Knowledge Engineering in Softwar e Product Lines

Michael Schlick! andAndreas Hein?

Abstract. A software product-Ineis a collecion of products
sharinga common setof featureghataddresghe specfic needs
of a given businessarea[l]. The PRAISE project [2], partly
funded by the EuropeanCommission under ESPRIT contract
28651 and pursuedby Thomson-CSR/CR (France), Robert
Bosch GmbH (Germany), and the EuropeanSdtware Institute
(Spain), has investigated product-line realisaton and its
assesment in industial settings.A part of the project was
dedicated to the validaion and corsolidation of proposed
product-Ine technologiesin real-scaleindustial experiments.
This paperpresentsan extractof the expermental resultsfound
by Bosch. The Bosch experiment has beenlocatedin the Car
Periphery Supervision(CPS) domain. The focusduring anaysis
was on feasibility of variability modelling with FODA [3]. The
experment hasshown that the FODA model doesnot provide
the necessy expressivenesdo representhe differenttypesof
crosslinksthat are obligatory to describethe domain. Therdore
an extensiorwasmadeto overcane this dravback.Moreover,it
becane clearthata lot of issuesconcering the corfiguration of
FODA models are far from being applicable. Here a solid
theoreticalfoundationis neededfirst. This paperpresentssome
basicfindings.

1 INTRODUCTION

During the last decade product-line architectureshave becane

increasinty importantfor companiesthat want to capitaliseon

their domain expertiseby systematicreuseon alargescale. They

divide sdtware develomentinto two distinctlife cycles,onefor

domain and the other for application engineering[4]. The

purposeof domain engineerings to modelthe conmonality and

variability betweenits members. Reusableassetsare produced
by domain engineeringand then specialisedduring applicaton

engineering to derivBnal products.

Requirenentstraceabilty hasbeenrecognisedsbeingessential
to reuse. Applicaion engneering profits from traceability
becausethe engineersunderstandvhy a system was built the

way it was, and becausethey can better assesghe impact of

design modifications. Traceabiliy is even more important for

domain engineeringwhere many decisionsmust be understood
to be able to later derive applications from a conmon

architecture and hild componentdor reuse.

The ESPRIT project PRAISE [2] addresses product-Ine

engineeringvith a specialfocuson validaion of methodological
supportfor domain engineering.Commonality in a domain is

representetdy requirenents,whereasvariability mustbe treated
separatly. FODA [3] explicitly addressesariability modelling

andenablegdleveloperdo seewherevariationsoccurandwhich

decisionshave to be made to createa special product. But

existing FODA descriptionsare not adequatefor use in an

' Robert Bosch GmbH, Corposte Research and Developnent —
FV/SLD, P.O. Box 90 01 69, D-60441 Frankfut am Man —
email: michal.schlick@d.bosch.com

2 Robert Bosch GmbH, Corposte Research and Developrent —
FV/ISLD, P.O. Box 90 01 69, D-60441 Frankfut am Man —
email: andeasheinl@de.bosch.com

industrial envirorment. Within PRAISE, two real-scale
experments have been pefformed to validate and corsolidate
product-Ine methoddogies.Onefocusof the Boschexperment
hasbeenon feasibility andvalidationof variability modelling as
introduced ly FODA. It hasshown thatthe existingconceptsare
insuficient for appling them to realworld engineeringtasks.
This paperdescribeghe necessaryeaturemodel extensionsas
well as the demandson tools tha are to supportthe feature
model corfiguration pocess.

The Bosch experimenthas been settledin the Car Periphery
Supervision CPS) domain. Actualy severabusinesanits in the
autamotive equipment sectorproduceand developapplications
that extensivéy use information about objects located in the
car's periphey. A number of sensorsdetect obstaclesand
providethe data needetbr furtherevaluation Dependingon the
required measurenents, different sensortechnologies,namely
radaror ultrasonicsersors, can be used.Other typesof sensor
data are not included in the domain definition at presem
althoughthey might be of interestto the domain in the future.
Applicationsthat supervisehe car periphey offer sevicessuch
as Backing Aid, Blind Spot Detection,Pre-CrashSensingand
Adaptive Cruise Control.

