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Knowledge Engineering in Software Product Lines

Michael Schlick1 and Andreas Hein2

Abstract. A software product-line is a collection of products
sharing a common set of features that address the specific needs
of a given business area [1]. The PRAISE project [2], partly
funded by the European Commission under ESPRIT contract
28651 and pursued by Thomson-CSF/LCR (France), Robert
Bosch GmbH (Germany), and the European Software Institute
(Spain), has investigated product-line realisation and its
assessment in industrial settings. A part of the project was
dedicated to the validation and consolidation of proposed
product-line technologies in real-scale industrial experiments.
This paper presents an extract of the experimental results found
by Bosch. The Bosch experiment has been located in the Car
Periphery Supervision (CPS) domain. The focus during analysis
was on feasibility of variability modelling with FODA [3]. The
experiment has shown that the FODA model does not provide
the necessary expressiveness to represent the different types of
crosslinks that are obligatory to describe the domain. Therefore
an extension was made to overcome this drawback. Moreover, it
became clear that a lot of issues concerning the configuration of
FODA models are far from being applicable. Here a solid
theoretical foundation is needed first. This paper presents some
basic findings.

1 INTRODUCTION
During the last decade, product-line architectures have become
increasingly important for companies that want to capitalise on
their domain expertise by systematic reuse on a large scale. They
divide software development into two distinct life cycles, one for
domain and the other for application engineering [4]. The
purpose of domain engineering is to model the commonality and
variability between its members. Reusable assets are produced
by domain engineering and then specialised during application
engineering to derive final products.
Requirements traceability has been recognised as being essential
to reuse. Application engineering profits from traceability
because the engineers understand why a system was built the
way it was, and because they can better assess the impact of
design modifications. Traceability is even more important for
domain engineering where many decisions must be understood
to be able to later derive applications from a common
architecture and build components for reuse.
The ESPRIT project PRAISE [2] addresses product-line
engineering with a special focus on validation of methodological
support for domain engineering. Commonality in a domain is
represented by requirements, whereas variability must be treated
separately. FODA [3] explicitly addresses variability modelling
and enables developers to see where variations occur and which
decisions have to be made to create a special product. But
existing FODA descriptions are not adequate for use in an

industrial environment. Within PRAISE, two real-scale
experiments have been performed to validate and consolidate
product-line methodologies. One focus of the Bosch experiment
has been on feasibility and validation of variability modelling as
introduced by FODA. It has shown that the existing concepts are
insuff icient for applying them to real-world engineering tasks.
This paper describes the necessary feature model extensions as
well as the demands on tools that are to support the feature
model configuration process.
The Bosch experiment has been settled in the Car Periphery
Supervision (CPS) domain. Actually several business units in the
automotive equipment sector produce and develop applications
that extensively use information about objects located in the
car’s periphery. A number of sensors detect obstacles and
provide the data needed for further evaluation. Depending on the
required measurements, different sensor technologies, namely
radar or ultrasonic sensors, can be used. Other types of sensor
data are not included in the domain definition at present,
although they might be of interest to the domain in the future.
Applications that supervise the car periphery offer services such
as Backing Aid, Blind Spot Detection, Pre-Crash Sensing and
Adaptive Cruise Control.
Today these applications are built as separate systems with the
consequence that each one needs its own set of sensors,
controller hardware and, last but not least, software architecture
and basic sensor-control services.
Sensor applications overlap in terms of their requirements on
object location information. Due to the fact that only a restricted
number of sensors can be positioned on the vehicle, e. g. in the
bumper, shared usage of sensor signals will  be inevitable in the
near future. Moreover, a reduction of the number of sensors
needed does of course reduce the total price of a system. A
precondition for sensor sharing is that all participating
applications have a common software infrastructure. This
infrastructure will  be shaped by the architecture of the Car
Periphery Supervision domain.
All  applications in the CPS domain evaluate sensor data, while
simultaneously performing diagnosis and consistency checks.
The corresponding services can be characterised by a common
architecture with parameterisation or instantiation of its generic
parts. The architecture’s implementation should provide a
platform electronic control unit as an expandable basis for the
instantiation of multiple, possibly co-operating, applications in
the future.
In the following, related work is presented first. Then the
software product line approach is introduced, and an overview of
the corresponding process and the different tasks is provided.
After that we describe the expressiveness needed for a
knowledge representation system that is to support product line
engineering. The required reasoning is stated explicitly. Next,
our actual work is presented. Finally, the major points are
summarised in the conclusion chapter.
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2 RELATED WORK
The feature-oriented concept of the FODA method [3] places
special emphasis on the identification and concise representation
of commonality and variability in a domain. A feature is
understood as “a prominent or distinctive user-visible aspect,
quality or characteristic of a software system or systems”.
Features can be related to another by several types of links.
Together the features form the feature tree which is used to
parameterise all other models. Use case modelling has been used
as a high-level functional description from the viewpoint of
application families in the Reuse-Driven Software Engineering
Business (RSEB) [5]. The approach introduces the notions of
variation points and variants into use cases and analysis types.
FeatuRSEB [6] and FODAcom [7] contribute to domain analysis
in that they relate variability management in feature and use case
modelling. Our work draws on these approaches and extends
them with procedures and experiences from our experiment.
Requirements templates, as in FODAcom, are one main point
within our work. We are using them for requirements derivation
starting from feature configurations. An approach of applying
feature modelling for controlling code generation is described by
[8]. Over and above this, we are trying to apply feature
modelling to software design generation.
In [9] an approach is described that goes even beyond focusing
on pure product lines or product families towards building
product populations. Our application domain can be situated in
between these two categories.

