

Praktikum 1

WS 94/95

Projekt:

Optimieren von Schedules mit Genetischen Algorithmen

ausgeführt am

Institut für Informationssysteme

Abteilung für Datenbanken und Expertensysteme

von Karl Schott

Mat.Nr. 9025130

Betreuer:

Wolfgang Slany

CD Labor für Experten System

Wien, 20. Februar 1995

�
Inhaltsverzeichnis� VERZEICHNIS \o "1-3" �

1 Overview	� GEHEZU _Toc322911353 � SEITENREF _Toc322911353 �4��

2 Task	� GEHEZU _Toc322911354 � SEITENREF _Toc322911354 �4��

3 Embedding	� GEHEZU _Toc322911355 � SEITENREF _Toc322911355 �4��

4 Genetic Algorithm	� GEHEZU _Toc322911356 � SEITENREF _Toc322911356 �4��

4.1 History	� GEHEZU _Toc322911357 � SEITENREF _Toc322911357 �4��

4.2 Methods	� GEHEZU _Toc322911358 � SEITENREF _Toc322911358 �4��

4.2.1 Representation	� GEHEZU _Toc322911359 � SEITENREF _Toc322911359 �4��

4.2.2 Initialization	� GEHEZU _Toc322911360 � SEITENREF _Toc322911360 �5��

4.2.3 Evaluation Function	� GEHEZU _Toc322911361 � SEITENREF _Toc322911361 �5��

4.2.4 Genetic Operators	� GEHEZU _Toc322911362 � SEITENREF _Toc322911362 �5��

4.3 Strength and Weaknesses	� GEHEZU _Toc322911363 � SEITENREF _Toc322911363 �5��

5 Genetic Algorithm and Scheduling	� GEHEZU _Toc322911364 � SEITENREF _Toc322911364 �5��

5.1 Breeding Strategies	� GEHEZU _Toc322911365 � SEITENREF _Toc322911365 �5��

5.1.1 Best n percent survive	� GEHEZU _Toc322911366 � SEITENREF _Toc322911366 �5��

5.1.2 Best n percent descendants survive	� GEHEZU _Toc322911367 � SEITENREF _Toc322911367 �5��

5.1.3 Proportional fitness survival	� GEHEZU _Toc322911368 � SEITENREF _Toc322911368 �5��

5.1.4 Elitism	� GEHEZU _Toc322911369 � SEITENREF _Toc322911369 �5��

5.2 Mutation	� GEHEZU _Toc322911370 � SEITENREF _Toc322911370 �5��

5.2.1 Position-based mutation	� GEHEZU _Toc322911371 � SEITENREF _Toc322911371 �5��

5.2.2 Order-based mutation	� GEHEZU _Toc322911372 � SEITENREF _Toc322911372 �6��

5.3 Crossover	� GEHEZU _Toc322911373 � SEITENREF _Toc322911373 �6��

5.3.1 Position-based crossover	� GEHEZU _Toc322911374 � SEITENREF _Toc322911374 �6��

5.3.2 Order-based crossover	� GEHEZU _Toc322911375 � SEITENREF _Toc322911375 �6��

6 GENFLIP++	� GEHEZU _Toc322911376 � SEITENREF _Toc322911376 �6��

6.1 Interface	� GEHEZU _Toc322911377 � SEITENREF _Toc322911377 �6��

6.2 Constants	� GEHEZU _Toc322911378 � SEITENREF _Toc322911378 �7��

6.3 Methods	� GEHEZU _Toc322911379 � SEITENREF _Toc322911379 �7��

7 GENFLIP++-The User Interface	� GEHEZU _Toc322911380 � SEITENREF _Toc322911380 �7��

7.1 Strategy	� GEHEZU _Toc322911381 � SEITENREF _Toc322911381 �7��

7.2 Crossover	� GEHEZU _Toc322911382 � SEITENREF _Toc322911382 �7��

7.3 Mutation	� GEHEZU _Toc322911383 � SEITENREF _Toc322911383 �7��

7.4 Repair-Steps	� GEHEZU _Toc322911384 � SEITENREF _Toc322911384 �7��

8 References	� GEHEZU _Toc322911385 � SEITENREF _Toc322911385 �8��

�

�

Overview

This document describes a genetic algorithm that has been implemented to optimize a given schedule within the FLIP++-Environment. The FLIP++ project intends to solve scheduling-problems by the mean of Fuzzy-Logic. Fuzzy-Logic is used to describe the constraints must be taken into account to create a valid schedule and to rate the schedule.

Task

The CD-Labor for Experten Systeme has and library under development which is able to solve scheduling-problems by means of Fuzzy-Logic.

