DBAI
[rdd

TECHNICAL

REPORT

Institut fur Informationssysteme
Abteilung Datenbanken und
Artificial Intelligence
Technische Universitat Wien
Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403
Fax: +43-1-58801-18492
sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

=

EENENACIALED

DERCLICRREELE

INSTITUT FUR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Relativized Hyperequivalence of Logic
Programs for Modular Programming

DBAI-TR-2008-63

Mirostaw Truszczyhski Stefan Woltran

DBAI TECHNICAL REPORT
2008

TU

TECHNISCHE UNIVERSITAT WIEN




DBAI TECHNICAL REPORT
DBAI TECHNICAL REPORTDBAI-TR-2008-63, 2008

Relativized Hyperequivalence of Logic Programs for
Modular Programming

Mirostaw Truszczyhskit Stefan Woltran?

Abstract. A recent framework of relativized hyperequivalence of pamgs offers a uni-
fying generalization of strong and uniform equivalence.sdems to be especially well
suited for applications in program optimization and modplagramming due to its flexi-
bility that allows us to restrict, independently of eachestlthe head and body alphabets in
context programs. We study relativized hyperequivaleincdHe three semantics of logic
programs given by stable, supported and supported minirodets. For each semantics,
we identify four types of contexts, depending on whetherhtbad and body alphabets are
given directly or as theomplemenbf a given set. Hyperequivalence relative to contexts
where the head and body alphabets are specified directlydmsdtudied before. In this
paper, we establish the complexity of deciding relativibggerequivalence wrt the three
other types of context programs.

1Department of Computer Science, University of Kentuckyihgton, KY 40506-0046, USA. E-mail:
mirek@cs.uky.edu

2Institute for Information Systems 184/2, Technische Ursitat Wien, Favoritenstrasse 9-11, 1040 Vi-
enna, Austria. E-mail; woltran@dbai.tuwien.ac.at

Acknowledgements The authors acknowledge partial support by the NSF gr&i0825063, the

KSEF grant KSEF-1036-RDE-008, and by the Austrian ScienoelKFWF) under grants P18019-
NO4 and P20704-N18.

This is an extended version of a paper published in the Pdiuge of the 24th International Con-
ference on Logic Programming (ICLP’08).

Copyright(C) 2008 by the authors



1 Introduction

We study variants of relativized hyperequivalence thatalevant for the development and analy-
sis of disjunctive logic programs with modular structureir@ain results concern the complexity
of deciding relativized hyperequivalence for the threeanagmantics of logic programs given by
stable, supported and supported minimal models.

Logic programmingvith the semantics of stable models, nowadays often reféorasanswer-
set programmingis a computational paradigm for knowledge representasisnvell as modeling
and solving constraint problems [22, 23, 14, 2]. In recelatygit has been steadily attracting more
attention. One reason is that answer-set programminglisdeclarative. Unlike in, say, Prolog,
the order of rules in programs and the order of literals iesuiave no effect on the meaning of the
program. Secondly, the efficiency of the latest tools forcpesing programs, especially solvers,
reached the level that makes it feasible to use them for enabbf practical importance [12].

It is broadly recognized in software engineering that madprograms are easier to design,
analyze and implement. Hence, essentially all programmainguages and environments support
the development of modular programs. Accordingly, therelieen much work recently to estab-
lish foundations ofmodularanswer-set programming. One line of investigations hasded on
the notion of an answer-set progranodule[13, 17, 25, 18]. This work builds on ideas for com-
positional semantics of logic programs proposed by Gaifar@h Shapiro [11] and encompasses
earlier results on stratification apdogram splitting[20].

The other main line of research, to which our paper belongs,centered on program equiv-
alence and, especially, on the concept of equivalence fostgution. Programg® and @) are
equivalent for substitutiowith respect to a class of programs called¢ontexts if for every con-
text R € C, PU R and@ U R have the same stable models. Thus, if a logic program is tleeun
of programsP and R, whereR € C, then P can be replaced witty, with the guarantee that the
semantics is preserved no matter wRas (as long as it is i€) precisely whenP and( are equiv-
alent for substitution with respect tb If C contains the empty program (which is typically the
case), the equivalence for substitution with respetitoplies the standard equivalence under the
stable-model semantiésThe converse is not trudVe refer to these stronger forms of equivalence
collectively ashyperequivalence

Hyperequivalence with respect to the classlbfprograms, known more commonly ssong
equivalence was proposed and studied by Lifschitz, Pearce and Valvgtflp That work
prompted extensive investigations of the concept thatltex$un new characterizations [21, 28]
and connections to certain non-standard logics [6]. Hygéwalence with respect to contexts con-
sisting of facts was studied by Eiter, Fink and Woltran [7, Bhis version of hyperequivalence,
known asuniform equivalenceappeared first in the database area in the setting of DATABOM
guery equivalence [26]. Hyperequivalence with respecotaexts restricted to a given alphabet,
or relativizedhyperequivalence, was proposed by Eiter et al. [8] and IrowkSakama [16]. It
was generalized by Woltran [29] to allow contexts that usesgbly) different alphabets for the
heads and bodies of rules. The approach offers a unifyimgegwaork for strong and uniform equiv-
alence. Hyperequivalence, in which one compares projestd answer sets on some designated

Two programs are equivalent under the stable-model secsahthey have the same stable models.
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sets of atoms rather than entire answer sets has also réceine attention [9, 24].

All those results concern the stable-model semantics ajrars. There has been little work
on other semantics, with the work by Cabalar [4] long being@tble single exception. Recently
however, Truszczyhski and Woltran [27] introduced ancstigated relativized hyperequivalence
of programs under the semantics of supported models [5]@mabsted minimal models, two other
major semantics of logic programs. Truszczyhski and \&al{R7] characterized these variants of
hyperequivalence and established the complexity of soswcaged decision problems.

In this paper, we continue research of relativized hypevadgnce under all three major seman-
tics of logic programs. As in earlier works [29, 27], we foarscontexts of the formt{B( A, B),
whereHB(A, B) stands for the set of all programs that use atoms frbin the heads and atoms
from B in the bodies of rules. Our main goal is to establish the cexipy of deciding whether
two programs are hyperequivalent (relative to a specifiedasgics) with respect té{5(A, B).
We consider the cases whdrand B are either specified directly or in terms of their complement
As we point out in the following section, such contexts ansg¢urally when we design modular
logic programs.

2 Motivation

We postpone technical preliminaries to the following sattiFor the sake of the present section
it is enough to say that we focus our study on finite propasétiprograms over a fixed countable
setAt of atoms. It is also necessary to introduce one piece ofiootak ® = At \ X.

To argue that contexts specified in terms of the complemeatfofite set are of interest, let
us consider the following scenario. A logic prograndisiefiningif it specifies the definitions of
atoms inA. The definitions may be recursive, they may invalvierfaceatoms, that is, atoms de-
fined in other modules, as well as atoms used locally to reptesome needed auxiliary concepts.
Let L be the set of local atoms, and IBtbe a particular logic program expressing the definitions.
For P to behave properly when combined with other programs, tteseext” programs must not
have any occurrences of atoms frdnand must have no atoms fromin the heads of their rules.
In our terminology, these are precisely program®(ii((A U L)¢, L¢).2

The definitions of atoms il can in general be captured by several differérdefining pro-
grams. A key question concerning such programs is whetlegr dhe equivalent. Clearly, two
A-defining programgs” and ), both using atoms froni to represent local auxiliary concepts,
should be regarded as equivalent if they behave in the samenvtae context of any program
from HB((A U L)<, L°). In other words, the notion of equivalence appropriate insmiting is
that of hyperequivalence with respectMB((A U L)¢, L¢) under a selected semantics (stable,
supported or supported-minimal).

Example 2.1 Let us assume that = {a, b} and thatc andd are interface atoms (atoms defined
elsewhere). We need a module that works as follows:

2 A-defining programs were introduced by Erdogan and Lifsqii@}. However, that work considered more re-
stricted classes of programs with whidhdefining programs could be combined.



1. If candd are both true, exactly one afandb must be true
2. If cistrue andd is false, onlyu must be true

3. Ifdis true andc is false, onlyp must be true
4

. If c andd are both falseg andb must be false.

We point out that andd may depend on andb and so, in some cases the overall program may
have no models of a particular type (to be concrete, for a taeg we fix attention to stable
models).

One way to express the conditions (1) - (4) is by means of Hoeag {«, b }-defining program
P (in this example we assume tHat b}-defining programs do not use local atoms, thafis; 0):

a < ¢, not b;
b« d, not a.

Combining P with programs that specify factsic, d}, {c}, {d} and 0, it is easy to see thaP
behaves as required. For instande/J {c} has exactly one stable model, c}.

However,P may also be combined with more complex programs. For ingtdetus consider
the programR = {¢ < notd; d < a,notc}. Here,d can only be true if. is true andc is false.
But thenb must be true, which can only be the caseahdd are both true, a contradiction. Thus,
d must be false and must be true. According to the specifications, there shoaldxactly one
stable model for® U R in this case:{a, ¢, d}. It is easy to verify that it is indeed the case.

The specifications for and b can also be expressed by othgr, b}-defining programs, in
particular, by the following prograny:

a < ¢, d, notb
b« ¢,d, nota;
a < ¢, not d;
b« d, not c.

The question arises wheth&) behaves in the same way &3 relative to programs from
HB({a,b}c,0°) = HB({a, b}, At). For all contexts considered earlier, it is the case. Howgive
general, itis not so. For instance,if = {¢ < ; d < a} then{a, ¢, d} is a stable model oP U R,
while @ U R has no stable models. Thu3,and( cannot be viewed as equivalet, b }-defining
programs. O

A similar scenario gives rise to a different class of corgeXt/e call a programi-completing
if it completes partial and non-recursive definitions ofrasoin A given elsewhere in the overall
program (which, for instance, might specify the base comitfor a recursive definition of atoms
in A). Assuming thatP is an implementation of such a module (again witlas a set of local
atoms),P can be combined with any prografithat has no occurrences of atoms frénand no
occurrences of atoms frorhin the bodies of its rules. This is precisely the cla88(L¢, (AUL)®).

In the last example, we assume that we are to express padlakm specifications as a logic
program. The uncertainty concerns concepts representatbbns from some set, that we know
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are defined by some other program in terms of concepts debgp@oms in3. Here two programs
P and( expressing these partial specifications can serve as eaehtbstitute precisely when
they are hyperequivalent with respect to the class of progtdB3( A, B).

These examples demonstrate that hyperequivalence wjithae® context classés5(A, B),
whereA andB are either specified directly or in terms of their complemsof interest. Our goal
is to study the complexity of deciding whether two programestayperequivalent relative to such
classes of contexts.

3 Technical Preliminaries

Basic logic programming notation and definitions. Disjunctive logic programgprograms, for
short) are finite sets of (programj)les— expressions of the form

arV...Vag < by,...,by,, notcy,...,notcy,, Q)

whereaq;, b; andc; are atoms indt, ‘v’ stands for the disjunction, ‘; stands for the conjunction
andnot is thedefaultnegation. Ifk = 0, the rule is aconstraint If £ < 1, the rule isnormal
Programs consisting of normal rules are catledmal

We often write the rule (1) af <+ B™, not B—,whereH = {ay,...,ax}, Bt ={b1,...,bn}
andB~ = {¢y,...,c,}. We call H theheadof the rule, and the conjunctiaB™, not B~, thebody
of the rule. The set®* and B~ form the positive and negative body of the rule. Given a rule
r, we write H(r), B(r), BT(r) and B~(r) to denote the head, the body, the positive body and
the negative body of, respectively. For a prograi?, we setH (P) = J,.p H(r), BX(P) =
U,ep(BT(r)U B~ (r)),andAt(P) = H(P) U B*(P).

For an interpretatiod/ C At and a ruler, we define entailment¥/ = B(r), M = H(r) and
M = rin the standard way, that i/ = B(r) holds, if jointly B*(r) C M andB~(r) N M = 0;
ME H(r),if Hr)n M # 0; andM = r, if M = B(r) impliesM | H(r). An interpretation
M C At is amodelof a programP (M = P), if M |= r for everyr € P.

Thereductof a disjunctive logic progran® with respect to a set/ of atoms, denoted b,
is the program{ H(r) < B*(r) | r € P, M N B~ (r) = 0}. A setM of atoms is astable model
of P if M is a minimal model (with respect to inclusion) Bf.

If a set M of atoms is a minimal hitting set ofH(r) |r € P, M E B(r)}, thenM is
a supported modedf P [3, 15]. In addition,M is a supported minimal modeif P if it is a
supported model of and a minimal model of°. A stable model of a program is a supported
model of the program and a minimal model of the program. Thustable model of a program
is a supported minimal model of the program. However, theseme does not hold in general.
Supported models of aormal logic programP have a useful characterization in terms of the
(partial) one-step provability operatdp, defined as follows. Fak/ C At, if there is a constraint
r € P suchthatV = B(r) (thatis,M [~ r), thenTp(M) is undefined. Otherwis€p(M) =
{H(r) |r € P, M = B(r)}. Whenever we us&p (M) in a relation such as (proper) inclusion,
equality or inequality, we always implicitly assume thiat( /) is defined.