Today theseapplicationsare built as separatesystens with the
consequencethat each one needsits own set of sensors,
controllerhardvare and, last but not least,sdftware architecture
and basic sensaontrol services.

Sensorapplicationsoverlap in terms of their requirenents on
objectlocationinformation. Dueto thefactthatonly a restricted
number of sensorscan be posiionedon the vehicle,e. g. in the
bumper, sharedusageof sensorsignalswill be inevitablein the
near future. Moreover, a reducton of the number of sensors
neededdoes of coursereducethe total price of a system. A
precondition for senso sharing is that all participatng
applications have a common sdtware infrastructure. This
infrastructurewill be shapedby the architectureof the Car
Periphery Supervision dmain.

All applicationsin the CPS domain evaluatesensordata, while
simultaneous} performing diagnosisand consisency checks.
The correspondingservicescan be characterisedy a common
architecturewith paraneterisationor instartiation of its generic
parts. The architecture’s implementation shoud provide a
platform electronic control unit as an expandablebasisfor the
instantiaton of multiple, possiby co-operating,applicaionsin
thefuture.

In the following, related work is presentedfirst. Then the
sditware productineapproaclhis introduced andanoverviewv of
the correspondingorocessand the different tasksis provided.
After that we describe the expressivenessneeded for a
knowledgerepresentatiorsystemthat is to suppot productline
engineering.The requiredreasoningis statedexplicitly. Next,
our actual work is presented.Finally, the major points are
summarised in theoncluson chapter.

2 RELATED WORK

The feature-orientecconceptof the FODA method [3] places
specialemphasison theidentfication and conciserepresentation
of commonality and variability in a domain. A feature is
undersood as “a prominent or distinctive user-visible aspect,
quality or characteristicof a sdtware system or systems”.
Featurescan be relatedto anotherby severaltypes of links.
Togetherthe featuresform the featuretree which is usedto
parameterisall othermodels.Usecasemodellinghasbeenused
as a high-level functional description from the viewpoint of
applicationfamilies in the Reuse-DrivenSdtware Engineering
Business(RSEB) [5]. The approachintroducesthe notions of
variation points and variantsinto use casesand anaysis types.
FeatuRSEB [6andFODAcom [7] contributeto domain andysis
in thatthey relatevariability managenentin featureandusecase
modelling. Our work draws on theseappoachesand extends
them with proceduresand experiencesfrom our experiment.
Requirenents templates,as in FODAcom, are one main point
within our work. We areusingthem for requirenentsderivation
starting from feature corfigurations. An appoach of appling
featuremodellingfor contrdling codegeneratioris describedy
[8]. Over and above this, we are trying to apply feature
modelling to sétware design generation.

In [9] an approachis describedhat goesevenbeyond focusing
on pure product lines or product families towards building
productpopulatons. Our applicationdomain can be situatedin
betveen theséwo categories.

3 DOMAIN ANALYSISASSETS

Domain andysis assets are a prerequisitefor coping with the
complexity of sdftware systemsin the long run. Especially they
are the starting point for the derivation of new productsfrom
existing knowledge. Information of the modelson the product
level is generalisecbn the domain level in a way that enables
developersto seewhere variationsoccur and which decisions
have to benade to create a special produes.multiple products
and the domain level are involved, traceabiliy is of major
concern.Tracesmust be establishedrom the produd¢ modelsto
the domain models, and betwveen the different models of each
level. Furthemore, relatiorships between the elements within
one model may have specialsemanticssuch as ‘consistsof’,
‘alternative’, etc. Thesemodel-spedic relationships must also
be adequatglrepresented.

