
Foundations of DKS

Foundations of Data and Knowledge Systems
VU 181.212, WS 2010

7. Complexity and Expressive Power

Thomas Eiter and Reinhard Pichler

Institut für Informationssysteme
Technische Universität Wien

December 14, 2010

Thomas Eiter and Reinhard Pichler December 14, 2010 1/58

Foundations of DKS

Outline

7. Complexity and Expressive Power
7.1 Complexity Classes and Reductions
7.2 Propositional Logic Programming
7.3 Datalog Complexity
7.4 Complexity Stable Model
7.5 Expressive Power

Thomas Eiter and Reinhard Pichler December 14, 2010 2/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Outline

7. Complexity and Expressive Power
7.1 Complexity Classes and Reductions
7.2 Propositional Logic Programming
7.3 Datalog Complexity
7.4 Complexity Stable Model
7.5 Expressive Power

Thomas Eiter and Reinhard Pichler December 14, 2010 3/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

The Story So far

Query languages with the form of logics
Syntax, declarative and operational semantics

How much resource (time, space) do we need for the computation of these
semantics? ⇒ Complexity

What kind of properties can a given query language express?
Is Q1 more expressive than Q2? ⇒ Expressive power

A dream query language should have:
lower complexity, and
more expressive power

Thomas Eiter and Reinhard Pichler December 14, 2010 4/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

The Results Overview

Query Data Complexity Program Complexity
Conjunctive query AC0 NP-complete
FO AC0 PSPACE-complete
Prop. LP P-complete
Datalog P-complete EXPTIME-complete
Stratified Datalog P-complete EXPTIME-complete
Datalog(WFM) P-complete EXPTIME-complete
Datalog(INF) P-complete EXPTIME-complete
Datalog(Stable Model) co-NP-complete co-NEXPTIME-complete
Disjun. Datalog Πp

2-complete co-NEXPTIMENP-complete

Thomas Eiter and Reinhard Pichler December 14, 2010 5/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

The Results Overview

Today we shall concentrate on
Query Data Complexity Program Complexity
Conjunctive query AC0 NP-complete
FO AC0 PSPACE-complete
Prop. LP P-complete
Datalog P-complete EXPTIME-complete
Stratified Datalog P-complete EXPTIME-complete
Datalog(WFM) P-complete EXPTIME-complete
Datalog(INF) P-complete EXPTIME-complete
Datalog(Stable Model) co-NP-complete co-NEXPTIME-complete
Disjun. Datalog Πp

2-complete co-NEXPTIMENP-complete

Thomas Eiter and Reinhard Pichler December 14, 2010 6/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

The Goal of this Lecture

Basic concept of Turing machine, reduction, data complexity and program
complexity
How to prove completeness, Logspace reduction
Get a taste of the hardness proofs of logic programming via nice encoding
of a Turing machine
Learn basics about expressive power

Thomas Eiter and Reinhard Pichler December 14, 2010 7/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Decision Problems

Problems where the answer is “yes” or “no”
Formally,

• A language L over some alphabet Σ.
• An instance is given as a word x ∈ Σ∗.
• Question: whether x ∈ L holds

The resources (i.e., either time or space) required in the worst case to find
the correct answer for any instance x of a problem L is referred to as the
complexity of the problem L

Thomas Eiter and Reinhard Pichler December 14, 2010 8/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Complexities

Let P be a program with some query language, Din input database and A a
ground atom.

data complexity
Let P be fixed
Instance. Din and A.
Question. Does Din ∪ P |= A hold?
program complexity (a.k.a. expression complexity)
Let Din be fixed.
Instance. P and A.
Question. Does Din ∪ P |= A hold?
combined complexity
Instance. P , Din and A.
Question. Does Din ∪ P |= A hold?

Thomas Eiter and Reinhard Pichler December 14, 2010 9/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Complexity classes

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME

These are the classes of problems which can be solved in
logarithmic space (L),
non-deterministic logarithmic space (NL),
polynomial time (P),
non-deterministic polynomial time (NP),
polynomial space (PSPACE),
exponential time (EXPTIME), and
non-deterministic exponential time (NEXPTIME).

we shall encounter in this course: P, NP, PSPACE, EXPTIME

Thomas Eiter and Reinhard Pichler December 14, 2010 10/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Complexity classes – co Problems

Any complexity class C has its complementary class denoted by co-C.
For every language L ⊆ Σ∗, let L denote its complement, i.e. the set
Σ∗ \ L. Then co-C is {L | L ∈ C}.
Every deterministic complexity class is closed under complement, because
one can simply add a last step to the algorithm which reverses the answer.
(co-P?)

Thomas Eiter and Reinhard Pichler December 14, 2010 11/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Complexity classes – Reductions

Logspace Reduction
• Let L1 and L2 be decision problems (languages over some alphabet Σ).
• R : Σ∗ → Σ∗ be a function which can be computed in logarithmic space
• The following property holds: for every x ∈ Σ∗, x ∈ L1 iff R(x) ∈ L2.
• Then R is called a logarithmic-space reduction from L1 to L2 and we say

that L1 is reducible to L2.

