

FAKULTÄT FÜR !NFORMATIK

Faculty of Informatics

Semi-structured Data

1 - Introduction

Andreas Pieris and Wolfgang Fischl, Summer Term 2016

Outline

- Structured Data
- Semi-structured Data
- Why Semi-structured Data?
- The Data Model
- Store Semi-structured Data

Structured Data

Data is structured in semantic chunks - entities ٠

> VIE, Vienna International, Vienna LHR, London Heathrow, London VIE, LHR, BA VIE, LHR, OS BA, British Airways **OS**, Austrian Airlines

Similar entities are grouped together - classes ٠

VIE, Vienna International, Vienna LHR, London Heathrow, London Flights { VIE, LHR, BA VIE, LHR, OS BA, British Airways OS, Austrian Airlines Airlines

Structured Data

• Entities in the same class have the same descriptions - attributes

Airlines

(BA, British Airways) (OS, Austrian Airlines)

(Airline_Code, Name)

Flights

(VIE, LHR, BA) (VIE, LHR, OS)

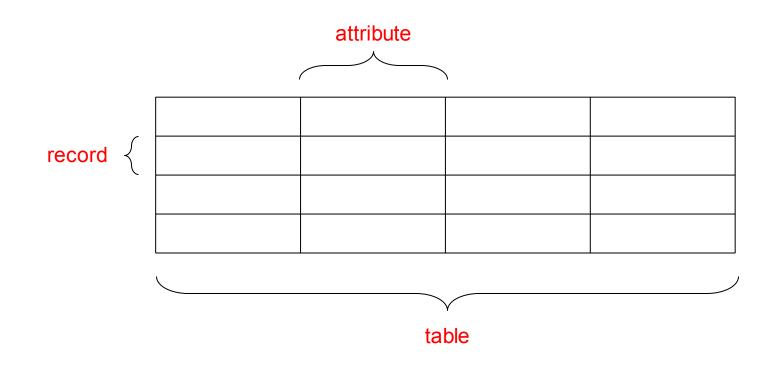
(Origin, Destination, Airline)

Structured Data

• Entities in the same class have the same descriptions - attributes

Airports	Flights	Airlines
(VIE, Vienna International, Vienna)	(VIE, LHR, BA)	(BA, British Airways)
(LHR, London Heathrow, London)	(VIE, LHR, OS)	(OS, Austrian Airlines)
(Airport_Code, Name, City)	(Origin, Destination, Airline)	(Airline_Code, Name)

• Attributes in similar entities


same format (string, integer, date, etc.) predefined length all present same order

... strict structure forced by a schema!!!

Structured Data - Relational Model

- Database model for structured data: entities \rightarrow records (or tuples)
 - classes \rightarrow tables (or relations)

Records grouped in tables

Structured Data: "On the Fly" Example

Airports	Code	Name	City
	VIE	Vienna International	Vienna
	LHR	London Heathrow	London
	LGW	London Gatwick	London
	LCA	Larnaca International	Larnaca
	GLA	Glasgow	Glasgow
	EDI	Edinburgh	Edinburgh

Flights	Origin	Destination	Airline
	VIE	LHR	British Airways
	VIE	LHR	Austrian Airlines
	LHR	EDI	British Airways
	LGW	GLA	EasyJet

Airlines	Code	Name	
	BA	British Airways	
	OS	Austrian Airlines	
	U2	EasyJet	

Gerti Kappel, 18870, 18896, gerti@big.tuwien.ac.at

Andreas, Pieris, pieris@dbai.tuwien.ac.at, 740072, 18493

Wolfgang Fischl, wfischl@dbai.tuwien.ac.at, 740050

Bill, Robert, 188316, bill@big.tuwien.ac.at

Semi-structured Data (SSD)

- Data is structured in semantic entities
- Similar entities are grouped in classes

there is structure

• Entities in the same class may not have the same attributes

Attributes of similar entities

may have different format may have different length not all required

but not too much structure

may have different order

Semi-structured Data: "Persons" Example

Gerti Kappel, 18870, 18896, gerti@big.tuwien.ac.at

Andreas, Pieris, pieris@dbai.tuwien.ac.at, 740072, 18493

Wolfgang Fischl, wfischl@dbai.tuwien.ac.at, 740050

Martin, Fleck, 58801, fleck@big.tuwien.ac.at

• There is structure

- Each row is a semantic entity person
- All entities are grouped in a class persons
- But not too much structure
 - o Entities have no regular structure
 - Structure of future entities is unpredictable

