# Foundations of Data and Knowledge Systems VU 181.212, WS 2010

7. Complexity and Expressive Power

#### Thomas Eiter and Reinhard Pichler

Institut für Informationssysteme Technische Universität Wien

December 14, 2010

# Outline

#### 7. Complexity and Expressive Power

- 7.1 Complexity Classes and Reductions
- 7.2 Propositional Logic Programming
- 7.3 Datalog Complexity
- 7.4 Complexity Stable Model
- 7.5 Expressive Power

### Outline

#### 7. Complexity and Expressive Power

### 7.1 Complexity Classes and Reductions

- 7.2 Propositional Logic Programming
- 7.3 Datalog Complexity
- 7.4 Complexity Stable Model
- 7.5 Expressive Power

# The Story So far

- Query languages with the form of logics
- Syntax, declarative and operational semantics
- How much resource (time, space) do we need for the computation of these semantics?  $\Rightarrow$  Complexity
- What kind of properties can a given query language express?
- Is  $Q_1$  more expressive than  $Q_2? \Rightarrow$  Expressive power
- A dream query language should have:
  - Iower complexity, and
  - more expressive power

# The Results Overview

| Query                 | Data Complexity     | Program Complexity                  |
|-----------------------|---------------------|-------------------------------------|
| Conjunctive query     | $AC_0$              | NP-complete                         |
| FO                    | $AC_0$              | PSPACE-complete                     |
| Prop. LP              |                     | P-complete                          |
| Datalog               | P-complete          | EXPTIME-complete                    |
| Stratified Datalog    | P-complete          | EXPTIME-complete                    |
| Datalog(WFM)          | P-complete          | EXPTIME-complete                    |
| Datalog(INF)          | P-complete          | EXPTIME-complete                    |
| Datalog(Stable Model) | co-NP-complete      | co-NEXPTIME-complete                |
| Disjun. Datalog       | $\Pi^p_2$ -complete | co-NEXPTIME <sup>NP</sup> -complete |

# The Results Overview

#### Today we shall concentrate on

| Query                 | Data Complexity     | Program Complexity                  |
|-----------------------|---------------------|-------------------------------------|
| Conjunctive query     | $AC_0$              | NP-complete                         |
| FO                    | $AC_0$              | PSPACE-complete                     |
| Prop. LP              |                     | P-complete                          |
| Datalog               | P-complete          | EXPTIME-complete                    |
| Stratified Datalog    | P-complete          | EXPTIME-complete                    |
| Datalog(WFM)          | P-complete          | EXPTIME-complete                    |
| Datalog(INF)          | P-complete          | EXPTIME-complete                    |
| Datalog(Stable Model) | co-NP-complete      | co-NEXPTIME-complete                |
| Disjun. Datalog       | $\Pi^p_2$ -complete | co-NEXPTIME <sup>NP</sup> -complete |

# The Goal of this Lecture

- Basic concept of Turing machine, reduction, data complexity and program complexity
- How to prove completeness, Logspace reduction
- Get a taste of the hardness proofs of logic programming via nice encoding of a Turing machine
- Learn basics about expressive power

### **Decision Problems**

Problems where the answer is "yes" or "no"

Formally,

- A language L over some alphabet  $\Sigma$ .
- An *instance* is given as a word  $x \in \Sigma^*$ .
- Question: whether  $x \in L$  holds

• The resources (i.e., either time or space) required in the worst case to find the correct answer for any instance x of a problem L is referred to as the *complexity* of the problem L

### Complexities

Let P be a program with some query language,  $D_{\mathit{in}}$  input database and A a ground atom.

#### data complexity

Let P be fixed Instance.  $D_{in}$  and A. Question. Does  $D_{in} \cup P \models A$  hold?

### program complexity (a.k.a. expression complexity)

Let  $D_{in}$  be fixed.

Instance. P and A. Question. Does  $D_{in} \cup P \models A$  hold?

#### combined complexity

Instance. P,  $D_{in}$  and A. Question. Does  $D_{in} \cup P \models A$  hold?

### Complexity classes

### $\mathsf{L}\subseteq\mathsf{N}\mathsf{L}\subseteq\mathsf{P}\subseteq\mathsf{N}\mathsf{P}\subseteq\mathsf{P}\mathsf{SPACE}\subseteq\mathsf{EXPTIME}\subseteq\mathsf{NEXPTIME}$

These are the classes of problems which can be solved in

- logarithmic space (L),
- non-deterministic logarithmic space (NL),
- polynomial time (P),
- non-deterministic polynomial time (NP),
- polynomial space (PSPACE),
- exponential time (EXPTIME), and
- non-deterministic exponential time (NEXPTIME).

we shall encounter in this course: P, NP, PSPACE, EXPTIME

### Complexity classes – co Problems

- Any complexity class C has its complementary class denoted by co-C.
- For every language  $L \subseteq \Sigma^*$ , let  $\overline{L}$  denote its complement, i.e. the set  $\Sigma^* \setminus L$ . Then co- $\mathcal{C}$  is  $\{\overline{L} \mid L \in \mathcal{C}\}$ .
- Every deterministic complexity class is closed under complement, because one can simply add a last step to the algorithm which reverses the answer. (co-P?)