Domain andysis for CPS primarily consistsof completing the
requiraments, context, and feature models. The requirements
model focuseson the commonalitiesbetveendomain products,
the contextmodel definesthe interfacesto otherdomains, while
thefeaturemodel captures variabilitwithin the danain.
Onegoal of domain anaysis is to build an abstractmodel that
can be used as a staring point for the derivation of specfic
productvariants. The featuremodel is predestinedo play this
role, as it capures the decisionsthat have to be made to
detemine the individual characteristicef a system. Application
derivationbeginswith eliminating the domain variability stepby
stepby instantiatinga subsetof all potertial featuresHencewe
get a omplete spedication d one single pduct variant.

The overall constructionprocessof the requiranents and the
featuremodel, depictedin Figure 1, startswith requirenents
modelling for evay single productusedto createthe domain.
Product requiranents may also include variability when they
speciy multiple variants. A requirement addressewariability
through paraneters.Each requirement that contans paraneters
can be seenas a requirenent template. These templates are

further refined by spedfying paraméer types and values.The
combined requiraments texts and paraneter definitions of the
productor the domain form a unit, the requirenentsmodel. The
parametedefinitions sectionessential}f bindsthe requiranents
that state comonality andfeatures that state variabylit

Derivation

Features

Variabilities E

t

Documentation

Domain

Usage dictionary

links to wherever
a domain word is

Domain introduced

[

Domain
requirements
Commonalities

Domain Level)

Requirements

v = y4 =

= Z ~

New product Product 1 Product 2 Future product

requirements

] ! ! !

New product
parameters
values

A
{ Application Level

Product 1
parameters

Product 2
parameters

Future product
parameters

Product 1
features

Product 2
features

Future product
features

Figurel. Building reussble domainassts

In the nextstep,all produd requirenentsare abstractedo build

therequiramentsof the domain. At this point a common domain

language emerges. Subsequenyl a domain dictionay that

definesthevocabulay usedby expertsandneededo understand
the domain and related products and domains is maintained
during all phase®f the productiine developnentprocessTo be

able to understand where the abstractions come from,

documentation links are establishedbetveen corresponding
elements orthe appication and dmain levels.

Domain feature modelling usually begins after some
requiranents modelling. The regurements text structure and

parametersre usedto get an initial featuremodel that is then

refined. The resultsfrom a featuremodelling phaseare carried
back to the requirements model. This domain analysis cycle

confnuesuntil the setof product requirenentsis suficienty

complete. An openquestionis whereto stopanalsis andwhere
to begin architecturmodelling.

Featuresare modelled as nodesof a tree. Basicaly eachnode
correspondgo a paraneter. So the featuretree describesthe

different possiblevaluesthat can be assignedo eachparticular
parameter.

Besidesthe basic tree structurewe must introduce addtional

links betweenthe nodesof the featuremodel. Theselinks are

necessy to expressadditionalconstraing betweenthe different
features of the tree. The particular constraints must be

documentedsothatit is possibleto comprehendwhy, e. g.,one
feature requiresrexcludes arther.

Traceabiliy links areegablishedfrom eachdomain requirement
to the paranetersit contains,and from the paranetersto the
correspondingnodesof the featuretree. During the derivation
process these links in turn are used to generate product
specficationsby navigatingfrom the nodesof the featuremodel
via the parmeters to the requireents.

After domainanaysis is complete, the results(i. e. the models)
mustbe validatedthroughapplicationrequirenentsderivation.It
shoud be possibleto satigactorily speéfy requirementsof the
productsthathavebeenusedasthe basisfor the domain models.
It is unlikely thatthe derivationwill produceexactcopiesof the
product requirements models. Depending on the techniques
employed, the requiranentstext of a derivedproductis more or
lesssimilar to the textin the domain. The associategharaneters
document contans selectedvaluesfor all parameterghat have
beencoveredduring derivation.In orderto completely derivean
application, all variability must be resolvedto final values.
Neverthelessyariable productscan be derived through partial
derivationwhich leaves soe selections opn.

