
T ECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18492

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Relativized Hyperequivalence of Logic
Programs for Modular Programming

DBAI-TR-2008-63

Mirosław Truszczyński Stefan Woltran

DBAI T ECHNICAL REPORT

2008

DBAI T ECHNICAL REPORT

DBAI T ECHNICAL REPORT DBAI-TR-2008-63, 2008

Relativized Hyperequivalence of Logic Programs for
Modular Programming

Mirosław Truszczyński1 Stefan Woltran2

Abstract. A recent framework of relativized hyperequivalence of programs offers a uni-
fying generalization of strong and uniform equivalence. Itseems to be especially well
suited for applications in program optimization and modular programming due to its flexi-
bility that allows us to restrict, independently of each other, the head and body alphabets in
context programs. We study relativized hyperequivalence for the three semantics of logic
programs given by stable, supported and supported minimal models. For each semantics,
we identify four types of contexts, depending on whether thehead and body alphabets are
given directly or as thecomplementof a given set. Hyperequivalence relative to contexts
where the head and body alphabets are specified directly has been studied before. In this
paper, we establish the complexity of deciding relativizedhyperequivalence wrt the three
other types of context programs.

1Department of Computer Science, University of Kentucky, Lexington, KY 40506-0046, USA. E-mail:
mirek@cs.uky.edu

2Institute for Information Systems 184/2, Technische Universität Wien, Favoritenstrasse 9-11, 1040 Vi-
enna, Austria. E-mail: woltran@dbai.tuwien.ac.at

Acknowledgements: The authors acknowledge partial support by the NSF grant IIS-0325063, the
KSEF grant KSEF-1036-RDE-008, and by the Austrian Science Fund (FWF) under grants P18019-
N04 and P20704-N18.

This is an extended version of a paper published in the Proceedings of the 24th International Con-
ference on Logic Programming (ICLP’08).

Copyright c© 2008 by the authors

1 Introduction

We study variants of relativized hyperequivalence that arerelevant for the development and analy-
sis of disjunctive logic programs with modular structure. Our main results concern the complexity
of deciding relativized hyperequivalence for the three major semantics of logic programs given by
stable, supported and supported minimal models.

Logic programmingwith the semantics of stable models, nowadays often referred to asanswer-
set programming, is a computational paradigm for knowledge representation, as well as modeling
and solving constraint problems [22, 23, 14, 2]. In recent years, it has been steadily attracting more
attention. One reason is that answer-set programming is truly declarative. Unlike in, say, Prolog,
the order of rules in programs and the order of literals in rules have no effect on the meaning of the
program. Secondly, the efficiency of the latest tools for processing programs, especially solvers,
reached the level that makes it feasible to use them for problems of practical importance [12].

It is broadly recognized in software engineering that modular programs are easier to design,
analyze and implement. Hence, essentially all programminglanguages and environments support
the development of modular programs. Accordingly, there has been much work recently to estab-
lish foundations ofmodularanswer-set programming. One line of investigations has focused on
the notion of an answer-set programmodule[13, 17, 25, 18]. This work builds on ideas for com-
positional semantics of logic programs proposed by Gaifmanand Shapiro [11] and encompasses
earlier results on stratification andprogram splitting[20].

The other main line of research, to which our paper belongs, has centered on program equiv-
alence and, especially, on the concept of equivalence for substitution. ProgramsP andQ are
equivalent for substitutionwith respect to a classC of programs calledcontexts, if for every con-
textR ∈ C, P ∪ R andQ ∪ R have the same stable models. Thus, if a logic program is the union
of programsP andR, whereR ∈ C, thenP can be replaced withQ, with the guarantee that the
semantics is preserved no matter whatR is (as long as it is inC) precisely whenP andQ are equiv-
alent for substitution with respect toC. If C contains the empty program (which is typically the
case), the equivalence for substitution with respect toC implies the standard equivalence under the
stable-model semantics.1 The converse is not true. We refer to these stronger forms of equivalence
collectively ashyperequivalence.

Hyperequivalence with respect to the class ofall programs, known more commonly asstrong
equivalence, was proposed and studied by Lifschitz, Pearce and Valverde[19]. That work
prompted extensive investigations of the concept that resulted in new characterizations [21, 28]
and connections to certain non-standard logics [6]. Hyperequivalence with respect to contexts con-
sisting of facts was studied by Eiter, Fink and Woltran [7, 8]. This version of hyperequivalence,
known asuniform equivalence, appeared first in the database area in the setting of DATALOGand
query equivalence [26]. Hyperequivalence with respect to contexts restricted to a given alphabet,
or relativizedhyperequivalence, was proposed by Eiter et al. [8] and Inoueand Sakama [16]. It
was generalized by Woltran [29] to allow contexts that use (possibly) different alphabets for the
heads and bodies of rules. The approach offers a unifying framework for strong and uniform equiv-
alence. Hyperequivalence, in which one compares projections of answer sets on some designated

1Two programs are equivalent under the stable-model semantics if they have the same stable models.

2

sets of atoms rather than entire answer sets has also received some attention [9, 24].
All those results concern the stable-model semantics of programs. There has been little work

on other semantics, with the work by Cabalar [4] long being a notable single exception. Recently
however, Truszczyński and Woltran [27] introduced and investigated relativized hyperequivalence
of programs under the semantics of supported models [5] and supported minimal models, two other
major semantics of logic programs. Truszczyński and Woltran [27] characterized these variants of
hyperequivalence and established the complexity of some associated decision problems.

In this paper, we continue research of relativized hyperequivalence under all three major seman-
tics of logic programs. As in earlier works [29, 27], we focuson contexts of the formHB(A, B),
whereHB(A, B) stands for the set of all programs that use atoms fromA in the heads and atoms
from B in the bodies of rules. Our main goal is to establish the complexity of deciding whether
two programs are hyperequivalent (relative to a specified semantics) with respect toHB(A, B).
We consider the cases whenA andB are either specified directly or in terms of their complement.
As we point out in the following section, such contexts arisenaturally when we design modular
logic programs.

2 Motivation

We postpone technical preliminaries to the following section. For the sake of the present section
it is enough to say that we focus our study on finite propositional programs over a fixed countable
setAt of atoms. It is also necessary to introduce one piece of notation: Xc = At \X.

To argue that contexts specified in terms of the complement ofa finite set are of interest, let
us consider the following scenario. A logic program isA-definingif it specifies the definitions of
atoms inA. The definitions may be recursive, they may involveinterfaceatoms, that is, atoms de-
fined in other modules, as well as atoms used locally to represent some needed auxiliary concepts.
Let L be the set of local atoms, and letP be a particular logic program expressing the definitions.
ForP to behave properly when combined with other programs, these“context” programs must not
have any occurrences of atoms fromL and must have no atoms fromA in the heads of their rules.
In our terminology, these are precisely programs inHB((A ∪ L)c, Lc).2

The definitions of atoms inA can in general be captured by several differentA-defining pro-
grams. A key question concerning such programs is whether they are equivalent. Clearly, two
A-defining programsP andQ, both using atoms fromL to represent local auxiliary concepts,
should be regarded as equivalent if they behave in the same way in the context of any program
from HB((A ∪ L)c, Lc). In other words, the notion of equivalence appropriate in our setting is
that of hyperequivalence with respect toHB((A ∪ L)c, Lc) under a selected semantics (stable,
supported or supported-minimal).

Example 2.1 Let us assume thatA = {a, b} and thatc andd are interface atoms (atoms defined
elsewhere). We need a module that works as follows:

2
A-defining programs were introduced by Erdogan and Lifschitz[10]. However, that work considered more re-

stricted classes of programs with whichA-defining programs could be combined.

3

1. If c andd are both true, exactly one ofa andb must be true

2. If c is true andd is false, onlya must be true

3. If d is true andc is false, onlyb must be true

4. If c andd are both false,a andb must be false.

We point out thatc andd may depend ona andb and so, in some cases the overall program may
have no models of a particular type (to be concrete, for a timebeing we fix attention to stable
models).

One way to express the conditions (1) - (4) is by means of the following{a, b}-defining program
P (in this example we assume that{a, b}-defining programs do not use local atoms, that is,L = ∅):

a← c, not b;
b← d, not a.

CombiningP with programs that specify facts:{c, d}, {c}, {d} and ∅, it is easy to see thatP
behaves as required. For instance,P ∪ {c} has exactly one stable model{a, c}.

However,P may also be combined with more complex programs. For instance, let us consider
the programR = {c ← not d; d ← a, not c}. Here,d can only be true ifa is true andc is false.
But thenb must be true, which can only be the case ifc andd are both true, a contradiction. Thus,
d must be false andc must be true. According to the specifications, there should be exactly one
stable model forP ∪ R in this case:{a, c, d}. It is easy to verify that it is indeed the case.

The specifications fora and b can also be expressed by other{a, b}-defining programs, in
particular, by the following programQ:

a← c, d, not b;
b← c, d, not a;
a← c, not d;
b← d, not c.

The question arises whetherQ behaves in the same way asP relative to programs from
HB({a, b}c, ∅c) = HB({a, b}c,At). For all contexts considered earlier, it is the case. However, in
general, it is not so. For instance, ifR = {c← ; d← a} then,{a, c, d} is a stable model ofP ∪R,
whileQ ∪ R has no stable models. Thus,P andQ cannot be viewed as equivalent{a, b}-defining
programs. 2

A similar scenario gives rise to a different class of contexts. We call a programA-completing
if it completes partial and non-recursive definitions of atoms inA given elsewhere in the overall
program (which, for instance, might specify the base conditions for a recursive definition of atoms
in A). Assuming thatP is an implementation of such a module (again withL as a set of local
atoms),P can be combined with any programR that has no occurrences of atoms fromL and no
occurrences of atoms fromA in the bodies of its rules. This is precisely the classHB(Lc, (A∪L)c).

In the last example, we assume that we are to express partial problem specifications as a logic
program. The uncertainty concerns concepts represented byatoms from some setA, that we know

4

are defined by some other program in terms of concepts denotedby atoms inB. Here two programs
P andQ expressing these partial specifications can serve as each other substitute precisely when
they are hyperequivalent with respect to the class of programsHB(A, B).

These examples demonstrate that hyperequivalence with respect to context classesHB(A, B),
whereA andB are either specified directly or in terms of their complementis of interest. Our goal
is to study the complexity of deciding whether two programs are hyperequivalent relative to such
classes of contexts.

3 Technical Preliminaries

Basic logic programming notation and definitions. Disjunctive logic programs(programs, for
short) are finite sets of (program)rules— expressions of the form

a1 ∨ . . . ∨ ak ← b1, . . . , bm, not c1, . . . , not cn, (1)

whereai, bi andci are atoms inAt , ‘∨’ stands for the disjunction, ‘,’ stands for the conjunction,
andnot is thedefaultnegation. Ifk = 0, the rule is aconstraint. If k ≤ 1, the rule isnormal.
Programs consisting of normal rules are callednormal.

We often write the rule (1) asH ← B+, not B−, whereH = {a1, . . . , ak}, B+ = {b1, . . . , bm}
andB− = {c1, . . . , cn}. We callH theheadof the rule, and the conjunctionB+, not B−, thebody
of the rule. The setsB+ andB− form the positive and negative body of the rule. Given a rule
r, we writeH(r), B(r), B+(r) andB−(r) to denote the head, the body, the positive body and
the negative body ofr, respectively. For a programP , we setH (P) =

⋃
r∈P H(r), B±(P) =⋃

r∈P (B+(r) ∪ B−(r)), andAt(P) = H (P) ∪ B±(P).
For an interpretationM ⊆ At and a ruler, we define entailmentsM |= B(r), M |= H(r) and

M |= r in the standard way, that isM |= B(r) holds, if jointly B+(r) ⊆ M andB−(r) ∩M = ∅;
M |= H(r), if H(r) ∩M 6= ∅; andM |= r, if M |= B(r) impliesM |= H(r). An interpretation
M ⊆ At is amodelof a programP (M |= P), if M |= r for everyr ∈ P .

Thereductof a disjunctive logic programP with respect to a setM of atoms, denoted byP M ,
is the program{H (r) ← B+(r) | r ∈ P, M ∩ B−(r) = ∅}. A setM of atoms is astable model
of P if M is a minimal model (with respect to inclusion) ofP M .

If a set M of atoms is a minimal hitting set of{H (r) | r ∈ P, M |= B(r)}, thenM is
a supported modelof P [3, 15]. In addition,M is a supported minimal modelof P if it is a
supported model ofP and a minimal model ofP . A stable model of a program is a supported
model of the program and a minimal model of the program. Thus,a stable model of a program
is a supported minimal model of the program. However, the converse does not hold in general.
Supported models of anormal logic programP have a useful characterization in terms of the
(partial) one-step provability operatorTP , defined as follows. ForM ⊆ At , if there is a constraint
r ∈ P such thatM |= B(r) (that is,M 6|= r), thenTP (M) is undefined. Otherwise,TP (M) =
{H (r) | r ∈ P, M |= B(r)}. Whenever we useTP (M) in a relation such as (proper) inclusion,
equality or inequality, we always implicitly assume thatTP (M) is defined.

5

It is well known thatM is a model ofP if and only if TP (M) ⊆ M (which, according to our
convention, is an abbreviation for:TP is defined forM andTP (M) ⊆ M). Similarly, M is a
supportedmodel ofP if TP (M) = M [1] (that is, if TP is defined forM andTP (M) = M).

For a ruler = a1 ∨ . . . ∨ ak ← B , wherek ≥ 1, a shift of r is a normal program rule of the
form

ai ← B , not a1, . . . , not ai−1, not ai+1, . . . , not ak,

wherei = 1, . . . , k. If r is normal, the onlyshift of r is r itself. A program consisting of all shifts
of rules in a programP is theshiftof P . We denote it bysh(P). It is evident that a setM of atoms
is a (minimal) model ofP if and only if M is a (minimal) model ofsh(P). It is easy to check that
M is a supported (minimal) model ofP if and only if it is a supported (minimal) model ofsh(P).
Moreover,M is a supported model ofP if and only if Tsh(P)(M) = M .

Characterizations of hyperequivalence of programs. Let C be a class of (disjunctive) logic
programs (we recall that∅ ∈ C). ProgramsP andQ aresupp-equivalent(suppmin-equivalent,
stable-equivalent, respectively) relative toC if for every programR ∈ C, P ∪ R andQ ∪ R have
the same supported (supported minimal, stable, respectively) models.

In this paper, we are interested in equivalence of all three types relative to classes of programs
defined by theheadandbody alphabets. Let A, B ⊆ At . ByHB(A, B) we denote the class of all
programsP such thatH (P) ⊆ A andB±(P) ⊆ B.

When studying supp- and suppmin-equivalence we will restrict ourselves to the case of nor-
mal programs. Indeed, disjunctive programsP andQ are supp-equivalent (suppmin-equivalent,
respectively) with respect toHB(A, B) if and only if normal programssh(P) andsh(Q) are supp-
equivalent (suppmin-equivalent, respectively) with respect toHB(A, B) [27]. Thus, from now on
whenever we consider supp- and suppmin-equivalence, we implicitly assume that programs un-
der comparison are normal. In particular, we use that convention in the definition below and the
subsequent theorem.

For supp-equivalence and suppmin-equivalence, we need thefollowing concept introduced by
Truszczyński and Woltran [27]. Given a programP , and a setA ⊆ At , we define

ModA(P) = {Y ⊆ At | Y |= P andY \ TP (Y) ⊆ A}.

Theorem 3.1 LetP andQ be programs,A ⊆ At , andC a class of programs such thatHB(A, ∅) ⊆
C ⊆ HB(A,At). Then,P and Q are supp-equivalent relative toC if and only if ModA(P) =
ModA(Q) and for everyY ∈ ModA(P), TP (Y) = TQ(Y).

To characterize suppmin-equivalence, we use the setMod
B
A(P) [27], which consist of all pairs

(X, Y) such that

1. Y ∈ ModA(P)

2. X ⊆ Y |A∪B

3. for eachZ ⊂ Y such thatZ|A∪B = Y |A∪B, Z 6|= P

6

4. for eachZ ⊂ Y such thatZ|B = X|B andZ|A ⊇ X|A, Z 6|= P

5. if X|B = Y |B, thenY \ TP (Y) ⊆ X.