3 DOMAIN ANALYSIS ASSETS
Domain analysis assets are a prerequisite for coping with the
complexity of software systems in the long run. Especially they
are the starting point for the derivation of new products from
existing knowledge. Information of the models on the product
level is generalised on the domain level in a way that enables
developers to see where variations occur and which decisions
have to be made to create a special product. As multiple products
and the domain level are involved, traceability is of major
concern. Traces must be established from the product models to
the domain models, and between the different models of each
level. Furthermore, relationships between the elements within
one model may have special semantics, such as ‘consists of’,
‘alternative’, etc. These model-specific relationships must also
be adequately represented.
Domain analysis for CPS primarily consists of completing the
requirements, context, and feature models. The requirements
model focuses on the commonalities between domain products,
the context model defines the interfaces to other domains, while
the feature model captures variability within the domain.
One goal of domain analysis is to build an abstract model that
can be used as a starting point for the derivation of specific
product variants. The feature model is predestined to play this
role, as it captures the decisions that have to be made to
determine the individual characteristics of a system. Application
derivation begins with eliminating the domain variability step by
step by instantiating a subset of all potential features. Hence we
get a complete specification of one single product variant.
The overall construction process of the requirements and the
feature model, depicted in Figure 1, starts with requirements
modelling for every single product used to create the domain.
Product requirements may also include variability when they
specify multiple variants. A requirement addresses variability
through parameters. Each requirement that contains parameters
can be seen as a requirement template. These templates are

further refined by specifying parameter types and values. The
combined requirements texts and parameter definitions of the
product or the domain form a unit, the requirements model. The
parameter definitions section essentially binds the requirements
that state commonality and features that state variability.

Product 1
requirements

Product 2
requirements

Future product
requirements

Product 1
parameters

Product 2
parameters

Future product
parameters

Domain
requirements

Commonalities

Domain
parameters

Features
Variabilities

Domain
dictionary

links to wherever
a domain word is
introduced

.....................

.....................

Documentation

Usage

Requirements
Model

Product 1
features

Product 2
features

.....................
Future product

features

New product
requirements

New product
parameters

values

Derivation

D
om

ai
n 

Le
ve

l
A

pp
lic

at
io

n
 L

ev
el

Figure 1.    Building reusable domain assets

In the next step, all product requirements are abstracted to build
the requirements of the domain. At this point a common domain
language emerges. Subsequently, a domain dictionary that
defines the vocabulary used by experts and needed to understand
the domain and related products and domains is maintained
during all phases of the product-line development process. To be
able to understand where the abstractions come from,
documentation links are established between corresponding
elements on the application and domain levels.
Domain feature modelling usually begins after some
requirements modelling. The requirements text structure and
parameters are used to get an initial feature model that is then
refined. The results from a feature modelling phase are carried
back to the requirements model. This domain analysis cycle
continues until the set of product requirements is sufficiently
complete. An open question is where to stop analysis and where
to begin architecture modelling.
Features are modelled as nodes of a tree. Basically each node
corresponds to a parameter. So the feature tree describes the
different possible values that can be assigned to each particular
parameter.
Besides the basic tree structure we must introduce additional
links between the nodes of the feature model. These links are
necessary to express additional constraints between the different
features of the tree. The particular constraints must be
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documented so that it is possible to comprehend why, e. g., one
feature requires or excludes another.
Traceability links are established from each domain requirement
to the parameters it contains, and from the parameters to the
corresponding nodes of the feature tree. During the derivation
process these links in turn are used to generate product
specifications by navigating from the nodes of the feature model
via the parameters to the requirements.
After domain analysis is complete, the results (i. e. the models)
must be validated through application requirements derivation. It
should be possible to satisfactorily specify requirements of the
products that have been used as the basis for the domain models.
It is unlikely that the derivation will  produce exact copies of the
product requirements models. Depending on the techniques
employed, the requirements text of a derived product is more or
less similar to the text in the domain. The associated parameters
document contains selected values for all parameters that have
been covered during derivation. In order to completely derive an
application, all variability must be resolved to final values.
Nevertheless, variable products can be derived through partial
derivation which leaves some selections open.
In summary, feature modelling based on the FODA method is
advantageous in several ways:

�  Control over variability. All  variants of applications in
the domain and their relationships are represented in a
comprehensive and understandable form.

�  Reuse of requirements. Generation of requirements
specifications can be partially automated by the use of
templates instantiated with different variants.

�  Configuration support. As features are linked to
modelling of later development phases, application
derivation through selection of variants combinations
can be used to support configuration right up to product
code. [10]

�  Sales support. Sales representatives have a high-level
means to discuss product trade-offs with customers.

�  Support for new development. When a new product is to
be developed, feature modelling simplifies the analysis
of how it differs from existing ones.

4 BASIC KNOWLEDGE ENTITIES FOR
PRODUCT-LINE ENGINEERING

Three modelling primitives are used to describe the different
parameters and their relations within the tree structure of the
feature model; aggregation/decomposition, generalisation/
specialisation, and parameterisation. Aggregation is the
abstraction of a collection of units, decomposition its refinement
into the constituent units. Generalisation is the abstraction of the
commonalities among a collection of units into a new conceptual
unit, specialisation its refinement by incorporating distinguishing
details. Finally, parameterisation is a development technique to
adapt generic components in many different ways by replacing
the parameters of a component with values.
In addition, two composition links enable specific relationships
between features that are not yet covered. Applicability of these
links is restricted to optional and alternative features. The first
one is the requires-relationship indicating that a certain feature
can only be selected if the feature it is connected with is selected,
too. This semantics can be further refined by specifying an
alternatives-relationship between the required features. The
second type of link is the excludes-relationship meaning that not

both of the related features can be selected in the same
configuration.
Nevertheless, the Bosch experiment has shown that extensions of
FODA are needed to represent the complexity of
interconnections in the CPS domain. These extensions mainly
are concerned with links that enable integrated modelling of
several tree structures. However, the extended model has to
introduce graph structuring. FODA already broke the single tree
structure by introducing undirected constraints between features.
But the required graph structures must additionally offer the
possibility to distinguish between directed and undirected
crosslinks, so that the directed relationships can be used to
prevent automatic selection of all features connected to a
common feature during application derivation. Of course,
directed and undirected links must not connect the same features
at the same time.
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Figure 2.    Sample feature tree

Figure 2 shows an example of an extended feature model. The
feature tree consists of 11 features. On the top level, f1 is
decomposed into a mandatory feature f2 and an optional feature
f3. F2 consists of the mandatory leaf features f4 and f5 and the
optional compound feature f6. The optional feature f3 is
specialised by three exclusive alternatives f7, f8, and f9. In the
first structure, f6 acts as an optional compound feature consisting
of the two mandatory features f10 and f11. In the second
structure, f6 is a root node (like f1 in the first structure). It plays
the role of a mandatory alternative with the two exclusive
specialisations f7 and f8. Application derivation is supposed to
be mainly performed along the primary structure. For this
reason, only the secondary structure employs directed links for
alternative representation. In this way the selection of f7 or f8
does not automatically cause the selection of f6.
To represent product line requirements and feature models, we
therefore need the following expressiveness:

�  Generic features. It should be possible to define a
generic feature in the domain model that can be
instantiated several times if more than one instance of
that feature is needed in the derived application model.

�  Feature attributes. For defining a feature in more detail
it must be possible to describe its properties by
attributes.

�  Specialisation / Is-A links. Alternatives can be repre-
sented by specialisation of a feature, assuming that the
different sub-features are disjunctive.

�  Has Parts /Is-Part-Of links. To represent mandatory and
optional sub-features we must represent part-whole
relations. Moreover, it must be possible to define a
cardinality for these links. The cardinality is restricted to
the interval [0 1].
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	  Documentation links. To be able to explain the choices it
must be possible to link the feature descriptions to a
documentation text.

Hence, to represent features we basically need two hierarchies;
taxonomy and partonomy. If we want to provide multiple tree
structures, we have to support multiple inheritance. It must be
pointed out that multiple inheritance is not indispensable. It can
be replaced via expressive constraints. Nevertheless, there is a
high risk for combinatorial explosion.
The different tools for software requirements engineering and
management that are available on the market do not support the
product line idea. Existing tools do not provide a knowledge
representation that supports the reuse of requirements nor do
they support the reasoning that is necessary for application
derivation.
Our experiment has shown that applying the software product
line approach to a real-world problem is not possible if
appropriate tools are missing. This is especially due to the
following characteristics of our problem:


  A high degree of variability with respect to lines of
code.

�  A high amount of secondary links within the feature
model.

Within the PRAISE project we spent a lot of time on modelling
the domain requirements and features. Especially we tried to
encapsulate the variability and to reduce the number of
secondary links by adequate representation, but we could not
achieve a significant improvement. Consequently, a high degree
of variability and a substantial amount of constraints between the
single variants seem to be typical for embedded real time
software products and especially for sensor fusion projects.
Nevertheless, we think that the product line approach is the
appropriate technology to build the software for those sensor
fusion products. So we have to find a better way to represent and
reason about our domain models.
Knowledge based systems and especially configuration systems
may be a solution to overcome the shortcomings of the
requirements management tools.

5 REASONING FOR APPLICATION
DERIVATION

One possibility to handle the application derivation problem
would be to use a configuration system for the knowledge
representation and the needed reasoning. Due to the hierarchical
structure of our problem, the hierarchical structure of our model,
hierarchy oriented configuration techniques can be applied.
One shell that does provide the necessary modelling means is
Konwerk [11]. There the different configuration objects can be
modelled within a taxonomy and a partonomy. Moreover,
Konwerk offers constraints to model the parts of the secondary
structure that cannot be represented in hierarchies due to their
restriction to simple inheritance. Furthermore, Konwerk provides
the necessary reasoning services for deriving the product
requirements from the domain model. These reasoning services
can be described as a navigation in the different hierarchies,
called structure-oriented configuration, combined with additional
constraint propagation. An important issue is that the system can
compute whether the configuration is finished, hence whether a
complete description of a product has been made. This capability
is based on the fact that in Konwerk it is assumed that an
instance of a configuration object has finally to be an instance of
a leaf or concrete concept of the taxonomy. Based on the

elementary reasoning services a configuration strategy can be
defined that steers the configuration process.
Konwerk like some other configuration systems uses a frame
language as underlying knowledge representation formalism
[12]. The problem about those configuration systems is that they
are based on the closed world assumption; they assume that the
knowledge they reason about is complete with respect to the
problem. This assumption is not suitable for our problem. Within
software product line domain engineering we cannot build
models that are complete for all parts of our problem. E. g., in
the CPS domain we have complete knowledge about the
requirements and features of the sensor technology, but we
cannot model complete knowledge about the human machine
interface of CPS products, because this knowledge is very
customer-specific. It must be possible to represent and to reason
about incompleteness, and it must be possible to provide a mixed
reasoning.
During requirements derivation it must be possible to configure a
requirements text and check its completeness with respect to the
given knowledge base. Furthermore, it must be possible to
compute the parts that have to be further specialised by
additional requirements. In the next enhancement of the domain
knowledge base, the relevance of these additional requirements
for further projects can then be checked, and they can be
integrated into the domain model.
One possibility to overcome the shortcoming of the closed-world
assumption is to introduce the explicit notation of concrete and
abstract features. If during requirements derivation we have
created an instance of an abstract feature that could not be
further specialised by an instance of a concrete feature, we know
that this feature is still incomplete and has to be further
specialised independently of the domain model. In this case,
variability is represented by under-specification.
Another possibility would be to employ a knowledge
representation formalism that is able to reason under the open
world assumption, e. g. description logics. Configuration
systems can be build in description logics [13]. Furthermore, it is
possible to provide reasoning under different assumptions about
the world in description logics. Nevertheless, it must be proven
that a description logics approach is not oversized.

6 FUTURE WORK
Based on the ‘4+1 View Model of Architecture’ [14] we are
currently modelling the CPS domain architecture using UML
[15]. Like in requirements modelling we have to represent
variability. Furthermore we must guarantee the traceability from
the feature model to the different parts of the architecture. Again
we lack sufficient tool support as even the underlying knowledge
representation and reasoning have not been described yet.
Nevertheless, the problems seem to be similar. Based on our
experience with OMOS [16] we think that it is appropriate to
model variability in logical architectures using inheritance, and
to apply structure-oriented configuration methods for application
derivation.
In the next step we are going to describe the overall
expressiveness and reasoning services that are needed for the
software product line approach, so that we will  finally be able to
identify a corresponding knowledge representation formalism.
Consequently we must find an adequate tool that we can
integrate into our tool chain as basic knowledge representation
and reasoning mechanism.
Our goal is to compute the effort needed to build a product
already while defining its requirements. One possibility to
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achieve this is to use the type of configuration problem (routine,
innovative, or creative configuration) [17] as an indicator for the
complexity of the software engineering task.

7 CONCLUSION
We have shown that for applying the software product line
approach, and for domain analysis in particular, strong tool
support is needed. Current tools are not suff icient as they lack
basic knowledge representation and reasoning capacities. We
have proposed appropriate knowledge representation and
configuration systems to fill  this gap. Finally, systems that can
deal with incomplete knowledge have been considered especially
useful.
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