In summary, featuremodelling basedon the FODA methodis
advantageous in several yga

Control over variability. All variantsof applicationsin
the domain and their relationslips are representedn a
comprehensive and understandafaden.

Reuse of requirements. Generation of requiranents
specficationscan be partially autanated by the use of
templates instantiatedith different variants.
Configuration support. As features are linked to
modelling of later developnent phases, application
derivation through selection of variants combinations
canbe usedto suppot corfigurationright up to product
code [10]

Sales support. Salesrepresentativediave a high-level
means to discuss productde-dfs with custaners.
Support for new development. Whena new productis to
be developedfeaturemodelling simplifies the andysis
of how it differsfrom existing ones.

4 BASIC KNOWLEDGE ENTITIESFOR
PRODUCT-LINE ENGINEERING

Three modelling primitives are usedto describethe different
parametersand their relationswithin the tree strudure of the
feature model; aggegation/decmposition, generalisation/
specialisation, and paraneterisation. Aggregation is the
abstractiorof a collectionof units, decanpositon its refinement
into the consttuentunits. Generalisations the abstractiorof the
commonalitiesamonga collection d units irto a new conceptual
unit, specialisation itsefinementby incorporating distinghing
details.Finally, paraneterisationis a developnent techniqueto
adaptgenericcomponentsin mary differentways by replacing
the paranetersof a mmponer with values.

In addition, two compositionlinks enablespecfic relationships
betveenfeatureghat are not yet covered.Applicability of these
links is restrictedto optional and alternativefeatures.The first
oneis the requires-relationshifndicating that a certainfeature
can ony be selected ithefeature it is connectedlith is selected,
too. This semanticscan be further refined by specifying an
alternatives-relationshipbetveen the required features. The
secondype of link is the excludes-relationsh meaningthat not

10

both of the related featurescan be selectedin the same
corfiguration.

Nevertheless, the Bosch experiment haswitbat extensions of
FODA ae needed to represent the complexity of
interconnection in the CPS domain. Theseextensionsmainly
are concernedwith links that enableintegratedmodelling of
seveal tree structures.However, the extendedmodel has to
introducegraphstructuing. FODA alrealy brokethe singletree
structureby introdudng undirectedconstraing betveenfeatures.
But the required graph structures must addiionally offer the
possiblity to distinguish betveen directed and undirected
crosslinks, so that the directed relaionships can be used to
prevent autamatic selection of all features connectedto a
common feature during applicaton derivation. Of course,
directedandundirectedinks mustnot connectthe same features
at the sme ime.

Figure2. Sample feature tree

Figure 2 shavs an exanple of an extendedfeaturemodel. The
feature tree consistsof 11 features.On the top level, f1 is
decanposedinto a mandatoy featuref2 andan optionalfeature
f3. F2 consistsof the mandatoy leaf featuresf4 andf5 andthe
optional compound feature f6. The optional feature f3 is
specialisedby threeexclusivealternativesf7, f8, and 9. In the
first structuref6 acts as an ojond compoundfeatureconsising
of the two mandatoy featuresfl0 and f11. In the second
structure f6 is aroot node(like f1 in the first structure) It plays
the role of a mandatoy alternative with the two exclusive
specialisation$7 and f8. Application derivationis supposedo
be mainly perfformed along the primary structure. For this
reason,only the seconday structureemploys directedlinks for
alternativerepresentationln this way the selectionof f7 or f8
does not autmaticaly cause the selectiorf 6.

To represenfproductline requiranentsand featuremodels, we
therdore need théollowing expressiveness:

Generic features. It shodd be possibleto define a
generic feature in the domain model that can be
instantiatedseveraltimes if more than one instance of
thatfeature is needdd the derived applicatiomodel.
Feature attributes. For defining a featurein more detail
it must be possble to describe its properties by
attributes.

Soecialisation/ Is-Alinks. Alternatives can be repre-
sentedby specialisatiorof a feature,assiming that the
different subfeatures are disjunctive.