Theorem 3.2 Let A, B ⊆ At and letP, Q be programs. Then,P andQ are suppmin-equivalent
relative toHB(A, B) if and only ifMod

B
A(P) = Mod

B
A(Q) and for every(X, Y) ∈ Mod

B
A(P),

TP (Y)|B = TQ(Y)|B.

Relativized stable-equivalence of programs was characterized by Woltran [29]. We define
SE

B
A(P) to consist of all pairs(X, Y), whereX, Y ⊆ At , such that:3

1. Y |= P

2. X = Y , or jointly X ⊆ Y |A∪B andX|A ⊂ Y |A

3. for eachZ ⊂ Y such thatZ|A = Y |A, Z 6|= P Y

4. for eachZ ⊂ Y such thatZ|B ⊆ X|B andZ|A ⊃ X|A, or Z|B ⊂ X|B andZ|A ⊇ X|A,
Z 6|= P Y

5. there isZ ⊆ Y such thatX|A∪B = Z|A∪B andZ |= P Y .

Theorem 3.3 Let A, B ⊆ At and letP, Q be programs. Then,P and Q are stable-equivalent
relative toHB(A, B) if and only ifSE

B
A(P) = SE

B
A(Q).

Decision problems.We are interested in problems of deciding hyperequivalencerelative to classes
of programs of the formHB(A′, B′), whereA′ andB′ stand either for finite sets or for comple-
ments of finite sets. In the former case, the set is givendirectly. In the latter, it is specified by
means of its finitecomplement. Thus, we obtain the classes ofdirect-direct, direct-complement,
complement-directandcomplement-complementdecision problems. We denote them using strings
of the formSEMδ,ε(α, β), where

1. SEM stands forSUPP, SUPPMIN or STABLE and identifies the semantics relative to which we
define hyperequivalence;

2. δ andε stand ford or c (direct and complement, respectively), and specify one of the four
classes of problems mentioned above;

3. α is either· or A, whereA ⊆ At is finite. If α = A, thenα specifies afixedalphabet for
the heads of rules in context programs: eitherA or the complementAc of A, depending on
whetherδ = d or c. The parameter does not belong to and does not vary with input. If
α = · , then the specificationA of the head alphabet is part of the input and defines it asA
or Ac, again according toδ;

3We use a slightly different presentation than the one given by Woltran [29]. It is equivalent to the original one.

7

4. β is either· or B, whereB ⊆ At is finite. It obeys the same conventions asα but defines the
body alphabet according to the value ofε.

For instance,SUPPMINd,c(A, ·), whereA ⊆ At is finite, stands for the following problem: given
programsP andQ, and a setB, decide whetherP andQ are suppmin-equivalent with respect to
HB(A, Bc). Similarly, STABLEc,c(·, ·) denotes the following problem: given programsP andQ,
and setsA andB, decide whetherP andQ are stable-equivalent with respect toHB(Ac, Bc). With
some abuse of notation, we often talk about “the problemSEMδ,ε(A, B)” as a shorthand for “an
arbitrary problem of the formSEMδ,ε(A, B) with fixed finite setsA andB”; likewise we do so for
SEMδ,ε(·, B) andSEMδ,ε(A, ·).

As we noted, for supp- and suppmin-equivalence, there is no essential difference between
normal and disjunctive programs. For stable-equivalence,allowing disjunctions in the heads of
rules affects the complexity. Thus, in the case of stable-equivalence, we distinguish versions of
the problemsSTABLEδ,ε(α, β), where the input programs are normal.4We denote these problems
by STABLEn

δ,ε(α, β).
Direct-direct problems for the semantics of supported and supported minimal models were

considered earlier [27], and their complexity was fully determined there. The complexity of prob-
lemsSTABLEd,d(·, ·), was also established before [29]. Problems similar toSTABLEc,c(A, A) were
already studied by Eiter et al. [8]. In this paper, we complete the results on the complexity of
problemsSEMδ,ε(α, β) for all three semantics. In particular, we establish the complexity of the
problems with at least one ofδ andε being equal toc.

The complexity of problems involving the complement ofA or B is not a straightforward
consequence of the results on direct-direct problems. In the direct-direct problems, the class of
context programs is essentially finite, as the head and body alphabets for rules are finite. It is no
longer the case for the three remaining problems, where at least one of the alphabets is infinite and
so, the class of contexts is infinite, as well.

Finally, we note that when we changeA or B to · in the problem specification, the resulting
problem is at least as hard as the original one. Indeed for each such pair of problems, there are
straightforward reductions from one to the other. We illustrate these relationships in Figure 1. The
arrows between problems indicate that there is an efficient reduction of the “arrowtail” problem to
the “arrowhead” problem. Consequently, if there is a path from a problemΠ to the problemΠ′ in
the diagram,Π′ is at least as hard asΠ andΠ is at most as hard asΠ′. We use this observation in
proofs of all complexity results.

A,B()

SEMδ,ε

SEMδ,ε SEMδ,ε

SEMδ,ε)

 , ()

)

.

. .

(,B

A, (.

Figure 1: A simple comparison of the hardness of problems

4As demonstrated by Woltran [29], we can also restrict the programs used as contexts to normal ones, as that makes
no difference.

8

4 Supp-equivalence

As the alphabet for the bodies of context programs plays no role in supp-equivalence (cf. Theo-
rem 3.1), the problemsSUPPd,c(A, β) andSUPPd,c(·, β) coincide with the problemsSUPPd,d(A, β)
and SUPPd,d(·, β), respectively, whose complexity was shown to be coNP-complete [27]. For
the same reason, problemsSUPPc,d(A, β) and SUPPc,d(·, β) coincide with SUPPc,c(A, β) and
SUPPc,c(·, β). Thus, to complete the complexity picture for problemsSUPPδ,ǫ(α, β), it suffices
to focus onSUPPc,d(A, β) andSUPPc,d(·, β).

First, we prove an upper bound on the complexity of the problem SUPPc,d(, ·).

Theorem 4.1 The problemSUPPc,d(·, ·) is in the class coNP.

Proof: It is sufficient to show thatSUPPc,d(·, ∅) is in coNP, since(P, Q, A) is a YES instance of
SUPPc,d(·, ∅) if and only if (P, Q, A, B) is a YES instance ofSUPPc,d(·, ·), cf. Theorem 3.1.

Let Y ′ = Y ∩ (At(P)∪A). We will show thatY ∈ ModAc(P) if and only if Y ′ ∈ ModAc(P).
First, we note thatTP (Y) = TP (Y ′). If Y ∈ ModAc(P), thenY |= P andY \ TP (Y) ⊆ Ac. The
former property implies thatY ′ |= P . SinceY ′ \ TP (Y ′) = Y ′ \ TP (Y) ⊆ Y \ TP (Y), the latter
one implies thatY ′ \ TP (Y ′) ⊆ Ac. Thus,Y ′ ∈ ModAc(P).

Conversely, letY ′ ∈ ModAc(P). ThenY ′ |= P and, consequently,Y |= P . Moreover, we also
haveY ′ \TP (Y ′) ⊆ Ac. Lety ∈ Y \TP (Y). If y /∈ Y ′, then, asy ∈ Y andY ′ = Y ∩ (At(P)∪A),
y /∈ A, that is,y ∈ Ac. If y ∈ Y ′, theny ∈ Y ′ \ TP (Y ′) (we recall thatTP (Y) = TP (Y ′)). Hence,
y ∈ Ac in this case, too. It follows thatY \ TP (Y) ⊆ Ac and so,Y ∈ ModAc(P).

Next, we prove thatModAc(P) 6= ModAc(Q) or, for someY ∈ ModAc(P), TP (Y) 6= TQ(Y)
if and only if there isY ′ ⊆ At(P ∪Q) ∪ A such thatY ′ belongs to exactly one ofModAc(P) and
ModAc(Q), or Y ′ belongs to bothModAc(P) andModAc(Q) andTP (Y ′) 6= TQ(Y ′). Clearly, we
only need to prove the “only-if” implication. To this end, wenote that ifModAc(P) 6= ModAc(Q),
then by the observation proved above, there isY ′ ⊆ At(P ∪ Q) ∪ A with that property. Thus,
let us assume thatModAc(P) = ModAc(Q). If for someY ∈ ModAc(P), TP (Y) 6= TQ(Y) then
again by the argument given above,Y ′ = Y ∩ (At(P ∪ Q) ∪ A) belongs to bothModAc(P) and
ModAc(Q), andTP (Y ′) = TP (Y) 6= TQ(Y) = TQ(Y ′).

Thus, to decide the complementary problem, we nondeterministically guessY ⊆ At(P ∪Q)∪
A, and verify thatY belongs to exactly one ofModAc(P) andModAc(Q), or thatY belongs to
ModAc(P) andModAc(Q), and thatTP (Y) 6= TQ(Y).

CheckingY |= P andY |= Q can be done in polynomial time. Similarly, forR = P or Q,
Y \TR(Y) ⊆ Ac if and only if (Y \TR(Y))∩A = ∅. Thus, checkingY \TR(Y) ⊆ Ac can be done
in polynomial time, too, and so the algorithm is polynomial.Hence, the complementary problem
is in NP, which implies the assertion. 2

For the lower bound we use the problemSUPPc,d(A, B).

Theorem 4.2 The problemSUPPc,d(A, B) is coNP-hard.

Proof: Let us consider a CNF formulaϕ, let Y be the set of atoms inϕ, and letY ′ = {y′ | y ∈ Y }
be a set of new atoms. We define

P (ϕ) = {y ← not y′; y′ ← not y; ← y, y′ | y ∈ Y } ∪ {← ĉ | c is a clause inϕ}

9

where, for each clausec ∈ ϕ, sayc = y1∨· · ·∨yk∨¬yk+1∨· · ·∨¬ym, ĉ denotes the the sequence
y′

1, . . . , y
′
k, yk+1, . . . , ym. To simplify the notation, we writeP for P (ϕ). One can check thatϕ has

a model if and only ifP has a model. Moreover, for every modelM of P such thatM ⊆ At(P),
M is asupportedmodel ofP and, consequently, satisfiesM = TP (M).

Next, letQ consist off and← f . As Q has no models, Theorem 3.1 implies thatQ is supp-
equivalent toP relative toHB(Ac, B) if and only ifModAc(P) = ∅. If M ∈ ModAc(P), then there
is M ′ ⊆ At(P) such thatM ′ ∈ ModAc(P). Since every modelM ′ of P such thatM ′ ⊆ At(P)
satisfiesM ′ = TP (M ′), it follows thatModAc(P) = ∅ if and only if P has no models. Thus,ϕ
is unsatisfiable if and only ifQ is supp-equivalent toP relative toHB(Ac, B), and the assertion
follows. 2

Theorems 4.1 and 4.2, combined via the relations depicted inFigure 1, and the results by
Truszczyński and Woltran [27] imply the following corollary.

Corollary 4.3 The problemSUPPδ,ε(α, β) is coNP-complete, for any combination ofδ, ε ∈ {c, d},
α ∈ {A, ·}, β ∈ {B, ·}.

5 Suppmin-equivalence

In this section, we establish the complexity for direct-complement, complement-direct and
complement-complement problems of deciding suppmin-equivalence. The complexity of direct-
direct problems is already known [27].

5.1 Upper bounds

The argument consists of a series of auxiliary results. The first two lemmas are concerned with the
basic problem of deciding whether(X, Y) ∈ Mod

B′

A′ (P), whereA′ andB′ stand forA or Ac and
B or Bc, respectively.

Lemma 5.1 The following problems are in the class coNP: Given a programP , and setsX, Y ,
A, and B, decide whether (i)(X, Y) ∈ Mod

B
Ac(P); (ii) (X, Y) ∈ Mod

Bc

A (P); (iii) (X, Y) ∈
Mod

Bc

Ac (P).

Proof: We first show that the complementary problem to decidewhether(X, Y) /∈ Mod
B
Ac(P) is

in NP. To this end, we observe that(X, Y) /∈ Mod
B
Ac(P) if and only if at least one of the following

conditions holds:

1. Y /∈ ModAc(P),

2. X 6⊆ Y |Ac∪B,

3. there isZ ⊂ Y such thatZ|Ac∪B = Y |Ac∪B andZ |= P ,

4. there isZ ⊂ Y such thatZ|B = X|B, Z|Ac ⊇ X|Ac andZ |= P ,

10

5. X|B = Y |B andY \ TP (Y) 6⊆ X.

We note that verifying any condition involvingAc can be reformulated in terms ofA. For instance,
for every setV , we haveV |Ac = V \A, andV ⊆ Ac if and only ifV ∩A = ∅. Thus, the conditions
(1), (2) and (5) can be decided in polynomial time. Conditions (3) and (4) can be decided by a
nondeterministic polynomial time algorithm. Indeed, oncewe nondeterministically guessZ, all
other tests can be decided in polynomial time. The proofs forthe remaining two claims use the
same ideas and differ only in technical details depending onwhich of A andB is subject to the
complement operation. 2

Lemma 5.2 For every finite setB ⊆ At , the following problems are in the classPol : given
a programP , and setsX, Y , and A, decide whether (i)(X, Y) ∈ Mod

Bc

Ac (P); (ii) (X, Y) ∈
Mod

Bc

A (P).

Proof: In each case, the argument follows the same lines as that for Lemma 5.1. The difference is in
the case of the conditions (3) and (4). Under the assumptionsof this lemma, they can be decided in
deterministicpolynomial time. Indeed, let us note that there are no more than2|B| setsZ such that
Z|Ac∪Bc = Y |Ac∪Bc (or, for the second problem, such thatZ|A∪Bc = Y |A∪Bc). SinceB is finite
and fixed, the condition (3) can be checked in polynomial timeby a simple enumeration of all
possible setsZ such thatZ ⊂ Y andZ|Ac∪Bc = Y |Ac∪Bc and checking for each of them whether
Z |= P . For the condition (4), the argument is similar. SinceZ is constrained byZ|Bc = X|Bc,
there are no more than2|B| possible candidate setsZ to consider in this case, too. 2

The role of the next lemma is to show that(X, Y) ∈ Mod
B
A(P) implies constraints onX and

Y .

Lemma 5.3 Let P be a program andA, B ⊆ At . If (X, Y) ∈ Mod
B
A(P) then X ⊆ Y ⊆

At(P) ∪ A.

Proof: We haveY ∈ ModA(P). Thus,Y \ TP (Y) ⊆ A and, consequently,Y ⊆ TP (Y) ∪ A ⊆
At(P) ∪ A. We also haveX ⊆ Y |A∪B ⊆ Y . 2

Theorem 5.4 The problem SUPPMINd,c(·, ·) is contained in the classΠP
2 . The problem

SUPPMINd,c(·, B) is contained in the class coNP.

Proof. We start with an argument for the problemSUPPMINd,c(·, ·). By Theorem 3.2,P andQ
are not suppmin-equivalent relative toHB(A, Bc) if and only if there is(X, Y) ∈ Mod

Bc

A (P) ÷
Mod

Bc

A (Q), or there is(X, Y) ∈ Mod
Bc

A (P) andTP (Y)|Bc 6= TQ(Y)|Bc.Thus, by Lemma 5.3, to
decide thatP andQ are not suppmin-equivalent relative toHB(A, Bc), one can guessX andY
such thatX ⊆ Y ⊆ At(P ∪ Q) ∪ A and verify that(X, Y) ∈ Mod

Bc

A (P) ÷Mod
Bc

A (Q), or that
(X, Y) ∈ Mod

Bc

A (P) andTP (Y)|Bc 6= TQ(Y)|Bc . By Lemma 5.1(ii), deciding the membership
of (X, Y) in Mod

Bc

A (P) andMod
Bc

A (Q) can be accomplished by means of two calls to a coNP
oracle. DecidingTP (Y)|Bc 6= TQ(Y)|Bc can be accomplished in polynomial time (we note that
TP (Y)|Bc = TP (Y) \ B andTQ(Y)|Bc = TQ(Y) \ B). The argument for the second part of
the assertion is essentially the same. The only difference is that we use Lemma 5.2(ii) instead of
Lemma 5.1(ii) to obtain a stronger bound. 2

11

Lemma 5.3 is too weak for the membership results for complement-direct and complement-
complement problems, as for these two types of problems, it only limits Y to subsets ofAt(P)∪Ac,
which is infinite. To handle these two classes of problems we need additional results. The proofs
are quite technical and we present them in the appendix.

