obtained as
τ ′:ϕ(x ) → (∃y ′)ψ′(x,y ′), s.t. At(ψ′(x,y ′)) = At(ψ(x,y )) \
{A | A ∈ At(ψ(x,y )) and Aµ ∈ A}. In other words, the set of
atoms in the conclusion of τ ′ becomes minimal if At(ψ(x,yµ))∩A
is maximized. Clearly, Steps 1 and 2 above do not have to be
repeated for Rule 5. Step 3 of an application of Rule 5 boils
down to essentially the same kind of CQ evaluation as for Rule
4. We thus end up again with an upper bound of O(||Σ||g(b)) on
the computation time, where g(.) is a function, which depends
only on b but not on the size of the input. �

D Full proof of Theorem 11

Theorem 11 Let M = 〈S,T, Σst ∪Σt〉 be a schema mapping
and let Σ∗s∪Σ∗st∪Σt be the normal form of Σst∪Σt. Moreover,
let I be a source instance and J∗ the canonical universal solution
for I under M obtained via an oblivious chase with Σ∗st followed
by a chase with Σt in arbitrary order. Then J∗ is unique up to
isomorphism. We denote J∗ as CanSol∗(I).

Proof By the equivalence of Σ, the chase with Σ fails iff the
chase with Σ′ fails. We may thus restrict ourselves to the case
that both chases succeed. Suppose that the chase of J with Σ
(resp. Σ′) consists of n (resp. n′) egd-applications and write Ji
(resp. J ′i) to denote the intermediate result after the i-th step with
i ∈ {0, . . . , n} (resp. i ∈ {0, . . . , n′}). In particular, J = J0 = J ′0.
Clearly, every Ji and J ′i is a homomorphic image of J .

Egds have the effect that variables may disappear from J .
We therefore concentrate on the positions in J . To this end, we
assume that every atom A in J is equipped with a unique identi-
fier id(A). A position in J is thus uniquely determined by id(A)
of an atom A and a position in A (i.e., an index between 1 and
the arity of the predicate symbol of A). We assume that dupli-
cate atoms, which may be produced by the chase, are not deleted.
Then the positions in J persist in all instances Ji and J ′i , even
though variables from J may disappear in Ji and J ′i . The ap-
plication of an egd ε:ϕ(x ) → z1 = z2 to an instance Ji (resp.
J ′i) means that the variables in ε are bound by some substitu-
tion σ:x → Const ∪ var(J). This substitution σ is determined
by assigning each atom in ϕ(x ) to an atom in Ji. Thus, ev-
ery variable occurrence in ε is assigned to some position in J .
We can thus represent σ as a mapping from the variables in ε
to tuples of positions in J : For x = {x1, . . . , xk}, σ is of the
form σ = {x1 ← (p11, . . . , p1j1 ), . . . , xk ← (pk1, . . . , pkjk )} with
j1, . . . , jk ≥ 1, where the pαβ ’s denote positions in J . If a variable
xα occurs more than once in ϕ(x ) then it is mapped to several
positions. Clearly, σ is well-defined for an instance Ji only if for
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every α ∈ {1, . . . , k}, all positions pα1, . . . , pαjα have identical
values in Ji.

In order to describe the instances resulting from the applica-
tion of egds to J , we introduce the notion of equality graphs: The
vertices of these equality graphs are the positions in J . We say
that an equality graph corresponds to an instance J ′ (which was
obtained from J by the application of some egds) if the follow-
ing equivalence holds: Two vertices corresponding to positions p1
and p2 in J are connected (not necessarily adjacent) iff p1 and p2
have the same value in J ′. Obviously, if two instances J ′ and J ′′

obtained from J via egds are such that the corresponding equality
graphs have the same connected components, then J ′ and J ′′ are

isomorphic. Thus, in order to show that JΣ and JΣ
′

are isomor-
phic, it suffices to show that the equality graphs corresponding

to JΣ and JΣ
′

have the same connected components.
We construct the equality graph Ei of Ji (and, analogously

the graph E ′i corresponding to J ′i) inductively as follows: The
vertices never change, i.e., in every graph Ei, there is one ver-
tex for each position in J . By slight abuse of notation, we thus
identify the vertices with the positions. As edges, we introduce
in the graph E0 corresponding to J = J0 an edge between any
two (vertices corresponding to) positions p1 and p2 if they have
the same value in J . Suppose that we have already constructed
Ji−1. Then Ji is constructed as follows: Suppose that the egd
ϕ(x )→ z1 = z2 with z1, z2 ∈ x is applied in the i-th chase step.
By the above considerations, this means that we apply a substitu-
tion σ = {x1 ← (p11, . . . , p1j1 ), . . . , xk ← (pk1, . . . , pkjk )} to the
variables x = {x1, . . . , xk}, i.e., every variable in ϕ(x ) is mapped
to one or more positions in Ji−1 (or, equivalently, positions in
J), s.t. for every α ∈ {1, . . . , k}, all positions pα1, . . . , pαjα have
identical values in Ji−1. Note that zj with j ∈ {1, 2} is a variable
xα ∈ x. We thus choose as vertex vj in Ei−1 some position pαβ
for non-deterministically selected β ∈ {1, . . . , jα}. Then Ei is ob-
tained from Ei−1 by inserting an edge between v1 and v2. It can
be easily verified that every Ei is an equality graph correspond-
ing to Ji. By the above considerations, it suffices to show that En
and E ′