Has Parts/Is-Part-Of links. To representmandatoy and
optional subfeatureswe must representpartwhole
relations. Moreover, it must be possble to define a
cardinaliy for theselinks. The cardinaliy is restrictedto
the interval0 1.

Documentation links. To be able to explaithe choicesit
must be possibleto link the featuredescriptons to a
documentation text.

Hence,to represenfeatureswe basicaly needtwo hierarchies;
taxonony and partonony. If we want to provide multiple tree
structureswe haveto supportmultiple inheritance.lt must be
pointedout that multiple inheritanceis not indispensablelt can
be replacedvia expressiveconstraints.Neverthelessthereis a
high riskfor canbinatorial explosn.

The differenttools for sdftware requirenents engineeringand
managementhat are availableon the marketdo not suppat the
product line idea. Existing tools do not provide a knowledge
representatiorthat supportsthe reuseof requrements nor do

they support the reasoing that is necessy for application
derivation.

Our experment has shown that appling the sdtware product
line approachto a realworld problem is not possible if

appropriatetools are missing. This is especidly due to the
following characteristicef our problen:

A high degreeof variability with respectto lines of
code.
A high amount of seconday links within the feature
model.

Within the PRAISE projectwe spenta lot of time on modelling
the domain requirements and features.Especidly we tried to
encapsulatethe variability and to reduce the number of
secondar links by adequaterepresentationbut we could not
achievea significantimprovementConsequenyl, a high degree
of variability and a subshtial amount d constraints b&teenthe
single variants seen to be typical for embeddedreal time
sditware products and especiaf for sensorfusion projects.
Neverthelesswe think that the product line approachis the
appropriatetechnoloy to build the software for those sensor
fusionproducts.Sowe haveto find a betterway to represenand
reason about our dwin models.

Knowledgebasedsystemsand especialf corfigurationsystems
may be a solution to overcane the shortcanings of the
requiranentsmanagenent tools.

5 REASONING FOR APPLICATION
DERIVATION

One possbility to handle the application derivation problem
would be to use a corfiguration systam for the knowledge
representatioand the neeed reasoing. Dueto the hierarchical
structureof our problem, the hierarchicalstructureof our model,
hierarcly oriented cofiguration techiques can be applied.
One shell that doesprovide the necessy modelling meansis
Konwerk [11]. Therethe differentcorfiguration objectscan be
modelled within a taxonony and a partonony. Moreover,
Konwerk offers constraint¢o model the partsof the secondary
structuretha cannotbe representedn hierarchiesdue to their
restrictionto simple inheitance. Furthemore, Konwerk provides
the necessy reasoning services for deriving the product
requiranentsfrom the domain model. Thesereasoningservices
can be describedas a navigationin the different hierarchies,
called structure-oentedconfiguration, canbinedwith addiional
constraintpropagationAn importantissueis thatthe system can
compute whetherthe corfigurationis finished,hencewhethera
complete description foa product hadeenmade.This capability
is basedon the fact that in Konwerk it is asaimed that an
instanceof a corfigurationobjecthasfinally to be aninstanceof
a led or concreteconceptof the taxonony. Based on the

11

elementay reasoningservicesa corfiguration stratey can be
defined that steers the coaguration process.

Konwerk like some other corfiguration systems usesa frame
language as underying knowledge representationformalism
[12]. Theproblem aboutthosecorfigurationsystems is thatthey
arebasedon the closedworld assunption; they assime that the
knowledge they reasonaboutis complete with respectto the
problem. This asamption is na suitablefor our problem. Within
sditware product line domain engineeringwe cannot build
modelsthat are complete for all partsof our problem. E. g.,in
the CPS domain we have complete knowledge about the
requiranents and featuresof the sensortechnolog, but we
cannot model complete knowledge about the human machine
intefface of CPS products, becausethis knowledge is very
custaner-spedic. It mustbe possibleto representnd to reason
abou incompleteness, and ihust be possible to prae a mixed
reasoning.