Lemma 5.5 LetP, Q be programs andA, B ⊆ At .

1. If (X, Y) ∈ Mod
B
Ac(P) \Mod

B
Ac(Q) then there is(X ′, Y ′) ∈ Mod

B
Ac(P) \Mod

B
Ac(Q) such

thatY ′ ⊆ At(P ∪Q) ∪ A.

2. If (X, Y) ∈ Mod
B
Ac(P) andTP (Y)|B 6= TQ(Y)|B, then there is(X ′, Y ′) ∈ Mod

B
Ac(P) such

thatTP (Y ′)|B 6= TQ(Y ′)|B andY ′ ⊆ At(P ∪Q) ∪ A.

Theorem 5.6 The problemsSUPPMINc,d(·, ·) and SUPPMINc,c(·, ·) are contained in the classΠP
2 .

The problemSUPPMINc,c(·, B) is in the class coNP:

Proof. The argument is similar to that of Theorem 5.4. We start with the problemSUPPMINc,d(·, ·).
By Theorem 3.2,P andQ are not suppmin-equivalent relative toHB(Ac, B) if and only if there is
(X, Y) ∈ Mod

B
Ac(P)÷Mod

B
Ac(Q), or (X, Y) ∈ Mod

B
Ac(P) andTP (Y)|B 6= TQ(Y)|B. By Lemma

5.5,P andQ are not suppmin-equivalent relative toHB(Ac, B) if and only if there is(X, Y) such
thatX ⊆ Y ⊆ At(P ∪ Q) ∪ A and(X, Y) ∈ Mod

B
Ac(P) ÷Mod

B
Ac(Q), or (X, Y) ∈ Mod

B
Ac(P)

andTP (Y)|B 6= TQ(Y)|B.
Thus, to decide the complementary problem, it suffices to guessX, Y ⊆ At(P ∪ Q) ∪ A

and check that(X, Y) ∈ Mod
B
Ac(P) ÷Mod

B
Ac(Q), or that(X, Y) ∈ Mod

B
Ac(P) andTP (Y)|B 6=

TQ(Y)|B. The first task can be decided by NP oracles (Lemma 5.1(i)), and testingTP (Y)|B 6=
TQ(Y)|B can be accomplished in polynomial time.

The remaining arguments are similar. To avoid repetitions,we only list essential differences.
In the case ofSUPPMINc,c(·, ·), we use Lemma 5.1(iii). To obtain a stronger upper bound for
SUPPMINc,c(·, B), we use Lemma 5.2(i) instead of Lemma 5.1(iii). 2

When A is fixed and set to∅, a stronger bound on the complexity of the complement-
complement and complement-direct problems can be derived.We first state a key lemma (the
proof is in the appendix).

Lemma 5.7 Let P, Q be normal programs andB ⊆ At . If Mod
B
At

(P) 6= Mod
B
At

(Q), then there
is Y ⊆ At(P ∪Q) such thatY is a model of exactly one ofP andQ, or there isa ∈ Y such that
(Y \ {a}, Y) belongs to exactly one ofMod

B
At(P) andMod

B
At(Q).

Theorem 5.8 The problemsSUPPMINc,c(∅, ·) andSUPPMINc,d(∅, ·) are in the class coNP.

Proof: The case ofSUPPMINc,d(∅, ·) was settled before by Truszczyński and Woltran [27] (they
denoted the problem bySUPPMINAt). Thus, we consider only the problemSUPPMINc,c(∅, ·). We
will show that the following nondeterministic algorithm verifies, given programsP , Q and a set
B ⊆ At , thatP andQ are not suppmin-equivalent relativeHB(At , Bc). We guess a pair(a, Y),

12

whereY ⊆ At(P ∪ Q), anda ∈ At(P ∪ Q) such that (a)Y is a model of exactly one ofP and
Q; or (b)a ∈ Y and(Y \ {a}, Y) belongs to exactly one ofMod

Bc

At
(P) andMod

Bc

At
(Q); or (c)Y is

model ofP andTP (Y) \B 6= TQ(Y) \B.
Such a pair exists if and only ifP andQ are not suppmin-equivalent relativeHB(At , Bc).

Indeed, let us assume that such a pair(a, Y) exists. If (a) holds for(a, Y), sayY is a model
of P but notQ, then (Y, Y) ∈ Mod

Bc

At (P) \ Mod
Bc

At (Q) (easy to verify from the definition of
Mod

Bc

At
(R)). Thus,Mod

Bc

At
(P) 6= Mod

Bc

At
(Q) and, by Theorem 3.2,P andQ are not suppmin-

equivalent relativeHB(At , Bc). If (b) holds for (a, Y), Mod
B
At

(P) 6= Mod
B
At

(Q) again, and we
are done, as above, by Theorem 3.2. Finally, if (c) holds,(Y, Y) ∈ Mod

Bc

At (P) (asY |= P) and
TP (Y)|Bc = TP (Y) \B 6= TQ(Y) \B = TQ(Y)|Bc . Thus, one more time by Theorem 3.2,P and
Q are not suppmin-equivalent relativeHB(At , Bc).

Conversely, ifP andQ are not suppmin-equivalent relativeHB(At , Bc), thenMod
Bc

At
(P) 6=

Mod
Bc

At
(Q), or there is(X, Y) ∈ Mod

Bc

At
(P) such thatTP (Y)|Bc 6= TQ(Y)|Bc. The former implies

(by Lemma 5.7) that there is(a, Y) such thatY ⊆ At(P ∪ Q) and(a, Y) satisfies (a) or (b). If
the latter holds,Y |= P andTP (Y)|Bc 6= TQ(Y)|Bc or, equivalently,TP (Y) \ B 6= TQ(Y) \ B.
Let Y ′ = Y ∩ At(P ∪ Q). Clearly,Y ′ |= P , TP (Y) = TP (Y ′), andTQ(Y) = TQ(Y ′). Thus,
TP (Y ′)\B 6= TQ(Y ′)\B. Picking anya ∈ At(P ∪Q) (sinceP andQ are not suppmin-equivalent
relativeHB(At , Bc), At(P ∪ Q) 6= ∅) yields a pair(a, Y ′), with Y ′ ⊆ At(P ∪ Q), for which (c)
holds.

It follows that the algorithm is correct. Moreover, checking whetherY |= P andY |= Q can
clearly be done in polynomial time in the total size ofP , Q, andB; the same holds for checking
TP (Y)\B 6= TQ(Y)\B. Finally, testing(Y \{a}, Y) ∈ Mod

Bc

At (P) and(Y \{a}, Y) ∈ Mod
Bc

At (Q)
are polynomial-time tasks (with respect to the size of the input), too. The conditions (1) - (3) and
(5) are evident. To verify the condition (4), we need to verify that Z 6|= P for just one setZ,
namelyZ = Y \{a}. Thus, the algorithm runs in polynomial time. It follows that the complement
of our problem is in the class NP and so the assertion follows. 2

5.2 Lower bounds and exact complexity results

We start with direct-complement problems.

Theorem 5.9 The problemSUPPMINd,c(A, ·) is ΠP
2 -hard.

Proof: Let∀Y ∃Xϕ be a QBF, whereϕ is a CNF formula overX ∪ Y . We can assume that
A ∩X = ∅ (if not, variables inX can be renamed). Next, we can assume thatA ⊆ Y (if not, one
can add toϕ “dummy” clausesy ∨ ¬y, for y ∈ Y). We will construct programsP (ϕ) andQ(ϕ),
and a setB, so that∀Y ∃Xϕ is true if and only ifP (ϕ) andQ(ϕ) are suppmin-equivalent relative
toHB(A, Bc). Since the problem to decide whether a given QBF∀Y ∃Xϕ is true isΠP

2 -complete,
the assertion will follow.

For every atomz ∈ X ∪ Y , we introduce a fresh atomz′. Given a set of “non-primed” atoms
Z, we defineZ ′ = {z′ | z ∈ Z}. In particular,A ∩ (Y ′ ∪ X ′) = ∅. We usêc as in the proof of

13

Theorem 4.2 and define the following programs:

P (ϕ) = {z ← not z′; z′ ← not z | z ∈ X ∪ Y } ∪ {← y, y′ | y ∈ Y } ∪

{x← u, u′; x′ ← u, u′ | x, u ∈ X} ∪

{x← ĉ; x′ ← ĉ | x ∈ X, c is a clause inϕ};

Q(ϕ) = {z ← not z′; z′ ← not z | z ∈ X ∪ Y } ∪ {← z, z′ | z ∈ X ∪ Y } ∪

{← ĉ | c is a clause inϕ}.

To simplify notation, from now on we writeP for P (ϕ) andQ for Q(ϕ). We also defineB =
X ∪X ′ ∪ Y ∪ Y ′. We observe thatAt(P) = At(Q) = B.

One can check that the models ofQ contained inB are sets of type

1. I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′, whereJ ⊆ X, I ⊆ Y andI ∪ J |= ϕ.

Each model ofQ is also a model ofP butP has additional models contained inB, viz.

2. I ∪ (Y \ I)′ ∪X ∪X ′, for eachI ⊆ Y .

Clearly, for each modelM of Q such thatM ⊆ B, TQ(M) = M . Similarly, for each modelM of
P such thatM ⊆ B, TP (M) = M . Hence, each such modelM is also supported for bothP and
Q.

From these comments, it follows that for every modelM of Q (resp.P), TQ(M) = M∩B (resp.
TP (M) = M ∩B). Thus, for every modelM of bothP andQ, TQ(M)|Bc = TP (M)|Bc . It follows
that P and Q are suppmin-equivalent with respect toHB(A, Bc) if and only if Mod

Bc

A (P) =
Mod

Bc

A (Q) (indeed, we recall that if(N, M) ∈ Mod
Bc

A (R) thenM is a model ofR).
Let us assume that∀Y ∃Xϕ is false. Hence, there exists an assignmentI ⊆ Y to atomsY

such that for everyJ ⊆ X, I ∪ J 6|= ϕ. Let N = I ∪ (Y \ I)′ ∪ X ∪ X ′. We will show that
(N |A∪Bc , N) ∈ Mod

Bc

A (P).
SinceN is a supported model ofP , N ∈ ModA(P). The requirement (2) for(N |A∪Bc , N) ∈

Mod
Bc

A (P) is evident. The requirement (5) holds, sinceN \ TP (N) = ∅. By the property of
I, N is a minimal model ofP . Thus, the requirements (3) and (4) hold, too. It follows that
(N |A∪Bc , N) ∈ Mod

Bc

A (P), as claimed. SinceN is not a model ofQ, (N |A∪Bc , N) /∈ Mod
Bc

A (Q).
Let us assume that∀Y ∃Xϕ is true. First, observe thatMod

Bc

A (Q) ⊆ Mod
Bc

A (P). Indeed, let
(M, N) ∈ Mod

Bc

A (Q). It follows that N is a model ofQ and, consequently, ofP . From our
earlier comments, it follows thatTQ(N) = TP (N). SinceN \ TQ(N) ⊆ A, N \ TP (N) ⊆ A.
Thus,N ∈ ModA(P). Moreover, ifM |Bc = N |Bc thenN \ TQ(N) ⊆ M and, consequently,
N \ TP (N) ⊆ M . Thus, the requirement (5) for(M, N) ∈ Mod

Bc

A (P) holds. The condition
M ⊆ N |A∪Bc is evident (it holds as(M, N) ∈ Mod

Bc

A (Q)). SinceN is a model ofQ, N = N ′∪V ,
whereN ′ is a model of type 1 andV ⊆ At \ B. Thus, every modelZ ⊂ N of P is also a
model ofQ. It implies that the requirements (3) and (4) for(M, N) ∈ Mod

Bc

A (P) hold. Hence,
(M, N) ∈ Mod

Bc

A (P) and, consequently,Mod
Bc

A (Q) ⊆ Mod
Bc

A (P).
We will now use the assumption that∀Y ∃Xϕ is true to prove the converse inclusion, i.e.,

Mod
Bc

A (P) ⊆ Mod
Bc

A (Q). To this end, let us consider(M, N) ∈ Mod
Bc

A (P). If N = N ′∪V , where
N ′ is of type 1 andV ⊆ At \ B, then arguing as above, one can show that(M, N) ∈ Mod

Bc

A (Q).

14

Therefore, let us assume thatN = N ′ ∪ V , whereN ′ is of type 2 andV ⊆ At \ B. More
specifically, letN ′ = I ∪ (Y \ I)′ ∪X ∪X ′, for someI ⊆ Y . By our assumption, there isJ ⊆ X
such thatI ∪ J |= ϕ. It follows thatZ = I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′ ∪ V is a model ofP . Clearly,
Z ⊂ N . Moreover, sinceBc ∩ (X ∪ X ′ ∪ Y ∪ Y ′) = A ∩ (X ∪ X ′ ∪ Y ∪ Y ′) = ∅, we have
Z|A∪Bc = N |A∪Bc . Since(M, N) ∈ Mod

Bc

A (P), the requirement (3) implies thatZ is not a model
of P , a contradiction. Hence, the latter case is impossible andMod

Bc

A (P) ⊆ Mod
Bc

A (Q) follows.
We proved that∀Y ∃Xϕ is true if and only ifMod

Bc

A (P) = Mod
Bc

A (Q). This completes the
proof of the assertion. 2

Theorem 5.10 The problemSUPPMINd,c(A, B) is coNP-hard.

Proof: Let us consider a CNF formulaϕ over a set of atomsY . Without loss of generality we can
assume thatY ∩ B = ∅. For each atomy ∈ Y , we introduce a fresh atomy′. Thus, in particular,
B ∩ (Y ∪ Y ′) = ∅. Finally, we consider programsP (ϕ) andQ = {f ←; ← f} from the proof of
Theorem 4.2. In the remainder of the proof, we writeP for P (ϕ).

From the proof of Theorem 4.2, we know thatP has a model if and only ifϕ has a model (is
satisfiable). We will now show thatMod

Bc

A (P) 6= ∅ if and only if ϕ is satisfiable. It is easy to
check thatMod

Bc

A (Q) = ∅. Thus, the assertion will follow by Theorem 3.2.
Let us assume thatP has a model. ThenP has a model, sayM , such thatM ⊆ Y ∪Y ′. We show

that(M, M) ∈ Mod
Bc

A (P). Indeed, sinceTP (M) = M , M ∈ ModA(P). Also, sinceY ∪Y ′ ⊆ Bc,
M |A∪Bc = M and so,M ⊆ M |A∪Bc . Lastly,M \ TP (M) = ∅ ⊆ M . Thus, the conditions (1),
(2) and (5) for(M, M) ∈ Mod

Bc

A (P) hold. SinceM |A∪Bc = M andM |Bc = M , there is no
Z ⊂ M such thatZ|A∪Bc = M |A∪Bc or Z|Bc = M |Bc . Thus, also the conditions (3) and (4) hold,
andMod

Bc

A (P) 6= ∅ follows. Conversely, letMod
Bc

A (P) 6= ∅ and let(N, M) ∈ Mod
Bc

A (P). Then
M ∈ ModA(P) and, in particular,M is a model ofP . 2

Combining Theorems 5.9 and 5.10 with Theorem 5.4 yields the following result that fully
determines the complexity of direct-complement problems.

Corollary 5.11 The problemsSUPPMINd,c(A, ·) andSUPPMINd,c(·, ·) areΠP
2 -complete. The prob-

lemsSUPPMINd,c(A, B) andSUPPMINd,c(·, B) are coNP-complete.