One part of this library is the OPTIFLIP-modul which has the task to make chances in the scheduling in such a way that the result is an optimized schedule that does not violate given constraints.

Several methods will be implemented by the CD-Labor. The implementation of a genetic algorithm becomes interesting to find out whether this method or specialized search-methods are more sophisticated so solve scheduling problems.

One Part of DOMFLIP are the optimization algorithms. The genetic algorithm is implemented as an object that is linked to the domflip-object.

Embedding

The genetic algorithm must be included (#include "genalg.h") in the domflip.h-File.

In domlib.h you can already find the enumeration-type optmethode that has an "GeneticAlg" value. To set the Genetic Algorithm as the default optimization method you have to call the set_opt_meth(GeneticAlg) of the Domain-object.

Genetic Algorithm

History

The field of genetic algorithms has been founded by J�ohn Holland. His publication of Adaptation in Natural and Artificial Systems (Holland 1975) described the ability of simple representations (bit strings) to encode complicated structures and simple transformations which has enough power to improve such structures. Holland showed that with the proper control structure, rapid improvements of bit strings could occur under certain transformations, so that a population of bit strings could be made to evolve as a population of animals do.

An important formal result was that even in large and complicated search spaces, genetic algorithms would tend to converge on solutions that were globally optimal or nearly so.

Methods

A genetic algorithm to solve a problem must have 5 components:

a chromosomal representation of solutions to the problem

a way to create an initial population of solutions

an evaluation function that plays the role of the environment, rating solutions in term of their "fitness"

genetic operators that alter the composition of children during reproduction

values of the parameters that the genetic algorithm uses (population size, probabilities of applying genetic operators, etc.)

Representation

In Holland's work chromosomes are bit strings. Some researchers have explored the uses of other representations, often in connection with industrial applications of genetic algorithms. Examples of other representations include embedded lists (for scheduling problems), variable-element lists (for semiconductor layout).

Initialization

Initialization routines vary. Moving from a randomly created population to a well-adapted population is a good test of the algorithm, since the critical features of the final solution will have been produced by the search and recombination mechanism of the algorithm, rather than the initialization procedure.

Evaluation Function

There are a great number of evaluation functions that enhance or hinder a genetic algorithm's performance. An important question to be considered in designing an evaluation function is the implementation of constraints on solutions. Constraints that cannot be violated can be implemented by imposing great penalties on individuals that violate them.

Genetic Operators

Genetic operators for bit string representations have been extensively studied, while operators for other representation types have not. A good part of the engineering task at present in applying genetic algorithms to industrial problems lies in choosing a chromosomal representation of solutions and s set of genetic operators.

Strength and Weaknesses

Genetic algorithms promise to be a reusable, easy to implement and fast search method for vast search-spaces. No doubt that this is true, the performance and results of genetic algorithms depend very strong on the applied genetic operators and the evaluation function.

As there is no theory describing the right operators for a specific problem, designed a good genetic algorithm is some sort of black magic.

Genetic Algorithm and Scheduling

Breeding Strategies

Best n percent survive

This breeding strategy assumes that the best n percent of all strings survive. This means that parents and offspring are seen as one set.

Best n percent descendants survive

This strategy is slightly different from "best n percent survive" but this difference has a great impact of the overall population. Each step the GA does all parents die and just the best n percent of the offspring survives. This strategy comes close to the strategy nature uses but has the disadvantage that good solutions can be forgotten.

Proportional fitness survival

This strategy assumes that strong (respectively good) individuals produce more offspring than less so good individuals. Therefore the number of children is proportional to the fitness the parents have and the possibility to die is the same for the hole population.

Elitism

This strategy is quite non-biological but produces good results in the case of computers. It assumes that the best individual survives no matter whether it is from the parent population or a child. Further the best n percent of descendants survive. Should it be the case that the fittest individual of the new generation is worst than the unfittest individual of the parents generation, so the worst individual of the new generation will become replaced by the best individual of the parent generation.

Mutation

Position-based mutation

The idea of the position-based mutation is to swap to genes in the string by random.

predecessor:		A B C D E F	swap A and F

			* *

successor:		F B C D E A

The position-based mutation can be written in pseudo-code as:

pos-based()

	pos1 is rand()

	pos2 is rand()

	(...,xpos2,.....,xpos1,....) is (...,xpos1,....,xpos2,....)

Order-based mutation

The idea of the order-based mutation is to push one randomly selected gene in front of another randomly select gen.

predecessor:		A B C D E F	push F in front of A

			*1 *2

successor:		F A B C D E

The order-based mutation can be written in pseudo-code like this:

ord-based()

	pos1 is rand()

	pos2 is rand()

	(...,xpos1,.....,xpos2,...) is (...,xpos2,xpos1,...)