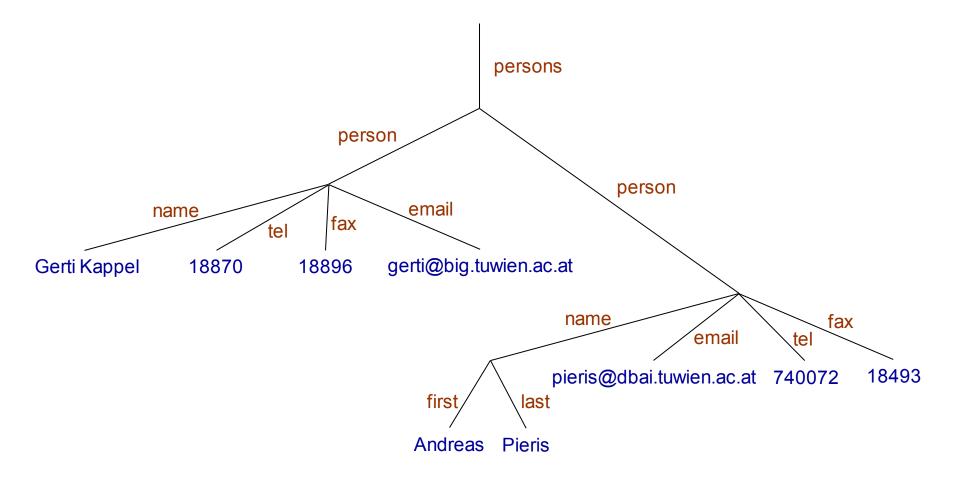
Why Semi-structured Data?

• There are data sources that we would like to treat as databases, but which cannot be constraint by a schema

• Flexible format for exchanging data between different places

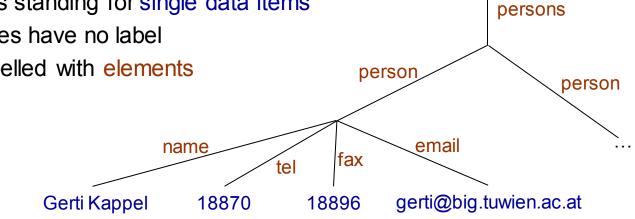
... the WEB

GOAL: Reconcile document view (web) with strict structures (databases)


Data Model

- We need an effective way to represent semi-structured data
- Like the relational model for structured data

... any ideas?


Trees as Data Model

Gerti Kappel, 18870, 18896, gerti@big.tuwien.ac.at Andreas, Pieris, pieris@dbai.tuwien.ac.at, 740072, 18493