Before we move on to complement-direct and complement-complement problems, we present
a construction that will be of use in both cases. Let∀Y ∃Xϕ be a QBF, whereϕ is a CNF formula
overX ∪ Y . Without loss of generality we can assume thatX andY are non-empty.

We defineX ′, Y ′ and ĉ, for each clausec of ϕ, as before. Next, letA, B ⊆ At be such that:
A 6= ∅, A ∩ (X ∪X ′ ∪ Y ∪ Y ′) = B ∩ (X ∪X ′ ∪ Y ∪ Y ′) = ∅, and letg ∈ A.

We defineW = X ∪X ′ ∪ Y ∪ Y ′ ∪ {g} and observe thatX ∪X ′ ∪ Y ∪ Y ′ ⊆ Ac andg /∈ Ac.
Finally, we select an arbitrary elementx0 from X and define the programsP (ϕ) andQ(ϕ) as

15

follows:

P (ϕ) = {← not y, not y′; ← y, y′ | y ∈ Y } ∪

{← u, not v, not v′; ← u′, not v, not v′

← not u, v, v′; ← not u′, v, v′ | u, v ∈ X} ∪

{← ĉ, x0, not x′
0; ← ĉ, not x0, x

′
0 | c is a clause inϕ} ∪

{← not g} ∪ {u← x0, x
′
0, u | u ∈W}

Q(ϕ) = P (ϕ) ∪ {← not x0, not x′
0}.

Lemma 5.12 Under the notation introduced above,∀Y ∃Xϕ is true if and only ifP (ϕ) andQ(ϕ)
are suppmin-equivalent relativeHB(Ac, B).

Proof. As usual, to simplify notation we writeP for P (ϕ) andQ for Q(ϕ). We observe that
At(P) = At(Q) = W . We observe that bothP andQ have the following models that are contained
in W :

1. {g} ∪X ∪X ′ ∪ I ∪ (Y \ I)′, for eachI ⊆ Y ; and

2. {g} ∪ J ∪ (X \ J)′ ∪ I ∪ (Y \ I)′, whereJ ⊆ X, I ⊆ Y andI ∪ J |= ϕ.

Moreover,P has also additional models contained inW :

3. {g} ∪ I ∪ (Y \ I)′, for eachI ⊆ Y .

For each modelM of the type 1,TP (M) = TQ(M) = M , thanks to the rulesu ← x0, x
′
0, u,

whereu ∈W . Thus, for each modelM of type 1, we haveM ∈ ModAc(P) andM ∈ ModAc(Q).
Let M be a model ofP of one of the other two types. Then, we haveTP (M) = ∅. Moreover,

sinceg ∈ M and g /∈ Ac, M \ TP (M) 6⊆ Ac. ThusM /∈ Mod
B
Ac(P). Similarly, if M is a

model ofQ of type 2,TQ(M) = ∅. For the same reasons as above,M /∈ ModAc(Q). Hence,
ModAc(P) = ModAc(Q), and bothModAc(P) andModAc(Q) consist of interpretationsN of the
form N ′ ∪ V , whereN ′ is a set of the type 1 andV ⊆ At \ W . Clearly, for each such setN ,
TP (N) = N ′ = TQ(N). ThusTP (N)|B = TQ(N)|B holds for each(M, N) ∈ Mod

B
Ac(P) (as

(M, N) ∈ Mod
B
Ac(P) implies N ∈ ModAc(P)). By Theorem 3.2, it follows thatP andQ are

suppmin-equivalent relativeHB(Ac, B) if and only if Mod
B
Ac(P) = Mod

B
Ac(Q).

Thus, to complete the proof, it suffices to show that∀Y ∃Xϕ is true if and only ifMod
B
Ac(P) =

Mod
B
Ac(Q).

Let us assume that∀Y ∃Xϕ is false. Hence, there exists an assignmentI ⊆ Y to atomsY
such that for everyJ ⊆ X, I ∪ J 6|= ϕ. Let N = {g} ∪ I ∪ (Y \ I)′ ∪ X ∪ X ′. We will
show that({g}|B, N) ∈ Mod

B
Ac(Q). SinceN is of the type 1,N ∈ ModAc(Q). The requirement

(2) for ({g}|B, N) ∈ Mod
B
Ac(Q) is evident, asg ∈ N . The requirement (5) holds, sinceN \

TQ(N) = ∅ ⊆ {g}|B. By the property ofI, N is a minimal model ofQ. Thus, the requirements
(3) and (4) hold, too. It follows that({g}|B, N) ∈ Mod

B
Ac(Q), as claimed. On the other hand

({g}|B, N) /∈ Mod
B
Ac(P). Indeed, letM = {g} ∪ I ∪ (Y \ I)′. ThenM |= P (it is of the type 3.

We now observe thatM ⊂ N , {g}|B = M |B (asB ∩ (Y ∪ Y ′) = ∅), andM |Ac ⊇ ({g}|B)|Ac (as

16

({g}|B)|Ac = ∅, due to the fact thatg /∈ Ac). It follows that({g}|B, N) violates the condition (4)
for ({g}|B, N) ∈ Mod

B
Ac(P).

Conversely, let us assume that∀Y ∃Xϕ is true. First, we observe thatMod
B
Ac(P) ⊆ Mod

B
Ac(Q).

Indeed, let(M, N) ∈ Mod
B
Ac(P). Then,N ∈ ModAc(P) and, consequently,N ∈ ModAc(Q).

Moreover, if M |B = N |B, thenN \ TP (N) ⊆ M and, asTP (N) = TQ(N), N \ TQ(N) ⊆
M . Next, as(M, N) ∈ Mod

B
Ac(P), M ⊆ N |Ac∪B. Thus, the requirements (1), (5) and (2) for

(M, N) ∈ Mod
B
Ac(Q) hold. Since every model ofQ is a model ofP , it follows that the conditions

(3) and (4) hold, too.
We will now use the assumption that∀Y ∃Xϕ is true to prove the converse inclusion

Mod
B
Ac(Q) ⊆ Mod

B
Ac(P). To this end, let us consider(M, N) ∈ Mod

B
Ac(Q). Reasoning as above,

we can show that the conditions (1), (5) and (2) for(M, N) ∈ Mod
B
Ac(P) hold.

By our earlier comments,N = N ′ ∪ V , whereN ′ is of the form 1 andV ⊆ At \W . More
specifically,N ′ = {g} ∪ I ∪ (Y \ I)′ ∪X ∪X ′, for someI ⊆ Y .

Let us considerZ ⊂ N such thatZ|Ac∪B = N |Ac∪B. SinceW \ {g} ⊆ Ac, Z ⊇ N |Ac∪B ⊇
I ∪ (Y \ I)′ ∪ X ∪ X ′. It follows thatZ ∩W is not of the type 3. Thus, sinceZ 6|= Q, Z 6|= P .
Consequently, the condition (3) for(M, N) ∈ Mod

B
Ac(P) holds.

So, let us considerZ ⊂ N such thatZ|B = M |B andZ|Ac ⊇ M |Ac. Let us assume that
Z |= P . SinceZ 6|= Q, Z = Z ′ ∪ U , whereZ ′ is a set of the type 3 andU ⊆ At \W . Since
Z ⊆ N , Z ′ ⊆ N ′, and so,Z ′ = {g} ∪ I ∪ (Y \ I)′.

Since∀Y ∃Xϕ is true, there isJ ⊆ X such thatI ∪ J |= ϕ. It follows that

N ′′ = {g} ∪ I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′ ∪ U

is a model of bothP andQ (of the type 2). SinceB ∩W ⊆ {g}, it follows thatN ′′|B = Z|B =
M |B. SinceN ′′ ⊇ Z, N ′′|Ac ⊇ Z|Ac ⊇ M |Ac. Moreover,N ′′ ⊂ N . Since(M, N) ∈ Mod

B
Ac(Q),

N ′′ 6|= Q, a contradiction. Thus,Z 6|= P and, consequently, the condition (4) for(M, N) ∈
Mod

B
Ac(P) holds. This completes the proof ofMod

B
Ac(Q) ⊆ Mod

B
Ac(P) and of the theorem. 2

We now apply this lemma to complement-direct problems. We have the following result.

Theorem 5.13 The problemSUPPMINc,d(A, B), whereA 6= ∅, is ΠP
2 -hard.

Proof. Let ∀Y ∃Xϕ be a QBF, whereϕ is a CNF formula overX ∪ Y andX andY are nonempty.
We can assume thatA∩(X∪Y) = B∩(X∪Y) = ∅ (if not, variables in the QBF can be renamed).
We defineX ′ andY ′ as in other places. Thus,(A ∪ B) ∩ (X ′ ∪ Y ′) = ∅. Finally, we pickg ∈ A,
and defineP (ϕ) andQ(ϕ) as above. By Lemma 5.12,∀Y ∃Xϕ is true if and only ifP (ϕ) and
Q(ϕ) are suppmin-equivalent with respect toHB(Ac, B). Thus, the assertion follows. (We note
that sinceB is fixed, we cannot assumeg ∈ B or g /∈ B here; however, Lemma 5.12 takes care of
both cases). 2

We are now in a position to establish exactly the complexity of complement-direct problems.

Corollary 5.14 The problemsSUPPMINc,d(·, B) andSUPPMINc,d(·, ·) are ΠP
2 -complete. ForA 6=

∅, the problemsSUPPMINc,d(A, B), and SUPPMINc,d(A, ·), are alsoΠP
2 -complete. The problems

SUPPMINc,d(∅, B) andSUPPMINc,d(∅, ·) are coNP-complete.

17

Proof. For each of the problems,SUPPMINc,d(A, B), A 6= ∅, SUPPMINc,d(·, B), SUPPMINc,d(A, ·),
A 6= ∅, andSUPPMINc,d(·, ·), the upper bound follows from Theorem 5.6, and the lower bound
from Theorem 5.13. The problemsSUPPMINc,d(∅, B) and SUPPMINc,d(∅, ·) were proved to be
coNP-complete by Truszczyński and Woltran [27] (they denoted these problems bySUPPMINB

At

andSUPPMINAt , respectively). 2

We will now apply Lemma 5.12 to complement-complement problems.

Theorem 5.15 The problemSUPPMINc,c(A, ·), whereA 6= ∅, is ΠP
2 -hard.

Proof. Let∀Y ∃Xϕ be a QBF, whereϕ is a CNF formula overX ∪Y . We selectg ∈ A, and define
X ′ andY ′ as usual. Without loss of generality we can assume thatA∩ (X ∪X ′ ∪ Y ∪ Y ′) = ∅. In
particular,g /∈ X∪X ′∪Y ∪Y ′. We setB = X ∪X ′∪Y ∪Y ′ and so,Bc∩(X ∪X ′∪Y ∪Y ′) = ∅.
Finally, we setW = X ∪X ′∪Y ∪Y ′∪{g} and define programsP andQ as we did in preparation
for Lemma 5.12. By Lemma 5.12,∀Y ∃Xϕ is true if and only ifP andQ are suppmin-equivalent
with respect toHB(Ac, Bc). Thus, the assertion follows. 2

Next, we determine the lower bound for the problemSUPPMINc,c(A, B).

Theorem 5.16 The problemSUPPMINc,c(A, B) is coNP-hard.

Proof. The problemSUPPMINc,c(∅, ∅) is coNP-complete [27] (in the paper proving that the prob-
lem was denoted bySUPPMINAt

At
). We will show that it can be reduced toSUPPMINc,c(A, B) (for

any finiteA, B ⊆ At).
Thus, let us fixA andB as two finite subsets ofAt , and letP andQ be normal logic programs.

We defineP ′ andQ′ to be programs obtained by replacing consistently atoms inP andQ that
belong toA ∪ B with atoms that do not belong toAt(P ∪ Q) ∪ A ∪ B. Clearly,P andQ are
suppmin-equivalent relativeHB(At ,At) if and only if P ′ andQ′ are suppmin-equivalent relative
HB(At ,At).

Moreover, it is evident that ifP ′ andQ′ are suppmin-equivalent relativeHB(At ,At) thenP ′

andQ′ are suppmin-equivalent relativeHB(Ac, Bc). We will now show the converse implication.
To this end, letR be an arbitrary program fromHB(At ,At). By R′ we denote the program
obtained by replacing consistently atoms inR that belong toA ∪B with atoms that do not belong
to At(P ′∪Q′)∪A∪B. SinceP ′ andQ′ are suppmin-equivalent relativeHB(Ac, Bc), P ′∪R′ and
Q′ ∪ R′ have the same suppmin models. Now, we note that because(A ∪ B) ∩ At(P ′ ∪Q′) = ∅,
P ′∪R′ andQ′∪R′ have the same suppmin models if and only ifP ′∪R andQ′∪R have the same
suppmin models. Thus,P ′∪R andQ′∪R have the same suppmin models and, consequently,P ′ and
Q′ are suppmin-equivalent relativeHB(At ,At). It follows thatP andQ are suppmin-equivalent
relativeHB(At ,At).

This discussion implies thatP and Q are suppmin-equivalent relativeHB(At ,At) if and
only if P ′ and Q′ are suppmin-equivalent relativeHB(Ac, Bc). Thus, the coNP-hardness of
SUPPMINc,c(A, B) follows from the coNP-hardness ofSUPPMINc,c(∅, ∅). 2

18

Taking into account Theorems 5.6 and 5.8, Theorems 5.15 and 5.16 yield the following result.

Corollary 5.17 The problemsSUPPMINc,c(A, ·), with A 6= ∅, and SUPPMINc,c(·, ·) are ΠP
2 -

complete. The problemsSUPPMINc,c(A, B), SUPPMINc,c(·, B), and SUPPMINc,c(∅, ·) are coNP-
complete.

6 Stable-equivalence

In this section, we establish the complexity for direct-complement, complement-direct and
complement-complement problems of deciding stable-equivalence. We will again make use of
the relations depicted in Figure 1 to obtain our results. Thus, for instance, when we derive an
upper bound for a problemSTABLEδ,ε(·, ·) and a matching lower bound forSTABLEδ,ε(A, B), we
obtain the exact complexity result for all problems betweenSTABLEδ,ε(A, B) andSTABLEδ,ε(·, ·)
(inclusively). As we will show, for stable equivalence those bounds match in all cases other than
δ = ε = c.

We also mention that for the upper bounds for relativized hyperequivalence with respect to
the stable-model semantics, some relevant results were established before. Specifically, the direct-
direct problemSTABLEd,d(·, ·) is known to be in the classΠP

2 and, under the restriction to normal
logic programs, in coNP [29]. However, for the sake of completeness we treat the direct-direct
problems here in full detail as, in the case of fixed alphabets, they were not considered before.

6.1 Upper Bounds

The following lemmas mirror the corresponding results fromthe previous section but show some
interesting differences. For instance, as the following result shows, the problem of model checking
is slightly harder now compared to Lemma 5.2. Namely, it is located in the class DP . (We recall
that the class DP consists of all problems expressible as the conjunction of aproblem in NP and a
problem in coNP.) However, this increase in complexity compared to Lemma 5.1 does not influence
the subsequentΠP

2 -membership results, since a call to a DP -oracle amounts to two NP-oracle calls.

Lemma 6.1 The following problems are in the class DP : given a programP , and setsX, Y , A,
andB, decide whether(X, Y) ∈ SE

B′

A′ (P), whereA′ stands for one ofA andAc, andB′ stands
for one ofB andBc,

Proof. We use similar arguments as in the proof of Lemma 5.1, but we need now both an NP and
a coNP test.

We recall that verifying any condition involvingAc can be reformulated in terms ofA. For
instance, for every setV , we haveV |Ac = V \A, andV ⊆ Ac if and only if V ∩A = ∅. The same
holds forBc.

Let A′ ∈ {A, Ac} andB′ ∈ {B, Bc}. We will use the observation above to establish upper
bounds on the complexity of deciding each of the conditions (1) - (5) for (X, Y) ∈ SE

B′

A′ (P).