Hardness, Completeness
Let C be a set of languages. A language L is called C-hard if any language
L′ in C is reducible to L. If L is C-hard and L ∈ C then L is called
complete for C or simply C-complete.

Thomas Eiter and Reinhard Pichler December 14, 2010 12/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Turing machines

A deterministic Turing machine (DTM) is defined as a quadruple

(S, Σ, δ, s0)

S is a finite set of states,
Σ is a finite alphabet of symbols, which contains a special symbol ␣ called
the blank.
δ is a transition function,
and s0 ∈ S is the initial state.

The transition function δ is a map

δ : S × Σ → (S ∪ {yes, no})× Σ× {-1, 0, +1},

where yes, and no denote two additional states not occurring in S, and -1, 0,
+1 denote motion directions.

Thomas Eiter and Reinhard Pichler December 14, 2010 13/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Turing machines

DTM quadruple:
(Σ, S, δ, s0)

Transition function:
δ(s, σ) = (s′, σ′, d).

The tape of the TM

. a b . . . b a a ␣ ␣ ␣ ␣ . . .

s1

Thomas Eiter and Reinhard Pichler December 14, 2010 14/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Turing machines

DTM quadruple:
(Σ, S, δ, s0)

Transition function:
δ(s, σ) = (s′, σ′, d).

The tape of the TM

. a b . . . b a a ␣ ␣ ␣ ␣ . . .

s0

Thomas Eiter and Reinhard Pichler December 14, 2010 14/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Turing machines

DTM quadruple:
(Σ, S, δ, s0)

Transition function:
δ(s, σ) = (s′, σ′, d).

The tape of the TM

. a b . . . b a a ␣ ␣ ␣ ␣ . . .

s0

c0 c1 cI−1

Thomas Eiter and Reinhard Pichler December 14, 2010 14/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Turing machines

DTM quadruple:
(Σ, S, δ, s0)

Transition function:
δ(s, σ) = (s′, σ′, d).

The tape of the TM

. a b . . . b a a ␣ ␣ ␣ ␣ . . .

s

Transition Function example:

δ(s, a) = (s′, b,−1)

Thomas Eiter and Reinhard Pichler December 14, 2010 14/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Turing machines

DTM quadruple:
(Σ, S, δ, s0)

Transition function:
δ(s, σ) = (s′, σ′, d).

The tape of the TM

. a b . . . b b a ␣ ␣ ␣ ␣ . . .

s

Transition Function example:

δ(s, a) = (s′, b,−1)

Thomas Eiter and Reinhard Pichler December 14, 2010 14/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Turing machines

DTM quadruple:
(Σ, S, δ, s0)

Transition function:
δ(s, σ) = (s′, σ′, d).

The tape of the TM

. a b . . . b b a ␣ ␣ ␣ ␣ . . .

s′

Transition Function example:

δ(s, a) = (s′, b,−1)

Thomas Eiter and Reinhard Pichler December 14, 2010 14/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Turing machines

DTM quadruple:
(Σ, S, δ, s0)

Transition function:
δ(s, σ) = (s′, σ′, d).

The tape of the TM

. a b . . . b b a a a b b . . .

yes
Accept!

T halts, when any of the states yes or no is reached

Thomas Eiter and Reinhard Pichler December 14, 2010 14/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Turing machines

DTM quadruple:
(Σ, S, δ, s0)

Transition function:
δ(s, σ) = (s′, σ′, d).

The tape of the TM

. a b . . . b b a a a b b . . .

no
Reject!

T halts, when any of the states yes or no is reached

Thomas Eiter and Reinhard Pichler December 14, 2010 14/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

NDTM

A non-deterministic Turing machine (NDTM) is defined as a quadruple

(S, Σ, ∆, s0)

S, Σ, s0 are the same as DTM
∆ is no longer a function, but a relation:

∆ ⊆ (S × Σ)× (S ∪ {yes, no})× Σ× {-1, 0, +1}.

A tuple with s and σ. If the number of such tuples is greater than one, the
NDTM non-deterministically chooses any of them and operates accordingly.
Unlike the case of a DTM, the definition of acceptance and rejection by a
NDTM is asymmetric.

Thomas Eiter and Reinhard Pichler December 14, 2010 15/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Nondeterministic Computation (Accept)

•

•

•

yes no

•

no no

•

•

yes yes

•

no no

•

•

no yes

•

no no

Thomas Eiter and Reinhard Pichler December 14, 2010 16/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Nondeterministic Computation (Accept)

•

•

•

yes no

•

no no

•

•

yes yes

•

no no

•

•

no yes

•

no no
Accept!

Thomas Eiter and Reinhard Pichler December 14, 2010 16/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Nondeterministic Computation (Accept)

•

•

•

yes no

•

no no

•

•

yes yes

•

no no

•

•

no yes

•

no no
Accept!

Thomas Eiter and Reinhard Pichler December 14, 2010 16/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Nondeterministic Computation (Rejection)

•

•

•

no no

•

no no

•

•

no no

•

no no

•

•

no no

•

no no

Thomas Eiter and Reinhard Pichler December 14, 2010 17/58

Foundations of DKS 7. Complexity and Expressive Power 7.1 Complexity Classes and Reductions

Nondeterministic Computation (Rejection)

•

•

•

no no

•

no no

•

•

no no

•

no no

•

•

no no

•

no no
Reject!

Thomas Eiter and Reinhard Pichler December 14, 2010 17/58

Foundations of DKS 7. Complexity and Expressive Power 7.2 7.2 Propositional Logic Programming

Outline

7. Complexity and Expressive Power
7.1 Complexity Classes and Reductions
7.2 Propositional Logic Programming
7.3 Datalog Complexity
7.4 Complexity Stable Model
7.5 Expressive Power

Thomas Eiter and Reinhard Pichler December 14, 2010 18/58

Foundations of DKS 7. Complexity and Expressive Power 7.2 7.2 Propositional Logic Programming

7.2 Propositional Logic Programming

Today we shall concentrate on
Query Data Complexity Program Complexity
Conjunctive query AC0 NP-complete
FO AC0 PSPACE-complete
Prop. LP P-complete
Datalog P-complete EXPTIME-complete
Stratified Datalog P-complete EXPTIME-complete
Datalog(WFM) P-complete EXPTIME-complete
Datalog(INF) P-complete EXPTIME-complete
Datalog(Stable Model) co-NP-complete co-NEXPTIME-complete
Disjun. Datalog Πp

2-complete co-NEXPTIMENP-complete

Thomas Eiter and Reinhard Pichler December 14, 2010 19/58

Foundations of DKS 7. Complexity and Expressive Power 7.2 7.2 Propositional Logic Programming

Propositional LP

Theorem
Propositional logic programming is P-complete.

Proof: (Membership)
The semantics of a given program P can be defined as the least fixpoint of
the immediate consequence operator TP

This least fixpoint lfp(TP) can be computed in polynomial time even if the
“naive” evaluation algorithm is applied.
The number of iterations (i.e. applications of TP) is bounded by the
number of rules plus 1.
Each iteration step is clearly feasible in polynomial time.

Thomas Eiter and Reinhard Pichler December 14, 2010 20/58

Foundations of DKS 7. Complexity and Expressive Power 7.2 7.2 Propositional Logic Programming

Propositional LP P-hardness Proof

Proof: (Hardness)

Encoding of a a deterministic Turing machine (DTM) T . Given a DTM T ,
an input string I and a number of steps N , where N is a polynomial of |I|,
construct in logspace a program P = P (T, I, N). An atom A such as
P |= A iff T accepts I in N steps.
The transition function δ of a DTM with a single tape can be represented
by a table whose rows are tuples t = 〈s, σ, s′, σ′, d〉. Such a tuple t
expresses the following if-then-rule:

if at some time instant τ the DTM is in state s, the cursor points to cell
number π, and this cell contains symbol σ
then at instant τ + 1 the DTM is in state s′, cell number π contains symbol
σ′, and the cursor points to cell number π + d.

Thomas Eiter and Reinhard Pichler December 14, 2010 21/58

Foundations of DKS 7. Complexity and Expressive Power 7.2 7.2 Propositional Logic Programming

Propositional LP P-hardness: the atoms

The propositional atoms in P (T, I, N).
(there are many, but only polynomially many...)

symbolα[τ, π] for 0 ≤ τ ≤ N , 0 ≤ π ≤ N and α ∈ Σ. Intuitive meaning: at
instant τ of the computation, cell number π contains symbol α.

cursor[τ, π] for 0 ≤ τ ≤ N and 0 ≤ π ≤ N . Intuitive meaning: at instant τ ,
the cursor points to cell number π.

states[τ] for 0 ≤ τ ≤ N and s ∈ S. Intuitive meaning: at instant τ , the
DTM T is in state s.

accept Intuitive meaning: T has reached state yes.

Thomas Eiter and Reinhard Pichler December 14, 2010 22/58

Foundations of DKS 7. Complexity and Expressive Power 7.2 7.2 Propositional Logic Programming

Propositional LP P-hardness: the rules

initialization facts: in P (T, I, N):

symbolσ[0, π] ← for 0 ≤ π < |I|, where Iπ = σ
symbol␣[0, π] ← for |I| ≤ π ≤ N
cursor[0, 0] ←
states0 [0] ←

The tape of the TM

. a b . . . b a a ␣ ␣ ␣ ␣ . . .

s0

c0 c1 cI−1

Thomas Eiter and Reinhard Pichler December 14, 2010 23/58

Foundations of DKS 7. Complexity and Expressive Power 7.2 7.2 Propositional Logic Programming

Propositional LP P-hardness: the rules

transition rules: for each entry 〈s, σ, s′, σ′, d〉, 0 ≤ τ < N , 0 ≤ π < N ,
and 0 ≤ π + d.

symbolσ′ [τ + 1, π] ← states[τ], symbolσ[τ, π], cursor[τ, π]
cursor[τ + 1, π + d] ← states[τ], symbolσ[τ, π], cursor[τ, π]

states′ [τ + 1] ← states[τ], symbolσ[τ, π], cursor[τ, π]

inertia rules: where 0 ≤ τ < N , 0 ≤ π < π′ ≤ N

symbolσ[τ + 1, π] ← symbolσ[τ, π], cursor[τ, π′]
symbolσ[τ + 1, π′] ← symbolσ[τ, π′], cursor[τ, π]

accept rules: for 0 ≤ τ ≤ N

accept ← stateyes[τ]

Thomas Eiter and Reinhard Pichler December 14, 2010 24/58

Foundations of DKS 7. Complexity and Expressive Power 7.2 7.2 Propositional Logic Programming

Propositional LP P-hardness

The encoding precisely simulates the behaviour machine T on input I up to
N steps. (This can be formally shown by induction on the time steps.)
P (T, I, N) |= accept iff the DTM T accepts the input string I within N
steps.
The construction is feasible in Logspace

Horn clause inference is P-complete

Thomas Eiter and Reinhard Pichler December 14, 2010 25/58

Foundations of DKS 7. Complexity and Expressive Power 7.3 7.3 Datalog Complexity

Outline

7. Complexity and Expressive Power
7.1 Complexity Classes and Reductions
7.2 Propositional Logic Programming
7.3 Datalog Complexity
7.4 Complexity Stable Model
7.5 Expressive Power

Thomas Eiter and Reinhard Pichler December 14, 2010 26/58

Foundations of DKS 7. Complexity and Expressive Power 7.3 7.3 Datalog Complexity

7.3 Datalog Complexity

Today we shall concentrate on
Query Data Complexity Program Complexity
Conjunctive query AC0 NP-complete
FO AC0 PSPACE-complete
Prop. LP P-complete
Datalog P-complete EXPTIME-complete
Stratified Datalog P-complete EXPTIME-complete
Datalog(WFM) P-complete EXPTIME-complete
Datalog(INF) P-complete EXPTIME-complete
Datalog(Stable Model) co-NP-complete co-NEXPTIME-complete
Disjun. Datalog Πp

2-complete co-NEXPTIMENP-complete

Thomas Eiter and Reinhard Pichler December 14, 2010 27/58

Foundations of DKS 7. Complexity and Expressive Power 7.3 7.3 Datalog Complexity

Complexity of Datalog Programs – Data complexity

Theorem
Datalog is data complete for P.

Proof: (Membership)
Effective reduction to Propositional Logic Programming is possible. Given P ,
D, A:

Generate ground(P,D)
Decide whether ground(P,D) |= A

Thomas Eiter and Reinhard Pichler December 14, 2010 28/58

Foundations of DKS 7. Complexity and Expressive Power 7.3 7.3 Datalog Complexity

Grounding of Datalog Rules

Let UD be the universe of D (usually the active universe (domain), i.e., the
set of all domain elements present in D).
The grounding of a rule r, denoted ground(r, D), is the set of all rules
obtained from r by all possible uniform substitutions of elements of UD for
the variables in r.

For any datalog program P and database D,

ground(P,D) =
⋃
r∈P

ground(r, D).

Thomas Eiter and Reinhard Pichler December 14, 2010 29/58

Foundations of DKS 7. Complexity and Expressive Power 7.3 7.3 Datalog Complexity

Grounding example

P and D:
parent(X, Y)← father(X, Y) parent(X, Y)← mother(X,Y).
ancestor(X, Y)← parent(X, Y).
ancestor(X, Y)← parent(X, Z), ancestor(Z, Y).

father(john, mary). father(joe, kurt).
mother(mary, joe).mother(tina, kurt).

ground(P, D):
parent(john, john)← father(john, john)
parent(john, john)← father(john, marry)
. . .
parent(john, john)← mother(john, john)
parent(john, marry)← mother(john, marry)
. . .
ancestor(john, john)← parent(john, john)
. . .

Thomas Eiter and Reinhard Pichler December 14, 2010 30/58

Foundations of DKS 7. Complexity and Expressive Power 7.3 7.3 Datalog Complexity

Grounding complexity

Given P,D, the number of rules in ground(P,D) is bounded by

|P | ∗#consts(D)vmax

vmax(≥ 1) is the maximum number of different variables in any rule r ∈ P

#consts(D) = |UD| is the number of constants in D (ass.: |UD| > 0).

ground(P ∪D) can be exponential in the size of P .
ground(P ∪D) is polynomial in the size of D.

Hence, the complexity of propositional logic programming is an upper bound for
the data complexity.

Thomas Eiter and Reinhard Pichler December 14, 2010 31/58

Foundations of DKS 7. Complexity and Expressive Power 7.3 7.3 Datalog Complexity

Datalog data complexity: hardness

Proof: Hardness The P-hardness can be shown by writing a simple datalog
meta-interpreter for propositional LP(k), where k is a constant.

Represent rules A0 ← A1, . . . , Ai, where 0 ≤ i ≤ k, by tuples 〈A0, . . . , Ai〉
in an (i + 1)-ary relation Ri on the propositional atoms.
Then, a program P in LP(k) which is stored this way in a database D(P)
can be evaluated by a fixed datalog program PMI(k) which contains for
each relation Ri, 0 ≤ i ≤ k, a rule

T (X0)← T (X1), . . . , T (Xi), Ri(X0, . . . , Xi).

T (x) intuitively means that atom x is true.
Then, P |= A just if PMI ∪ P (D) |= T (A). P-hardness of the data
complexity of datalog is then immediately obtained.

Thomas Eiter and Reinhard Pichler December 14, 2010 32/58

Foundations of DKS 7. Complexity and Expressive Power 7.3 7.3 Datalog Complexity

Program Complexity Datalog

Theorem
Datalog is program complete for EXPTIME.

Membership. Grounding P on D leads to a propositional program
grounding(P,D) whose size is exponential in the size of the fixed input
database D.
Hence, the program complexity is in EXPTIME.
Hardness.

• Adapt the propositional program P (T, I, N) deciding acceptance of input I
for T within N steps, where N = 2m, m = nk(n = |I|) to a datalog
program Pdat(T, I, N)

• Note: We can not simply generate P (T, I, N), since this program is
exponentially large (and thus the reduction would not be polynomial!)

Thomas Eiter and Reinhard Pichler December 14, 2010 33/58

Foundations of DKS 7. Complexity and Expressive Power 7.3 7.3 Datalog Complexity

Datalog Program Complexity: Hardness

Main ideas for lifting P (T, I, N) to Pdat(T, I, N):
use the predicates symbolσ(X, Y), cursor(X, Y) and states(X) instead of
the propositional letters symbolσ[X, Y], cursor[X, Y] and states[X]
respectively.
The time points τ and tape positions π from 0 to N − 1 are encoded in
binary, i.e. by m-ary tuples tτ = 〈c1, . . . , cm〉, ci ∈ {0, 1}, i = 1, . . . ,m,
such that 0 = 〈0, . . . , 0〉, 1 = 〈0, . . . , 1〉, N − 1 = 〈1, . . . , 1〉.
The functions τ + 1 and π + d are realized by means of the successor
Succm from a linear order ≤m on Um.

Thomas Eiter and Reinhard Pichler December 14, 2010 34/58

Foundations of DKS 7. Complexity and Expressive Power 7.3 7.3 Datalog Complexity

Datalog Program Complexity: Hardness

The predicates Succm, Firstm, and Lastm are provided.

The initialization facts symbolσ[0, π] are readily translated into the datalog
rules

symbolσ(X, t)← Firstm(X),

where t represents the position π,
Similarly the facts cursor[0, 0] and states0 [0].
Initialization facts symbol␣[0, π], where |I| ≤ π ≤ N , are translated to the
rule

symbol␣(X,Y)← Firstm(X), ≤m(t,Y)

where t represents the number |I|.

Thomas Eiter and Reinhard Pichler December 14, 2010 35/58

Foundations of DKS 7. Complexity and Expressive Power 7.3 7.3 Datalog Complexity

Datalog Program Complexity: Hardness

Transition and inertia rules: for realizing τ + 1 and π + d, use in the body
atoms Succm(X,X′). For example, the clause

symbolσ′ [τ + 1, π]← states[τ], symbolσ[τ, π], cursor[τ, π]

is translated into

symbolσ′(X′,Y)← states(X), symbolσ(X,Y), cursor(X,Y), Succm(X,X′).

The translation of the accept rules is straightforward.

Thomas Eiter and Reinhard Pichler December 14, 2010 36/58

Foundations of DKS 7. Complexity and Expressive Power 7.3 7.3 Datalog Complexity

Defining Succm(X,X′) and ≤m

The ground facts Succ1(0, 1), First1(0), and Last1(1) are provided.
For an inductive definition, suppose Succi(X,Y), Firsti(X), and Lasti(X)
tell the successor, the first, and the last element from a linear order ≤i on
U i, where X and Y have arity i. Then, use rules

Succi+1(Z,X, Z,Y) ← Succi(X,Y)
Succi+1(Z,X, Z ′,Y) ← Succ1(Z, Z ′), Lasti(X),Firsti(Y)

Firsti+1(Z,X) ← First1(Z),Firsti(X)
Lasti+1(Z,X) ← Last1(Z), Lasti(X)

Thomas Eiter and Reinhard Pichler December 14, 2010 37/58

Foundations of DKS 7. Complexity and Expressive Power 7.3 7.3 Datalog Complexity

Defining Succm(X,X′) and ≤m

The ground facts Succ1(0, 1), First1(0), and Last1(1) are provided.
For an inductive definition, suppose Succi(X,Y), Firsti(X), and Lasti(X)
tell the successor, the first, and the last element from a linear order ≤i on
U i, where X and Y have arity i. Then, use rules

Succi+1(0,X, 0,Y) ← Succi(X,Y)
Succi+1(1,X, 1,Y) ← Succi(X,Y)
Succi+1(0,X, 1,Y) ← Lasti(X),Firsti(Y)

Firsti+1(0,X) ← Firsti(X)
Lasti+1(1,X) ← Lasti(X)

Thomas Eiter and Reinhard Pichler December 14, 2010 37/58

Foundations of DKS 7. Complexity and Expressive Power 7.3 7.3 Datalog Complexity

Defining Succm(X,X′) and ≤m

The ground facts Succ1(0, 1), First1(0), and Last1(1) are provided.
For an inductive definition, suppose Succi(X,Y), Firsti(X), and Lasti(X)
tell the successor, the first, and the last element from a linear order ≤i on
U i, where X and Y have arity i. Then, use rules

Succi+1(0,X, 0,Y) ← Succi(X,Y)
Succi+1(1,X, 1,Y) ← Succi(X,Y)
Succi+1(0,X, 1,Y) ← Lasti(X),Firsti(Y)

Firsti+1(0,X) ← Firsti(X)
Lasti+1(1,X) ← Lasti(X)

The order ≤m is easily defined from Succm by two clauses

≤m(X,X) ←
≤m(X,Y) ← Succm(X,Z), ≤m (Z,Y)

Thomas Eiter and Reinhard Pichler December 14, 2010 37/58

Foundations of DKS 7. Complexity and Expressive Power 7.3 7.3 Datalog Complexity

Datalog Program Complexity Conclusion

Let Pdat(T, I, N) denote the datalog program with empty edb described for
T , I, and N = 2m, m = nk (where n = |I|)
Pdat(T, I, N) is constructible from T and I in polynomial time (in fact,
careful analysis shows feasibility in logarithmic space).
Pdat(T, I, N) has accept in its least model ⇔ T accepts input I within N
steps.
Thus, the decision problem for any language in EXPTIME is reducible to
deciding P |= A for datalog program P and fact A.
Consequently, deciding P |= A for a given datalog program P and fact A is
EXPTIME-hard.

Thomas Eiter and Reinhard Pichler December 14, 2010 38/58

Foundations of DKS 7. Complexity and Expressive Power 7.3 7.3 Datalog Complexity

Complexity of Datalog with Stratified Negation

Theorem
Stratified propositional logic programming with negation is P-complete.
Stratified datalog with negation is data complete for P and program complete
for EXPTIME.

stratified P can be partitioned into disjoint sets S1, . . . , Sn s.t. the
semantics of P is computed by successively computing fixpoints of the
immediate consequence operators TS1 , . . . , TSn

.
Let I0 be the initial instance over the extensional predicate symbols of P
and let Ii (with 1 ≤ i ≤ n) be defined as follows:

I1 := Tω
S1

(I0), I2 := Tω
S2

(I1), . . . , In := Tω
Sn

(In−1)

Then the semantics of program P is given through the set In.
In the propositional case, In is clearly polynomially computable.
Hence, stratified negation does not increase the complexity.

Thomas Eiter and Reinhard Pichler December 14, 2010 39/58

Foundations of DKS 7. Complexity and Expressive Power 7.4 7.4 Complexity Stable Model

Outline

7. Complexity and Expressive Power
7.1 Complexity Classes and Reductions
7.2 Propositional Logic Programming
7.3 Datalog Complexity
7.4 Complexity Stable Model
7.5 Expressive Power

Thomas Eiter and Reinhard Pichler December 14, 2010 40/58

Foundations of DKS 7. Complexity and Expressive Power 7.4 7.4 Complexity Stable Model

7.4 Complexity Stable Model

Today we shall concentrate on
Query Data Complexity Program Complexity
Conjunctive query AC0 NP-complete
FO AC0 PSPACE-complete
Prop. LP P-complete
Datalog P-complete EXPTIME-complete
Stratified Datalog P-complete EXPTIME-complete
Datalog(WFM) P-complete EXPTIME-complete
Datalog(INF) P-complete EXPTIME-complete
Datalog(Stable Model) co-NP-complete co-NEXPTIME-complete
Disjun. Datalog Πp

2-complete co-NEXPTIMENP-complete

Thomas Eiter and Reinhard Pichler December 14, 2010 41/58

Foundations of DKS 7. Complexity and Expressive Power 7.4 7.4 Complexity Stable Model

Recall Stable Model Semantics

Let S be a (possibly infinite) set of ground normal clauses, i.e., of formulas of
the form A← L1 ∧ . . . ∧ Ln where n ≥ 0 and A is a ground atom and the Li

for 1 ≤ i ≤ n are ground literals.

Gelfond-Lifschitz Transformation
Let B ⊆ HB . The Gelfond-Lifschitz transform GLB(S) of S with respect to B
is obtained from S as follows:

1 remove each clause whose antecedent contains a literal ¬A with A ∈ B.
2 remove from the antecedents of the remaining clauses all negative literals.

Stable Model
An Herbrand interpretation HI (B) is a stable model of S iff it is the unique
minimal Herbrand model of GLB(S).

Thomas Eiter and Reinhard Pichler December 14, 2010 42/58

Foundations of DKS 7. Complexity and Expressive Power 7.4 7.4 Complexity Stable Model

Complexity Prop. LP Stable model

Theorem
Given a propositional normal logic program P , deciding whether P has a stable
model is NP-complete.

Membership. Clearly, P I is polynomial time computable from P and I.
Hence, a stable model M of P can be guessed and checked in polynomial time.

Thomas Eiter and Reinhard Pichler December 14, 2010 43/58

Foundations of DKS 7. Complexity and Expressive Power 7.4 7.4 Complexity Stable Model

Stable Model Prop. LP - Hardness

Proof hardness

Encoding of a non-deterministic Turing machine (NDTM) T .
• Given a NDTM T , an input string I and a number of steps N , where N is a

polynomial of |I|, construct in logspace a program P = P (T, I, N).
• P has a stable model iff T accepts I in non-deterministically N steps.

Much similar to the encoding of DTM with propositional LP. Modification
on deterministic property.

Thomas Eiter and Reinhard Pichler December 14, 2010 44/58

Foundations of DKS 7. Complexity and Expressive Power 7.4 7.4 Complexity Stable Model

Stable Model Prop. LP - Hardness

Example: 〈s, σ, s1, σ
′
1, d1〉, 〈s, σ, s2, σ

′
2, d2〉

Transition rules 0 ≤ τ < N , 0 ≤ π < N , and 0 ≤ π + d.

symbolσ′
1
[τ + 1, π] ← states[τ], symbolσ[τ, π], cursor[τ, π]

cursor[τ + 1, π + d1] ← states[τ], symbolσ[τ, π], cursor[τ, π]
states1 [τ + 1] ← states[τ], symbolσ[τ, π], cursor[τ, π]

symbolσ′
2
[τ + 1, π] ← states[τ], symbolσ[τ, π], cursor[τ, π]

cursor[τ + 1, π + d2] ← states[τ], symbolσ[τ, π], cursor[τ, π]
states2 [τ + 1] ← states[τ], symbolσ[τ, π], cursor[τ, π]

What is wrong here?
Enforcement violated:
At any time instance τ , there is exactly one cursor; each cell of the tape
contains exactly one element; in exactly one state.

Thomas Eiter and Reinhard Pichler December 14, 2010 45/58

Foundations of DKS 7. Complexity and Expressive Power 7.4 7.4 Complexity Stable Model

Stable Model Prop. LP - Hardness

For each state s and symbol σ, introduce atoms Bs,σ,1[τ],. . . , Bs,σ,k[τ] for
all 1 ≤ τ < N and for all transitions 〈s, σ, si, σ

′
i, di〉, where 1 ≤ i ≤ k.

Add Bs,σ,i[τ] in the bodies of the transition rules for 〈s, σ, si, σ
′
i, di〉.

Add the rule

Bs,σ,i[τ] ← ¬Bs,σ,1[τ], . . . ,¬Bs,σ,i−1[τ],¬Bs,σ,i+1[τ], . . . ,¬Bs,σ,k[τ].

Intuitively, these rules non-deterministically select precisely one of the
possible transitions for s and σ at time instant τ , whose transition rules are
enabled via Bs,σ,i[τ].
Finally, add a rule

accept← ¬accept.

It ensures that accept is true in every stable model.

Thomas Eiter and Reinhard Pichler December 14, 2010 46/58

Foundations of DKS 7. Complexity and Expressive Power 7.4 7.4 Complexity Stable Model

Stable Model Prop. LP - Hardness

Example: 〈s, σ, s1, σ
′
1, d1〉, 〈s, σ, s2, σ

′
2, d2〉

symbolσ′
1
[τ + 1, π] ← states[τ], symbolσ[τ, π], cursor[τ, π], Bs,σ,1[τ]

cursor[τ + 1, π + d1] ← states[τ], symbolσ[τ, π], cursor[τ, π], Bs,σ,1[τ]
states1 [τ + 1] ← states[τ], symbolσ[τ, π], cursor[τ, π], Bs,σ,1[τ]

symbolσ′
2
[τ + 1, π] ← states[τ], symbolσ[τ, π], cursor[τ, π], Bs,σ,2[τ]

cursor[τ + 1, π + d2] ← states[τ], symbolσ[τ, π], cursor[τ, π], Bs,σ,2[τ]
states2 [τ + 1] ← states[τ], symbolσ[τ, π], cursor[τ, π], Bs,σ,2[τ]

Bs,σ,1[τ] ← ¬Bs,σ,2[τ]
Bs,σ,2[τ] ← ¬Bs,σ,1[τ]

One and only one atom from Bs,σ,1[τ] and Bs,σ,2[τ] is true. Which one?
Non-deterministic

Thomas Eiter and Reinhard Pichler December 14, 2010 47/58

Foundations of DKS 7. Complexity and Expressive Power 7.4 7.4 Complexity Stable Model

Stable Model Prop. LP - Hardness

Proof.
Assume there is a sequence of choices leading to the state yes.
Let I be the set of the propositional atoms along the computation path
reaching the state accept.
Then accept ∈ I due to the rule:

accept ← stateyes[τ]

Clearly I is a stable model of P .
Assume there exists no sequence of choices leading to the state yes in the
computation tree. Suppose I is a stable model of P and accept ∈ I.
By minimality of I for P I , it follows that stateyes[τ] ∈ I for some τ ;
moreover, this means that a sequence of choices leads to yes.
Contradiction.

Thomas Eiter and Reinhard Pichler December 14, 2010 48/58

Foundations of DKS 7. Complexity and Expressive Power 7.4 7.4 Complexity Stable Model

Further Complexity Results

Theorem
Propositional logic programming with negation under well-founded semantics is
P-complete. Datalog with negation under well-founded semantics is data
complete for P and program complete for EXPTIME.

Theorem
Propositional logic programming with negation under inflationary semantics is
P-complete. Datalog with negation under inflationary semantics is data
complete for P and program complete for EXPTIME.

Thomas Eiter and Reinhard Pichler December 14, 2010 49/58

Foundations of DKS 7. Complexity and Expressive Power 7.4 7.4 Complexity Stable Model

Further Complexity Results

Theorem
Propositional logic programming with negation under stable model semantics is
co-NP-complete. Datalog with negation under stable model semantics is data
complete for co-NP and program complete for co-NEXPTIME.

Note that the decision problem here is whether an atom is true in all stable
models.

Thomas Eiter and Reinhard Pichler December 14, 2010 50/58

Foundations of DKS 7. Complexity and Expressive Power 7.4 7.4 Complexity Stable Model

Further Complexity Results

Theorem
The program complexity of conjunctive queries is NP-complete.

Theorem
First-order queries are program-complete for PSPACE. Their data complexity is
in the class AC0, which contains the languages recognized by unbounded fan-in
circuits of polynomial size and constant depth.

Thomas Eiter and Reinhard Pichler December 14, 2010 51/58

Foundations of DKS 7. Complexity and Expressive Power 7.4 7.4 Complexity Stable Model

Further Complexity Results

Theorem
Logic programming is r.e.-complete.

Theorem
Nonrecursive logic programming is NEXPTIME-complete.

Thomas Eiter and Reinhard Pichler December 14, 2010 52/58

Foundations of DKS 7. Complexity and Expressive Power 7.5 7.5 Expressive Power

Outline

7. Complexity and Expressive Power
7.1 Complexity Classes and Reductions
7.2 Propositional Logic Programming
7.3 Datalog Complexity
7.4 Complexity Stable Model
7.5 Expressive Power

Thomas Eiter and Reinhard Pichler December 14, 2010 53/58

Foundations of DKS 7. Complexity and Expressive Power 7.5 7.5 Expressive Power

7.5 Expressive Power

A query q defines a mappingMq that assigns to each suitable input
database Din (over a fixed input schema) a result database
Dout =Mq(Din) (over a fixed output schema)
Formally, the expressive power of a query language Q is the set of
mappingsMq for all queries q expressible in the language Q by some query
expression (program) E

Research tasks concerning expressive power:
• Comparing two query languages Q1 and Q2 in their relative expressive

power (e.g. FO vs. SQL vs. Datalog).
This is important for designing and analysing a query language.

• determining the absolute expressive power of a query language, e.g. proving
that a given query language Q is able to express exactly all queries whose
evaluation complexity is in a complexity class C.
We say Q captures C and write simply Q = C.

Thomas Eiter and Reinhard Pichler December 14, 2010 54/58

Foundations of DKS 7. Complexity and Expressive Power 7.5 7.5 Expressive Power

Expressive Power

There is a substantial difference between showing that the query evaluation
problem for a certain query language Q is C-complete and showing that Q
captures C.

If the evaluation problem for Q is C-complete, then at least one C-hard
query is expressible in Q.
If Q captures C, then Q expresses all queries evaluable in C (including, of
course, all C-hard queries).
Example: Evaluating Datalog is P hard (data complexity), but positive
Datalog can only express monotone properties, however, there are of course
problems in P which are non-monotonic.

Thomas Eiter and Reinhard Pichler December 14, 2010 55/58

Foundations of DKS 7. Complexity and Expressive Power 7.5 7.5 Expressive Power

Expressive Power: Ordered Structures

To prove that a query language Q captures a machine-based complexity
class C, one usually shows that each C-machine with (encodings of) finite
structures as inputs that computes a generic query can be represented by
an expression in language Q.
A Turing machine works on a string encoding of the input database D.
Such an encoding provides an implicit linear order on D, in particular, on
all elements of the universe UD

Therefore, one often assumes that a linear ordering of the universe
elements is predefined
We consider here ordered databases whose schemas contain special relation
symbols Succ, First, and Last

Thomas Eiter and Reinhard Pichler December 14, 2010 56/58

Foundations of DKS 7. Complexity and Expressive Power 7.5 7.5 Expressive Power

Expressive Power: Datalog

Theorem
datalog+ $ P.

Show that there exists no datalog+ program P that can tell whether the
universe U of the input database has an even number of elements.

Theorem
On ordered databases, datalog+ captures P.

Thomas Eiter and Reinhard Pichler December 14, 2010 57/58

Foundations of DKS 7. Complexity and Expressive Power 7.5 7.5 Expressive Power

Expressive Power: More Results

Theorem

Nonrecursive range-restricted datalog with negation
= relational algebra
= domain-independent relational calculus
= first-order logic (without function symbols).

Theorem
On ordered databases, the following query languages capture P:

stratified datalog,
datalog under well-founded semantics,
datalog under inflationary semantics.

Theorem
Datalog under stable model semantics captures co-NP.

Thomas Eiter and Reinhard Pichler December 14, 2010 58/58

	Complexity and Expressive Power
	Complexity Classes and Reductions
	Propositional Logic Programming
	Datalog Complexity
	Complexity Stable Model
	Expressive Power