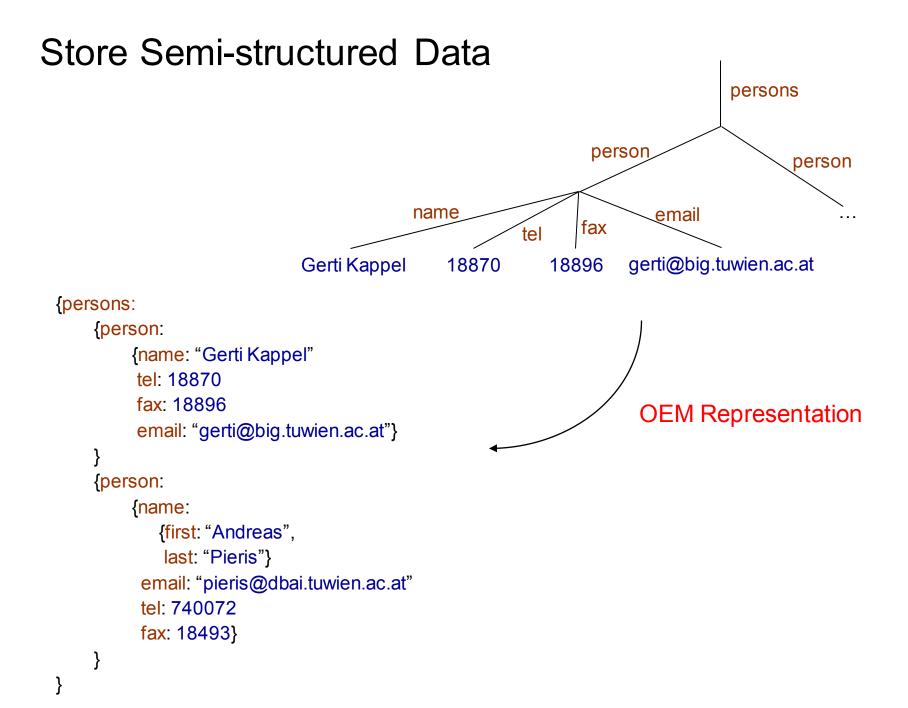
Trees as Data Model

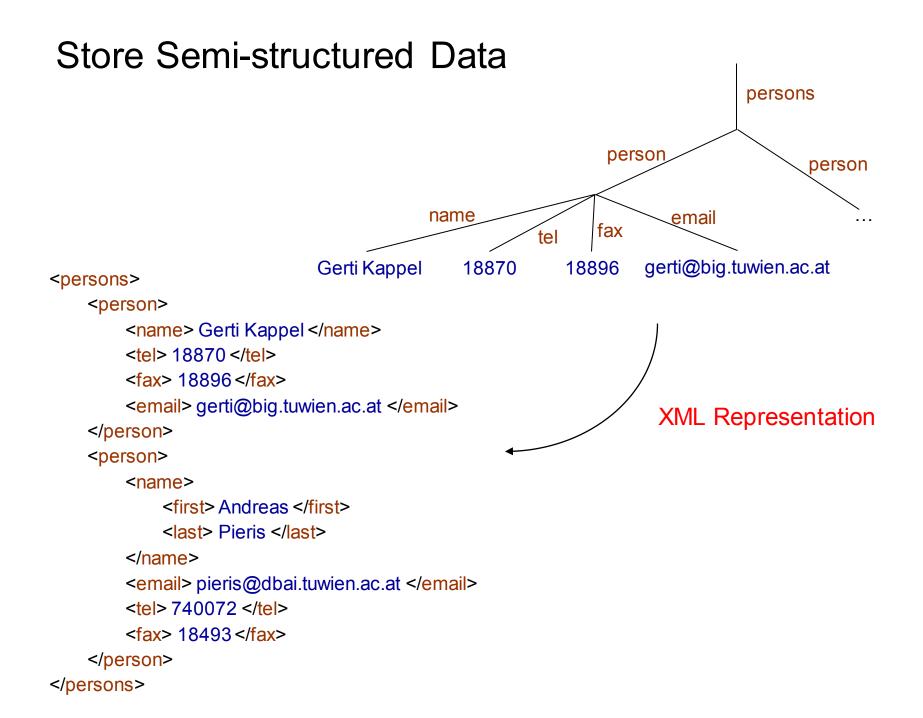
- SSD can be represented as a (labelled) tree: •
 - leaf nodes standing for single data items
 - inner nodes have no label
 - edges labelled with elements


Such a model is called self-describing - information that is usually associated . with a schema is contained within the data

Data carries its own description •

SSD: Representing Relational Data


Structured data is a special case of semi-structured data \Downarrow


relational data can be represented as a tree (with an overhead)

Store Semi-structured Data

- There are various formalisms to store semi-structured data
 - Object Exchange Model (OEM)
 - JavaScript Object Notation (JSON)
 - eXtensible Markup Language (XML)

Store Semi-structured Data

- There are various formalisms to store semi-structured data
 - Object Exchange Model (OEM)
 - JavaScript Object Notation (JSON)
 - eXtensible Markup Language (XML)
- Different syntax
- Different mechanisms for self-describing
- Different description mechanisms
 - Which attributes are allowed/required
 - Which values are allowed/required
- Different query languages and manipulation mechanisms

but the goal is the same: store SSD

Sum Up

- Structured Data
 - Similar entities grouped in classes
 - o Similar entities have a regular structure
 - Relational Model
- Semi-structured Data
 - Similar entities grouped in classes
 - Similar entities have irregular structure
 - o Trees as a Model
- Store Semi-structured Data
 - $\,\circ\,$ Various formalisms
 - eXtensible Markup Language (XML)