It is well known that)M is a model ofP if and only if (M) C M (which, according to our
convention, is an abbreviation foff is defined forM andT»(M) C M). Similarly, M is a
supportedmodel of P if Tp(M) = M [1] (that is, if T is defined forM andTp(M) = M).

Foraruler =a, V...V a, < B, wherek > 1, ashiftof r is a normal program rule of the
form

a; «— B,notay,...,nota;,_1,nota;yq, ..., nota,

wherei = 1, ..., k. If ris normal, the onlshiftof r is r itself. A program consisting of all shifts
of rules in a progran® is theshiftof P. We denote it byh(P). Itis evident that a set/ of atoms
is a (minimal) model of? if and only if M is a (minimal) model ok (P). It is easy to check that
M is a supported (minimal) model @t if and only if it is a supported (minimal) model of.(P).
Moreover,)M is a supported model @? if and only if T, p) (M) = M.

Characterizations of hyperequivalence of programs.Let C be a class of (disjunctive) logic
programs (we recall that € C). ProgramsP and(@ are supp-equivalen{suppmin-equivalent
stable-equivalentrespectively) relative t@ if for every programk € C, P U R and@ U R have
the same supported (supported minimal, stable, respbgtimedels.

In this paper, we are interested in equivalence of all thyped relative to classes of programs
defined by théheadandbody alphabetsLet A, B C At. By HB(A, B) we denote the class of all
programsP such thatt (P) C A andB*(P) C B.

When studying supp- and suppmin-equivalence we will retstirselves to the case of nor-
mal programs. Indeed, disjunctive programsand() are supp-equivalent (suppmin-equivalent,
respectively) with respect tHB( A, B) if and only if normal programsh(P) andsh(Q) are supp-
equivalent (suppmin-equivalent, respectively) with extgoHB( A, B) [27]. Thus, from now on
whenever we consider supp- and suppmin-equivalence, wkcithpassume that programs un-
der comparison are normal. In particular, we use that cdiein the definition below and the
subsequent theorem.

For supp-equivalence and suppmin-equivalence, we neddltbe@ing concept introduced by
Truszczyhski and Woltran [27]. Given a progrdmand a sed C At, we define

Moda(P)={Y C At|Y = PandY \ Tp(Y) C A}.

Theorem 3.1 Let P and(@ be programsA C At, andC a class of programs such thatB( A, () C
C C HB(A, At). Then,P and () are supp-equivalent relative t if and only if Mod 4(P) =
Mod 4(Q) and for everyy” € Mod 4(P), Tp(Y) = To(Y).

To characterize suppmin-equivalence, we use th@fet; (P) [27], which consist of all pairs
(X,Y) such that

1. Y € Mod 4(P)

2. X CYlaun

3. foreachZ C Y such thatZ| 4o = Y|aup, Z £ P
6



4. foreachZ C Y suchthatZ|p = X|gandZ|4 D X|a, Z E P
5. ifX|p=Y

B thenY \ TP(Y) C X.

Theorem 3.2 Let A, B C At and letP, Q be programs. Then? and @ are suppmin-equivalent
relative to HB(A, B) if and only if Mod% (P) = Mod%5(Q) and for every(X,Y) € Mod5(P),
Tp(Y)|s =To(Y)|s.

Relativized stable-equivalence of programs was chaiaeteiby Woltran [29]. We define
SES (P) to consist of all pair§X,Y), whereX,Y C At, such thaf

1.YEP
2. X =Y, orjointly X CY|supandX|s CY|a

3. foreachZ C Y suchthatZ|, = Y|, Z £ PY

4, foreachZ C Y suchthatZ|z C X|gandZ|4 D X|a, 0r Z|p C X|pandZ|s 2O X|a,
Z b PY

5. thereisZ C Y such thatX| s 5 = Z|4up andZ = PY.

Theorem 3.3 Let A, B C At and let P, Q be programs. ThenP and @ are stable-equivalent
relative toHB(A, B) if and only if SE (P) = SE5(Q).

Decision problems.We are interested in problems of deciding hyperequivaleslegive to classes
of programs of the formH{B(A’, B'), where A’ and B’ stand either for finite sets or for comple-
ments of finite sets. In the former case, the set is goieectly. In the latter, it is specified by
means of its finitecomplement Thus, we obtain the classes difect-direct direct-complement
complement-dired@ndcomplement-complemeticision problems. We denote them using strings
of the formsewm; . («, 5), where

1. SEM stands foilSUPP, SUPPMIN Or STABLE and identifies the semantics relative to which we
define hyperequivalence;

2. ) ande stand ford or ¢ (direct and complement, respectively), and specify ondeffour
classes of problems mentioned above;

3. ais either- or A, whereA C At is finite. If « = A, thena specifies dixedalphabet for
the heads of rules in context programs: eitHeor the complementi© of A, depending on
whetheré = d or c. The parameter does not belong to and does not vary with.input
a = -, then the specificatiod of the head alphabet is part of the input and defines it as
or A€, again according to;

3We use a slightly different presentation than the one giweWbltran [29]. It is equivalent to the original one.



4. Jis either- or B, whereB C At is finite. It obeys the same conventionsmalsut defines the
body alphabet according to the value=of

ForinstancesuPPMIN, (A, -), whereA C At isfinite, stands for the following problem: given
programsP and@, and a sei3, decide whetheP and( are suppmin-equivalent with respect to
HB(A, B°). Similarly, STABLE, (-, -) denotes the following problem: given prografsand @),
and setsA and B, decide whetheP and( are stable-equivalent with respectid( A°, B¢). With
some abuse of notation, we often talk about “the probssm; .(A, B)” as a shorthand for “an
arbitrary problem of the fornsem; . (A, B) with fixed finite setsA and B”; likewise we do so for
SEM; (-, B) andSEMs (A, -).

As we noted, for supp- and suppmin-equivalence, there isssergial difference between
normal and disjunctive programs. For stable-equivaleattewing disjunctions in the heads of
rules affects the complexity. Thus, in the case of stablevadence, we distinguish versions of
the problemssTABLE; . («, 3), where the input programs are norridle denote these problems
by STABLE} (a, 3).

Direct-direct problems for the semantics of supported amgpesrted minimal models were
considered earlier [27], and their complexity was fullyetetined there. The complexity of prob-
lemSSTABLE (-, -), was also established before [29]. Problems similaT®BLE, (A, A) were
already studied by Eiter et al. [8]. In this paper, we congplbe results on the complexity of
problemssewm; . («, ) for all three semantics. In particular, we establish the glexity of the
problems with at least one éfande being equal te@.

The complexity of problems involving the complement 4for B is not a straightforward
consequence of the results on direct-direct problems. drdttect-direct problems, the class of
context programs is essentially finite, as the head and bipiiyalaets for rules are finite. It is no
longer the case for the three remaining problems, whereaast tee of the alphabets is infinite and
so, the class of contexts is infinite, as well.

Finally, we note that when we changeor B to - in the problem specification, the resulting
problem is at least as hard as the original one. Indeed fdr sach pair of problems, there are
straightforward reductions from one to the other. We illat& these relationships in Figure 1. The
arrows between problems indicate that there is an efficezhigtion of the “arrowtail” problem to
the “arrowhead” problem. Consequently, if there is a patimfa probleniI to the problemT’ in
the diagram]I’ is at least as hard d$ andII is at most as hard d%'. We use this observation in
proofs of all complexity results.

SEM5,¢(* .B) .

SEM; £(A.B) SEMg (-, +)

SEM; ¢(A, *)

Figure 1: A simple comparison of the hardness of problems

4As demonstrated by Woltran [29], we can also restrict thgmms used as contexts to normal ones, as that makes
no difference.



4 Supp-equivalence

As the alphabet for the bodies of context programs plays finosupp-equivalence (cf. Theo-
rem 3.1), the problemsupr; .(A, 3) andsupPr,.(-, 3) coincide with the problemsuPr; 4( A, 3)
and sSuPr, (-, 3), respectively, whose complexity was shown to be coNP-cetepl27]. For
the same reason, problenssiPr, 4(A,3) and SUPR.4(-, 3) coincide with suPp,.(A,3) and
SUPR..(-, ). Thus, to complete the complexity picture for problemsrr (o, ), it suffices
to focus onsupPR. 4(A, 3) andsSuUPR. 4(-, 3).

First, we prove an upper bound on the complexity of the pratgePr. ,(, -).

Theorem 4.1 The problensuPr. ,4(-, -) is in the class coNP.

Proof: It is sufficient to show thatupPP. 4(-, 0) is in coNP, sincgP, @), A) is a YES instance of
SUPPR.4(-, () if and only if (P, Q, A, B) is a YES instance a$§UPP. 4(-, -), cf. Theorem 3.1.

LetY' =Y N(At(P)U A). We will show thaty” € Mod 4-(P) ifand only if Y’ € Mod 4(P).
First, we note thalp(Y) = Tp(Y”'). If Y € Mod o-(P), thenY |= P andY \ Tp(Y) C A°. The
former property implies that” |= P. SinceY’ \ Tp(Y') = Y'\ Tp(Y) C Y \ Tp(Y), the latter
one implies that™ \ Tp(Y’) C A°. Thus,Y' € Mod s-(P).

Conversely, let”” € Mod 4-(P). ThenY’ |= P and, consequently, = P. Moreover, we also
haveY’'\Tp(Y’") C Ac. Lety e Y\Tp(Y). If y ¢ Y', then,ag € Y andY’ =Y N(At(P)UA),
y ¢ A, thatis,y € A°. If y € Y’, theny € Y\ Tp(Y”’) (we recall thatl’»(Y') = Tp(Y")). Hence,
y € A°in this case, too. It follows that \ 76(Y) C A°and soY € Mod s-(P).

Next, we prove thaffod 4c(P) # Mod 4-(Q) or, for someY € Mod -(P), Tp(Y') # To(Y)
if and only if there isY” C At(P U Q) U A such that” belongs to exactly one affod 4-(P) and
Mod 4-(Q), or Y belongs to bothl/od 4-(P) and Mod 4-(Q) andTs(Y") # To(Y’). Clearly, we
only need to prove the “only-if” implication. To this end, wete that ifMod 4c(P) # Mod 4-(Q),
then by the observation proved above, ther&isC A¢(P U @) U A with that property. Thus,
let us assume thatlod 4-(P) = Mod 4-(Q). If for someY € Mod -(P), Tp(Y') # Tp(Y) then
again by the argument given abow€,= Y N (At(P U Q) U A) belongs to both\/od 4.(P) and
Mod 4c (Q), andTp(Y,) = TP(Y) # TQ(Y) = TQ(Y’)

Thus, to decide the complementary problem, we nondetestigally guesy” C At(PUQ)U
A, and verify thatY” belongs to exactly one a¥/od 4-(P) and Mod 4-(Q), or thatY belongs to
Mod 4-(P) andMod 4-(Q)), and thatl p(Y') # T (Y).

CheckingY = P andY | @ can be done in polynomial time. Similarly, fét = P or @,
Y\Tr(Y) C Acifand only if (Y \ Tr(Y))NA = 0. Thus, checking”\ Tr(Y") C A° can be done
in polynomial time, too, and so the algorithm is polynomidknce, the complementary problem
is in NP, which implies the assertion. O

For the lower bound we use the problemrr. ;(A, B).

Theorem 4.2 The problensuPr. ;(A, B) is coNP-hard.

Proof: Let us consider a CNF formula let Y be the set of atoms ip, and letY’ = {y' |y € Y'}
be a set of new atoms. We define

P(p) = {y < noty’; y «— noty; —y,y' |yeY}U{« ¢|cisaclausein}
9



where, for each clausec ¢, sayc =y V- -V V—yrs1 V- - -V =y, ¢ denotes the the sequence
Yl s Yps Yk, - - - » Ym- 1O Simplify the notation, we writé” for P(y). One can check that has

a model if and only ifP has a model. Moreover, for every mod¢l of P such thatVl C At(P),

M is asupportednodel of P and, consequently, satisfiés = Tp(M).

Next, let@ consist off and<— f. As @ has no models, Theorem 3.1 implies thats supp-
equivalent taP relative toHB(A¢, B) if and only if Mod c(P) = 0. If M € Mod s<(P), then there
is M' C At(P) such thatM’ € Mod 4-(P). Since every model/’ of P such that\/’ C At(P)
satisfiesM’ = Tp(M’), it follows that Mod 4(P) = 0 if and only if P has no models. Thus;
is unsatisfiable if and only if) is supp-equivalent t@ relative toHB(A¢, B), and the assertion
follows. O

Theorems 4.1 and 4.2, combined via the relations depictdéigare 1, and the results by
Truszczyhski and Woltran [27] imply the following coralia

Corollary 4.3 The problensupPp .(«, 3) is coNP-complete, for any combination®t € {c, d},
Q€ {Av }’ﬁ S {Ba}

5 Suppmin-equivalence

In this section, we establish the complexity for direct-gbement, complement-direct and
complement-complement problems of deciding suppminwvedgmce. The complexity of direct-
direct problems is already known [27].