19

The condition (1) can clearly be decided in polynomial time.The same holds for the condition
(2). It is evident once we note thatX ⊆ Y |A′∪B′ is equivalent toX ⊆ Y ∩ A ∩ B, X ⊆
(Y ∩B)∪ (Y \A), X ⊆ (Y ∩A)∪ (Y \B), andX ⊆ Y \ (A∪B), depending on the form ofA′

andB′.
It is also easy to show that each of the conditions (3) and (4) can be decided by means of

a single coNP test, and that the condition (5) can be decided by means of one NP test. For all
instantiations ofA′ andB′, the arguments are similar. For example, ifA′ stands forA andB′

stands forBc, to decide whether(X, Y) violates the condition (4), we guess a setZ ⊂ Y and
verify that (a)Z|Bc ⊆ X|Bc (by checking thatZ \B = Z \B); (b) X|A ⊆ Z|A; (c) one of the two
inclusions is proper; and (d)Z |= P Y . All these tasks can be accomplished in polynomial time,
and so deciding that the condition (4) does not hold amounts to an NP test. Consequently, deciding
that the condition (4) holds can be accomplished by a coNP test. 2

When we fixA andB (they are no longer components of the input), the complexityof test-
ing whether(X, Y) ∈ SE

Bc

Ac (P) is lower — the problem is in the class Pol. Comparing with
Lemma 5.2, the lower complexity holds only forA′ = Ac andB′ = Bc. Moreover,bothA andB
must be fixed.

Lemma 6.2 For every finite setsA, B ⊆ At the following problem is in the classPol : given a
programP , and setsX, Y , decide whether(X, Y) ∈ SE

Bc

Ac (P).

Proof. As we noted, testing the conditions (1) and (2) for(X, Y) ∈ SE
Bc

Ac (P) can be done in
polynomial time.

For the condition (3) we check all candidate setsZ. SinceZ|Ac = Y |Ac all elements ofZ are
determined byY except possibly for those that are also inA. Thus, there are at most2|A| possible
setsZ to consider. SinceA is fixed (not a part of the input), checking for all these setsZ whether
Z |= P Y andZ ⊂ Y can be done in polynomial time.

For the condition (4), the argument is similar. We note thatZ is, in particular, restricted by
Z|Bc ⊆ X|Bc andX|Ac ⊆ Z|Ac. The two conditions imply thatX|Ac∪Bc = Z|Ac∪Bc . Thus, all
elements ofZ are determined except possibly for those that are also inA∩B. It follows that there
are at most2|A∩B| possibilities forZ to consider. Clearly, for each of them, we can check whether
it satisfies or fails the premises and the consequent of (4) inpolynomial time. Thus, checking the
condition (4) is a polynomial-time task.

The same (essentially) argument works also for the condition (5). SinceZ|Ac∪Bc = X|Ac∪Bc ,
all elements ofZ are determined except possibly for those that are also inA ∩ B. Thus, there are
at most2|A∩B| possible setsZ to consider. Given thatA andB are fixed, checking all those setsZ
for Z |= P Y andZ ⊂ Y can be done in polynomial time. 2

The reduct of anormalprogram is a Horn program. That property allows us to obtain stronger
upper bounds for the case of normal logic programs.

Lemma 6.3 The following problems are in the classPol . Given a normal programP , and setsX,
Y , A, andB, decide whether(X, Y) ∈ SE

B′

A′ (P), whereA′ stands forA or Ac, andB′ stands for
B or Bc.

20

Proof. As we noted, deciding the conditions (1) and (2) can be accomplished in polynomial time
(even without the assumption of normality).

To show that the condition (3) can be decided in polynomial time, we show that the complement
of (3) can be decided in polynomial time. The complement of (3) has the form: there isZ ⊂ Y
such thatZ|A′ = Y |A′ and Z |= P Y . Let us consider the Horn programP ′ = P Y ∪ Y |A′.
SinceP , Y andA are given,P ′ can be constructed in polynomial time (for instance, ifA = Ac,
P ′ = P Y ∪ (Y \ A)). We will show that the complement of the condition (3) holdsif and only
if P ′ is consistent and its least model, sayL, satisfiesL ⊂ Y andL|A′ = Y |A′. First, we observe
that if the complement of (3) holds, thenP ′ has a modelZ such thatZ ⊂ Y andZ|A′ = Y |A′.
It follows that P ′ is consistent and its least model, sayL, satisfiesL ⊆ Z. Thus,L ⊂ Y and
L|A′ ⊆ Y |A′. Moreover, sinceL |= P ′, Y |A′ ⊆ L. Thus,Y |A′ ⊆ L|A′ . Therefore, we haveL ⊂ Y
andL|A′ = Y |A′ as needed. The converse implication is trivial. SinceP ′ can be constructed in
polynomial time andL can be computed in polynomial time (P ′ is Horn), deciding the complement
of the condition (3) can be accomplished in polynomial time,too.

To settle the condition (4), we again demonstrate that the complement of the condition (4) can
be decided in polynomial time. To this end, we observe that the complement of (4) holds if and
only if one of the following two conditions holds:

(4′) there isZ ⊂ Y such that,X|A′ ⊆ Z|A′, Z|B′ ⊂ X|B′ andZ |= P Y

(4′′) there isZ ⊂ Y such that,X|A′ ⊂ Z|A′, Z|B′ ⊆ X|B′ andZ |= P Y

One can check that (4′) holds if and only ifP Y ∪X|A′ is consistent and its least model, sayL,
satisfiesL ⊆ Y andL|B′ ⊂ X|B′ . Similarly, (4′′) holds if and only if there isy ∈ (Y \X)|A′ such
thatP Y ∪ (X ∪ {y})|A′ is consistent and its least model, sayL, satisfiesL ⊂ Y andL|B′ ⊆ X|B′.
Thus, the conditions (4′) and (4′′) can be checked in polynomial time.

The argument for the condition (5) is similar to that for the complement of the condition (3).
The difference is that instead ofP ′ we use the Horn programP Y ∪ X|A′∪B′ . Reusing the argu-
ment for (3) with the arbitrary containment ofZ in Y (rather than a proper one) shows that the
complement of (5) can be decided in polynomial time. 2

The following lemma provides conditions restrictingX andY given that(X, Y) ∈ SE
B
A(P).

Lemma 6.4 LetP be a program andA, B ⊆ At . If (X, Y) ∈ SE
B
A(P) thenX ⊆ Y ⊆ At(P)∪A.

Proof. Let (X, Y) ∈ SE
B
A(P). The inclusionX ⊆ Y follows from the condition (2). To prove

Y ⊆ At(P)∪A, let us assume to the contrary thatY \ (At(P)∪A) 6= ∅. Lety ∈ Y \ (At(P)∪A).
We haveY |= P and thusY |= P Y . Sincey /∈ At(P), y /∈ At(P Y). Thus,Y \ {y} |= P Y . Since
y /∈ A, takingZ = Y \ {y} shows that(X, Y) violates the condition (3) for(X, Y) ∈ SE

B
A(P), a

contradiction. 2

The next lemma plays a key role in establishing an upper boundon the complexity of the
problemsSTABLEδ,ε(·, ·). Its proof is technical and we present it in the appendix.

21

Lemma 6.5 Let P, Q be programs andA, B ⊆ At . If (X, Y) ∈ SE
B
A(P) \ SE

B
A(Q), then there

are setsX ′, Y ′ ⊆ At(P ∪Q), such that at least one of the following conditions holds:

i. (X ′, Y ′) ∈ SE
B
A(P) \ SE

B
A(Q)

ii. A\At(P∪Q) 6= ∅ and for everyy, z ∈ A\At(P∪Q), (X ′, Y ′∪{y, z}) ∈ SE
B
A(P)\SE

B
A(Q)

We now use similar arguments to those in the previous sectionto obtain the following collection
of membership results.

Theorem 6.6 The problemSTABLEδ,ε(·, ·), is contained in the classΠP
2 , for any δ, ε ∈ {c, d};

STABLEc,c(A, B) is contained in the class coNP. The problemSTABLEn
δ,ε(·, ·), is contained in the

class coNP for anyδ, ε ∈ {c, d}.

Proof. Given finite programsP andQ, and finite subsetsA, B of At the following algorithm
decides the complementary problem toSTABLEδ,ε(·, ·). If δ = d andA \ At(P ∪ Q) = ∅, the
algorithm guesses two setsX, Y ⊆ At(P ∪Q). It verifies whether(X, Y) ∈ SE

B
A(P)÷ SE

B
A(Q)

and if so, returns YES. Otherwise, the algorithm guesses twosetsX, Y ⊆ At(P ∪ Q). If δ = d,
it selects two elementsy, z ∈ A \ At(P ∪ Q) or, if δ = c, it selects two elementsy, z ∈ Ac \
At(P ∪ Q). The algorithm verifies whether(X, Y) ∈ SE

B
A′(P) ÷ SE

B
A′(Q) (whereA′ = A if

δ = d, andA′ = Ac if δ = c) and if so, returns YES. Otherwise, the algorithm verifies whether
(X, Y ∪ {y, z}) ∈ SE

B
A′(P)÷ SE

B
A′(Q) (whereA′ = A if δ = d, andA′ = Ac if δ = c) and if so,

returns YES.
The correctness of the algorithm follows by Lemma 6.5. Sincethe sizes ofX and Y are

polynomial in the size ofP ∪ Q, the membership of the complementary problem in the classΣP
2

follows by Lemma 6.1.
The remaining claims of the assertion follow in the same way by Lemmas 6.2 and 6.3, respec-

tively. 2

6.2 Lower bounds and exact complexity results

We start with the case of normal programs.

Theorem 6.7 The problemSTABLEn
δ,ε(A, B) is coNP-hard for anyδ, ε ∈ {c, d}.

Proof. Let us fixδ andε, and letA′ andB′ be sets of atoms defined by the combinationsA andδ,
andB andε. We will show that UNSAT can be reduced toSTABLEn

δ,ε(A, B).
Let ϕ be a CNF over of set of atomsY . We defineP (ϕ) andQ as in the proof of Theorem 4.2.

We note that both programs are normal. As before, we writeP instead ofP (ϕ) in order to simplify
the notation.

To prove the assertion it suffices to show thatϕ is unsatisfiable if and only ifP andQ are
stable-equivalent with respect toHB(A′, B′). To this end, we will show thatϕ is unsatisfiable if
and only ifSE

B′

A′ (P) = SE
B′

A′ (Q) (cf. Theorem 3.3).

22

SinceQ has no models,SE
B′

A′ (Q) = ∅. Moreover,SE
B′

A′ (P) = ∅ if and only if P has no
models (indeed, if(X, Y) ∈ SE

B′

A′ (P), thenY is a model ofP ; if Y is a model ofP , then
(Y, Y) ∈ SE

B′

A′ (P)). It follows thatSE
B′

A′ (P) = SE
B′

A′ (Q) if and only if P has no models.
In the proof of Theorem 4.2, we noted thatP has models if and only ifϕ has models. Thus,

SE
B′

A′ (P) = SE
B′

A′ (Q) if and only if ϕ is unsatisfiable, as required. 2

Together with the matching coNP-membership results forSTABLEn
δ,ε(·, ·) from Theorem 6.6 we

obtain the following result.

Corollary 6.8 The following problems are coNP-complete for anyδ, ε ∈ {c, d}: STABLEn
δ,ε(·, ·),

STABLEn
δ,ε(A, ·), STABLEn

δ,ε(·, B) andSTABLEn
δ,ε(A, B).

We now turn to the case of disjunctive programs. It turns out that the problems
STABLEc,d(A, B), STABLEd,d(A, B) and STABLEd,c(A, B) are ΠP

2 -hard. The situation is differ-
ent for STABLEc,c(A, B). By Theorems 6.6 and Corollary 6.8, the problem is coNP-complete.
However, the two immediate successors of that problem,STABLEc,c(A, ·) andSTABLEc,c(·, B) (cf.
Figure 1) areΠP

2 -hard. We will now show these results.
To start with we provide some technical results concerning the structure of the setSE

B
A(P)

whenAt(P) ⊆ A andAt(P) ∩B = ∅. It will be applicable to programs we construct below.

Lemma 6.9 Let P be a program andA, B ⊆ At . If At(P) ⊆ A and At(P) ∩ B = ∅, then
(X, Y) ∈ SE

B
A(P) if and only if there areX ′, Y ′ ⊆ At(P) andW ⊆ A \ At(P) such that one of

the following conditions holds:

a. X = X ′ ∪W , Y = Y ′ ∪W , and(X ′, Y ′) ∈ SE
B
A(P)

b. X = X ′ ∪W , (X ′, X ′) ∈ SE
B
A(P) andY = X ′ ∪W ∪ {y}, for somey ∈ A \ At(P)

c. X = X ′ ∪W , (X ′, X ′) ∈ SE
B
A(P) andY = X ′ ∪W ∪D, for someD ⊆ B ∩ (A \At(P))

such thatW ∩D = ∅ and|D| ≥ 2.

The proof of this result is technical and we give it in the appendix. This lemma points to the
crucial role played by those pairs(X, Y) ∈ SE

B
A(P) that satisfyY ⊆ At(P). In particular, as

noted in the next result, it allows to narrow down the class ofpairs(X, Y) that need to be tested for
the membership inSE

B
A(P) andSE

B
A(Q) when considering stable-equivalence ofP andQ with

respect toHB(A, B).

Lemma 6.10 Let P andQ be programs, andA, B subsets ofAt such thatAt(P ∪ Q) ⊆ A and
At(P ∪ Q) ∩ B = ∅. Then,P andQ are stable-equivalent with respect toHB(A, B) if and only
if for everyX, Y such thatY ⊆ At(P ∪Q), (X, Y) ∈ SE

B
A(P) if and only if(X, Y) ∈ SE

B
A(Q).

Proof. Without loss of generality, we can assume thatAt(P) = At(Q). Indeed, LetP ′ = P∪{a←
a|a ∈ At(Q) \ At(P)} andQ′ = Q ∪ {a ← a|a ∈ At(P) \ At(Q)}. It is easy to see thatP and
P ′ (Q andQ′, respectively) are stable-equivalent with respect toHB(A, B). Thus, in particular,

23

SE
B
A(P) = SE

B
A(P ′) andSE

B
A(Q) = SE

B
A(Q′). Moreover,At(P ′) = At(Q′) = At(P ∪ Q).

Therefore,At(P ′ ∪Q′) ⊆ A if and only if At(P ∪Q) ⊆ A, andAt(P ′ ∪Q′) ∩B = ∅ if and only
if At(P ∪Q) ∩ B = ∅.

Thus, let us assume thatAt(P) = At(Q). Only the “if” part of the claim requires a proof, the
other implication being evident. Let us assume that(X, Y) ∈ SE

B
A(P). By Lemma 6.9, there are

X ′, Y ′ ⊆ At(P) andW ⊆ A \ At(P) such that one of the conditions (a) - (c) holds. If (a) holds,
(X ′, Y ′) ∈ SE

B
A(Q) and so,(X, Y) ∈ SE

B
A(Q). If (b) or (c) holds,(X ′, X ′) ∈ SE

B
A(Q) and so,

(X, Y) ∈ SE
B
A(Q), as well. 2

Finally, we note that under the assumptions of Lemma 6.9, ifY ⊆ At(P), then the conditions
for (X, Y) ∈ SE

B
A(P) simplify.

Lemma 6.11 LetP be a program andA, B ⊆ At . If At(P) ⊆ A, At(P)∩B = ∅ andY ⊆ At(P),
then(X, Y) ∈ SE

B
A(P) if and only ifY |= P , X ⊆ Y , X |= P Y , and for everyZ ⊂ Y such that

X ⊂ Z ⊂ Y , Z 6|= P Y .

Proof. Under the assumptions of the lemma, the four conditions are equivalent to the conditions
(1), (2), (5) and (4) for(X, Y) ∈ SE

B
A(P), respectively, and the condition (3) is vacuously true.2

Our first ΠP
2 -hardness result for stable equivalence results concerns the problem

STABLEc,d(A, B).

Theorem 6.12 The problemSTABLEc,d(A, B), is hard for the classΠP
2 .