n′ have the same connected components. We prove by in-
duction on i ∈ {0, . . . , n′} that any two vertices v1, v2 connected
in E ′i are also connected in En. The proof that any two vertices
v1, v2 connected in Ei are also connected in E ′

n′ is symmetric.

“i = 0”. E ′0 is the initial equality graph corresponding to J . By
construction, every edge in E ′0 = E0 is contained in En.

“(i−1)→ i”. Suppose that any two vertices connected in E ′i−1 are
also connected in En. We have to show that then also any two
vertices connected in E ′i are connected in En. By construction,
E ′i contains at most one additional edge compared with E ′i−1,
say (v1, v2). We have to show that v1 and v2 are also connected
(not necessarily adjacent) in En. Let ε:ϕ(x ) → z1 = z2 with
z1, z2 ∈ x denote the egd which was applied in the i-th chase step
with Σ′, i.e., a substitution σ = {x1 ← (p11, . . . , p1j1 ), . . . , xk ←
(pk1, . . . , pkjk )} was applied to the variables x = {x1, . . . , xk}.
The remainder of the proof proceeds in three steps:

(1) The substitution σ is also well-defined for JΣ

(2) At(ϕ(xσ)) ⊆ At(JΣ)

(3) The vertices v1, v2 are connected in En.

Proof of (1). Let α ∈ {1, . . . , k}. We have to show that the po-
sitions pα1, . . . , pαjα have identical values in JΣ . Note that σ is
well-defined as a mapping of x to J ′i−1 since this substitution

was applied for the i-th chase step with Σ′. Hence, the vertices
pα1, . . . , pαjα are connected in E ′i−1. But then, by the induction
hypothesis, they are also connected in En. This means that the
positions pα1, . . . , pαjα indeed have identical values in JΣ .

Proof of (2). Let A(x ) be a conjunct in ϕ(x ). We have to show
that A(xσ) ∈ At(JΣ). Clearly, A(xσ) ∈ At(J ′i−1) since σ was

applied for the i-th chase step with Σ′, i.e., there exists an atom
B ∈ J with identifier id(B), s.t. the atom B (i.e., precisely speak-
ing, the atom with identifier id(B)) in J ′i−1 coincides with A(xσ).

We claim that then A(xσ) also coincides with the atom B in JΣ :
By definition, σ as a mapping to JΣ maps the variables in x to
the (values at the) same positions like σ as a mapping to J ′i−1.
Hence, if a variable occurring in A(x) is mapped to some position
of B in J ′i−1 then it is mapped to the same position of B in JΣ .
By (1), if some variable occurs in several positions in A(x), then
the corresponding positions of B have identical values in JΣ . It
thus remains to show that if some constant c occurs at a posi-
tion p in A then B in JΣ also has the value c at this position.
Clearly, since A(xσ) coincides with B in J ′i−1, B has the value c

at position p in J ′i−1, i.e., there exists a position q, s.t. p and q

are connected in E ′i−1 (this also comprises the case that p and q
are identical) and the value at position q in J was c. Clearly, the
(constant) value at position q can never change during the chase.
Moreover, by the induction hypothesis, p is connected with q also
in En. Thus, B in JΣ also has the value c at the position p.

Proof of (3). Recall the construction of E ′i . Namely, let ε be an egd
ϕ(x ) → z1 = z2 with z1 being a variable xα and z2 a variable
xγ . Then v1 is some position pαβ and v2 is some position pγδ
according to the substitution σ. In other words, the edge (v1, v2)
was introduced in E ′i in order to enforce the equality z1σ = z2σ
in J ′i .

We have to show that v1, v2 are connected in En, where v1
is the position pαβ and v2 is the position pγδ. By assumption, Σ

and Σ′ are equivalent. Hence, since JΣ |= Σ, also JΣ |= Σ′ holds.
In particular, JΣ |= ε. By the above considerations, At(ϕ(xσ)) ⊆
At(JΣ). Hence, the equality z1σ = z2σ must also be fulfilled in
JΣ and, therefore, the values at the positions pαβ and pγδ are

identical in JΣ . Thus, the vertices v1 and v2 are indeed connected
in En. �


