Semi-structured Data

1 - Introduction
Outline

• Structured Data
• Semi-structured Data
• Why Semi-structured Data?
• The Data Model
• Store Semi-structured Data
Structured Data

- Data is structured in semantic chunks - entities

 VIE, Vienna International, Vienna
 LHR, London Heathrow, London
 VIE, LHR, BA
 VIE, LHR, OS
 BA, British Airlines
 OS, Austria Airlines

- Similar entities are grouped together - classes

 Flights

 VIE, Vienna International, Vienna
 LHR, London Heathrow, London
 VIE, LHR, BA
 VIE, LHR, OS
 BA, British Airlines
 OS, Austria Airlines

 Airports

 Airlines
Structured Data

- Entities in the same class have the same descriptions - attributes

<table>
<thead>
<tr>
<th>Airports</th>
<th>Flights</th>
</tr>
</thead>
<tbody>
<tr>
<td>(VIE, Vienna International, Vienna)</td>
<td>(VIE, LHR, BA)</td>
</tr>
<tr>
<td>(LHR, London Heathrow, London)</td>
<td>(VIE, LHR, OS)</td>
</tr>
<tr>
<td>(Airport_Code, Name, City)</td>
<td>(Origin, Destination, Airline)</td>
</tr>
</tbody>
</table>

Airlines	

(BA, British Airlines)	
(OS, Austria Airlines)	
(Airline_Code, Name)	
Structured Data

- Entities in the same class have the same descriptions - attributes

<table>
<thead>
<tr>
<th>Airports</th>
<th>Flights</th>
<th>Airlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>(VIE, Vienna International, Vienna)</td>
<td>(VIE, LHR, BA)</td>
<td>(BA, British Airways)</td>
</tr>
<tr>
<td>(LHR, London Heathrow, London)</td>
<td>(VIE, LHR, OS)</td>
<td>(OS, Austria Airlines)</td>
</tr>
<tr>
<td>(Airport_Code, Name, City)</td>
<td>(Origin, Destination, Airline)</td>
<td>(Airline_Code, Name)</td>
</tr>
</tbody>
</table>

- Attributes in similar entities
 - same format (string, integer, date, etc.)
 - predefined length
 - all present
 - same order

... strict structure forced by a schema!!!
Structured Data - Relational Model

- Database model for structured data:
 - entities \rightarrow records (or tuples)
 - classes \rightarrow tables (or relations)

- Records grouped in tables
Structured Data: “On the Fly” Example

Airports

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIE</td>
<td>Vienna International</td>
<td>Vienna</td>
</tr>
<tr>
<td>LHR</td>
<td>London Heathrow</td>
<td>London</td>
</tr>
<tr>
<td>LGW</td>
<td>London Gatwick</td>
<td>London</td>
</tr>
<tr>
<td>LCA</td>
<td>Larnaca International</td>
<td>Larnaca</td>
</tr>
<tr>
<td>GLA</td>
<td>Glasgow</td>
<td>Glasgow</td>
</tr>
<tr>
<td>EDI</td>
<td>Edinburgh</td>
<td>Edinburgh</td>
</tr>
</tbody>
</table>

Airlines

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIE</td>
<td>British Airways</td>
</tr>
<tr>
<td>VIE</td>
<td>Austrian Airlines</td>
</tr>
<tr>
<td>LHR</td>
<td>British Airways</td>
</tr>
<tr>
<td>LGW</td>
<td>EasyJet</td>
</tr>
</tbody>
</table>

Flights

<table>
<thead>
<tr>
<th>Origin</th>
<th>Destination</th>
<th>Airline</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIE</td>
<td>LHR</td>
<td>British Airways</td>
</tr>
<tr>
<td>VIE</td>
<td>LHR</td>
<td>Austrian Airlines</td>
</tr>
<tr>
<td>LHR</td>
<td>EDI</td>
<td>British Airways</td>
</tr>
<tr>
<td>LGW</td>
<td>GLA</td>
<td>EasyJet</td>
</tr>
</tbody>
</table>
“Persons” Example

Gerti Kappel, 18870, 18896, gerti@big.tuwien.ac.at

Andreas, Pieris, pieris@dbai.tuwien.ac.at, 740072, 18493

Wolfgang Fischl, wfischl@dbai.tuwien.ac.at, 740050

Martin, Fleck, 58801, fleck@big.tuwien.ac.at
Semi-structured Data (SSD)

- Data is structured in semantic entities
- Similar entities are grouped in classes

- Entities in the same class may not have the same attributes
 - may have different format
 - may have different length
 - not all required
 - may have different order

there is structure

but not too much structure
Semi-structured Data: “Persons” Example

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>Email</th>
<th>Telephone</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerti Kappel</td>
<td>18870, 18896</td>
<td>gerti@big.tuwien.ac.at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andreas Pieris</td>
<td>740072, 18493</td>
<td>pieris@dbai.tuwien.ac.at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolfgang Fischl</td>
<td>740050</td>
<td>wfischl@dbai.tuwien.ac.at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martin Fleck</td>
<td>58801</td>
<td>fleck@big.tuwien.ac.at</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **There is structure**
 - Each row is a semantic entity - person
 - All entities are grouped in a class - persons

- **But not too much structure**
 - Entities have no regular structure
 - Structure of future entities is unpredictable
Why Semi-structured Data?

- There are data sources that we would like to treat as **databases**, but which cannot be constraint by a schema

- Flexible format for **exchanging data** between different places

... the WEB

GOAL: Reconcile document view (web) with strict structures (databases)
Data Model

• We need an effective way to represent semi-structured data

• Like the relational model for structured data

... any ideas?
Trees as Data Model

Gerti Kappel, 18870, 18896, gerti@big.tuwien.ac.at
Andreas, Pieris, pieris@dbai.tuwien.ac.at, 740072, 18493
Trees as Data Model

- SSD can be represented as a (labelled) tree:
 - leaf nodes standing for single data items
 - inner nodes have no label
 - edges labelled with elements

- Such a model is called **self-describing** - information that is usually associated with a schema is contained within the data

- Data carries its own description
SSD: Representing Relational Data

Structured data is a **special case** of semi-structured data

relational data can be represented as a tree (with an overhead)

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>b₁</td>
<td>c₁</td>
<td></td>
</tr>
<tr>
<td>a₂</td>
<td>b₂</td>
<td>c₂</td>
<td></td>
</tr>
</tbody>
</table>
Store Semi-structured Data

- There are various formalisms to store semi-structured data
 - Object Exchange Model (OEM) - close to previous examples
 - JavaScript Object Notation (JSON)
 - eXtensible Markup Language (XML)
Store Semi-structured Data

{persons:
 {person:
 {name: "Gerti Kappel"
 tel: 18870
 fax: 18896
 email: "gerti@big.tuwien.ac.at"}
 }
 {person:
 {name: {first: "Andreas", last: "Pieris"}
 email: "pieris@dbai.tuwien.ac.at"
 tel: 740072
 fax: 18493}
 }
}
Store Semi-structured Data

XML Representation

```xml
<persons>
  <person>
    <name>Gerti Kappel</name>
    <tel>18870</tel>
    <fax>18896</fax>
    <email>gerti@big.tuwien.ac.at</email>
  </person>
  <person>
    <name>
      <first>Andreas</first>
      <last>Pieris</last>
    </name>
    <email>pieris@dbai.tuwien.ac.at</email>
    <tel>740072</tel>
    <fax>18493</fax>
  </person>
</persons>
```
Store Semi-structured Data

• There are various formalisms to store semi-structured data
 o Object Exchange Model (OEM) - close to previous examples
 o JavaScript Object Notation (JSON)
 o eXtensible Markup Language (XML)

• Different syntax

• Different mechanisms for self-describing

• Different description mechanisms
 o Which attributes are allowed/required
 o Which values are allowed/required

• Different query languages and manipulation mechanisms