Proof. According to our notational convention, we have to show thatthe problemSTABLEc,d(A, B)
is ΠP

2 -hard, for every finiteA, B ⊆ At .
Let ∀Y ∃Xϕ be a QBF, whereϕ is a CNF formula overX ∪ Y . Without loss of generality we

can assume that every clause inϕ contains at least one literalx or¬x, wherex ∈ X. Furthermore,
we can also assume thatA ∩ (X ∪ Y) = ∅ andB ∩ (X ∪ Y) = ∅ (if not, variables inϕ can be
renamed). We select the primed variables so thatA ∩ (X ′ ∪ Y ′) = ∅ andB ∩ (X ′ ∪ Y ′) = ∅, as
well.

We will construct programsP (ϕ) andQ(ϕ) so that∀Y ∃Xϕ is true if and only ifP (ϕ) and
Q(ϕ) are stable-equivalent relative toHB(Ac, B). Since the problem to decide whether a given
QBF∀Y ∃Xϕ is true isΠP

2 -complete, the assertion will follow.
To constructP (ϕ) andQ(ϕ) we select an additional atoma /∈ X ∪X ′ ∪ Y ∪ Y ′ ∪A∪B, and

useĉ as discussed above. We set

R(ϕ) = {a← x, x′; x← a; x′ ← a | x ∈ X} ∪

{y ∨ y′; ← y, y′ | y ∈ Y } ∪

{a← ĉ | c is a clause inϕ} ∪

{← not a}

24

and define

P (ϕ) = {x ∨ x′ | x ∈ X} ∪ R(ϕ)

Q(ϕ) = {x ∨ x′ ← u | x ∈ X, u ∈ {a} ∪X ∪X ′} ∪R(ϕ)

To simplify notation, from now on we writeP for P (ϕ) andQ or Q(ϕ).
We note thatAt(P) = At(Q), At(P) ⊆ Ac, At(Q) ⊆ Ac, At(P)∩B = ∅, andAt(Q)∩B = ∅.

Thus, to determine whetherP andQ are stable-equivalent with respect toHB(Ac, B), we will
focus only on pairs(N, M) ∈ SE

B
Ac(P) and(N, M) ∈ SE

B
Ac(Q), that satisfyN ⊆ M ⊆ At(P)

(cf. Lemma 6.10). By Lemma 6.11, to identify such pairs, we need to consider models (contained
in At(P) = At(Q)) of the two programs, and models (again contained inAt(P) = At(Q)) of the
reducts of the two programs with respect to their models. From now on in the proof, whenever we
use the term “model” (of a program or the reduct of a program) we assume that it is a subset of
At(P) = At(Q).

First, one can check that the models ofP andQ coincide and are of the form:

1. I ∪ (Y \ I)′ ∪X ∪X ′ ∪ {a}, for eachI ⊆ Y .

Next, we look at models of the reducts ofP andQ with respect to their models, that is, sets of
the form (1). LetM be such a set. Sincea ∈M , then every model ofP is a model ofP M , and the
same holds forQ.

However,P M andQM have additional models. First, each reduct has as its modelssets of the
form

2. I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′, whereJ ⊆ X, I ⊆ Y andI ∪ J |= ϕ.

Furthermore,QM has additional models, namely, sets of the form

3. I ∪ (Y \ I)′, for eachI ⊆ Y .

Indeed, it is easy to check thatI ∪ (Y \ I)′ satisfies all rules ofQM (in the case of the rulesa← ĉ,
we use the fact that every sequenceĉ contains an atomx or x′ for somex ∈ X).

We will now show that∀Y ∃Xϕ is true if and only ifP andQ are stable-equivalent relative to
HB(Ac, B). To this end, we will show that∀Y ∃Xϕ is true if and only ifSE

B
Ac(P) = SE

B
Ac(Q).

We recall that sinceAt(P) = At(Q) ⊆ Ac andAt(P) ∩ B = At(Q) ∩ B = ∅, we can use
Lemma 6.11. Thus, ifM ⊆ At(P), (N, M) ∈ SE

B
Ac(P) if and only if M is a set of type (1), that

is, M = I ∪ (Y \ I)′ ∪X ∪X ′ ∪ {a}, for someI ⊆ Y , and eitherN = M or N is a set of type
(2), that is,N = I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′, for someJ ⊆ X such thatI ∪ J |= ϕ.

The same pairs(N, M) belong toSE
B
Ac(Q) (still under the assumption thatM ⊆ At(P) =

At(Q)). However,SE
B
Ac(Q) contains also pairs(N, M) whereM is a set of type (1),N = I∪(Y \

I)′ and for everyJ ⊆ X, I ∪ J 6|= ϕ (given that the only models ofQM that are proper supersets
of N and proper subsets ofM are models of type (2), that is precisely what is needed to ensure
that for everyZ, N ⊂ Z ⊂M impliesZ 6|= QM).

Let us assume that∀Y ∃Xϕ is false. Then, there existsI ⊆ Y such that for everyJ ⊆ X,
I ∪ J 6|= ϕ. Let N = I ∪ (Y \ I)′ andM = I ∪ (Y \ I)′ ∪X ∪X ′ ∪ {a}. From our discussion, it
is clear that(N, M) ∈ SE

B
Ac(Q) but (N, M) /∈ SE

B
Ac(P). Thus,SE

B
Ac(P) 6= SE

B
Ac(Q).

25

Conversely, if∀Y ∃Xϕ is true, then for everyI ⊆ Y there isJ ⊆ X such thatI ∪ J |= ϕ.
This implies that there are no pairs(N, M) ∈ SE

B
Ac(Q) of the last kind. Thus, in that case, if

M ⊆ At(P)=At(Q), then(N, M) ∈ SE
B
Ac(P) if and only if (N, M) ∈ SE

B
Ac(Q). By Lemma

6.10,SE
B
Ac(P) = SE

B
Ac(Q). 2

Combining Theorem 6.12 with Theorem 6.6 yields the following result.

Corollary 6.13 The problems STABLEc,d(A, B), STABLEc,d(·, B), STABLEc,d(A, ·) and
STABLEc,d(·, ·), areΠP

2 -complete.

Next, we consider the problemsSTABLEd,c(A, B), andSTABLEd,d(A, B). We have the follow-
ing simple result.

Lemma 6.14 Let P andQ be programs andA, B subsets ofAt such thatAt(P ∪ Q) ∩ A = ∅.
Then,P andQ are stable-equivalent with respect toHB(A, B) if and only ifP andQ have the
same stable models.

Proof. Let R ∈ HB(A, B). SinceAt(P ∪Q) ∩A = ∅, we can apply the splitting theorem [20] to
P ∪ R. It follows thatM is a stable model ofP ∪ R if and only if M = M ′ ∪M ′′, whereM ′ is a
stable model ofP andM ′′ is a stable model ofM ′′∪R. Similarly,M is a stable model ofQ∪R if
and only ifM = M ′ ∪M ′′, whereM ′ is a stable model ofQ andM ′′ is a stable model ofM ′′ ∪R.
Thus, the assertion follows. 2

We now use this result to determine the lower bounds on the complexity of problems
STABLEd,c(A, B) andSTABLEd,d(A, B).

Theorem 6.15 The problemsSTABLEd,c(A, B) andSTABLEd,d(A, B) are hard for the classΠP
2 .

Proof. To be precise, we have to show that the problemsSTABLEd,c(A, B) andSTABLEd,d(A, B)
areΠP

2 -hard, for every finiteA, B ⊆ At .
It is well known that the problem to decide whether a logic programP has a stable model isΣP

2 -
complete. We will reduce this problem to the complement ofSTABLEd,c(A, B) (STABLEd,d(A, B),
respectively). That will complete the proof.

Thus, letP be a logic program. Without loss of generality, we can assumethatAt(P)∩A = ∅
(if not, we can rename atoms inP , without affecting the existence of stable models). Letf be an
atom not inA. and defineQ = {f, ← f}. Clearly,At(P ∪ Q) ∩ A = ∅. Moreover,P andQ do
not have the same stable models if and only ifP has stable models. By Lemma 6.14,P has stable
models if and only ifP andQ are not stable-equivalent relativeHB(A, Bc). Similarly (asB is
immaterial for the stable-equivalence in that case),P has stable models if and only ifP andQ are
not stable-equivalent relativeHB(A, B). 2

We now explicitly list all cases, where we are able to give completeness results (membership
results are from Theorem 6.6).

26

Corollary 6.16 The problems STABLEd,d(A, B), STABLEd,d(·, B), STABLEd,d(A, ·) and
STABLEd,d(·, ·), areΠP

2 -complete.

Corollary 6.17 The problems STABLEd,c(A, B), STABLEd,c(·, B), STABLEd,c(A, ·) and
STABLEd,c(·, ·), areΠP

2 -complete.

Finally, we showΠP
2 -hardness of problemsSTABLEc,c(A, ·) andSTABLEc,c(·, B).

Theorem 6.18 The problemsSTABLEc,c(A, ·) andSTABLEc,c(·, B). areΠP
2 -hard.

Proof. We first show that the problemSTABLEc,c(A, ·) is ΠP
2 -hard, for every finiteA ⊆ At . Let

∀Y ∃Xϕ be a QBF, whereϕ is a CNF formula overX ∪ Y . As in the proof of Theorem 6.12,
without loss of generality we can assume that every clause inϕ contains a literalx or¬x, for some
x ∈ X, and thatA ∩ (X ∪ Y) = ∅ (if not, variables inϕ can be renamed).

Let P (ϕ) andQ(ϕ) be the programs used in the proof of Theorem 6.12, where we choose
primed variables so thatA ∩ (X ′ ∪ Y ′) = ∅. We defineB = At(P). We have thatAt(P) ⊆ Ac

andAt(P) ∩ Bc = ∅.
We recall that the argument used in the proof of Theorem 6.12 to show that∀Y ∃Xϕ is true if

and only ifP (ϕ) andQ(ϕ) are stable-equivalent with respect toHB(Ac, B) does not depend on
the finiteness ofB but only on the fact thatB ∩ At(P) = ∅. Thus, the same argument shows that
∀Y ∃Xϕ is true if and only ifP (ϕ) andQ(ϕ) are stable-equivalent with respect toHB(Ac, Bc). It
follows thatSTABLEc,c(A, ·) is ΠP

2 -hard.
Next, we show that the problemSTABLEc,c(·, B) is ΠP

2 -hard, for every finiteB ⊆ At . We
reason as in the proof of Theorem 6.15. That is, we construct areduction from the problem to
decide whether a logic program has no stable models. Specifically, let P be a logic program.
We defineA = At(P). Clearly, we haveAt(P) ∩ Ac = ∅. We recall the argument used in
Theorem 6.15 to show thatP has stable models if and only ifP andQ = {f, ← f} are not stable-
equivalent with respect toHB(A, B) does not depend on the finiteness ofA nor onB. Thus, it
follows thatP has stable models if and only ifP andQ = {f, ← f} are not stable-equivalent
with respect toHB(Ac, Bc) and theΠP

2 hardness ofSTABLEc,c(·, B) follows. 2

We put the things together using Theorem 6.7 for the coNP-hardness and Theorem 6.18 for the
ΠP

2 -hardness. The matching upper bounds are from Theorem 6.6.

Corollary 6.19 The problemSTABLEc,c(A, B) is coNP-complete, problemsSTABLEc,c(·, B),
STABLEc,c(A, ·) andSTABLEc,c(·, ·), areΠP

2 -complete.

7 Discussion

We studied the complexity of deciding relativized hyperequivalence of programs under the seman-
tics of stable, supported and supported minimal models. We focused on problemsSEMδ,ǫ(α, β),
where at least one ofδ andǫ equalsc, that is, at least one of the alphabets for the context problems is
determined as the complement of the corresponding setA or B. As we noted, such problems arise

27

δ ε α β SUPP SUPPMIN STABLE STABLEn

d d coNP ΠP
2 ΠP

2 coNP
d c · coNP ΠP

2 ΠP
2 coNP

d c B coNP coNP ΠP
2 coNP

c c · or A 6= ∅ · coNP ΠP
2 ΠP

2 coNP
c c ∅ · coNP coNP ΠP

2 coNP
c c · B coNP coNP ΠP

2 coNP
c c A B coNP coNP coNP coNP
c d · or A 6= ∅ coNP ΠP

2 ΠP
2 coNP

c d ∅ coNP coNP ΠP
2 coNP

Table 1: Complexity ofSEMδ,ε(α, β); all entries are completeness results.

naturally in the context of modular design of logic programs, yet they have received essentially no
attention so far.

Table 1 summarizes the results (for the sake of completenesswe also include the complexity
of direct-direct problems). It shows that the problems concerning supp-equivalence (no normal-
ity restriction), and stable-equivalence for normal programs are all coNP-complete (cf. Corollar-
ies 4.3 and 6.8, respectively). The situation is more diversified for suppmin-equivalence and stable-
equivalence (no normality restriction) with some problemsbeing coNP- and othersΠP

2 -complete.
For suppmin-equivalence lower complexity requires thatB be a part of problem specification, or
that A be a part of problem specification and be set to∅. (the results for direct-direct problems
were known earlier [27], the results for the direct-complement problems are by Corollary 5.11
for the complement-complement problems results are by Corollary 5.17, and for the complement-
direct problems results are by Corollary 5.14). For stable-equivalence, the lower complexity only
holds for the complement-complement problem with bothA andB fixed as part of the problem
specification. (the results for direct-direct (resp., direct-complement, complement-complement,
complement-direct) problems are by Corollary 6.16 (resp.,6.17, 6.19, 6.13) in this paper). We also
note that the complexity of problems for stable-equivalence is always at least that for suppmin-
equivalence.

Our research opens questions worthy of further investigations. First, we believe that results
presented here may turn out important for building “intelligent” programming environments sup-
porting development of logic programs. For instance, a programmer might want to know the effect
of changes she just made to a program (perhaps already developed earlier) that represents a module
of a larger project. One way to formalize that effect is to define it as the maximal class of contexts
of the formHB(A′, B′) with respect to which the original and the revised versions of the program
are equivalent (say under the stable-model semantics). ThesetsA′ andB′ appearing in the spec-
ification of such a class of contexts will be of the formAc andBc, for some finite setsA andB.
Finding the appropriate setsA andB would provide useful information to the programmer. Our
results on the complexity of the complement-complement version of the hyperequivalence problem
and their proofs may yield insights into the complexity of finding such setsA andB, and suggest

28

algorithms.
Second, there are other versions of hyperequivalence that need to be investigated. For in-

stance, while stable-equivalence when only parts of modelsare compared (projections on a pre-
specified set of atoms) was studied [9, 24], no similar results are available for supp- and suppmin-
equivalence. Also the complexity of the corresponding complement-direct, direct-complement and
complement-complement problems for the three semantics inthat setting has yet to be established.

References

[1] K. Apt. Logic programming. In J. van Leeuven, editor,Handbook of theoretical computer
science, pages 493–574. Elsevier, Amsterdam, 1990.

[2] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

[3] S. Brass and J. Dix. Characterizations of the disjunctive stable semantics by partial evaluation.
Journal of Logic Programming, 32(3):207–228, 1997.

[4] P. Cabalar, S.P. Odintsov, D. Pearce, and A. Valverde. Analysing and extending well-founded
and partial stable semantics using partial equilibrium logic. In S. Etalle and M. Truszczynski,
editors,Proceedings of the 22nd International Conference (ICLP 2006), volume 4079 of
LNCS, pages 346–360. Springer, 2006.

[5] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors,Logic and data bases,
pages 293–322. Plenum Press, New York-London, 1978.

[6] D. de Jongh and L. Hendriks. Characterizations of strongly equivalent logic programs in
intermediate logics.Theory and Practice of Logic Programming, 3(3):259–270, 2003.

[7] T. Eiter and M. Fink. Uniform equivalence of logic programs under the stable model seman-
tics. In C. Palamidessi, editor,Proceedings of the 19th International Conference on Logic
Programming (ICLP 2003), volume 2916 ofLNCS, pages 224–238. Springer, 2003.

[8] T. Eiter, M. Fink, and S. Woltran. Semantical characterizations and complexity of equiva-
lences in answer set programming.ACM Transactions on Computational Logic, 8(3), 2007.
53 pages.

[9] T. Eiter, H. Tompits, and S. Woltran. On solution correspondences in answer-set program-
ming. In Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI 2005), pages 97–102. Morgan Kaufmann, 2005.

[10] S. Erdogan and V. Lifschitz. Definitions in answer set programming: (extended abstract).
In V. Lifschitz and I. Niemelä, editors,Proceedings of the 7th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR 2004), volume 2916 ofLNCS,
pages 483–484. Springer, 2003.

29

[11] H. Gaifman and E.Y. Shapiro. Fully abstract compositional semantics for logic programs. In
Proceedings of the 16th Annual ACM Symposium on Principles of Programming Languages
(POPL 1989), pages 134–142, 1989.

[12] M. Gebser, L. Liu, G. Namasivayam, A. Neumann, T. Schaub, and M. Truszczyński. The first
answer set programming system competition. In C. Baral, G. Brewka, and J. Schlipf, editors,
Proceedings of the 9th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2007), volume 4483 ofLNCS, pages 3–17. Springer, 2007.

[13] M. Gelfond. Representing knowledge in A-Prolog. In A.C. Kakas and F. Sadri, editors,Com-
putational Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski,
Part II, volume 2408 ofLNCS, pages 413–451. Springer, 2002.

[14] M. Gelfond and N. Leone. Logic programming and knowledge representation – the A-prolog
perspective.Artificial Intelligence, 138:3–38, 2002.

[15] K. Inoue and C. Sakama. Negation as failure in the head.Journal of Logic Programming,
35:39–78, 1998.

[16] K. Inoue and C. Sakama. Equivalence of logic programs under updates. In J. Alferes and
J. Leite, editors,Proceedings of the 9th European Conference on Logics in Artificial Intelli-
gence (JELIA 2004), volume 3229 ofLNCS, pages 174–186. Springer, 2004.

[17] T. Janhunen. Some (in)translatability results for normal logic programs and propositional
theories.Journal of Applied Non-Classical Logics, 16(1-2):35–86, 2006.

[18] T. Janhunen, E. Oikarinen, H. Tompits, and S. Woltran. Modularity aspects of disjunctive
stable models. In C. Baral, G. Brewka, and J. Schlipf, editors,Proceedings of the 9th Inter-
national Conference on Logic Programming and NonmonotonicReasoning (LPNMR 2007),
volume 4483 ofLNAI, pages 175–187. Springer, 2007.

[19] V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic programs.ACM Transac-
tions on Computational Logic, 2(4):526–541, 2001.

[20] V. Lifschitz and H. Turner. Splitting a logic program. In P. Van Hentenryck, editor,Proceed-
ings of the 11th International Conference on Logic Programming (ICLP 1994), pages 23–37.
MIT Press, 1994.

[21] F. Lin. Reducing strong equivalence of logic programs to entailment in classical propositional
logic. In D. Fensel, D. McGuinness, and M.-A. Williams, editors, Proceedings of the 8th
International Conference on Principles of Knowledge Representation and Reasoning (KR
2002). Morgan Kaufmann, 2002.

[22] V.W. Marek and M. Truszczyński. Stable models and an alternative logic programming
paradigm. In K.R. Apt, W. Marek, M. Truszczyński, and D.S. Warren, editors,The Logic
Programming Paradigm: a 25-Year Perspective, pages 375–398. Springer, Berlin, 1999.

30

[23] I. Niemelä. Logic programming with stable model semantics as a constraint programming
paradigm.Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273, 1999.

[24] J. Oetsch, H. Tompits, and S. Woltran. Facts do not ceaseto exist because they are ignored:
Relativised uniform equivalence with answer-set projection. In Proceedings of the 22nd
National Conference on Artificial Intelligence (AAAI 2007), pages 458–464. AAAI Press,
2007.

[25] E. Oikarinen and T. Janhunen. Modular equivalence for normal logic programs. In
G. Brewka, S. Coradeschi, A. Perini, and P. Traverso, editors,Proceedings of the 17th Euro-
pean Conference on Artificial Intelligence(ECAI 2006), pages 412–416. IOS Press, 2006.

[26] Y. Sagiv. Optimizing datalog programs. In J. Minker, editor, Foundations of Deductive
Databases and Logic Programming, pages 659–698. Morgan Kaufmann, 1988.

[27] M. Truszczyński and S. Woltran. Hyperequivalence of logic programs with respect to sup-
ported models.Annals of Mathematics and Artificial Intelligence, 2008. To appear (prelimi-
nary version available as Technical Report DBAI-TR-2008-58 underhttp://www.dbai.
tuwien.ac.at/research/report/dbai-tr-2008-58.pdf).

[28] H. Turner. Strong equivalence made easy: nested expressions and weight constraints.Theory
and Practice of Logic Programming, 3:609–622, 2003.

[29] S. Woltran. A common view on strong, uniform, and other notions of equivalence in answer-
set programming.Theory and Practice of Logic Programming, 8(2):217–234, 2008.

Appendix

We present here proofs of some technical results we needed inthe paper. We first prove Lemma
5.5. We start with two auxiliary results.

Lemma 7.1 Let P be a program andA, B ⊆ At . Lety ∈ X be such thaty /∈ At(P) ∪ A. Then
(X, Y) ∈ Mod

B
Ac(P) if and only if(X \ {y}, Y \ {y}) ∈ Mod

B
Ac(P).

Proof: (⇒) SinceY ∈ ModAc(P), Y |= P andY \ TP (Y) ⊆ Ac. We havey /∈ At(P). Thus,
Y \ {y} |= P andTP (Y) = TP (Y \ {y}). SinceY \ {y} ⊆ Y , (Y \ {y}) \ TP (Y \ {y}) ⊆ Ac. It
follows thatY \ {y} ∈ ModAc(P). Thus, the condition (1) for(X \ {y}, Y \ {y}) ∈ Mod

B
Ac(P)

holds. The condition (2) for(X \ {y}, Y \ {y}) ∈ Mod
B
Ac(P) is evident.

Let Z ⊂ Y \ {y} be such thatZ|Ac∪B = (Y \ {y})|Ac∪B. Let Z ′ = Z ∪ {y}. We have
y ∈ X and so,y ∈ Y . Hence,Z ′ ⊂ Y . Sincey /∈ A, y ∈ Ac. Thus,Z ′|Ac∪B = Y |Ac∪B. It
follows thatZ ′ 6|= P and, consequently,Z 6|= P (asy /∈ At(P)). Thus, the condition (3) for
(X \ {y}, Y \ {y}) ∈ Mod

B
Ac(P) holds.

Next, letZ ⊂ Y \ {y} be such thatZ|B = (X \ {y})|B andZ|Ac ⊇ (X \ {y})|Ac. As before,
let Z ′ = Z ∪ {y}. Sincey ∈ X andy ∈ Y (see above),Z ′ ⊂ Y , Z ′|B = X|B andZ ′|Ac ⊇ X|Ac.

31

Thus, Z ′ 6|= P . Sincey /∈ At(P), Z 6|= P and the condition (4) for(X \ {y}, Y \ {y}) ∈
Mod

B
Ac(P) holds.

Finally, let (X \ {y})|B = (Y \ {y})|B. Clearly, it follows thatX|B = Y |B. Thus,Y \
TP (Y) ⊆ X. Sincey /∈ At(P), TP (Y) = TP (Y \ {y}). It follows that(Y \ {y})\TP (Y \ {y}) ⊆
X \ {y}. Consequently, the condition (5) for(X \ {y}, Y \ {y}) ∈ Mod

B
Ac(P) is satisfied, as well.

(⇐) By the assumption,(X \ {y}, Y \ {y}) ∈ Mod
B
Ac(P) and, consequently,Y \ {y} ∈

ModAc(P). Thus,Y \ {y} is a model ofP . Sincey /∈ At(P), Y is a model ofP . We also
have(Y \ {y}) \ TP (Y \ {y}) ⊆ Ac. Sincey /∈ At(P), TP (Y \ {y}) = TP (Y). Thus, asy ∈ Ac,
Y \ TP (Y) ⊆ Ac. That is, the condition (1) for(X, Y) ∈ Mod

B
Ac(P) holds. The condition (2)

follows from y ∈ Ac andX \ {y} ⊆ (Y \ {y})|Ac∪B.
Let Z ⊂ Y be such thatZ|Ac∪B = Y |Ac∪B. It follows thaty ∈ Z (we recall thaty ∈ X ⊆ Y

andy ∈ Ac). Let Z ′ = Z \ {y}. We haveZ ′ ⊂ Y \ {y} andZ ′|Ac∪B = (Y \ {y})|Ac∪B. Thus,
Z ′ 6|= P and, consequently,Z 6|= P . It follows that the condition (3) for(X, Y) ∈ Mod

B
Ac(P)

holds.
Let Z ⊂ Y be such thatZ|B = X|B andZ|Ac ⊇ X|Ac. Sincey ∈ X andy ∈ Ac, y ∈ Z.

Let Z ′ = Z \ {y}. It follows thatZ ′ ⊂ Y \ {y}, Z ′|B = (X \ {y})|B, andZ ′|Ac ⊇ (X \ {y})|Ac.
Hence,Z ′ 6|= P and so,Z 6|= P . In other words, the condition (4) for(X, Y) ∈ Mod

B
Ac(P), holds.

Finally, let X|B = Y |B. Clearly, (X \ {y})|B = (Y \ {y})|B and so, (Y \ {y}) \
TP (Y \ {y}) ⊆ X \ {y}. SinceTP (Y \ {y}) = TP (Y), we obtainY \ TP (Y) ⊆ X. Thus,
(5) for (X, Y) ∈ Mod

B
Ac(P), holds. 2

Lemma 7.2 Let P be a program,A, B ⊆ At . If X|B ⊂ Y |B, y ∈ (Y \ X) \ (At(P) ∪ A), and
(Y \ {y})|B 6= X|B, then(X, Y) ∈ Mod

B
Ac(P) if and only if(X, Y \ {y}) ∈ Mod

B
Ac(P).

Proof: (⇒) The arguments for the conditions (1), (2), and (3) for(X, Y \ {y}) ∈ Mod
B
Ac(P) are

essentially the same as in Lemma 7.1 (although the argument for the condition (2) requires also
the assumption thaty /∈ X).

Next, letZ ⊂ Y \ {y} be such thatZ|B = X|B andZ|Ac ⊇ X|Ac. ThenZ ⊂ Y and so,
Z 6|= P . Thus, the condition (4) for(X, Y \ {y}) ∈ Mod

B
Ac(P) holds.

Finally, (Y \ {y})|B 6= X|B. Thus, the condition (5) for(X, Y \ {y}) ∈ Mod
B
Ac(P) is trivially

true.

(⇐) As above, the arguments for the conditions (1), (2), and (3)for (X, Y) ∈ Mod
B
Ac(P) are the

same as in Lemma 7.1.
Let Z ⊂ Y be such thatZ|B = X|B andZ|Ac ⊇ X|Ac. Since(Y \ {y})|B 6= X|B, Z 6=

Y \ {y}. Thus,Z ⊂ Y \ {y} and so,Z 6|= P . That is, the condition (4) for(X, Y) ∈ Mod
B
Ac(P),

holds. Finally, sinceX|B ⊂ Y |B, the condition (5) for(X, Y) ∈ Mod
B
Ac(P), holds, as well. 2

We are now ready to prove Lemma 5.5.

Lemma 5.5. LetP, Q be programs andA, B ⊆ At .

1. If (X, Y) ∈ Mod
B
Ac(P) \Mod

B
Ac(Q) then there is(X ′, Y ′) ∈ Mod

B
Ac(P) \Mod

B
Ac(Q) such

thatY ′ ⊆ At(P ∪Q) ∪ A.

32

2. If (X, Y) ∈ Mod
B
Ac(P) andTP (Y)|B 6= TQ(Y)|B, then there is(X ′, Y ′) ∈ Mod

B
Ac(P) such

thatTP (Y ′)|B 6= TQ(Y ′)|B andY ′ ⊆ At(P ∪Q) ∪ A.

Proof. (1) Let (X, Y) ∈ Mod
B
Ac(P) \Mod

B
Ac(Q) and lety ∈ X be such thaty /∈ At(P ∪Q) ∪ A.

Then, by Lemma 7.1,(X \ {y}, Y \ {y}) ∈ Mod
B
Ac(P) \Mod

B
Ac(Q). By repeating this process,

we arrive at a pair(X ′′, Y ′′) ∈ Mod
B
Ac(P) \Mod

B
Ac(Q) such thatX ′′ ⊆ At(P ∪Q) ∪A.

If X ′′|B = Y ′′|B, thenY ′′ \TP (Y ′′) ⊆ X ′′. Thus,Y ′′ ⊆ TP (Y ′′)∪X ′′ ⊆ At(P ∪Q)∪A. Thus,
let us consider the other possibility thatX ′′|B ⊂ Y ′′|B (indeed, asX ′′ ⊆ Y ′′|Ac∪B ⊆ Y ′′, there are
no other possibilities). Lety ∈ (Y ′′ \X ′′) \ (At(P ∪Q) ∪A) be such that(Y ′′ \ {y})|B 6= X ′′|B.
By Lemma 7.2,(X ′′, Y ′′ \ {y}) ∈ Mod

B
Ac(P) \Mod

B
Ac(Q). By repeating this process, we arrive at

a pair(X ′, Y ′) ∈ Mod
B
Ac(P) \Mod

B
Ac(Q) such that for everyy ∈ (Y ′ \X ′) \ (At(P ∪ Q) ∪ A),

(Y ′ \ {y})|B = X ′|B. SinceX ′ = X ′′, X ′ ⊆ At(P ∪Q) ∪A.
We also note that for everyy /∈ X ′, (Y ′\{y}) ⊇ X ′ (asY ′ ⊇ X ′) and so,(Y ′\{y})|Ac ⊇ X ′|Ac.

We will now show thatY ′ ⊆ At(P∪Q)∪A. To this end, let us assume that there isy ∈ Y ′ such that
y /∈ At(P ∪Q)∪A. SinceX ′ ⊆ At(P ∪Q)∪A, y /∈ X ′. Thus,y ∈ (Y ′ \X ′) \ (At(P ∪Q)∪A).
It follows that (Y ′ \ {y})|B = X ′|B and (Y ′ \ {y})|Ac ⊇ X ′|Ac. SinceY ′ \ {y} ⊂ Y ′ and
(X ′, Y ′) ∈ Mod

B
Ac(P), Y ′ \ {y} 6|= P . On the other hand,Y ′ |= P and, sincey /∈ At(P),

Y ′ \ {y} |= P , a contradiction.

(2) It is easy to see that if we apply the construction described in (1) to(X, Y) we obtain(X ′, Y ′)
such thatY ′ ⊆ At(P∪Q)∪A andTP (Y ′)|B 6= TQ(Y ′)|B. Indeed, in every step of the construction,
we eliminate an elementy such thaty /∈ At(P ∪Q), which has no effect on the values ofTP and
TQ. 2

Lemma 5.7. Let P, Q be normal programs andB ⊆ At . If Mod
B
At

(P) 6= Mod
B
At

(Q), then there
is Y ⊆ At(P ∪Q) such thatY is a model of exactly one ofP andQ, or there isa ∈ Y such that
(Y \ {a}, Y) belongs to exactly one ofMod

B
At

(P) andMod
B
At

(Q).