5.1 Upper bounds

The argument consists of a series of auxiliary results. Thetfiio lemmas are concerned with the
basic problem of deciding whethék, Y') € Mod% (P), whereA’ and B’ stand forA or A° and
B or B¢, respectively.

Lemma 5.1 The following problems are in the class coNP: Given a progianand setsX, Y/,
A, and B, decide whether (iX,Y) € Mod5.(P); (i) (X,Y) € Mod% (P); (i) (X,Y) €
Mod": (P).

Proof: We first show that the complementary problem to dewidether(X,Y) ¢ Mod%.(P) is
in NP. To this end, we observe that,Y) ¢ Mod%.(P) if and only if at least one of the following
conditions holds:

1. Y ¢ Mod 4 (P),
2. X € Y|acus,

3. thereisZ C Y such thatZ| sy = Y|acup andZ | P,
4. thereisZ C Y suchthatZ|p = X|p, Z|ac 2 X

acand”Z = P,
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5. X‘B:Y|B andY\Tp(Y) ZX

We note that verifying any condition involving® can be reformulated in terms df For instance,
for every set’, we havel’| 4« = V'\ A, andV C Acifand only if VN A = (). Thus, the conditions
(1), (2) and (5) can be decided in polynomial time. Condgi¢8) and (4) can be decided by a
nondeterministic polynomial time algorithm. Indeed, omee nondeterministically guess, all
other tests can be decided in polynomial time. The proofg¢Herremaining two claims use the
same ideas and differ only in technical details dependingvioich of A and B is subject to the
complement operation. O

Lemma 5.2 For every finite setb C At, the following problems are in the clag®l: given
a program P, and setsX, Y, and A, decide whether (iJX,Y) € Mod5.(P); (i) (X,Y) e
Mod%' (P).

Proof: In each case, the argument follows the same linesaaith_emma 5.1. The difference isin
the case of the conditions (3) and (4). Under the assumpticthss lemma, they can be decided in
deterministigpolynomial time. Indeed, let us note that there are no maeai¥! setsZ such that
Z|acupe = Y |aeupe (oOr, for the second problem, such thét, zc = Y|aupe). SinceB is finite
and fixed, the condition (3) can be checked in polynomial tbyiea simple enumeration of all
possible setg such thatZ C Y andZ|scupe = Y| acup- and checking for each of them whether
Z = P. For the condition (4), the argument is similar. Siri€és constrained by’ |z. = X|ge,
there are no more than®! possible candidate sefsto consider in this case, too. O

The role of the next lemma is to show thaf,Y") € Mod%(P) implies constraints o’ and
Y.

Lemma 5.3 Let P be a program andd, B C At. If (X,Y) € Mod5(P)thenX C Y C
At(P)U A.

Proof: We have” € Mod 4(P). Thus,Y \ Tp(Y) C A and, consequentlyy C Tp(Y)U A C
At(P)U A. We also haveX C Y| 5 C Y. O
Theorem 5.4 The problemsuPPMIN,.(-,-) is contained in the clasdl. The problem
SUPPMIN, (-, B) is contained in the class coNP.

Proof. We start with an argument for the probleswpPpPmIN, (-, -). By Theorem 3.2 and @

are not suppmin-equivalent relative #3( A, B¢) if and only if there is(X,Y) € Mod% (P) +
Mod% (Q), or there is(X,Y) € Mod” (P) andTs(Y)|s- # To(Y)|p-.Thus, by Lemma 5.3, to
decide thatP? and(@ are not suppmin-equivalent relative #03( A, B¢), one can guesX andY
such thatY C Y C At(P U Q) U A and verify that(X,Y) € Mod5 (P) + Mod% (Q), or that
(X,Y) € Mod5 (P) andTp(Y)|pe # To(Y)|s.. By Lemma 5.1(ii), deciding the membership
of (X,Y) in Mod% (P) and Mod% (Q) can be accomplished by means of two calls to a coNP
oracle. Decidingl’»(Y)|ge # T(Y)|se can be accomplished in polynomial time (we note that
Tp(Y)|ge = Tp(Y) \ B andTy(Y)|ge = Tp(Y) \ B). The argument for the second part of
the assertion is essentially the same. The only differestieat we use Lemma 5.2(ii) instead of
Lemma 5.1(ii) to obtain a stronger bound. O
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Lemma 5.3 is too weak for the membership results for comphérdeect and complement-
complement problems, as for these two types of problemslytlionits Y to subsets ofit( P)U A€,
which is infinite. To handle these two classes of problems @edradditional results. The proofs
are quite technical and we present them in the appendix.

Lemma 5.5 Let P, Q be programs andi, B C At.

1. If (X,Y) € Mod5.(P)\ Mod%.(Q) then there iSX",Y") € Mod5.(P)\ Mod%.(Q) such
thatY’ C A¢(PUQ) U A.

2. If (X,Y) € Mod5.(P)andTp(Y)|p # To(Y)|s, then there i X', Y') € Mod%.(P) such
thatTp(Y')|p # To(Y')|p andY’ C At(PUQ) U A.

Theorem 5.6 The problemsuPPMIN. 4(+,-) and SUPPMIN, .(+, -) are contained in the clasd?’.
The problensuPPMIN, (-, B) is in the class coNP:

Proof. The argument is similar to that of Theorem 5.4. We start withgroblensuPPMIN, 4(-, -).
By Theorem 3.2P and@ are not suppmin-equivalent relativet3( A¢, B) if and only if there is
(X,Y) € Mod5.(P)+ Mod5.(Q), or (X,Y) € Mod%.(P) andTp(Y)|5 # To(Y)|5. By Lemma
5.5, P and@ are not suppmin-equivalent relativeiB3( A¢, B) if and only if there is(X, Y") such
thatX C Y C AL (PUQ)U Aand(X,Y) € Mod5.(P) + Mod%5.(Q), or (X,Y) € Mod%.(P)
andTp(Y)|p # To(Y)|s.

Thus, to decide the complementary problem, it suffices tagieyY C At(PUQ)U A
and check thatX,Y) € Mod%.(P) + Mod5.(Q), or that(X,Y) € Mod’;.(P) andTp(Y)|p #
To(Y)|s. The first task can be decided by NP oracles (Lemma 5.1(i}),testing?»(Y )| #
To(Y)| s can be accomplished in polynomial time.

The remaining arguments are similar. To avoid repetitiorespnly list essential differences.
In the case oBUPPMIN,.(-,-), we use Lemma 5.1(iii). To obtain a stronger upper bound for
SUPPMIN, (-, B), we use Lemma 5.2(i) instead of Lemma 5.1(iii). O

When A is fixed and set td), a stronger bound on the complexity of the complement-
complement and complement-direct problems can be derivVéel first state a key lemma (the
proof is in the appendix).

Lemma 5.7 Let P, Q be normal programs and C At. If Mod%,(P) # Mod%,(Q), then there
isY C At(P U Q@) such thaty is a model of exactly one @t and (), or there isa € Y such that
(Y \ {a},Y) belongs to exactly one dfod”%,(P) and Mod%,(Q).

Theorem 5.8 The problemsupPPMIN. (0, -) and SUPPMIN. 4(), -) are in the class coNP.

Proof: The case ouPPMIN. 4(0),-) was settled before by Truszczyhski and Woltran [27] (they
denoted the problem byuPPMINg;). Thus, we consider only the probleswpPpPMIN. (0, -). We

will show that the following nondeterministic algorithmnfées, given programg#, () and a set

B C At, that P and(@ are not suppmin-equivalent relati#€B( At, B¢). We guess a paifa, Y),
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whereY C At(PU(Q), anda € At(P U Q) such that (a} is a model of exactly one aP and
Q; or (b)a € Y and(Y \ {a},Y) belongs to exactly one dffod”; (P) and Mod”%; (Q); or (C)Y is
model of P andTp(Y) \ B # Tp(Y) \ B.

Such a pair exists if and only iP and ) are not suppmin-equivalent relatité3( At, B°).
Indeed, let us assume that such a gairY’) exists. If (a) holds for(a,Y), sayY is a model
of P but notQ, then(Y,Y) € Mod%,(P)\ Mod%,(Q) (easy to verify from the definition of
Mod®%; (R)). Thus, Mod%,(P) # Mod%;(Q) and, by Theorem 3.2P andQ are not suppmin-
equivalent relativeB(At, B¢). If (b) holds for (a,Y), Mod%,(P) # Mod%,(Q) again, and we
are done, as above, by Theorem 3.2. Finally, if (c) hol#fsY") € Mod%,(P) (asY = P) and
Tp(Y)|ge =Tp(Y)\ B # 1Y)\ B=1Tyh(Y)|s-. Thus, one more time by Theorem 322and
@ are not suppmin-equivalent relati¥eB3( At, B¢).

Conversely, ifP and(Q are not suppmin-equivalent relati¢¢3( At, B¢), then Mod%, (P) #
Mod®%; (Q), or there i X, Y) € Mod%, (P) such thalp(Y)|pe # To(Y)| .. The former implies
(by Lemma 5.7) that there is, Y') such thaty” C A#(P U Q) and(a, Y) satisfies (a) or (b). If
the latter holdsY = P andTp(Y)|g- # Tp(Y)|s- or, equivalentlyT»(Y) \ B # Tp(Y) \ B.
LetY' =Y N At(PUQ). Clearly,Y' = P, Tp(Y) = Tp(Y’), andTy(Y) = Tp(Y'). Thus,
Tp(Y')\ B # To(Y')\ B. Picking anya € At(PUQ) (sinceP and( are not suppmin-equivalent
relative HB(At, B¢), At(P U Q) # 0) yields a pair(a, Y"), with Y C At(P U Q), for which (c)
holds.

It follows that the algorithm is correct. Moreover, cheakiwhetherY = P andY |~ @ can
clearly be done in polynomial time in the total sizef (), and B; the same holds for checking
Tp(Y)\B # To(Y)\ B. Finally, testing Y\ {a},Y) € Mod%, (P)and(Y\{a},Y) € Mod%,(Q)
are polynomial-time tasks (with respect to the size of thmuihy too. The conditions (1) - (3) and
(5) are evident. To verify the condition (4), we need to wettiat Z [~ P for just one setZ,
namelyZ = Y \ {a}. Thus, the algorithm runs in polynomial time. It follows tlilae complement
of our problem is in the class NP and so the assertion follows. O

5.2 Lower bounds and exact complexity results

We start with direct-complement problems.
Theorem 5.9 The problemsuPPMIN, (A, -) is 115 -hard.

Proof: LetVY3JX ¢y be a QBF, where» is a CNF formula overX U Y. We can assume that
AN X = 0 (if not, variables inX can be renamed). Next, we can assume that Y (if not, one
can add top “dummy” clausesy V —y, for y € Y). We will construct program# () andQ(y),
and a se3, so thatvY3X ¢ is true if and only if P(p) andQ(y) are suppmin-equivalent relative
to HB(A, B). Since the problem to decide whether a given QBRI X ¢ is true isI1}-complete,
the assertion will follow.

For every atomr € X UY, we introduce a fresh atomi. Given a set of “non-primed” atoms
Z, we defineZ’ = {2’ |z € Z}. In particular,A N (Y’ U X’) = (. We uset as in the proof of
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Theorem 4.2 and define the following programs:

Plp) = {z+mnot2; 2 —notz|2e XUY}U{—y,y |yeY}U
{r —u,u; 2/ —wu,v | z,ue X}U
{z ¢ 2/« ¢|xe X, cisaclause in};

Qlp) = {z«mnot2; 2 —notz|ze XUY}U{« 27 |2ze XUY}U
{« ¢ | cisaclause inp}.

To simplify notation, from now on we writé® for P(p) and@ for Q(y). We also define3 =
XUX'UY UY'. We observe thatlt(P) = At(Q) = B.
One can check that the models@fcontained inB are sets of type

L. IUY\I)YUuJU(X\J),whereJC X, ICYandIUJ = .
Each model of) is also a model of” but P has additional models containedih viz.
2. JU(Y\I))uXUX/ foreachl CY.

Clearly, for each model/ of () such that\/ C B, T (M) = M. Similarly, for each modeM of
P suchthatM C B, Tp(M) = M. Hence, each such mod# is also supported for botR and
Q.

From these comments, it follows that for every matiebf Q) (resp.P), To(M) = MNB (resp.
Tp(M) = M N B). Thus, for every model/ of both P and@, Ty (M)|ge = Tp(M)|ge. It follows
that P and (Q are suppmin-equivalent with respect ®B(A, B¢) if and only if Mod% (P) =
Mod%’ (Q) (indeed, we recall that ifN, M) € Mod” (R) thenM is a model ofR).

Let us assume thaty’4X ¢ is false. Hence, there exists an assignmedt Y to atomsY
such that foreveryy C X, U J [~ ¢. LetN = TU (Y \ ) U X UX’'. We will show that
(N|aupe, N) € Mod% (P).

SinceN is a supported model d?, N € Mod o(P). The requirement (2) fofN|upe, N) €
Mod% (P) is evident. The requirement (5) holds, sin¥e\ 7p»(N) = (. By the property of
I, N is a minimal model ofP. Thus, the requirements (3) and (4) hold, too. It followsttha
(N|aupe, N) € Mod% (P), as claimed. Sinc is not a model of), (N|aup, N) ¢ Mod5 (Q).

Let us assume thaty' 3X ¢ is true. First, observe thatlod’ (Q) € Mod% (P). Indeed, let
(M,N) € Mod5 (Q). It follows that N is a model of@ and, consequently, aP. From our
earlier comments, it follows that,(N) = Tp(N). SinceN \ To(N) € A, N\ Tp(N) C A.
Thus, N € Moda(P). Moreover, if M|g. = N|g. thenN \ To(N) C M and, consequently,
N\ Tp(N) C M. Thus, the requirement (5) fdi\/, N) € Mod5 (P) holds. The condition
M C N|aup- is evident (it holds agM, N) € Mod% (Q)). SinceN is amodel of, N = N'UV,
where N’ is a model of type 1 and’ C At \ B. Thus, every model C N of P is also a
model of Q. It implies that the requirements (3) and (4) foi/, N) € Mod% (P) hold. Hence,
(M,N) € Mod% (P) and, consequentiWod’ (Q) € Mod% (P).

We will now use the assumption thelt"3X ¢ is true to prove the converse inclusion, i.e.,
Mod% (P) C Mod% (Q). Tothisend, letus considéd!, N) € Mod% (P). If N = N'UV, where
N'is of type 1 and/ C At \ B, then arguing as above, one can show tfidt N) € Mod% (Q).

14



Therefore, let us assume thadt = N’ U V, where N’ is of type 2 andV C At \ B. More
specifically, letN' = T U (Y \ I)’ U X U X', for somel C Y. By our assumption, there i5C X
suchthat U J = ¢. ItfollowsthatZ = TU (Y \ I) UJU (X \ J) UV is a model ofP. Clearly,
Z C N. Moreover, since3°N (X UX' UYUY') =AN(XUX' UY UY’) = (), we have
Z|aupe = N|aupe. Since(M, N) € Mod (P), the requirement (3) implies thatis not a model
of P, a contradiction. Hence, the latter case is impossibleldnd’ (P) C Mod% (Q) follows.
We proved that’Y 3X ¢ is true if and only if Mod5 (P) = Mod% (Q). This completes the
proof of the assertion. O

Theorem 5.10 The problensuPpPMmIN; (A, B) is coNP-hard.

Proof: Let us consider a CNF formujaover a set of atom¥. Without loss of generality we can
assume that” N B = (). For each atomy € Y, we introduce a fresh atogi. Thus, in particular,
BN (Y UY’) = 0. Finally, we consider program3(y) andQ = {f «; < f} from the proof of
Theorem 4.2. In the remainder of the proof, we wiiitéor P(y).

From the proof of Theorem 4.2, we know thiathas a model if and only ip has a model (is
satisfiable). We will now show that/od” (P) # 0 if and only if ¢ is satisfiable. It is easy to
check thatMod”" (Q) = (). Thus, the assertion will follow by Theorem 3.2.

Letus assume thdt has a model. TheR has a model, say/, suchthat\/ C YUY’. We show
that(M, M) € Mod% (P). Indeed, sinc@p(M) = M, M € Mod 4(P). Also, sinceyUY’ C B,
M| supe = M and so,M C M|aype. Lastly, M \ Tp(M) = () C M. Thus, the conditions (1),
(2) and (5) for(M, M) € Mod% (P) hold. SinceM|s,pc = M and M|g. = M, there is no
Z C M such thatZ|aype = M|aupe Of Z|ge = M|pc. Thus, also the conditions (3) and (4) hold,
and Mod® (P) # ( follows. Conversely, lef/od5 (P) # 0 and let(N, M) € Mod% (P). Then
M € Mod 4(P) and, in particular) is a model ofP. O

Combining Theorems 5.9 and 5.10 with Theorem 5.4 yields ttlevfing result that fully
determines the complexity of direct-complement problems.

Corollary 5.11 The problemsuPPMIN, (A, -) andSUPPMIN, (-, -) are IT¥-complete. The prob-
lemssuPPMIN, (A, B) andSUPPMIN, (-, B) are coNP-complete.

Before we move on to complement-direct and complement-temgnt problems, we present
a construction that will be of use in both cases. YEHX ¢ be a QBF, where» is a CNF formula
over X U Y. Without loss of generality we can assume tRaandY” are non-empty.

We defineX’, Y’ and¢, for each clause of ¢, as before. Next, letl, B C At be such that:
AP, AN(XUX'UYUY)=BN(XUX' UYUY') =0, andletg € A.

We definelV = X UX'UY UY'U{g} and observethaf U X' UY UY’ C A°andg ¢ A°.
Finally, we select an arbitrary elemeng from X and define the programB(y) and Q(y) as
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follows:

P(p) = {enoty,noty’; «—y,y' |yeY}U
{< u, notv, not v’y «—, notv, notv’
— notu,v,v'; «— notu',v,v |u,ve X} U
{« ¢, xg, not xy; «— ¢ not xg, xy | cis aclause inp} U
{« not g} U{u <« xo, z(,u | ue W}
Q(p) = P(p)U{— notxy,notx,}.

Lemma 5.12 Under the notation introduced aboveéy 3.X ¢ is true if and only ifP(¢) andQ(p)
are suppmin-equivalent relativig€3( A°, B).

Proof. As usual, to simplify notation we writé for P(¢) and @ for Q(¢). We observe that
At(P) = At(Q) = W. We observe that botR and@ have the following models that are contained
in W-:

1. {gfUXUX'UITU(Y\I),foreach/ CY;and

2. {g}UJUX\J)UIUY\I),whereJC X, ICYandIUJ [ .
Moreover,P has also additional models containedin

3. {gtulTu(Y\I), foreachl CY.

For each model! of the type 1,7»(M) = Th(M) = M, thanks to the rules «— z, 2, u,
whereu € W. Thus, for each modé\¥/ of type 1, we havéll € Mod o.(P) andM € Mod 4-(Q).

Let M be a model of? of one of the other two types. Then, we h&eg M) = (). Moreover,
sinceg € M andg ¢ A°, M\ Tp(M) ¢ Ac. ThusM ¢ Mod5.(P). Similarly, if M is a
model of @ of type 2,75(M) = (. For the same reasons as abaVé,¢ Mod 4-(Q). Hence,
Mod sc(P) = Mod -(Q), and bothMod 4.(P) and Mod 4.(Q) consist of interpretationd’ of the
form N UV, whereN' is a set of the type 1 and C At \ W. Clearly, for each such seY,
Tp(N) = N’ = To(N). ThusT»(N)|z = To(N)|s holds for each M, N) € Mod%.(P) (as
(M,N) € Mod5.(P) implies N € Mod 4-(P)). By Theorem 3.2, it follows thaP and @ are
suppmin-equivalent relativilB( A<, B) if and only if Mod%.(P) = Mod5.(Q).

Thus, to complete the proof, it suffices to show tHEE.X ¢ is true if and only ifMod . (P) =
Mod%.(Q).

Let us assume thaty’3X ¢ is false. Hence, there exists an assignmedt Y to atomsY
such that for every/ C X, U J £ ¢. Let N = {gtUTU (Y \I)UXUX'. We wil
show that({g}|s, N) € Mod%.(Q). SinceN is of the type 1N € Mod 4-(Q). The requirement
(2) for ({g}|5, N) € Mod5.(Q) is evident, ayy € N. The requirement (5) holds, singé \
To(N) =0 C {g}|s. By the property off, N is a minimal model ofy. Thus, the requirements
(3) and (4) hold, too. It follows that{g}|, N) € Mod5.(Q), as claimed. On the other hand
({g}|3, N) ¢ Mod%.(P). Indeed, letM = {g} UT U (Y \ I). ThenM = P (itis of the type 3.
We now observe that/ C N, {g}|p = M| (@sBN (Y UY’) =0),andM|s 2 ({g}|5)|a- (as
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({9}|5)|ac = 0, due to the fact thag ¢ A°). It follows that({g}|s, N) violates the condition (4)
for ({g}|5, N) € Mod%.(P).

Conversely, let us assume thaf3.X o is true. First, we observe thafod%.(P) C Mod5.(Q).
Indeed, let(A, N) € Mod%.(P). Then,N € Mod.(P) and, consequentlyy € Mod 4-(Q).
Moreover, if M|p = N|g, thenN \ Tp(N) C M and, asl’p(N) = To(N), N \ To(N) C
M. Next, as(M, N) € Mod%.(P), M C N|ap. Thus, the requirements (1), (5) and (2) for
(M, N) € Mod5.(Q) hold. Since every model @ is a model ofP, it follows that the conditions
(3) and (4) hold, too.

We will now use the assumption thaty3X ¢ is true to prove the converse inclusion
Mod%.(Q) € Mod®%.(P). To this end, let us considéM, N) € Mod%.(Q). Reasoning as above,
we can show that the conditions (1), (5) and (2)(ff, N) € Mod%.(P) hold.

By our earlier commentsy = N’ UV, whereN' is of the form 1 and/ C At \ W. More
specifically, N = {g} UTU (Y \ I) UX U X', forsomel C Y.

Let us conside?’ C N such thatZ| ., = N|acup. SinceW \ {g} C A%, Z O N|seup 2
TU(Y\I)uUXuUX'. Itfollows thatZ N W is not of the type 3. Thus, sincé (-~ Q, Z |~ P.
Consequently, the condition (3) foi/, N) € Mod%.(P) holds.

So, let us consideZ C N such thatZ|p = M|p and Z|4c O M|4.. Let us assume that
Z | P. SinceZ [~ Q, Z = Z' VU, whereZ' is a set of the type 3 and C At \ W. Since
ZCN,Z'CN,andsoZ' ={gtUluU (Y \I).

SinceVY 3 X ¢ is true, there is/ C X such that’ U J = . It follows that

N' ={gtUuTu(Y\I)YuJU(X\J)UuU

is a model of both? and@ (of the type 2). SincdB N W C {g}, it follows thatN” |z = Z|p =
M|g. SinceN” D Z, N"| e D Z|ae O M| .. Moreover,N” C N. Since(M, N) € Mod%.(Q),
N" P~ @, a contradiction. ThusZ [~ P and, consequently, the condition (4) fa¥/, N) €
Mod®%.(P) holds. This completes the proof 8fod’.(Q) C Mod%.(P) and of the theorem. O

We now apply this lemma to complement-direct problems. We hlae following result.
Theorem 5.13 The problensuPPMIN,. 4( A, B), whereA # (), is 114 -hard.

Proof. Let VY 3X ¢ be a QBF, where is a CNF formula oveX U Y and.X andY are nonempty.
We can assume thatN (X UY') = BN(XUY') = 0 (if not, variables in the QBF can be renamed).
We defineX” andY” as in other places. Thugd U B) N (X' UY”) = (. Finally, we pickg € A,
and defineP(y) andQ(y) as above. By Lemma 5.12Y3X ¢y is true if and only ifP(y) and
Q(p) are suppmin-equivalent with respectii3(A¢, B). Thus, the assertion follows. (We note
that sinceB is fixed, we cannot assungec B or g ¢ B here; however, Lemma 5.12 takes care of
both cases). O

We are now in a position to establish exactly the complexityomplement-direct problems.

Corollary 5.14 The problemsuPPMIN. 4(-, B) and SUPPMIN, 4(-, -) are IT¥-complete. ForA #
0, the problemssuPPMIN, 4(A, B), and SUPPMIN, 4(4, -), are alsoll}-complete. The problems
SUPPMIN. 4(0, B) and SUPPMIN, 4({), -) are coNP-complete.
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Proof. For each of the problemsupPPMIN, 4(A, B), A # 0, SUPPMIN, 4(+, B), SUPPMIN. 4(4, -),

A # (, andSUPPMIN, 4(+, -), the upper bound follows from Theorem 5.6, and the lower boun
from Theorem 5.13. The problensspPpPMIN, 4((, B) and SUPPMIN, 4((), -) were proved to be
coNP-complete by Truszczyhski and Woltran [27] (they deddhese problems byuPPMING,
andsuUPPMINy,, respectively). O

We will now apply Lemma 5.12 to complement-complement peois.
Theorem 5.15 The problensuPPMIN, (A, -), whereA # (), is [1{'-hard.

Proof. LetVY3X ¢ be a QBF, where is a CNF formula oveX UY . We selecy € A, and define
X" andY” as usual. Without loss of generality we can assumeAhiat X U X' UY UY”) = 0. In
particular,y ¢ X UX'UY UY’. WesetB = X UX'UYUY’and so,B°N(XUX'UY UY’) = (.
Finally, we setV = X UX'UY UY'U{g} and define programB and( as we did in preparation
for Lemma 5.12. By Lemma 5.12Y 3 X ¢ is true if and only if P and( are suppmin-equivalent
with respect ta{B( A, B¢). Thus, the assertion follows. O

Next, we determine the lower bound for the problsapPpPMmIN. (A, B).
Theorem 5.16 The problenmsupPPMIN, .(A, B) is coNP-hard.

Proof. The problemsuppmin, (0, 0) is coNP-complete [27] (in the paper proving that the prob-
lem was denoted bgurPmINg!). We will show that it can be reduced swPPMIN. (A, B) (for
any finite A, B C At).

Thus, let us fixA and B as two finite subsets oft¢, and letP and@ be normal logic programs.
We defineP’ and )’ to be programs obtained by replacing consistently atom8 amd () that
belong toA U B with atoms that do not belong td¢(P U Q) U AU B. Clearly, P and( are
suppmin-equivalent relativelB( At, At) if and only if P’ and@’ are suppmin-equivalent relative
HB(At, At).

Moreover, it is evident that i’ and@’ are suppmin-equivalent relativé3( At, At) then P’
and(@’ are suppmin-equivalent relatité5( A, B¢). We will now show the converse implication.
To this end, letk be an arbitrary program frori{3(At, At). By R’ we denote the program
obtained by replacing consistently atomdirthat belong ted U B with atoms that do not belong
to At(P'UQ’)U AU B. SinceP’ and()’ are suppmin-equivalent relatit¢B(A°, B¢), P"UR’ and
Q' U R’ have the same suppmin models. Now, we note that bedaliseB) N At(P' U Q') = 0,
P'UR and@’ U R' have the same suppmin models if and onl¥itU R and@’ U R have the same
suppmin models. Thu$’UR and@’UR have the same suppmin models and, consequétithnd
()’ are suppmin-equivalent relativé3( At, At). It follows that P and( are suppmin-equivalent
relative HB(At, At).

This discussion implies thaP and ) are suppmin-equivalent relativ3( At, At) if and
only if P" and Q)" are suppmin-equivalent relativg5(A¢, B). Thus, the coNP-hardness of
SUPPMIN. (A, B) follows from the coNP-hardness stiPPMIN. (0, ). O
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Taking into account Theorems 5.6 and 5.8, Theorems 5.15 .d6dyteld the following result.

Corollary 5.17 The problemssupPPMIN..(4,-), with A # (), and SUPPMIN..(-,-) are IIL-
complete. The problensuPPMIN, .(A, B), SUPPMIN. .(-, B), and SUPPMIN..({, -) are CONP-
complete.

6 Stable-equivalence

In this section, we establish the complexity for direct-gbement, complement-direct and
complement-complement problems of deciding stable-edgmce. We will again make use of
the relations depicted in Figure 1 to obtain our results. sTHar instance, when we derive an
upper bound for a problersTABLE; (-, -) and a matching lower bound feITABLE; (A, B), we
obtain the exact complexity result for all problems betws&nBLE;.(A, B) and STABLE; (-, -)
(inclusively). As we will show, for stable equivalence tedsounds match in all cases other than
0=¢e¢=c

We also mention that for the upper bounds for relativizedengquivalence with respect to
the stable-model semantics, some relevant results weaklissted before. Specifically, the direct-
direct problemsTABLE, (-, -) is known to be in the clasﬁf and, under the restriction to normal
logic programs, in coNP [29]. However, for the sake of cortgrless we treat the direct-direct
problems here in full detail as, in the case of fixed alphalieé&y were not considered before.

6.1 Upper Bounds

The following lemmas mirror the corresponding results fribv@ previous section but show some
interesting differences. For instance, as the followirsgilieshows, the problem of model checking
is slightly harder now compared to Lemma 5.2. Namely, it cated in the class D) (We recall
that the class D consists of all problems expressible as the conjunctionpgsbblem in NP and a
problem in coNP.) However, this increase in complexity cangpd to Lemma 5.1 does not influence
the subsequeiity-membership results, since a call to 8-bracle amounts to two NP-oracle calls.

Lemma 6.1 The following problems are in the clas€’Dgiven a programP, and setsX, Y, A,
and B, decide whethefX,Y) € SE% (P), whereA’ stands for one oft and A¢, and B’ stands
for one of B and B¢,

Proof. We use similar arguments as in the proof of Lemma 5.1, but vee new both an NP and
a coNP test.

We recall that verifying any condition involving® can be reformulated in terms of. For
instance, for every séf, we havel’|,c = V' \ A, andV C Acifand only if VN A = (). The same
holds for B°.

Let A" € {A, A°} and B’ € {B, B°}. We will use the observation above to establish upper
bounds on the complexity of deciding each of the conditidis (5) for (X,Y) € SEff(P).
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The condition (1) can clearly be decided in polynomial tifiee same holds for the condition
(2). It is evident once we note th& C Y|ayp is equivalenttoX C Y NANB, X C
YNB)U(Y\A),XC(YNA)U((Y\B),andX C Y\ (AU B), depending on the form of’
andB'.

It is also easy to show that each of the conditions (3) and &4) ke decided by means of
a single coNP test, and that the condition (5) can be decigeddans of one NP test. For all
instantiations ofA’ and B’, the arguments are similar. For exampleAif stands forA and B’
stands forB¢, to decide whethefX,Y") violates the condition (4), we guess a getC Y and
verify that (2)7|zc C X|g. (by checking thal \ B = Z \ B); (b) X|4 C Z|4; (c) one of the two
inclusions is proper; and (d&f = PY. All these tasks can be accomplished in polynomial time,
and so deciding that the condition (4) does not hold amoordas NP test. Consequently, deciding
that the condition (4) holds can be accomplished by a coNP tes O

When we fixA and B (they are no longer components of the input), the complefitiest-
ing whether(X,Y) € SEX.(P) is lower — the problem is in the class Pol. Comparing with
Lemma 5.2, the lower complexity holds only fdf = A© and B’ = B¢. Moreover,both A and B
must be fixed.

Lemma 6.2 For every finite setsi, B C At the following problem is in the clasBol: given a
programP, and setsX, Y, decide whethetX,Y) € SEZ. (P).

Proof. As we noted, testing the conditions (1) and (2) f&f,Y) € SES.(P) can be done in
polynomial time.

For the condition (3) we check all candidate s&tsSinceZ| . = Y|4 all elements ofZ are
determined by except possibly for those that are alsodnThus, there are at mo2t!! possible
setsZ to consider. Sincel is fixed (not a part of the input), checking for all these setshether
Z = PY andZ C Y can be done in polynomial time.

For the condition (4), the argument is similar. We note thas, in particular, restricted by
Z|ge C X|pge and X|4c C Z|4c. The two conditions imply thak'| 4cupe = Z]|acupe. Thus, all
elements o/ are determined except possibly for those that are alstin3. It follows that there
are at mosp!“"5l possibilities forZ to consider. Clearly, for each of them, we can check whether
it satisfies or fails the premises and the consequent of (@dlynomial time. Thus, checking the
condition (4) is a polynomial-time task.

The same (essentially) argument works also for the comd{89. SinceZ|cup- = X|acupe,
all elements ofZ are determined except possibly for those that are alsbrinB. Thus, there are
at most2l1" 5l possible sets to consider. Given that and B are fixed, checking all those sets
for Z = PY andZ C Y can be done in polynomial time. O

The reduct of amormalprogram is a Horn program. That property allows us to obtaonger
upper bounds for the case of normal logic programs.

Lemma 6.3 The following problems are in the clag®/. Given a normal progran®, and setsX,,
Y, A, and B, decide whethetX,Y) € SEL,(P), whereA’ stands for4 or A¢, and B’ stands for
B or B¢.
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Proof. As we noted, deciding the conditions (1) and (2) can be actishgal in polynomial time
(even without the assumption of normality).

To show that the condition (3) can be decided in polynomimaétiwe show that the complement
of (3) can be decided in polynomial time. The complement ¢this the form: there ig C Y
such thatZ|4 = Y|4 andZ = PY. Let us consider the Horn prograil = PY U Y|4.
SinceP, Y and A are given,P’ can be constructed in polynomial time (for instanced if= A¢,
P = PY U (Y \ A)). We will show that the complement of the condition (3) hoifdand only
if P’ is consistent and its least model, saysatisfies, C Y andL|. = Y|4 . First, we observe
that if the complement of (3) holds, thé?fl has a model such thatZ C Y andZ|4 = Y|a.
It follows that P’ is consistent and its least model, shysatisfies. C Z. Thus,L C Y and
L|a» C Y]|a. Moreover, sincd. = P', Y| C L. Thus,Y |4+ C L| 4. Therefore, we havé C Y
andL|4 = Y|4 as needed. The converse implication is trivial. Sidecan be constructed in
polynomial time and. can be computed in polynomial tim&{is Horn), deciding the complement
of the condition (3) can be accomplished in polynomial titoe,

To settle the condition (4), we again demonstrate that thepdement of the condition (4) can
be decided in polynomial time. To this end, we observe thatctmplement of (4) holds if and
only if one of the following two conditions holds:

(4) thereisZ C Y suchthatX |y C Z|a, Z|p C X|p andZ = PY
(4") thereisZ C Y suchthatX|s C Z|u, Z|p C X|p andZ = PY

One can check that (4holds if and only ifPY U X | is consistent and its least model, Say
satisfiesL C Y andL|p C X|p . Similarly, (4") holds if and only if there ig € (Y \ X)|4 such
that PY U (X U {y})| 4 is consistent and its least model, daysatisfies, C Y andL|p C X|p..
Thus, the conditions (#and (4) can be checked in polynomial time.

The argument for the condition (5) is similar to that for tlmenplement of the condition (3).
The difference is that instead éf we use the Horn progra®¥ U X |4 p. Reusing the argu-
ment for (3) with the arbitrary containment af in Y (rather than a proper one) shows that the
complement of (5) can be decided in polynomial time. O

The following lemma provides conditions restrictixigandY” given that(X,Y) € SEZ(P).
Lemma 6.4 Let P be a programandi, B C At. If (X,Y) € SE5(P)thenX C Y C At(P)UA.

Proof. Let (X,Y) € SE5(P). The inclusionX C Y follows from the condition (2). To prove
Y C At(P)UA, let us assume to the contrary that (At(P)UA) # 0. Lety € Y\ (At(P)UA).
We haveY = P and thusY” = PY. Sincey ¢ At(P),y ¢ At(PY). Thus,Y \ {y} &= PY. Since
y ¢ A takingZ =Y \ {y} shows that X, Y") violates the condition (3) fofX,Y) € SEX(P), a
contradiction. O

The next lemma plays a key role in establishing an upper baumthe complexity of the
problemssTABLE; (-, -). Its proof is technical and we present it in the appendix.
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Lemma 6.5 Let P, Q be programs andi, B C At. If (X,Y) € SE5(P)\ SE5(Q), then there
are setsX', Y’ C At(P U @), such that at least one of the following conditions holds:

i. (XY e SEF(P)\ SE5(Q)
i. A\At(PUQ) # @ andforevery, z € A\ At(PUQ), (X', Y'U{y, 2}) € SE5(P)\SE5(Q)

We now use similar arguments to those in the previous setdiobtain the following collection
of membership results.

Theorem 6.6 The problemsTABLE;.(,-), is contained in the clasEY, for anyd,e € {c, d};
STABLE, (4, B) is contained in the class coNP. The problemaBLE} (-, -), is contained in the
class coNP for any, ¢ € {c, d}.

Proof. Given finite programs” and @), and finite subsetsl, B of At the following algorithm
decides the complementary problemsoaBLE;.(-,-). If 6 = dand A\ At{(P U Q) = 0, the
algorithm guesses two sel§ Y C At(P U Q). It verifies whethe( X, Y) € SEZ(P) + SE5(Q)
and if so, returns YES. Otherwise, the algorithm guessesat®X,Y C At(PUQ). If § = d,
it selects two elementg, z € A\ At(P U Q) or, if § = ¢, it selects two elementg, z € A°\
At(P U Q). The algorithm verifies whethdtX,Y) € SE% (P) + SES.(Q) (whereA' = A if
0 =d,andA’ = A°¢if § = ¢) and if so, returns YES. Otherwise, the algorithm verifieethier
(X,Y U{y, z}) € SEE,(P) + SES,(Q) (WhereA’ = Aif 6 = d,andA’ = A°if § = ¢) and if so,
returns YES.

The correctness of the algorithm follows by Lemma 6.5. Sithee sizes ofX andY are
polynomial in the size of” U Q, the membership of the complementary problem in the dlgss
follows by Lemma 6.1.

The remaining claims of the assertion follow in the same waldmmas 6.2 and 6.3, respec-
tively. O

6.2 Lower bounds and exact complexity results

We start with the case of normal programs.
Theorem 6.7 The problemsTABLE] (A, B) is coNP-hard for any, ¢ € {c, d}.

Proof. Let us fixé ande, and letA’ and B’ be sets of atoms defined by the combinatidrendo,
and B ande. We will show that UNSAT can be reduced$0ABLE} (A, B).

Let ¢ be a CNF over of set of atomé. We defineP(y) and@ as in the proof of Theorem 4.2.
We note that both programs are normal. As before, we vititestead ofP () in order to simplify
the notation.

To prove the assertion it suffices to show thais unsatisfiable if and only i and @ are
stable-equivalent with respect B (A’, B’). To this end, we will show thap is unsatisfiable if
and only if SEZ,(P) = SEZ,(Q) (cf. Theorem 3.3).

22



Since@ has no modelsSEZ, (Q) = 0. Moreover,SEZ (P) = 0 if and only if P has no
models (indeed, i{X,Y) € SEE(P), thenY is a model ofP; if Y is a model ofP, then
(Y,Y) € SEE(P)). It follows thatSE%, (P) = SEZ (Q) if and only if P has no models.

In the proof of Theorem 4.2, we noted thathas models if and only i has models. Thus,
SEZ(P) = SE%(Q) if and only if ¢ is unsatisfiable, as required. m

Together with the matching coNP-membership resultsfeBLE} (-, -) from Theorem 6.6 we
obtain the following result.

Corollary 6.8 The following problems are coNP-complete for any € {c,d}: STABLE} (-,-),
STABLE; (A, ), STABLE; (-, B) andSTABLE} (A4, B).

We now turn to the case of disjunctive programs. It turns cut tthe problems
STABLE, 4(A, B), STABLE44(A, B) and STABLE, (A, B) areIl}-hard. The situation is differ-
ent for STABLE..(A, B). By Theorems 6.6 and Corollary 6.8, the problem is coNP-detap
However, the two immediate successors of that probkmBLE, (4, -) andSTABLE,. (-, B) (cf.
Figure 1) ard1?-hard. We will now show these results.

To start with we provide some technical results concerniregstructure of the sefE%(P)
whenAt(P) C AandAt¢(P) N B = (). It will be applicable to programs we construct below.

Lemma 6.9 Let P be a program andd, B C At. If At(P) C A and At(P) N B = (), then
(X,Y) € SE5(P) if and only if there areX’, Y’ C At(P) andW C A\ At(P) such that one of
the following conditions holds:

a X=XUuUW,Y=Y'uUW,and(X",Y') € SE5(P)
b. X =X'UW, (X', X') € SEF(P)andY = X’ UW U {y}, for somey € A\ At(P)

c. X =XUW, (X" X") e SE5(P)andY = X’ UW U D, forsomeD C BN (A\ At(P))
such that? N D = () and|D| > 2.

The proof of this result is technical and we give it in the aptig. This lemma points to the
crucial role played by those paif(,Y) € SE5(P) that satisfyY” C At(P). In particular, as
noted in the next result, it allows to narrow down the clagsaifs( X, Y') that need to be tested for
the membership i8E5(P) and SE5(Q) when considering stable-equivalencefdfind Q with
respect ta{3(A, B).

Lemma 6.10 Let P and ) be programs, andi, B subsets ofi¢ such thatd¢(P U @) C A and
At(PU Q)N B = (. Then,P and () are stable-equivalent with respect3(A, B) if and only
if for every X, Y such thaty’ C At(PUQ), (X,Y) € SE5(P) ifand only if(X,Y) € SE(Q).

Proof. Without loss of generality, we can assume thatP) = At(Q). Indeed, LetP’ = PU{a «
ala € At(Q) \ At(P)} and@’ = QU {a < ala € At(P) \ At(Q)}. Itis easy to see that and
P’ (Q and(’, respectively) are stable-equivalent with respecti6( A, B). Thus, in particular,
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At(P U Q).

SEE(P) = SEL(P) and SE5(Q) = SEL(Q)'). Moreover, At(P') = At(Q")
N B = () if and only

Therefore At(P'U Q") C Aifand only if At(PU Q) C A, andAt(P'UQ")
if At(PUQ)N B =1.

Thus, let us assume thdt(P) = A¢(Q). Only the “if” part of the claim requires a proof, the
other implication being evident. Let us assume {HatY") € SEZ(P). By Lemma 6.9, there are
XY C At(P)andW C A\ At(P) such that one of the conditions (a) - (c) holds. If (a) holds,
(X',Y") € SE5(Q) and so,(X,Y) € SEZ(Q). If (b) or (c) holds,(X’, X") € SEZ(Q) and so,
(X,Y) € SE(Q), as well. O

Finally, we note that under the assumptions of Lemma 68,4 At¢(P), then the conditions
for (X,Y) € SES(P) simplify.

Lemma 6.11 Let P be a programandi, B C At. If At(P) C A, At(P)NB = @ andY C A¢(P),
then(X,Y) € SES(P)ifandonly ify = P, X C Y, X = PY, and for everyZ C Y such that
XCZcCY,ZWEPY.

Proof. Under the assumptions of the lemma, the four conditions queés/alent to the conditions
(1), (2), (5) and (4) fof X, Y) € SEZ(P), respectively, and the condition (3) is vacuously trte.

Our first IIY-hardness result for stable equivalence results concehes problem
STABLE, 4(A, B).

Theorem 6.12 The problensTABLE, 4( A, B), is hard for the clas$I..

Proof. According to our notational convention, we have to showtheproblensTABLE. 4( A, B)
is 12 -hard, for every finited, B C At.

Let VY dX p be a QBF, where is a CNF formula oveX U Y. Without loss of generality we
can assume that every clausevicontains at least one literalor -z, wherex € X. Furthermore,
we can also assume thatn (X UY) = §andB N (X UY) = 0 (if not, variables inp can be
renamed). We select the primed variables so that(X' UY’) = landB N (X' UY’) = 0, as
well.

We will construct program#’ () andQ(y) so thatvY 3X ¢ is true if and only if P(p) and
Q(p) are stable-equivalent relative #65B(A°, B). Since the problem to decide whether a given
QBF VY 3X ¢y is true isIf -complete, the assertion will follow.

To constructP () andQ(¢) we select an additional atom¢ X U X' UY UY'U AU B, and
usec as discussed above. We set

R(p) = {a—=mza";2—a; 2 —alzeX}U
{yvy's <y ylyeY}u
{a — ¢ | cisaclauseinp} U

{< nota}
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and define

P(p) = {zva'|xze X}UR(p)
Qlp) = {ovr —u|rzeXue{afUXUX'}UR(p)

To simplify notation, from now on we writ for P(y) and@ or Q().

We note thatdt(P) = At(Q), At(P) C A, At(Q) C A¢, At(P)NB = 0, andAt(Q)NB = 0.
Thus, to determine whethé? and @ are stable-equivalent with respectB( A, B), we will
focus only on pair§ N, M) € SES.(P) and(N, M) € SE%.(Q), that satisfyN C M C At(P)
(cf. Lemma 6.10). By Lemma 6.11, to identify such pairs, wedht consider models (contained
in At(P) = At(Q)) of the two programs, and models (again containedifP) = At(Q)) of the
reducts of the two programs with respect to their modelsmFnow on in the proof, whenever we
use the term “model” (of a program or the reduct of a program)assume that it is a subset of
At(P) = At(Q).

First, one can check that the modelsfoaind() coincide and are of the form:

1. TUY\I)YUXUX' U{a}, foreachl CY.

Next, we look at models of the reducts Bfand(@ with respect to their models, that is, sets of
the form (1). Let)M be such a set. Sineec M, then every model of is a model ofP¥, and the
same holds fof).

However,PM andQ have additional models. First, each reduct has as its med&df the
form

2. JUY\NI)YUJu(X\J),whereJC X,I CYandlUJ = ¢.
Furthermore? has additional models, namely, sets of the form
3. IU(Y\ 1), foreachl CY.

Indeed, it is easy to check that (Y'\ )’ satisfies all rules o (in the case of the rules — ¢,
we use the fact that every sequeia@mntains an atom or 2’ for somex € X).

We will now show that’Y 39X ¢ is true if and only ifP and( are stable-equivalent relative to
HB(A, B). To this end, we will show thatY 3X ¢ is true if and only ifSEZ. (P) = SE5.(Q).

We recall that sincelt(P) = At(Q) C A°and At(P) N B = At(Q) N B = (), we can use
Lemma 6.11. Thus, if C At(P), (N, M) € SEX.(P) if and only if M is a set of type (1), that
is, M =1TU(Y\I)UXuUX'Uf{a}, forsomel C Y, and eithetN = M or N is a set of type
(2),thatis,N =TU (Y \I)UJU(X \ J),forsomeJ C X suchthatl UJ = .

The same pairgN, M) belong toSE%. (Q) (still under the assumption that C At(P) =
At(Q)). However,SES.(Q) contains also pair&V, M) whereM is a set of type (1)N = TU(Y'\
I) andfor everyJ C X, I U J [~ ¢ (given that the only models @ that are proper supersets
of N and proper subsets dff are models of type (2), that is precisely what is needed tarens
that for everyZ, N c Z ¢ M impliesZ [~ Q™).

Let us assume thatY' 93X ¢ is false. Then, there exists C Y such that for every/ C X,
TUJFEe LetN=1TU((Y\I)andM =1U (Y \I)UXUX'U{a}. From our discussion, it
is clear tha{ N, M) € SEX.(Q) but (N, M) ¢ SES.(P). Thus,SEX.(P) # SEX.(Q).
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Conversely, ifVY'3X ¢ is true, then for every C Y there isJ C X such that/ U J = ¢.
This implies that there are no paif8/, M) € SE%.(Q) of the last kind. Thus, in that case, if
M C At(P)=At(Q), then(N, M) € SE5.(P) if and only if (N, M) € SE%.(Q). By Lemma
6.10,SE5,.(P) = SEL.(Q). O

Combining Theorem 6.12 with Theorem 6.6 yields the follogwiasult.

Corollary 6.13 The problems STABLE. (A, B), STABLE.4(-,B), STABLE.4(A,-) and
STABLE.4(-, -), are I’ -complete.

Next, we consider the problenssABLE,; .(A, B), andSTABLE, 4(A, B). We have the follow-
ing simple result.

Lemma 6.14 Let P and () be programs andi, B subsets ofd¢ such thatd¢(P U Q) N A = 0.
Then, P and () are stable-equivalent with respectt05(A, B) if and only if P and @) have the
same stable models.

Proof. Let R € HB(A, B). SinceAt(P UQ)N A = (), we can apply the splitting theorem [20] to
P U R. It follows that M is a stable model oP U R if and only if M = M’ U M”, whereM’ is a
stable model of” and " is a stable model af/” U R. Similarly, M is a stable model af U R if
and only if M = M’ U M", whereM’ is a stable model af) andM” is a stable model af/” U R.
Thus, the assertion follows. O

We now use this result to determine the lower bounds on theptxity of problems
STABLE, (A, B) andSTABLE, 4(A, B).

Theorem 6.15 The problemsTABLE, (A4, B) andSTABLE,4( A, B) are hard for the clas$IZ.

Proof. To be precise, we have to show that the problemssLE, (A, B) andSTABLE, 4(A, B)
arell}-hard, for every finited, B C At.

It is well known that the problem to decide whether a logicgwean P has a stable model 15} -
complete. We will reduce this problem to the complemerswBLE, .(A, B) (STABLE (A, B),
respectively). That will complete the proof.

Thus, letP be a logic program. Without loss of generality, we can asstinaedt(P) N A =0
(if not, we can rename atoms i, without affecting the existence of stable models). fdte an
atom not inA. and defing) = {f, — f}. Clearly,At(P U Q) N A = (). Moreover,P and@ do
not have the same stable models if and onlk ifias stable models. By Lemma 6.¥4has stable
models if and only ifP and @ are not stable-equivalent relati#é3( A, B¢). Similarly (asB is
immaterial for the stable-equivalence in that cagthas stable models if and only# and( are
not stable-equivalent relativi€3( A, B). O

We now explicitly list all cases, where we are able to give ptateness results (membership
results are from Theorem 6.6).
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Corollary 6.16 The problems STABLE,4(A, B), STABLEg4(-, B), STABLEgsq(A,-) and
STABLEg4(-, ), areII-complete.

Corollary 6.17 The problems STABLE, (A, B), STABLE,.(-, B), STABLE4.(A,-) and
STABLE,,(, -), are[I1{-complete.

Finally, we showlI4-hardness of problensrABLE...(4, -) andSTABLE,..(-, B).
Theorem 6.18 The problemSTABLE,. (4, -) andSTABLE,. (-, B). areIl}’-hard.

Proof. We first show that the problesTABLE, .(A, -) is 14 -hard, for every finited C At. Let
VY dX ¢ be a QBF, where» is a CNF formula ovetX U Y. As in the proof of Theorem 6.12,
without loss of generality we can assume that every claugecontains a literak or -z, for some
x € X, and thatA N (X UY") = 0 (if not, variables inp can be renamed).

Let P(¢) andQ(y) be the programs used in the proof of Theorem 6.12, where weseho
primed variables so that N (X’ UY’) = (. We defineB = At¢(P). We have thatdt(P) C A°
andA¢(P) N B¢ = 0.

We recall that the argument used in the proof of Theorem & XEhow that'yY 3 X ¢ is true if
and only if P(¢) andQ(p) are stable-equivalent with respectii3(A¢, B) does not depend on
the finiteness o3 but only on the fact thaB N At(P) = (). Thus, the same argument shows that
VY3 X is true if and only if () andQ(y) are stable-equivalent with respecti@(A°, B). It
follows thatsTABLE, .(4, -) is [1{-hard.

Next, we show that the problesTABLE, (-, B) is I1{-hard, for every finiteB C At. We
reason as in the proof of Theorem 6.15. That is, we construetlaction from the problem to
decide whether a logic program has no stable models. Spaljfitet P be a logic program.
We defineA = At(P). Clearly, we havedt(P) N A° = (). We recall the argument used in
Theorem 6.15 to show th#&t has stable models if and only# and@ = {f, < f} are not stable-
equivalent with respect té{5(A, B) does not depend on the finiteness/bdhor on B. Thus, it
follows that P has stable models if and only i and@ = {f, < f} are not stable-equivalent
with respect taH{B(A¢, B°) and thell}’ hardness 06 TABLE...(-, B) follows. O

We put the things together using Theorem 6.7 for the coNBE+&ms and Theorem 6.18 for the
[1£-hardness. The matching upper bounds are from Theorem 6.6.

Corollary 6.19 The problemsTABLE..(A, B) is coNP-complete, problemsSTABLE. (-, B),
STABLE,.(A,-) andSTABLE...(-, -), are [I-complete.

7 Discussion

We studied the complexity of deciding relativized hypetiegience of programs under the seman-
tics of stable, supported and supported minimal models. &asied on problemsewm; (v, 3),
where at least one défande equals:, that is, at least one of the alphabets for the context pnoble
determined as the complement of the corresponding setB. As we noted, such problems arise
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o |¢€ o B | SUPP| SUPPMIN | STABLE | STABLE"
d|d coNP| TII¥ Iy coNP
d|c - | coNP|  TI¥ Iy coNP
d|c B || cONP| coNP N0 coNP
clel-orA#Q| - || coNP| IIY Iy coNP
cl|c 0 - | coNP| coNP Iy coNP
cl|c B | coNP| coNP Iy coNP
cl|c A B | coNP| coNP coNP coNP
cld]-orA#£0 coNP| 11§ I coNP
c|d 0 coNP| coNP 1EY coNP

Table 1: Complexity oBEM; . («, 3); all entries are completeness results.

naturally in the context of modular design of logic prograget they have received essentially no
attention so far.

Table 1 summarizes the results (for the sake of completemesdso include the complexity
of direct-direct problems). It shows that the problems ewning supp-equivalence (no normal-
ity restriction), and stable-equivalence for normal pesgs are all coNP-complete (cf. Corollar-
ies 4.3 and 6.8, respectively). The situation is more difiedcsfor suppmin-equivalence and stable-
equivalence (no normality restriction) with some probldéseing coNP- and otheils’’-complete.
For suppmin-equivalence lower complexity requires thdie a part of problem specification, or
that A be a part of problem specification and be sef.tqthe results for direct-direct problems
were known earlier [27], the results for the direct-comp@tproblems are by Corollary 5.11
for the complement-complement problems results are bylfaoydb.17, and for the complement-
direct problems results are by Corollary 5.14). For stagaivalence, the lower complexity only
holds for the complement-complement problem with bdthnd B fixed as part of the problem
specification. (the results for direct-direct (resp., direomplement, complement-complement,
complement-direct) problems are by Corollary 6.16 (reé8{.7, 6.19, 6.13) in this paper). We also
note that the complexity of problems for stable-equivadeiscalways at least that for suppmin-
equivalence.

Our research opens questions worthy of further invesbtigati First, we believe that results
presented here may turn out important for building “ingg@int” programming environments sup-
porting development of logic programs. For instance, a aogner might want to know the effect
of changes she just made to a program (perhaps already gededarlier) that represents a module
of a larger project. One way to formalize that effect is tonkeft as the maximal class of contexts
of the formHB(A’, B') with respect to which the original and the revised versidriih® program
are equivalent (say under the stable-model semantics)sdtsel’ and B’ appearing in the spec-
ification of such a class of contexts will be of the foriri and B¢, for some finite sets! and B.
Finding the appropriate sets and B would provide useful information to the programmer. Our
results on the complexity of the complement-complemerdigearof the hyperequivalence problem
and their proofs may yield insights into the complexity offiimg such sets! and B, and suggest
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algorithms.

Second, there are other versions of hyperequivalence @&t to be investigated. For in-
stance, while stable-equivalence when only parts of moalelssompared (projections on a pre-
specified set of atoms) was studied [9, 24], no similar resarke available for supp- and suppmin-
equivalence. Also the complexity of the corresponding cement-direct, direct-complement and
complement-complement problems for the three semantib&irsetting has yet to be established.
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Appendix

We present here proofs of some technical results we needée paper. We first prove Lemma
5.5. We start with two auxiliary results.

Lemma 7.1 Let P be a program andd, B C At. Lety € X be such thay ¢ At(P)U A. Then
(X,Y) € Mod%.(P)ifand only if (X \ {y},Y \ {y}) € Mod5.(P).

Proof: (=) SinceY € Mod,.(P),Y = PandY \ Tp(Y) C A°. We havey ¢ At(P). Thus,
Y\ {y} £ PandTp(Y) = Tp(¥ \ {y}). SinceY \ {y} €Y, (Y \ {y}) \ Tr(Y \ {y}) C A°. It
follows thatY \ {y} € Mod 4-(P). Thus, the condition (1) fofX \ {y},Y \ {y}) € Mod".(P)
holds. The condition (2) fofX \ {y},Y \ {y}) € Mod5.(P) is evident.

Let Z C Y \ {y} be such thatZ|scp = (Y \ {y})|acun. LetZ' = Z U {y}. We have
y € Xandsoy € Y. Hence,Z' C Y. Sincey ¢ A,y € A°. Thus,Z'|scup = Y|acup. It
follows thatZ’ [~ P and, consequently/ [~ P (asy ¢ At(P)). Thus, the condition (3) for
(X \ {y}, Y\ {y}) € Mod%.(P) holds.

Next, letZ C Y \ {y} be suchthaZ|z = (X \ {y})|p andZ|4c 2 (X \ {y})|ac. As before,
letZ' = Z U {y}. Sincey € X andy € Y (see above)y’ C Y, Z'|p = X|pandZ’'|4c D X|aec.
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Thus, 7’ £ P. Sincey ¢ At(P), Z [~ P and the condition (4) fo(X \ {y},Y \ {y}) €
Mod®.(P) holds.

Finally, let (X \ {y})|s = (Y \ {y})|s. Clearly, it follows thatX|z = Y|p. Thus,Y \
Tp(Y) C X. Sincey ¢ At(P), Tp(Y) = Tp(Y \ {y}). Itfollowsthat(Y \ {y})\Tp(Y \ {y}) C
X\ {y}. Consequently, the condition (5) foK \ {y},Y \ {y}) € Mod".(P) is satisfied, as well.

(«<) By the assumption(X \ {y},Y \ {y}) € Mod%5.(P) and, consequentlyy \ {y} &
Mod 4c(P). Thus,Y \ {y} is a model of P. Sincey ¢ At(P), Y is a model ofP. We also
have(Y \ {y}) \ Tp(Y \ {y}) C A°. Sincey ¢ At(P), Tp(Y \ {y}) = Tp(Y). Thus, ag € A",
Y\ Tp(Y) C A°. Thatis, the condition (1) fofX,Y) € Mod%.(P) holds. The condition (2)
follows fromy € A°andX \ {y} C (Y \ {y})|acus-

Let Z C Y be such thal|scup = Y|acup. It follows thaty € Z (we recall thaty € X C Y
andy € A°). LetZ' = Z\ {y}. We haveZ’ C Y \ {y} andZ’|4eup = (Y \ {y})|acun. Thus,
7' ~ P and, consequently; [~ P. It follows that the condition (3) fofX,Y) € Mod%.(P)
holds.

Let Z C Y be such tha/|z = X|p andZ|sc O X|4c. Sincey € X andy € A%,y € Z.
LetZ' = Z \ {y}. Itfollows thatZ’ C Y \ {y}, Z'|s = (X \ {y})|s, andZ’|4c D (X \ {y})] ae.
Hence,Z’' [ P and so,Z [~ P. In other words, the condition (4) f¢iX,Y) € Mod%.(P), holds.

Finally, let X|z = Y[s. Clearly, (X\{y})ls = (¥ \{y})lz and so,(¥'\ {y}) \
Tp(Y\{y}) € X\ {y}. SinceTp(Y \{y}) = Tp(Y), we obtainy \ Tp(Y) C X. Thus,
(5) for (X,Y) € Mod%.(P), holds. O

Lemma 7.2 Let P be a programA, B C At. If X|p C Y|g,y € (Y \ X) \ (At(P)U A), and
Y\ {y})|s # X|p, then(X,Y) € Mod’.(P)ifand only if (X, Y \ {y}) € Mod’.(P).

Proof: () The arguments for the conditions (1), (2), and (3)(@r, Y \ {y}) € Mod%.(P) are
essentially the same as in Lemma 7.1 (although the arguroetiié condition (2) requires also
the assumption that ¢ X).

Next, letZ C Y \ {y} be such that/|s = X|g andZ|4c O X|4. ThenZ C Y and so,
Z i~ P. Thus, the condition (4) fotX, Y \ {y}) € Mod%.(P) holds.

Finally, (Y \ {y})|s # X|z. Thus, the condition (5) fofX, Y \ {y}) € Mod%.(P) is trivially
true.

(<) As above, the arguments for the conditions (1), (2), andqB}.X,Y) € Mod%.(P) are the
same as in Lemma 7.1.

Let Z C Y be such thatZ|z = X|gp andZ|4c 2 X|ac. Since(Y \{y})|s # X|p, Z #
Y\ {y}. Thus,Z c Y \ {y} and so,Z [~ P. That s, the condition (4) fofX,Y) € Mod%.(P),
holds. Finally, sinceX |z C Y|, the condition (5) fo X,Y) € Mod%.(P), holds, aswell. O

We are now ready to prove Lemma 5.5.

Lemmab5.5. Let P, ) be programs and{, B C At.

1. If (X,Y) € Mod5.(P)\ Mod%.(Q) then there ig X", Y") € Mod5.(P)\ Mod%.(Q) such
thatY’ C A¢(PUQ) U A.
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2. If (X,Y) € Mod5.(P)andTp(Y)|p # To(Y)|, then there i X", Y") € Mod%.(P) such
thatTp(Y/)‘B 7A TQ(Y’)‘B andY’ - At(P U Q) U A.

Proof. (1) Let(X,Y) € Mod%5.(P)\ Mod%.(Q) and lety € X be such thay ¢ At(P U Q) U A.
Then, by Lemma 7.1,X \ {y}, Y \ {y}) € Mod5.(P)\ Mod%.(Q). By repeating this process,
we arrive at a paitX”,Y"”) € Mod5.(P)\ Mod%.(Q) such thatX” C At(P UQ) U A.

If X"|p=Y"|g, thenY”"\Tp(Y") C X". Thus,Y” C Tp(Y")UX" C At(PUQ)UA. Thus,
let us consider the other possibility th&t'|; C Y|z (indeed, as\” C Y"|4.up C Y”, there are
no other possibilities). Lej € (Y \ X”) \ (4¢{(P U Q) U A) be such thatY” \ {y})|s # X"|5.

By Lemma 7.2(X" . Y"\ {y}) € Mod%.(P)\ Mod%.(Q). By repeating this process, we arrive at
a pair(X’,Y’) € Mod%.(P)\ Mod%.(Q) such that for every € (Y'\ X’)\ (At(PUQ) U A),
(Y'\{y})|s = X'|p. SinceX’ = X", X' C At(PUQ) U A.

We also note that for every¢ X', (Y'\{y}) 2 X’ (asY’ 2 X")and so(Y'\{y})|ac 2 X'|4c.
We will now show that” C At(PUQ)UA. Tothis end, letus assume that therg is Y’ such that
y ¢ At(PUQ)UA. SinceX’ C At(PUQ)UA,y ¢ X'. Thus,y € (Y'\ X')\ (At(PUQ)UA).

It follows that (Y’ \ {y})|z = X'|p and (Y' \ {y})|ac 2 X'|4c. SinceY’\ {y} C Y’ and
(X')Y") € Mod5.(P), Y'\ {y} ¥~ P. On the other handy” = P and, sincey ¢ At(P),
Y\ {y} = P, a contradiction.

(2) Itis easy to see that if we apply the construction desdrib (1) to(X, Y') we obtain( X', Y’)
suchthat” C At(PUQ)UAandTr(Y')|s # To(Y')|s. Indeed, in every step of the construction,
we eliminate an elementsuch thaty ¢ A¢(P U @), which has no effect on the values’Bf and
To. O

Lemma 5.7. Let P,Q be normal programs an C At. If Mod%,(P) # Mod%,(Q), then there
isY C At(P U Q@) such thaty is a model of exactly one @t and @, or there isa € Y such that
(Y \ {a},Y) belongs to exactly one dfod”,(P) and Mod”,(Q).

Proof. Let us assume thdt and@ have the same models (otherwise, thefg iS A¢(PUQ) that
is a model of exactly one a? and(, and the assertion follows). Without loss of generality &g ¢
assume that there (X, Y) € Mod%,(P)\ Mod%,(Q). Moreover, by Lemma 5.5, we can assume
thatY C At(P U Q) (recall At® = (). It follows that(X,Y") satisfies the conditions (1)-(5) for
(X,Y) € Mod%,(P). SinceP and@ have the same modelsy, Y) satisfies the conditions (1)-(4)
for (X,Y) € Mod%,(Q). Hence,(X,Y) violates the condition (5) fofX,Y) € Mod%,(Q), that
is, X|p =Y|gandY \ To(Y) € X hold. In particular, there is € (Y \ Tp(Y)) \ X. We will
show that(Y \ {a},Y) € Mod5,(P)and(Y \ {a},Y) ¢ Mod%,(Q).

Since(X,Y) € Mod%,(P), Y is a model ofP and s0,Y € Mod 4, (P). Next, obviously,
Y \ {a} C Y. Thus, the conditions (1) and (2) f6Y"\ {a},Y) € Mod”,(P) hold. The condition
(3) is trivially true.

Further, letZ C Y be suchthaZ O Y \ {a}. ThenZ = Y \ {a}. We haveY|z = X3,
a€Y,anda ¢ X. Thus,a ¢ B. Itfollows that(Y \ {a})|p = X|pandX C Y \ {a}. Since
Y\ {a} C Y and(X,Y) € Mod%,(P),Y \ {a} £ P, thatis,Z [~ P. Thus, the condition (4) for
(Y \ {a},Y) € Mod%,(P) holds.
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Sincea ¢ B, (Y \ {a})|p = Y|s. Thus, we also have to verify the condition (5). We
haveY \ Tp(Y) C X (we recall thatY'|z = X|p) and so,a ¢ Y \ Tp(Y). Consequently,
Y\Tp(Y) C Y\ {a}. Hence, the condition (5) holds afd \ {a},Y) € Mod%,(P). On the other
hand,a € Y\ T(Y) anda ¢ Y \ {a}. Thus, the condition (5) fofY" \ {a},Y) € Mod’;,(Q) does
not hold and so(Y \ {a},Y) ¢ Mod%,(Q). O

Next, we present proofs of the technical results neededdtid®es: Lemmas 6.5 and 6.9. First,
we establish some auxiliary results.

Lemma 7.3 Let P be a programA, B, X,Y C At andy € X \ At(P). Then(X,Y) € SE5(P)
if and only if (X \ {y},Y \ {y}) € SEL(P).

Proof. By Lemma 6.4y € Y andy € A. We will show that each of the conditions (1) - (5) for
(X,Y) € SEE(P) is equivalent to its counterpart foX \ {y},Y \ {y}) € SEE(P).

The case of the condition (1) is clear. Sincg At(P),Y = PifandonlyifY \ {y} &= P.

It is also evident thatX = Y if and only if X \ {y} = Y \ {y}, X C Y|up if and only if
X\ {y} € (Y \{y})|aus, andX |4 C Y|4 ifand only if (X \ {y})|a € (Y \ {y})|a. Thus, the
corresponding conditions (2) are also equivalent.

Let us assume the condition (3) faK,Y) € SE5(P). LetZ C Y\ {y} be such thaZ|, =
Y\ {y})|a. LetZ' = Z U {y}. ThenZ' C Y andZ’'|4 = Y|4 (asy € Y). By the condition
(3) for (X,Y) € SEL(P), Z' - PY. Sincey ¢ At(P), Z = PY\¥}, and so, the condition
(3) for (X \ {y},Y \ {y}) € SEZ(P) follows. Conversely, let us assume the condition (3) for
(X \{y}, Y\ {y}) € SE5(P)and letZ C Y be such thaZ|, = Y|4. It follows thaty € Z.
We setZ’ = Z \ {y}. Clearly,Z' c Y\ {y}andZ'|4 = (Y \ {y})|a. Thus,Z’ [ PY\¥}, As
y ¢ At(P), Z £ PY and, so, the condition (3) fqrX, Y) € SEZ(P) follows.

Next, let us assume the condition (4) foX,Y) € SEX(P). LetZ c Y \ {y} be such that
Zl5 < (X \{y}ls andZ]4 2 (X \ {y})]a, or Z|s € (X \ {5}z andZ|s > (X \ {y})la. Let
7' = ZU{y}. We haveZ’ C Y. Moreover, itis evidentthat’|z C X|gandZ'|4 D X|4, or
Z'lp C X|pandZ'|4 D X|a. Thus,Z' £ PY and so,Z [= PY\t}. Similarly, let the condition
(4) for (X \ {y},Y \ {y}) € SE5(P) hold. LetZ C Y be suchthaZ|z C X|gandZ|, D X|4,
orZ|lp C X|gpandZ|4 D X|a. Sincey € X andy € A,y € Z. We definez’ = Z\ {y} and note
thatZ’ C Y \ {y}. Moreover,ag € X andy € Y, Z'|p C (X \ {y})|zandZ’|4 O (X \ {y})|a,
orZ'|p € (X \ {y})|zandZ’|4 > (X \ {y})|a. Thus,Z’ = PY\¥} and soZ [~ PY.

Finally, a similar argument works also for the condition (B¢t the condition (5) fof X, Y") €
SEE(P) hold. Thus, there i C Y such thatX| 4,5 = Z|aup andZ = PY. LetZ' = Z \ {y}.
Sincey € X andy € A,y € Z. Thus,Z’ C Y \ {y} and(X \ {y})|aus = Z'|aus. Moreover,
sinceZ |= PY, Z' = PY\¥}, Conversely, let the condition (5) fox \ {y},Y \ {y}) € SE5(P)
hold. Then, there i C Y\ {y} such thatZ|, 5 = (X \ {y})|aup andZ E P}, Let
Z'=ZU{y}. ThenZ' C Y, Z'|aup = X|aupandZ’ = PY. O

Lemma 7.4 Let P be aprogramA, B,Y C At, X C At(P)andy € Y\ At(P). If Y\ At(P)| >
2, then(X,Y) € SES(P)ifand only if (X, Y \ {y}) € SEZ(P).
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Proof. Since|Y \ At(P)| > 2, there arey’,y” € Y \ At(P) such thaty,y’,y” are all distinct.
By Lemma 6.4y,y',y" € A. As before, we will show that each of the conditions (1) - &) f
(X,Y) € SEX(P) is equivalent to its counterpart foX, Y \ {y}) € SE5(P).

The case of the condition (1) is evident. By our assumptioegherX =Y norX =Y \ {y}.
Moreover,X C Y| upifandonlyif X C (Y \ {y})|aus andX |4 C Y|4 ifand only if X|4 C
(Y \ {y})|a (sincey,y’ € Y andy,y’ € A). Thus, the corresponding versions of the condition
(2) are also equivalent. The case of the condition (3) carrdpged in the same way as it was in
Lemma 7.3.

Let us assume the condition (4) faK,Y") € SE5(P). LetZ c Y \ {y} be such thaZ|z C
X|pandZ|s 2 X|a, 0rZ|p € X|pandZ|s D X|4. Clearly,Z C Y. Consequently, by the
condition (4) for(X,Y) € SE5(P), Z [~ PY and so,Z [~ PY\¥}. Thus the condition (4) for
(X,Y \ {y}) € SE(P) holds.

Conversely, let the condition (4) f@rX, Y \ {y}) € SEL(P) hold. LetZ C Y be such that
Zlp C X|pandZ|4 D X|a, 0r Z|p C X|pandZ|4 D X|a. If Z C Y\ {y}, thenZ [ P \u}
(as the condition (4) fotX,Y \ {y}) € SES(P) holds). Thus,Z [~ PY. Otherwise, i.e. for
Z =Y \{y}, wehavey,y" € Z. LetZ = Z\ {y,y'}. Itfollows thatZ’ Cc Y \ {y} and
Z'l4 D X|a (theformer,ag’ € Y \ {y}\ Z'; the later, ag” € Z'| 4 \ X|4). Thus,Z' C Y\ {y},
Z'|s C X|pandZ'|y D X|4. ConsequentlyZ’ = PY\¥} (again, as the condition (4) for
(X,Y \ {y}) € SEE(P) holds). Thus, also in that casg,~ P . It follows that the condition (4)
for (X,Y) € SEZ(P) holds.

Finally, for the condition (5) we reason as follows. Let tloadition (5) for(X,Y) € SES(P)
hold. Thus, there i€ C Y such thatX |, 5 = Z|4up andZ | PY. Clearly,y ¢ Z (asy ¢ X
andy € A). Thus,Z C Y\ {y} and soZ = PY follows. Conversely, let the condition (5)
for (X, Y \ {y}) € SE5(P) hold. Then, there i/ C Y \ {y} such thatZ| s = X|up and
Z = PY. Clearly, we also hav& C Y and so, the condition (5) fqtX,Y) € SEZ(P) follows.
O

Finally, we note that the membership of a p@¥, ), whereX C At(P), in SE%.(P) does
not depend on specific elementstin\ A¢(P) but only on their number.

Lemma 7.5 Let P be a program,A, B C At, X,Y C At(P), andY")Y" C A\ At(P). If
Y| = |Y”|then(X,Y UY’) € SE(P)ifand only if (X, Y UY") € SEE(P).

Proof. It is clear that the corresponding conditions (1) - (5) fof, Y U Y') € SEZ(P) and
(X, Y UY") € SE5(P), respectively are equivalent to each other. O

The three lemmas presented allow us to prove Lemma 6.5.

Lemma 6.5. Let P, Q be programs andi, B C At. If (X,Y) € SEZ(P)\ SE5(Q), then there
are setsX’, Y’ C At(P U Q), such that at least one of the following conditions holds:

i. (X', Y") e SEE(P)\ SE(Q)
i. A\At(PUQ) # () andforevery, z € A\ At(PUQ), (X', Y'U{y, 2}) € SE5(P)\SE5(Q).
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Proof. By applying repeatedly Lemma 7.3 and then Lemma 7.4, we casteat setsX’ C
At(PU@)andY” C AU At(P U Q) (we recall tha” C AU At(P U Q)) such that

a. (X', Y") e SEE(P)\ SE5(Q), and
b. [Y"\ At(PUQ)| < 2.

If Y C At(PUQ), (1) follows (withY” = Y"). Otherwise, (2) follows (by Lemmas 7.4 and 7.5).
O

Next we present a proof of Lemma 6.9

Lemma 6.9. Let P be a program and4, B C At. If At(P) C A and A¢(P)N B = (), then
(X,Y) € SE5(P) if and only if there areX’, Y’ C At(P) andW C A\ At(P) such that one of
the following conditions holds:

i X=X'UW,Y =Y'UW,and(X",Y’") € SE5(P)
i. X =X UW, (X' X") e SE5(P)andY = X' UW U {y}, for somey € A\ At(P)

i. X=X UW, (X', X') e SES(P)andY = X’UW U D, forsomeD C B (A\ At(P))
such that? N D = () and|D| > 2.

Proof. (<) If (i) holds, then( X, Y) € SE%(P) follows from Lemma 7.3. Thus, let us assume that
(ii) or (iii) holds. ThenX’ = P and so,.X' U {y} UW = P (respectivelyX' UW U D [ P).
Moreover,X C Y. Thus, sinc&” C A, the condition (2) for X, Y) € SE%(P) holds. Next, it
is evident that the condition (3) is vacuously true. The ¢l (4) is also vacuously true. To see
it, let us consider” C Y such thatZ|p C X|pandZ|4 O X|a,0rZ|p C X|gandZ|s D X|a.
SinceX CY C A, X C Z. Thus, X | C Z|p, and soZ|p C X|p is impossible. Consequently,
Z|p C X|pandZ|4 D X|a. The latter impliesX C Z. We also have&Z C Y. Thus,|Y \ X| > 2,
contradicting (ii). It follows that (iii) holds. Consequiéyy X' UW C Z ¢ X' U W U D. Since
Z|p C X|p, D = 0, a contradiction.

Finally, let Z be a set verifying the condition (5) f¢x’, X') € SE%(P) (which holds under
either (ii) or (iii)). Clearly, the seZ UV demonstrates that the condition (5) fof, Y) € SES(P)
holds.

(=)LetWW = XN (A\ At(P)). We defineX’' = X \ W andY’ =Y \ . Clearly, X’ C At(P).
Moreover, by Lemma 7.3,X’,Y") € SE5(P). If Y’ C At(P), then (i) follows.

Thus, let us assume that \ At¢(P) # (. Next, let us assume thaf’ C Y’ N A¢(P) and let
Z =Y'NAt(P). Clearly,Z CY', Z|p = 0 and X |4 = X C Z = Z|4. By the condition (4) for
(X',Y") € SE(P), Z |~ PY'. On the other hand, by the condition (1) foX’,Y"’) € SE5(P),
Y’ = P. Consequentlyy”’ = PY". It follows thatZ = PY’, a contradiction.

It follows that X' = Y’ N At¢(P). If there arey’,y” € Y’ \ At¢(P) such thaty’ # y” and
y' ¢ B, then let us defin&Z = X’ U {y/}. Itis easy to verify thatZ contradicts the condition
(4). If |[Y"\ At(P)| = 1, then (ii) follows (with the only element df’ \ A¢(P) asy). Otherwise,
YY"\ At(P)| > 2andY”’\ At(P) C B. In this case, (iii) follows (withD = Y” \ At(P)). 0
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