During requirenents derivation itnust be possible tconfigurea
requiranentstext and checkits completenessith respecto the
given knowledge base. Furthemore, it must be possible to
compute the parts that have to be further specialised by
addiional requirements.In the next enrencementof the domain
knowledgebase,the relevanceof theseaddiional requiranents
for further projects can then be checked, and they can be
integrated ito the danain model.

One posibility to overcame the shortcaning of the closedworld
assimption is to introducethe explicit notationof concreteand
abstractfeatures.If during requirenents derivation we have
createdan instanceof an abstractfeature that could not be
furtherspecialisecy aninstanceof a concretefeature we know
that this featureis still incomplete and has to be further
specialisedindependenty of the domain model. In this case,
variability is representedybunder-spedication.

Another possbility would be to employ a knowledge
representatiorformalism that is able to reasonunderthe open
world assumption, e. g. description logics. Corfiguration
systems can be lild in descripion logics[13]. Furthemore, it is
possibleto providereasoningunderdifferentassimptions about
the world in descrigiion logics. Neverthelessit must be proven
that a descrifppn logics approach is not oversized.

6 FUTURE WORK

Basedon the ‘4+1 View Model of Architecture’[14] we are
currenty modelling the CPS domain architectureusng UML
[15]. Like in requirenents modelling we have to represent
variability. Furthemore we must guaranteghe traceabiliyy from
thefeaturemodelto the differentpartsof the architectureAgain
we lack sifficient tod suppat aseventhe underlying knowledge
representationand reasoning have not been described yet.
Neverthelessthe problans seen to be similar. Basedon our
experiencewith OMOS [16] we think that it is appopriateto
model variability in logical architecturesusing inheritance,and
to apply structure-orientedorfigurationmethodsfor application
derivation.

In the next step we are going to describe the overall
expressivenesand reasoningservicesthat are neededfor the
sditware productline approachso thatwe will finally be ableto
identify a correspondingknowledge representatiorformalism.
Conseqgently we must find an adequatetool that we can
integrateinto our tool chan as basicknowledge representation
and reasaimg mechansm.

Our goal is to compute the effort neededto build a product
alrealy while defining its requiranents. One possibility to

achievethis is to usethe type of corfigurationproblem (routine,
innovative,or creativecorfiguration)[17] asanindicatorfor the
complexity of the sdétware engineering task.

7 CONCLUSION

We have shown that for appling the sdtware product line
approach,and for domain anaysis in particular, strong tool
supportis needed Currert tools are not suficient as they lack
basic knowledge representatiorand reasoing capacities.We
have proposed appropriate knowledge representation and
corfiguration systems to fill this gap. Finally, systemsthat can
dealwith incomplete knavledge have beetonsideredspecially
uséul.

ACKNOWLEDGEMENTS

We would like to thank our colleaguesfrom the RobertBosch
GmbH businessunitsfor their contibuton to modelsrealisation,
and our PRAISE project partnersThomson-CSH.CR, and ESI
for the technical discussions.

REFERENCES
(1]
(2]

European Software Institue: Product-lire architectures and
technologis to managthem. ES-1998-RECORD-ED1, 1998.
ESRRIT Project 28651: PRAISE — Prodict-line Realisationand
Assessnent in Industial Settings IT RTD Project Programne,
1998, http:/Avww.esi.es/Progcts/Reuse/Prai®l.

Kang, Kyo C., Cohen, Sholom G., Hess, James A., Novak,
William E., and Peterson, A. Spencer: Feature-Oriented Domain
Analysis (FODA). Feasibility Study. Technical Report
CMU/SH-90-TR-21, Carregie Mélon University, Software
Engireeing Institui, 1990.

Lalanda, P.: Domain Specific Software Architecture. CEC

(3]

(4]

deliverabe P28651P2.1, Esprit project PRAISE,
http://www.esi.es/ Progcts/Reuse/Prais/. December 1998.
[5] Jacoben, I., Griss, M., and Jonssn, P.: Software reuse —

archiedure, process and organkation for busiress sucess.
AddisonWesley Longman,1997,ISBN 0-201-92476-5.