Crossover

The idea of the crossover is that several characteristics of a number of elements are combined into a new string. This can be described for biological systems with the cutting of parent strings into several pieces and rearranging them into a new string by making a selection over the pieces.

This model can not be easily transformed for scheduling-problems as a gene in a schedule has to describe a specific job. Just cutting the parent strings and rearranging them could cause a duplication of certain jobs.

Position-based crossover

The idea of the position-based crossover is to shift the a gene in the position it can be found at the other parent.

parents:				offspring:

A B C D E F G			A G C D E F B		shift B in front of G

* *

G F E D C B A			G A E D C B F		shift F in front of A

Order-based crossover

The idea behind the order-based crossover is to swap the genes in the order found at the other parent.

parents				offspring:

A B C D E F G			A G C D E F B		swap B with G

* *

G F E D C B A			G A E D C B F		swap F with A

GENFLIP++

Interface

The interface of the genalg-object is implemented within the genalg.h-file.

The following public methods are accessible:

set_crossover to define the crossover strategy the genetic algorithm will use. The default value is the "position-based crossover".

set_mutation to define the mutation strategy the genetic algorithm will use. The default value is the "position-based mutation".

set_strategie to define the survival-strategy the genetic algorithm will use. The default value is the "best n percent survive strategy".

set_percent_survivers to define how many individuals will survive. The meaning of the value is connected with the survival-strategy.

set_max_strings_number to define how many adults are allowed at one time.

set_max_childs_number to define how many child's are allowed at one time.

set_max_init_mixture to define the maximum number of mutations that will be applied to the init-strings.

set_repair(true/false) to define whether the repair-steps given by DOMFLIP will be applied or not.

set_string to copy a schedule into the genetic algorithm directly (pointer-reference).

set_string_copy to copy a schedule into the genetic algorithm (a new instance within the genetic algorithm will be created).

init_start_strings to initialize the genetic algorithm. Always call this routine before one of the following routines.

one_step evaluates one genetic-step.

several_steps evaluates the given number of genetic-steps.

go_to_fitness evaluates a maximum number of genetic-steps (zero means infinity) and at the specified fitness.

get_string_with_highest_fitness returns the schedule with the highest fitness directly (pointer reference).

get_string_with_highest_fitness_copy returns the schedule with the highest fitness by creating a new instance.

Constants

The following constants are defined within the genalg.h-File.

Kinds of mutations:

POSITION_BASED_MUTATION

ORDER_BASED_MUTATION

Kinds of crossover:

POSITION_BASED_CROSSOVER

ORDER_BASED_CROSSOVER

Kinds of survival strategies:

BEST_N_PERCENT_SURVIVE

BEST_N_PERCENT_DESCENDANTS_SURVIVE

Methods

The implementation of the genetic algorithm uses two double linked lists. One (called actual_generation) holds the parent-schedules and the schedules that survived a genetic algorithm step. The other (called child's) holds the descendants of the parent-schedules after crossover and mutation.

An entry will be inserted in both listed sorted by the fitness to allow an easy implementation of the survival strategies.

GENFLIP++-The User Interface

Strategy

To select a strategy all to the GA known strategies are listed in an "Listbox". You can only select one Strategy at one time.

One part of the strategy is to determine the maximum number of individual and children for one step of the GA. Be careful in setting these values, as you can produce an infinity amount of individuals which will lead the program to stop when no more memory is available.

Crossover

To select the crossover all by the GA supported crossover-methods are listed in an "Listbox". You can only select one crossover-method at one time.

Mutation

The select the mutations that will by applied to our children all supported crossover-methods are listed in an "Listbox". Here you are allowed to make a multiple-selection.

Repair-Steps

To define that the repair-steps will be applied to a new element, a toggle-button is provided to switch this feature on and off.

�
�

References

Wolfgang Slany, "Fuzzy Scheduling"; CD-Technical Report 94/66

Mario Girsch, "Optimierung von Schedules mit Genetischen Algorithmen und Iterativer Vertiefung"

John Holland, "Adaptation in Natural and Artificial Systems"; (Holland 1975)

Lawrence Davis and Martha Steenstrup, "Genetic Algorithms and Simulated Annealing"

David E. Glover, "Solving a Comples Keyboard Configuration Problem Through Generalized Adaptive Search"

Grefenstette, "Incorporating Problems Specific Knowledge into Genetic Algorithms"

�

Optimieren von Schedules mit Genetischen Algorithmen	Schott Karl, 9025130