Proof. Let us assume thatP andQ have the same models (otherwise, there isY ⊆ At(P ∪Q) that
is a model of exactly one ofP andQ, and the assertion follows). Without loss of generality we can
assume that there is(X, Y) ∈ Mod

B
At

(P) \Mod
B
At

(Q). Moreover, by Lemma 5.5, we can assume
thatY ⊆ At(P ∪ Q) (recallAt

c = ∅). It follows that(X, Y) satisfies the conditions (1)-(5) for
(X, Y) ∈ Mod

B
At

(P). SinceP andQ have the same models,(X, Y) satisfies the conditions (1)-(4)
for (X, Y) ∈ Mod

B
At

(Q). Hence,(X, Y) violates the condition (5) for(X, Y) ∈ Mod
B
At

(Q), that
is, X|B = Y |B andY \ TQ(Y) 6⊆ X hold. In particular, there isa ∈ (Y \ TQ(Y)) \X. We will
show that(Y \ {a}, Y) ∈ Mod

B
At

(P) and(Y \ {a}, Y) /∈ Mod
B
At

(Q).
Since(X, Y) ∈ Mod

B
At

(P), Y is a model ofP and so,Y ∈ ModAt(P). Next, obviously,
Y \ {a} ⊆ Y . Thus, the conditions (1) and (2) for(Y \ {a}, Y) ∈ Mod

B
At(P) hold. The condition

(3) is trivially true.
Further, letZ ⊂ Y be such thatZ ⊇ Y \ {a}. ThenZ = Y \ {a}. We haveY |B = X|B,

a ∈ Y , anda /∈ X. Thus,a /∈ B. It follows that(Y \ {a})|B = X|B andX ⊆ Y \ {a}. Since
Y \ {a} ⊂ Y and(X, Y) ∈ Mod

B
At

(P), Y \ {a} 6|= P , that is,Z 6|= P . Thus, the condition (4) for
(Y \ {a}, Y) ∈ Mod

B
At(P) holds.

33

Sincea /∈ B, (Y \ {a})|B = Y |B. Thus, we also have to verify the condition (5). We
haveY \ TP (Y) ⊆ X (we recall thatY |B = X|B) and so,a /∈ Y \ TP (Y). Consequently,
Y \TP (Y) ⊆ Y \{a}. Hence, the condition (5) holds and(Y \{a}, Y) ∈ Mod

B
At

(P). On the other
hand,a ∈ Y \TQ(Y) anda /∈ Y \{a}. Thus, the condition (5) for(Y \{a}, Y) ∈ Mod

B
At(Q) does

not hold and so,(Y \ {a}, Y) /∈ Mod
B
At

(Q). 2

Next, we present proofs of the technical results needed in Section 6: Lemmas 6.5 and 6.9. First,
we establish some auxiliary results.

Lemma 7.3 LetP be a program,A, B, X, Y ⊆ At andy ∈ X \ At(P). Then(X, Y) ∈ SE
B
A(P)

if and only if(X \ {y}, Y \ {y}) ∈ SE
B
A(P).

Proof. By Lemma 6.4,y ∈ Y andy ∈ A. We will show that each of the conditions (1) - (5) for
(X, Y) ∈ SE

B
A(P) is equivalent to its counterpart for(X \ {y}, Y \ {y}) ∈ SE

B
A(P).

The case of the condition (1) is clear. Sincey /∈ At(P), Y |= P if and only if Y \ {y} |= P .
It is also evident thatX = Y if and only if X \ {y} = Y \ {y}, X ⊆ Y |A∪B if and only if
X \ {y} ⊆ (Y \ {y})|A∪B, andX|A ⊂ Y |A if and only if (X \ {y})|A ⊂ (Y \ {y})|A. Thus, the
corresponding conditions (2) are also equivalent.

Let us assume the condition (3) for(X, Y) ∈ SE
B
A(P). Let Z ⊂ Y \ {y} be such thatZ|A =

(Y \ {y})|A. Let Z ′ = Z ∪ {y}. ThenZ ′ ⊂ Y andZ ′|A = Y |A (asy ∈ Y). By the condition
(3) for (X, Y) ∈ SE

B
A(P), Z ′ 6|= P Y . Sincey /∈ At(P), Z 6|= P Y \{y}, and so, the condition

(3) for (X \ {y}, Y \ {y}) ∈ SE
B
A(P) follows. Conversely, let us assume the condition (3) for

(X \ {y}, Y \ {y}) ∈ SE
B
A(P) and letZ ⊂ Y be such thatZ|A = Y |A. It follows thaty ∈ Z.

We setZ ′ = Z \ {y}. Clearly,Z ′ ⊂ Y \ {y} andZ ′|A = (Y \ {y})|A. Thus,Z ′ 6|= P Y \{y}. As
y /∈ At(P), Z 6|= P Y and, so, the condition (3) for(X, Y) ∈ SE

B
A(P) follows.

Next, let us assume the condition (4) for(X, Y) ∈ SE
B
A(P). Let Z ⊂ Y \ {y} be such that

Z|B ⊂ (X \ {y})|B andZ|A ⊇ (X \ {y})|A, or Z|B ⊆ (X \ {y})|B andZ|A ⊃ (X \ {y})|A. Let
Z ′ = Z ∪ {y}. We haveZ ′ ⊂ Y . Moreover, it is evident thatZ ′|B ⊂ X|B andZ ′|A ⊇ X|A, or
Z ′|B ⊆ X|B andZ ′|A ⊃ X|A. Thus,Z ′ 6|= P Y and so,Z 6|= P Y \{y}. Similarly, let the condition
(4) for (X \ {y}, Y \ {y}) ∈ SE

B
A(P) hold. LetZ ⊂ Y be such thatZ|B ⊂ X|B andZ|A ⊇ X|A,

or Z|B ⊆ X|B andZ|A ⊃ X|A. Sincey ∈ X andy ∈ A, y ∈ Z. We defineZ ′ = Z \ {y} and note
thatZ ′ ⊂ Y \ {y}. Moreover, asy ∈ X andy ∈ Y , Z ′|B ⊂ (X \ {y})|B andZ ′|A ⊇ (X \ {y})|A,
or Z ′|B ⊆ (X \ {y})|B andZ ′|A ⊃ (X \ {y})|A. Thus,Z ′ 6|= P Y \{y} and so,Z 6|= P Y .

Finally, a similar argument works also for the condition (5). Let the condition (5) for(X, Y) ∈
SE

B
A(P) hold. Thus, there isZ ⊆ Y such thatX|A∪B = Z|A∪B andZ |= P Y . Let Z ′ = Z \ {y}.

Sincey ∈ X andy ∈ A, y ∈ Z. Thus,Z ′ ⊆ Y \ {y} and(X \ {y})|A∪B = Z ′|A∪B. Moreover,
sinceZ |= P Y , Z ′ |= P Y \{y}. Conversely, let the condition (5) for(X \ {y}, Y \ {y}) ∈ SE

B
A(P)

hold. Then, there isZ ⊆ Y \ {y} such thatZ|A∪B = (X \ {y})|A∪B andZ |= P Y \{y}. Let
Z ′ = Z ∪ {y}. ThenZ ′ ⊆ Y , Z ′|A∪B = X|A∪B andZ ′ |= P Y . 2

Lemma 7.4 LetP be a program,A, B, Y ⊆ At , X ⊆ At(P) andy ∈ Y \At(P). If |Y \At(P)| >
2, then(X, Y) ∈ SE

B
A(P) if and only if(X, Y \ {y}) ∈ SE

B
A(P).

34

Proof. Since|Y \ At(P)| > 2, there arey′, y′′ ∈ Y \ At(P) such thaty, y′, y′′ are all distinct.
By Lemma 6.4,y, y′, y′′ ∈ A. As before, we will show that each of the conditions (1) - (5) for
(X, Y) ∈ SE

B
A(P) is equivalent to its counterpart for(X, Y \ {y}) ∈ SE

B
A(P).

The case of the condition (1) is evident. By our assumptions,neitherX = Y norX = Y \ {y}.
Moreover,X ⊆ Y |A∪B if and only if X ⊆ (Y \ {y})|A∪B andX|A ⊂ Y |A if and only if X|A ⊂
(Y \ {y})|A (sincey, y′ ∈ Y andy, y′ ∈ A). Thus, the corresponding versions of the condition
(2) are also equivalent. The case of the condition (3) can be argued in the same way as it was in
Lemma 7.3.

Let us assume the condition (4) for(X, Y) ∈ SE
B
A(P). Let Z ⊂ Y \ {y} be such thatZ|B ⊂

X|B andZ|A ⊇ X|A, or Z|B ⊆ X|B andZ|A ⊃ X|A. Clearly,Z ⊂ Y . Consequently, by the
condition (4) for(X, Y) ∈ SE

B
A(P), Z 6|= P Y and so,Z 6|= P Y \{y}. Thus the condition (4) for

(X, Y \ {y}) ∈ SE
B
A(P) holds.

Conversely, let the condition (4) for(X, Y \ {y}) ∈ SE
B
A(P) hold. LetZ ⊂ Y be such that

Z|B ⊂ X|B andZ|A ⊇ X|A, or Z|B ⊆ X|B andZ|A ⊃ X|A. If Z ⊂ Y \ {y}, thenZ 6|= P Y \{y}

(as the condition (4) for(X, Y \ {y}) ∈ SE
B
A(P) holds). Thus,Z 6|= P Y . Otherwise, i.e. for

Z = Y \ {y}, we havey′, y′′ ∈ Z. Let Z ′ = Z \ {y, y′}. It follows thatZ ′ ⊂ Y \ {y} and
Z ′|A ⊃ X|A (the former, asy′ ∈ Y \ {y} \Z ′; the later, asy′′ ∈ Z ′|A \X|A). Thus,Z ′ ⊂ Y \ {y},
Z ′|B ⊆ X|B and Z ′|A ⊃ X|A. Consequently,Z ′ 6|= P Y \{y} (again, as the condition (4) for
(X, Y \ {y}) ∈ SE

B
A(P) holds). Thus, also in that case,Z 6|= P Y . It follows that the condition (4)

for (X, Y) ∈ SE
B
A(P) holds.

Finally, for the condition (5) we reason as follows. Let the condition (5) for(X, Y) ∈ SE
B
A(P)

hold. Thus, there isZ ⊆ Y such thatX|A∪B = Z|A∪B andZ |= P Y . Clearly,y /∈ Z (asy /∈ X
andy ∈ A). Thus,Z ⊆ Y \ {y} and soZ |= P Y follows. Conversely, let the condition (5)
for (X, Y \ {y}) ∈ SE

B
A(P) hold. Then, there isZ ⊆ Y \ {y} such thatZ|A∪B = X|A∪B and

Z |= P Y . Clearly, we also haveZ ⊆ Y and so, the condition (5) for(X, Y) ∈ SE
B
A(P) follows.

2

Finally, we note that the membership of a pair(X, Y), whereX ⊆ At(P), in SE
B
Ac(P) does

not depend on specific elements inY \ At(P) but only on their number.

Lemma 7.5 Let P be a program,A, B ⊆ At , X, Y ⊆ At(P), and Y ′, Y ′′ ⊆ A \ At(P). If
|Y ′| = |Y ′′| then(X, Y ∪ Y ′) ∈ SE

B
A(P) if and only if(X, Y ∪ Y ′′) ∈ SE

B
A(P).

Proof. It is clear that the corresponding conditions (1) - (5) for(X, Y ∪ Y ′) ∈ SE
B
A(P) and

(X, Y ∪ Y ′′) ∈ SE
B
A(P), respectively are equivalent to each other. 2

The three lemmas presented allow us to prove Lemma 6.5.

Lemma 6.5. Let P, Q be programs andA, B ⊆ At . If (X, Y) ∈ SE
B
A(P) \ SE

B
A(Q), then there

are setsX ′, Y ′ ⊆ At(P ∪Q), such that at least one of the following conditions holds:

i. (X ′, Y ′) ∈ SE
B
A(P) \ SE

B
A(Q)

ii. A\At(P∪Q) 6= ∅ and for everyy, z ∈ A\At(P∪Q), (X ′, Y ′∪{y, z}) ∈ SE
B
A(P)\SE

B
A(Q).

35

Proof. By applying repeatedly Lemma 7.3 and then Lemma 7.4, we can construct setsX ′ ⊆
At(P ∪Q) andY ′′ ⊆ A ∪At(P ∪Q) (we recall thatY ⊆ A ∪ At(P ∪Q)) such that

a. (X ′, Y ′′) ∈ SE
B
A(P) \ SE

B
A(Q), and

b. |Y ′′ \ At(P ∪Q)| ≤ 2.

If Y ′′ ⊆ At(P ∪Q), (1) follows (withY ′ = Y ′′). Otherwise, (2) follows (by Lemmas 7.4 and 7.5).
2

Next we present a proof of Lemma 6.9

Lemma 6.9. Let P be a program andA, B ⊆ At . If At(P) ⊆ A and At(P) ∩ B = ∅, then
(X, Y) ∈ SE

B
A(P) if and only if there areX ′, Y ′ ⊆ At(P) andW ⊆ A \ At(P) such that one of

the following conditions holds:

i. X = X ′ ∪W , Y = Y ′ ∪W , and(X ′, Y ′) ∈ SE
B
A(P)

ii. X = X ′ ∪W , (X ′, X ′) ∈ SE
B
A(P) andY = X ′ ∪W ∪ {y}, for somey ∈ A \ At(P)

iii. X = X ′ ∪W , (X ′, X ′) ∈ SE
B
A(P) andY = X ′ ∪W ∪D, for someD ⊆ B ∩ (A \At(P))

such thatW ∩D = ∅ and|D| ≥ 2.

Proof. (⇐) If (i) holds, then(X, Y) ∈ SE
B
A(P) follows from Lemma 7.3. Thus, let us assume that

(ii) or (iii) holds. ThenX ′ |= P and so,X ′ ∪ {y} ∪W |= P (respectively,X ′ ∪W ∪ D |= P).
Moreover,X ⊂ Y . Thus, sinceY ⊆ A, the condition (2) for(X, Y) ∈ SE

B
A(P) holds. Next, it

is evident that the condition (3) is vacuously true. The condition (4) is also vacuously true. To see
it, let us considerZ ⊂ Y such thatZ|B ⊂ X|B andZ|A ⊇ X|A, or Z|B ⊆ X|B andZ|A ⊃ X|A.
SinceX ⊆ Y ⊆ A, X ⊆ Z. Thus,X|B ⊆ Z|B, and soZ|B ⊂ X|B is impossible. Consequently,
Z|B ⊆ X|B andZ|A ⊃ X|A. The latter impliesX ⊂ Z. We also haveZ ⊂ Y . Thus,|Y \X| ≥ 2,
contradicting (ii). It follows that (iii) holds. Consequently, X ′ ∪W ⊂ Z ⊂ X ′ ∪W ∪ D. Since
Z|B ⊆ X|B, D = ∅, a contradiction.

Finally, letZ be a set verifying the condition (5) for(X ′, X ′) ∈ SE
B
A(P) (which holds under

either (ii) or (iii)). Clearly, the setZ∪W demonstrates that the condition (5) for(X, Y) ∈ SE
B
A(P)

holds.

(⇒) Let W = X ∩ (A \At(P)). We defineX ′ = X \W andY ′ = Y \W . Clearly,X ′ ⊆ At(P).
Moreover, by Lemma 7.3,(X ′, Y ′) ∈ SE

B
A(P). If Y ′ ⊆ At(P), then (i) follows.

Thus, let us assume thatY ′ \ At(P) 6= ∅. Next, let us assume thatX ′ ⊂ Y ′ ∩ At(P) and let
Z = Y ′ ∩ At(P). Clearly,Z ⊂ Y ′, Z|B = ∅ andX|A = X ⊂ Z = Z|A. By the condition (4) for
(X ′, Y ′) ∈ SE

B
A(P), Z 6|= P Y ′

. On the other hand, by the condition (1) for(X ′, Y ′) ∈ SE
B
A(P),

Y ′ |= P . Consequently,Y ′ |= P Y ′

. It follows thatZ |= P Y ′

, a contradiction.
It follows that X ′ = Y ′ ∩ At(P). If there arey′, y′′ ∈ Y ′ \ At(P) such thaty′ 6= y′′ and

y′ /∈ B, then let us defineZ = X ′ ∪ {y′}. It is easy to verify thatZ contradicts the condition
(4). If |Y ′ \ At(P)| = 1, then (ii) follows (with the only element ofY ′ \ At(P) asy). Otherwise,
|Y ′ \ At(P)| ≥ 2 andY ′ \ At(P) ⊆ B. In this case, (iii) follows (withD = Y ′ \ At(P)). 2

36