Griss, M. L., Favaro, J., and d'Alessandro,M.: Integrating
feature modding with the RSEB. Proceealings of the 5th
International Conference on Software Reuse (ICSR'98), IEEE
Compuéer Socity Press, Victoria BC, Canada,June 2-5, 1998,
ISBN 0-8186-8377-5.

Vici, AlessandroDionisi, Argentieri, Nicola, Mansour Azza,
d’Alessandro, Massmo, and Favaro, John: FODAcom: An
Experience with Domain Analysis in the Italian Telecom
Industy. Proeealings of the 5th International Conference on
Requirements Engineaing (ICRE’'98), IEEE Computr Sockty
Press, Victoria BC, Canada,June 2-5, 1998,ISBN 0-8186-8377-
5.

Czarrecki, K., and Eisenedker, Ulrich W.: Synthesizing objeds.
In: Procealings of the 13th European Conference on Obiject-
Oriented Programming (ECOOP’99%ppringer, 1999.

Van Ommering, R.: Beyond Product Families: Building a
Prodwct Population In Proealings of the Third International
Workshop on Software Architectures for Product Families
(IWSAPF-3), Universidad de Las Palmasde Gran Canaria,
Spain March 2000.

Weiss, David M., and Lai, Chi Tau Robert: Software Product-
Line Engireging. A Family-Based Software Development
Process.AddisonWesley, 1999.

Gunter, A.: Wissnsbasirtes Konfigurieren,
Augustin,Germary 1995

Cunis, R.: Das 3-stufige Frame-Reprasentationschema - eine
mehrdimensional modulae Basis fir die Entwicklung von
Expertensystemkernen. Infix, St Augustin Germary 1992.

(6]

(7]

(8]

(9]

[10]

[11] infix, Sankt

[12]

12

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

McGuinness D., and Wright, J: An
Description Logic-Bagd Configuration Platform.
Intelligent Systems, Juy/August 1998pp.69-77.
Kruchen, P.: The 4+1 view model of archiecture. In: IEEE
Software 12 (6), November 1995,pp. 42-50.

Egyed, A.: Integratingarchiectural views in UML. Technical
Report USC/CSE99-TR-514 University of Souttern California,
Center for Softvare Engireaing, 1999.

Hermsen, W., and Neumann K. J.: Application of the Object-
Oriented Modedling Conept OMOS for Signal Conditioning of
Vehicle Control Units. 2000 SAE International Congress and
Exposition Detroit/U.SA., 6.-93.2000.

Gero, J.: Design Protogps: A Knowledge Representation Scheme
for Design. A Magaine, 11(4),1990Q pp. 26-36.

Lalandg, P.: Prodict-line Software Architecture. CEC deliverable
P28651D2.2, Esprit project PRAISE, http:/Mww.esi.es/Progcts/
Reuse/Prais/. March 1999.

Vinga-Martins, R., and SuRlin, S.: Requirements traceaility.
CEC deiverable P28651-D2.3, Esprit project PRAISE,
http://www.esi.es/Propcts/Reuse/Praise/, March 1999.

Hein, A., MacGregor, J., Schlick, M., and Vinga-Matrtirs, R.:
Lessons Learred. CEC Deliverable P28651-D3.4FEsprit Project
PRAISE, http://wwwv.esi.es/Progcts/ Reuse/Praise/. March 2000.
Vinga-Martins, R.: Requirements traceability for product-lires.
Workshopon Objed Technolog for Product-lire Architectures,
ECOOP’99,15.6.1999.

Hein, A., Schlick, M., and VingaMartins, R.: Applying feature
models in industrial settings To Appear In: Proceedings of the
First Software ProductLine Conference, August28.-31, 2000,
Denver, Colorado.

Indwstrial-Strength
In IEEE