### Complexity classes – Reductions

#### Logspace Reduction

- Let  $L_1$  and  $L_2$  be decision problems (languages over some alphabet  $\Sigma$ ).
- $R:\Sigma^*\to\Sigma^*$  be a function which can be computed in logarithmic space
- The following property holds: for every  $x \in \Sigma^*$ ,  $x \in L_1$  iff  $R(x) \in L_2$ .
- Then R is called a logarithmic-space reduction from  $L_1$  to  $L_2$  and we say that  $L_1$  is reducible to  $L_2$ .

#### Hardness, Completeness

Let C be a set of languages. A language L is called C-hard if any language L' in C is reducible to L. If L is C-hard and  $L \in C$  then L is called *complete for* C or simply C-complete.

A deterministic Turing machine (DTM) is defined as a quadruple

 $(S, \Sigma, \delta, s_0)$ 

- S is a finite set of states,
- $\blacksquare$   $\Sigma$  is a finite alphabet of symbols, which contains a special symbol  $\sqcup$  called the blank.
- $\delta$  is a transition function,
- and  $s_0 \in S$  is the initial state.

The transition function  $\delta$  is a map

 $\delta: \ S \times \Sigma \ \to \ (S \cup \{\texttt{yes}, \texttt{no}\}) \times \Sigma \times \{\texttt{-1, 0, +1}\},$ 

where yes, and no denote two additional states not occurring in S, and -1, 0, +1 denote motion directions.

DTM quadruple:

 $(\Sigma,S,\delta,s_0)$ 

Transition function:

$$\delta(s,\sigma) = (s',\sigma',d).$$

The tape of the  $\mathsf{T}\mathsf{M}$ 

DTM quadruple:

 $(\Sigma,S,\delta,s_0)$ 

Transition function:

$$\delta(s,\sigma) = (s',\sigma',d).$$

The tape of the  $\mathsf{T}\mathsf{M}$ 

DTM quadruple:

 $(\Sigma, S, \delta, s_0)$ 

Transition function:

$$\delta(s,\sigma) = (s',\sigma',d).$$

The tape of the TM



DTM quadruple:

$$(\Sigma, S, \delta, s_0)$$

Transition function:

$$\delta(s,\sigma)=(s',\sigma',d).$$

The tape of the TM

Transition Function example:

$$\delta(s,a) = (s',b,-1)$$

DTM quadruple:

$$(\Sigma, S, \delta, s_0)$$

Transition function:

$$\delta(s,\sigma)=(s',\sigma',d).$$

The tape of the TM

Transition Function example:

$$\delta(s,a) = (s',b,-1)$$

DTM quadruple:

$$(\Sigma, S, \delta, s_0)$$

Transition function:

$$\delta(s,\sigma) = (s',\sigma',d).$$

The tape of the TM

Transition Function example:

$$\delta(s,a) = (s',b,-1)$$

DTM quadruple:

 $(\Sigma, S, \delta, s_0)$ 

Transition function:

$$\delta(s,\sigma) = (s',\sigma',d).$$

The tape of the TM

 ${\cal T}$  halts, when any of the states yes or no is reached

DTM quadruple:

 $(\Sigma, S, \delta, s_0)$ 

Transition function:

$$\delta(s,\sigma) = (s',\sigma',d).$$

The tape of the TM

 ${\cal T}$  halts, when any of the states yes or no is reached

### NDTM

A non-deterministic Turing machine (NDTM) is defined as a quadruple

 $(S, \Sigma, \Delta, s_0)$ 

- $S, \Sigma, s_0$  are the same as DTM
- $\Delta$  is no longer a function, but a relation:

 $\Delta \subseteq (S \times \Sigma) \times (S \cup \{\texttt{yes}, \texttt{no}\}) \times \Sigma \times \{\texttt{-1, 0, +1}\}.$ 

- A tuple with s and σ. If the number of such tuples is greater than one, the NDTM non-deterministically chooses any of them and operates accordingly.
- Unlike the case of a DTM, the definition of acceptance and rejection by a NDTM is asymmetric.

# Nondeterministic Computation (Accept)



# Nondeterministic Computation (Accept)



# Nondeterministic Computation (Accept)



Nondeterministic Computation (Rejection)



Nondeterministic Computation (Rejection)



### Outline

#### 7. Complexity and Expressive Power

7.1 Complexity Classes and Reductions

#### 7.2 Propositional Logic Programming

- 7.3 Datalog Complexity
- 7.4 Complexity Stable Model
- 7.5 Expressive Power

# 7.2 Propositional Logic Programming

#### Today we shall concentrate on

| Query                 | Data Complexity     | Program Complexity                  |
|-----------------------|---------------------|-------------------------------------|
| Conjunctive query     | $AC_0$              | NP-complete                         |
| FO                    | $AC_0$              | PSPACE-complete                     |
| Prop. LP              |                     | P-complete                          |
| Datalog               | P-complete          | EXPTIME-complete                    |
| Stratified Datalog    | P-complete          | EXPTIME-complete                    |
| Datalog(WFM)          | P-complete          | EXPTIME-complete                    |
| Datalog(INF)          | P-complete          | EXPTIME-complete                    |
| Datalog(Stable Model) | co-NP-complete      | co-NEXPTIME-complete                |
| Disjun. Datalog       | $\Pi^p_2$ -complete | co-NEXPTIME <sup>NP</sup> -complete |

# Propositional LP

### Theorem

Propositional logic programming is P-complete.

### Proof: (Membership)

- The semantics of a given program P can be defined as the least fixpoint of the immediate consequence operator  $T_P$
- This least fixpoint  $lfp(\mathbf{T}_P)$  can be computed in polynomial time even if the "naive" evaluation algorithm is applied.
- The number of iterations (i.e. applications of T<sub>P</sub>) is bounded by the number of rules plus 1.
- Each iteration step is clearly feasible in polynomial time.

### Propositional LP P-hardness Proof

#### Proof: (Hardness)

• Encoding of a a deterministic Turing machine (DTM) T. Given a DTM T, an input string I and a number of steps N, where N is a polynomial of |I|, construct in logspace a program P = P(T, I, N). An atom A such as  $P \models A$  iff T accepts I in N steps.

• The transition function  $\delta$  of a DTM with a single tape can be represented by a table whose rows are tuples  $t = \langle s, \sigma, s', \sigma', d \rangle$ . Such a tuple texpresses the following if-then-rule:

if at some time instant  $\tau$  the DTM is in state s, the cursor points to cell number  $\pi$ , and this cell contains symbol  $\sigma$ then at instant  $\tau + 1$  the DTM is in state s', cell number  $\pi$  contains symbol  $\sigma'$ , and the cursor points to cell number  $\pi + d$ .

## Propositional LP P-hardness: the atoms

The propositional atoms in P(T, I, N). (there are many, but only polynomially many...)

$$\begin{split} & \textit{symbol}_{\alpha}[\tau,\pi] \ \text{ for } 0 \leq \tau \leq N, \, 0 \leq \pi \leq N \text{ and } \alpha \in \Sigma. \text{ Intuitive meaning: at} \\ & \text{ instant } \tau \text{ of the computation, cell number } \pi \text{ contains symbol } \alpha. \\ & \textit{cursor}[\tau,\pi] \ \text{ for } 0 \leq \tau \leq N \text{ and } 0 \leq \pi \leq N. \text{ Intuitive meaning: at instant } \tau, \\ & \text{ the cursor points to cell number } \pi. \\ & \textit{state}_s[\tau] \ \text{ for } 0 \leq \tau \leq N \text{ and } s \in S. \text{ Intuitive meaning: at instant } \tau, \text{ the} \\ & \text{ DTM } T \text{ is in state } s. \\ & \textit{accept } \text{ Intuitive meaning: } T \text{ has reached state yes.} \end{split}$$

# Propositional LP P-hardness: the rules

initialization facts: in P(T, I, N):

$$\begin{array}{lll} \textit{symbol}_{\sigma}[0,\pi] & \leftarrow & \text{for } 0 \leq \pi < |I| \text{, where } I_{\pi} = \sigma \\ \textit{symbol}_{\sqcup}[0,\pi] & \leftarrow & \text{for } |I| \leq \pi \leq N \\ \textit{cursor}[0,0] & \leftarrow & \\ \textit{state}_{s_0}[0] & \leftarrow & \end{array}$$

The tape of the TM



### Propositional LP P-hardness: the rules

**transition rules:** for each entry  $\langle s, \sigma, s', \sigma', d \rangle$ ,  $0 \le \tau < N$ ,  $0 \le \pi < N$ , and  $0 \le \pi + d$ .

$$\begin{array}{rcl} \mathsf{symbol}_{\sigma'}[\tau+1,\pi] & \leftarrow & \mathsf{state}_s[\tau], \mathsf{symbol}_{\sigma}[\tau,\pi], \mathsf{cursor}[\tau,\pi]\\ \mathsf{cursor}[\tau+1,\pi+d] & \leftarrow & \mathsf{state}_s[\tau], \mathsf{symbol}_{\sigma}[\tau,\pi], \mathsf{cursor}[\tau,\pi]\\ & \mathsf{state}_{s'}[\tau+1] & \leftarrow & \mathsf{state}_s[\tau], \mathsf{symbol}_{\sigma}[\tau,\pi], \mathsf{cursor}[\tau,\pi] \end{array}$$

 $\blacksquare$  inertia rules: where  $0 \leq \tau < N, \ 0 \leq \pi < \pi' \leq N$ 

$$\begin{array}{lcl} \textit{symbol}_{\sigma}[\tau+1,\pi] & \leftarrow & \textit{symbol}_{\sigma}[\tau,\pi],\textit{cursor}[\tau,\pi'] \\ \textit{symbol}_{\sigma}[\tau+1,\pi'] & \leftarrow & \textit{symbol}_{\sigma}[\tau,\pi'],\textit{cursor}[\tau,\pi] \end{array}$$

 $\blacksquare$  accept rules: for  $0 \leq \tau \leq N$ 

accept 
$$\leftarrow$$
 state<sub>ves</sub> $[\tau]$ 

# Propositional LP P-hardness

- The encoding precisely simulates the behaviour machine T on input I up to N steps. (This can be formally shown by induction on the time steps.)
- $P(T, I, N) \models accept$  iff the DTM T accepts the input string I within N steps.
- The construction is feasible in Logspace

Horn clause inference is P-complete

### Outline

#### 7. Complexity and Expressive Power

- 7.1 Complexity Classes and Reductions
- 7.2 Propositional Logic Programming

#### 7.3 Datalog Complexity

- 7.4 Complexity Stable Model
- 7.5 Expressive Power

# 7.3 Datalog Complexity

#### Today we shall concentrate on

| Query                 | Data Complexity     | Program Complexity                  |
|-----------------------|---------------------|-------------------------------------|
| Conjunctive query     | $AC_0$              | NP-complete                         |
| FO                    | $AC_0$              | PSPACE-complete                     |
| Prop. LP              |                     | P-complete                          |
| Datalog               | P-complete          | EXPTIME-complete                    |
| Stratified Datalog    | P-complete          | EXPTIME-complete                    |
| Datalog(WFM)          | P-complete          | EXPTIME-complete                    |
| Datalog(INF)          | P-complete          | EXPTIME-complete                    |
| Datalog(Stable Model) | co-NP-complete      | co-NEXPTIME-complete                |
| Disjun. Datalog       | $\Pi^p_2$ -complete | co-NEXPTIME <sup>NP</sup> -complete |

# Complexity of Datalog Programs - Data complexity

#### Theorem

Datalog is data complete for P.

### Proof: (Membership)

Effective reduction to Propositional Logic Programming is possible. Given P, D, A:

- Generate ground(P, D)
- $\blacksquare$  Decide whether  $ground(P,D) \models A$

# Grounding of Datalog Rules

- Let  $U_D$  be the universe of D (usually the active universe (domain), i.e., the set of all domain elements present in D).
- The grounding of a rule r, denoted ground(r, D), is the set of all rules obtained from r by all possible uniform substitutions of elements of  $U_D$  for the variables in r.

For any datalog program P and database D,

$$ground(P,D) = \bigcup_{r \in P} ground(r,D).$$

# Grounding example

### P and D:

```
parent(X, Y) \leftarrow father(X, Y) \quad parent(X, Y) \leftarrow mother(X, Y).

ancestor(X, Y) \leftarrow parent(X, Y).

ancestor(X, Y) \leftarrow parent(X, Z), ancestor(Z, Y).

father(john, mary). father(joe, kurt).

mother(mary, joe).mother(tina, kurt).
```

### ground(P, D):

```
\begin{array}{l} parent(john, john) \leftarrow father(john, john) \\ parent(john, john) \leftarrow father(john, marry) \end{array}
```

```
\begin{array}{l} \dots \\ parent(john, john) \leftarrow mother(john, john) \\ parent(john, marry) \leftarrow mother(john, marry) \end{array}
```

```
ancestor(john, john) \leftarrow parent(john, john)
```

. . .

. . .

# Grounding complexity

Given P, D, the number of rules in ground(P, D) is bounded by

 $|P|*\#consts(D)^{vmax}$ 

•  $vmax(\geq 1)$  is the maximum number of different variables in any rule  $r \in P$ 

- $#consts(D) = |U_D|$  is the number of constants in D (ass.:  $|U_D| > 0$ ).
- $ground(P \cup D)$  can be exponential in the size of P.
- $ground(P \cup D)$  is polynomial in the size of D.

Hence, the complexity of propositional logic programming is an upper bound for the data complexity.

# Datalog data complexity: hardness

**Proof:** Hardness The P-hardness can be shown by writing a simple datalog meta-interpreter for propositional LP(k), where k is a constant.

- Represent rules  $A_0 \leftarrow A_1, \ldots, A_i$ , where  $0 \le i \le k$ , by tuples  $\langle A_0, \ldots, A_i \rangle$  in an (i + 1)-ary relation  $R_i$  on the propositional atoms.
- Then, a program P in LP(k) which is stored this way in a database D(P) can be evaluated by a fixed datalog program  $P_{MI}(k)$  which contains for each relation  $R_i$ ,  $0 \le i \le k$ , a rule

$$T(X_0) \leftarrow T(X_1), \ldots, T(X_i), R_i(X_0, \ldots, X_i).$$

• T(x) intuitively means that atom x is true. Then,  $P \models A$  just if  $P_{MI} \cup P(D) \models T(A)$ . P-hardness of the data complexity of datalog is then immediately obtained.

# Program Complexity Datalog

### Theorem

Datalog is program complete for EXPTIME.

• **Membership**. Grounding *P* on *D* leads to a propositional program grounding(P, D) whose size is exponential in the size of the fixed input database *D*.

Hence, the program complexity is in EXPTIME.

#### Hardness.

- Adapt the propositional program P(T, I, N) deciding acceptance of input I for T within N steps, where  $N = 2^m$ ,  $m = n^k (n = |I|)$  to a datalog program  $P_{dat}(T, I, N)$
- Note: We can not simply generate P(T, I, N), since this program is exponentially large (and thus the reduction would not be polynomial!)

# Datalog Program Complexity: Hardness

Main ideas for lifting P(T, I, N) to  $P_{dat}(T, I, N)$ :

- use the predicates  $symbol_{\sigma}(X, Y)$ , cursor(X, Y) and  $state_{s}(X)$  instead of the propositional letters  $symbol_{\sigma}[X, Y]$ , cursor[X, Y] and  $state_{s}[X]$  respectively.
- The time points  $\tau$  and tape positions  $\pi$  from 0 to N-1 are encoded in binary, i.e. by *m*-ary tuples  $t_{\tau} = \langle c_1, \ldots, c_m \rangle$ ,  $c_i \in \{0, 1\}$ ,  $i = 1, \ldots, m$ , such that  $0 = \langle 0, \ldots, 0 \rangle$ ,  $1 = \langle 0, \ldots, 1 \rangle$ ,  $N-1 = \langle 1, \ldots, 1 \rangle$ .
- The functions  $\tau + 1$  and  $\pi + d$  are realized by means of the successor  $Succ^m$  from a linear order  $\leq^m$  on  $U^m$ .

# Datalog Program Complexity: Hardness

The predicates  $Succ^m$ ,  $First^m$ , and  $Last^m$  are provided.

 $\blacksquare$  The initialization facts  $\mathit{symbol}_{\sigma}[0,\pi]$  are readily translated into the datalog rules

$$symbol_{\sigma}(\mathbf{X}, \mathbf{t}) \leftarrow \textit{First}^{m}(\mathbf{X}),$$

where  $\mathbf{t}$  represents the position  $\pi$ ,

- Similarly the facts cursor[0, 0] and  $state_{s_0}[0]$ .
- Initialization facts symbol  $[0, \pi]$ , where  $|I| \le \pi \le N$ , are translated to the rule

$$\textit{symbol}_{\sqcup}(\mathbf{X},\mathbf{Y}) \leftarrow \textit{First}^m(\mathbf{X}), \ \leq^m (\mathbf{t},\mathbf{Y})$$

where t represents the number |I|.

# Datalog Program Complexity: Hardness

Transition and inertia rules: for realizing  $\tau + 1$  and  $\pi + d$ , use in the body atoms  $Succ^{m}(\mathbf{X}, \mathbf{X}')$ . For example, the clause

$$symbol_{\sigma'}[\tau + 1, \pi] \leftarrow state_s[\tau], symbol_{\sigma}[\tau, \pi], cursor[\tau, \pi]$$

is translated into

 $\textit{symbol}_{\sigma'}(\mathbf{X}', \mathbf{Y}) \leftarrow \textit{state}_s(\mathbf{X}), \textit{symbol}_{\sigma}(\mathbf{X}, \mathbf{Y}), \textit{cursor}(\mathbf{X}, \mathbf{Y}), \textit{Succ}^m(\mathbf{X}, \mathbf{X}').$ 

• The translation of the accept rules is straightforward.

# Defining $Succ^m(\mathbf{X}, \mathbf{X}')$ and $\leq^m$

- The ground facts  $Succ^{1}(0,1)$ ,  $First^{1}(0)$ , and  $Last^{1}(1)$  are provided.
- For an inductive definition, suppose  $Succ^{i}(\mathbf{X}, \mathbf{Y})$ ,  $First^{i}(\mathbf{X})$ , and  $Last^{i}(\mathbf{X})$  tell the successor, the first, and the last element from a linear order  $\leq^{i}$  on  $U^{i}$ , where  $\mathbf{X}$  and  $\mathbf{Y}$  have arity *i*. Then, use rules

$$\begin{array}{rclcrcl} \textit{Succ}^{i+1}(Z,\mathbf{X},Z,\mathbf{Y}) & \leftarrow & \textit{Succ}^{i}(\mathbf{X},\mathbf{Y}) \\ \textit{Succ}^{i+1}(Z,\mathbf{X},Z',\mathbf{Y}) & \leftarrow & \textit{Succ}^{1}(Z,Z'),\textit{Last}^{i}(\mathbf{X}),\textit{First}^{i}(\mathbf{Y}) \\ & \textit{First}^{i+1}(Z,\mathbf{X}) & \leftarrow & \textit{First}^{1}(Z),\textit{First}^{i}(\mathbf{X}) \\ & \textit{Last}^{i+1}(Z,\mathbf{X}) & \leftarrow & \textit{Last}^{1}(Z),\textit{Last}^{i}(\mathbf{X}) \end{array}$$

# Defining $Succ^m(\mathbf{X}, \mathbf{X}')$ and $\leq^m$

- The ground facts  $Succ^{1}(0,1)$ ,  $First^{1}(0)$ , and  $Last^{1}(1)$  are provided.
- For an inductive definition, suppose  $Succ^{i}(\mathbf{X}, \mathbf{Y})$ ,  $First^{i}(\mathbf{X})$ , and  $Last^{i}(\mathbf{X})$  tell the successor, the first, and the last element from a linear order  $\leq^{i}$  on  $U^{i}$ , where  $\mathbf{X}$  and  $\mathbf{Y}$  have arity *i*. Then, use rules

$$\begin{array}{rclcrcl} & \textit{Succ}^{i+1}(0,\mathbf{X},0,\mathbf{Y}) & \leftarrow & \textit{Succ}^{i}(\mathbf{X},\mathbf{Y}) \\ & \textit{Succ}^{i+1}(1,\mathbf{X},1,\mathbf{Y}) & \leftarrow & \textit{Succ}^{i}(\mathbf{X},\mathbf{Y}) \\ & \textit{Succ}^{i+1}(0,\mathbf{X},1,\mathbf{Y}) & \leftarrow & \textit{Last}^{i}(\mathbf{X}),\textit{First}^{i}(\mathbf{Y}) \\ & \textit{First}^{i+1}(0,\mathbf{X}) & \leftarrow & \textit{First}^{i}(\mathbf{X}) \\ & \textit{Last}^{i+1}(1,\mathbf{X}) & \leftarrow & \textit{Last}^{i}(\mathbf{X}) \end{array}$$

# Defining $Succ^m(\mathbf{X}, \mathbf{X}')$ and $\leq^m$

- The ground facts  $Succ^{1}(0,1)$ ,  $First^{1}(0)$ , and  $Last^{1}(1)$  are provided.
- For an inductive definition, suppose  $Succ^{i}(\mathbf{X}, \mathbf{Y})$ ,  $First^{i}(\mathbf{X})$ , and  $Last^{i}(\mathbf{X})$  tell the successor, the first, and the last element from a linear order  $\leq^{i}$  on  $U^{i}$ , where  $\mathbf{X}$  and  $\mathbf{Y}$  have arity *i*. Then, use rules

$$\begin{array}{rclcrc} \textit{Succ}^{i+1}(0,\mathbf{X},0,\mathbf{Y}) & \leftarrow & \textit{Succ}^{i}(\mathbf{X},\mathbf{Y}) \\ \textit{Succ}^{i+1}(1,\mathbf{X},1,\mathbf{Y}) & \leftarrow & \textit{Succ}^{i}(\mathbf{X},\mathbf{Y}) \\ \textit{Succ}^{i+1}(0,\mathbf{X},1,\mathbf{Y}) & \leftarrow & \textit{Last}^{i}(\mathbf{X}),\textit{First}^{i}(\mathbf{Y}) \\ & \textit{First}^{i+1}(0,\mathbf{X}) & \leftarrow & \textit{First}^{i}(\mathbf{X}) \\ & \textit{Last}^{i+1}(1,\mathbf{X}) & \leftarrow & \textit{Last}^{i}(\mathbf{X}) \end{array}$$

• The order  $\leq^m$  is easily defined from  $Succ^m$  by two clauses

$$\begin{array}{rcl} \leq^{m}(\mathbf{X},\mathbf{X}) & \leftarrow \\ \leq^{m}(\mathbf{X},\mathbf{Y}) & \leftarrow & \textit{Succ}^{m}(\mathbf{X},\mathbf{Z}), \ \leq^{m}(\mathbf{Z},\mathbf{Y}) \end{array}$$

# Datalog Program Complexity Conclusion

- Let  $P_{dat}(T, I, N)$  denote the datalog program with empty edb described for T, I, and  $N = 2^m$ ,  $m = n^k$  (where n = |I|)
- $P_{dat}(T, I, N)$  is constructible from T and I in polynomial time (in fact, careful analysis shows feasibility in logarithmic space).
- $P_{dat}(T, I, N)$  has *accept* in its least model  $\Leftrightarrow T$  accepts input I within N steps.
- Thus, the decision problem for any language in EXPTIME is reducible to deciding  $P \models A$  for datalog program P and fact A.
- Consequently, deciding  $P \models A$  for a given datalog program P and fact A is EXPTIME-hard.

# Complexity of Datalog with Stratified Negation

### Theorem

Stratified propositional logic programming with negation is P-complete. Stratified datalog with negation is data complete for P and program complete for EXPTIME.

- stratified P can be partitioned into disjoint sets  $S_1, \ldots, S_n$  s.t. the semantics of P is computed by successively computing fixpoints of the immediate consequence operators  $\mathbf{T}_{S_1}, \ldots, \mathbf{T}_{S_n}$ .
- Let  $I_0$  be the initial instance over the extensional predicate symbols of P and let  $I_i$  (with  $1 \le i \le n$ ) be defined as follows:

$$\mathbf{I}_1 := \mathbf{T}_{S_1}^{\omega}(\mathbf{I}_0), \ \mathbf{I}_2 := \mathbf{T}_{S_2}^{\omega}(\mathbf{I}_1), \ \ldots, \ \mathbf{I}_n := \mathbf{T}_{S_n}^{\omega}(\mathbf{I}_{n-1})$$

Then the semantics of program P is given through the set  $I_n$ .

In the propositional case, I<sub>n</sub> is clearly polynomially computable. Hence, stratified negation does not increase the complexity.

### Outline

#### 7. Complexity and Expressive Power

- 7.1 Complexity Classes and Reductions
- 7.2 Propositional Logic Programming
- 7.3 Datalog Complexity
- 7.4 Complexity Stable Model
- 7.5 Expressive Power

# 7.4 Complexity Stable Model

#### Today we shall concentrate on

| Query                 | Data Complexity     | Program Complexity                  |
|-----------------------|---------------------|-------------------------------------|
| Conjunctive query     | $AC_0$              | NP-complete                         |
| FO                    | $AC_0$              | PSPACE-complete                     |
| Prop. LP              |                     | P-complete                          |
| Datalog               | P-complete          | EXPTIME-complete                    |
| Stratified Datalog    | P-complete          | EXPTIME-complete                    |
| Datalog(WFM)          | P-complete          | EXPTIME-complete                    |
| Datalog(INF)          | P-complete          | EXPTIME-complete                    |
| Datalog(Stable Model) | co-NP-complete      | co-NEXPTIME-complete                |
| Disjun. Datalog       | $\Pi^p_2$ -complete | co-NEXPTIME <sup>NP</sup> -complete |

# Recall Stable Model Semantics

Let S be a (possibly infinite) set of ground normal clauses, i.e., of formulas of the form  $A \leftarrow L_1 \land \ldots \land L_n$  where  $n \ge 0$  and A is a ground atom and the  $L_i$  for  $1 \le i \le n$  are ground literals.

### Gelfond-Lifschitz Transformation

Let  $B \subseteq HB$ . The Gelfond-Lifschitz transform  $GL_B(S)$  of S with respect to B is obtained from S as follows:

- **1** remove each clause whose antecedent contains a literal  $\neg A$  with  $A \in B$ .
- **2** remove from the antecedents of the remaining clauses all negative literals.

### Stable Model

An Herbrand interpretation HI(B) is a stable model of S iff it is the unique minimal Herbrand model of  $GL_B(S)$ .

# Complexity Prop. LP Stable model

#### Theorem

Given a propositional normal logic program P, deciding whether P has a stable model is NP-complete.

**Membership**. Clearly,  $P^I$  is polynomial time computable from P and I. Hence, a stable model M of P can be guessed and checked in polynomial time.

#### **Proof hardness**

Encoding of a non-deterministic Turing machine (NDTM) T.

- Given a NDTM T, an input string I and a number of steps N, where N is a polynomial of |I|, construct in logspace a program P = P(T, I, N).
- P has a stable model iff T accepts I in non-deterministically N steps.
- Much similar to the encoding of DTM with propositional LP. Modification on deterministic property.

Example: 
$$\langle s, \sigma, s_1, \sigma'_1, d_1 \rangle$$
,  $\langle s, \sigma, s_2, \sigma'_2, d_2 \rangle$   
Transition rules  $0 \le \tau < N$ ,  $0 \le \pi < N$ , and  $0 \le \pi + d$ .

$$\begin{array}{rcl} \textit{symbol}_{\sigma'_1}[\tau+1,\pi] & \leftarrow & \textit{state}_s[\tau],\textit{symbol}_{\sigma}[\tau,\pi],\textit{cursor}[\tau,\pi] \\ \textit{cursor}[\tau+1,\pi+d_1] & \leftarrow & \textit{state}_s[\tau],\textit{symbol}_{\sigma}[\tau,\pi],\textit{cursor}[\tau,\pi] \\ & \textit{state}_{s_1}[\tau+1] & \leftarrow & \textit{state}_s[\tau],\textit{symbol}_{\sigma}[\tau,\pi],\textit{cursor}[\tau,\pi] \end{array}$$

$$\begin{array}{rcl} \textit{symbol}_{\sigma'_{2}}[\tau+1,\pi] & \leftarrow & \textit{state}_{s}[\tau],\textit{symbol}_{\sigma}[\tau,\pi],\textit{cursor}[\tau,\pi] \\ \textit{cursor}[\tau+1,\pi+d_{2}] & \leftarrow & \textit{state}_{s}[\tau],\textit{symbol}_{\sigma}[\tau,\pi],\textit{cursor}[\tau,\pi] \\ & \textit{state}_{s_{2}}[\tau+1] & \leftarrow & \textit{state}_{s}[\tau],\textit{symbol}_{\sigma}[\tau,\pi],\textit{cursor}[\tau,\pi] \end{array}$$

What is wrong here?

Enforcement violated:

At any time instance  $\tau$ , there is exactly one cursor; each cell of the tape contains exactly one element; in exactly one state.

- For each state s and symbol  $\sigma$ , introduce atoms  $B_{s,\sigma,1}[\tau], \ldots, B_{s,\sigma,k}[\tau]$  for all  $1 \leq \tau < N$  and for all transitions  $\langle s, \sigma, s_i, \sigma'_i, d_i \rangle$ , where  $1 \leq i \leq k$ .
- Add  $B_{s,\sigma,i}[\tau]$  in the bodies of the transition rules for  $\langle s, \sigma, s_i, \sigma'_i, d_i \rangle$ .
- Add the rule

$$B_{s,\sigma,i}[\tau] \quad \leftarrow \quad \neg B_{s,\sigma,1}[\tau], \dots, \neg B_{s,\sigma,i-1}[\tau], \neg B_{s,\sigma,i+1}[\tau], \dots, \neg B_{s,\sigma,k}[\tau].$$

Intuitively, these rules non-deterministically select precisely one of the possible transitions for s and  $\sigma$  at time instant  $\tau$ , whose transition rules are enabled via  $B_{s,\sigma,i}[\tau]$ .

Finally, add a rule

$$accept \leftarrow \neg accept.$$

It ensures that *accept* is true in every stable model.

Example: 
$$\langle s, \sigma, s_1, \sigma'_1, d_1 \rangle$$
,  $\langle s, \sigma, s_2, \sigma'_2, d_2 \rangle$ 

$$\begin{array}{rcccc} B_{s,\sigma,1}[\tau] & \leftarrow & \neg B_{s,\sigma,2}[\tau] \\ B_{s,\sigma,2}[\tau] & \leftarrow & \neg B_{s,\sigma,1}[\tau] \end{array}$$

One and only one atom from  $B_{s,\sigma,1}[\tau]$  and  $B_{s,\sigma,2}[\tau]$  is true. Which one? Non-deterministic

Proof.

Assume there is a sequence of choices leading to the state yes.
 Let I be the set of the propositional atoms along the computation path reaching the state *accept*.

Then  $accept \in I$  due to the rule:

accept 
$$\leftarrow$$
 state<sub>yes</sub> $[\tau]$ 

Clearly I is a stable model of P.

Assume there exists no sequence of choices leading to the state yes in the computation tree. Suppose I is a stable model of P and accept ∈ I. By minimality of I for P<sup>I</sup>, it follows that state<sub>yes</sub>[τ] ∈ I for some τ; moreover, this means that a sequence of choices leads to yes. Contradiction.

#### Theorem

Propositional logic programming with negation under well-founded semantics is P-complete. Datalog with negation under well-founded semantics is data complete for P and program complete for EXPTIME.

### Theorem

Propositional logic programming with negation under inflationary semantics is P-complete. Datalog with negation under inflationary semantics is data complete for P and program complete for EXPTIME.

#### Theorem

Propositional logic programming with negation under stable model semantics is co-NP-complete. Datalog with negation under stable model semantics is data complete for co-NP and program complete for co-NEXPTIME.

Note that the decision problem here is whether an atom is true in all stable models.

#### Theorem

The program complexity of conjunctive queries is NP-complete.

#### Theorem

First-order queries are program-complete for PSPACE. Their data complexity is in the class AC<sup>0</sup>, which contains the languages recognized by unbounded fan-in circuits of polynomial size and constant depth.

### Theorem

Logic programming is r.e.-complete.

### Theorem

Nonrecursive logic programming is NEXPTIME-complete.

### Outline

#### 7. Complexity and Expressive Power

- 7.1 Complexity Classes and Reductions
- 7.2 Propositional Logic Programming
- 7.3 Datalog Complexity
- 7.4 Complexity Stable Model
- 7.5 Expressive Power

# 7.5 Expressive Power

- A query q defines a mapping  $\mathcal{M}_q$  that assigns to each suitable input database  $D_{in}$  (over a fixed input schema) a result database  $D_{out} = \mathcal{M}_q(D_{in})$  (over a fixed output schema)
- Formally, the expressive power of a query language Q is the set of mappings  $M_q$  for all queries q expressible in the language Q by some query expression (program) E
- Research tasks concerning expressive power:
  - Comparing two query languages Q<sub>1</sub> and Q<sub>2</sub> in their relative expressive power (e.g. FO vs. SQL vs. Datalog). This is important for designing and analysing a query language.
  - determining the absolute expressive power of a query language, e.g. proving that a given query language Q is able to express exactly all queries whose evaluation complexity is in a complexity class C.
     We say Q captures C and write simply Q = C.

### **Expressive** Power

There is a substantial difference between showing that the query evaluation problem for a certain query language Q is  $\mathcal C\text{-complete}$  and showing that Q captures  $\mathcal C.$ 

- If the evaluation problem for *Q* is *C*-complete, then at least one *C*-hard query is expressible in *Q*.
- If Q captures C, then Q expresses all queries evaluable in C (including, of course, all C-hard queries).
- Example: Evaluating Datalog is *P* hard (data complexity), but positive Datalog can only express monotone properties, however, there are of course problems in *P* which are non-monotonic.

### Expressive Power: Ordered Structures

- To prove that a query language Q captures a machine-based complexity class C, one usually shows that each C-machine with (encodings of) finite structures as inputs that computes a generic query can be represented by an expression in language Q.
- A Turing machine works on a string encoding of the input database D. Such an encoding provides an implicit *linear order* on D, in particular, on all elements of the universe  $U_D$
- Therefore, one often assumes that a linear ordering of the universe elements is predefined
- We consider here ordered databases whose schemas contain special relation symbols Succ, First, and Last

### Expressive Power: Datalog

#### Theorem

 $datalog^+ \subsetneq \mathsf{P}.$ 

Show that there exists no datalog<sup>+</sup> program P that can tell whether the universe U of the input database has an even number of elements.

#### Theorem

On ordered databases, datalog<sup>+</sup> captures P.

### Expressive Power: More Results

#### Theorem

Nonrecursive range-restricted datalog with negation

- = relational algebra
- = domain-independent relational calculus
- = first-order logic (without function symbols).

### Theorem

On ordered databases, the following query languages capture P:

- stratified datalog,
- datalog under well-founded semantics,
- datalog under inflationary semantics.

### Theorem

Datalog under stable model semantics captures co-NP.