Foundations of Data and Knowledge Systems
 VU 181.212, WS 2010

6. Operational Semantics

Thomas Eiter and Reinhard Pichler

Institut für Informationssysteme
Technische Universität Wien

December 7, 2010

Thomas Eiter and Reinhard Pichler	December 7, 2010	1/45

Outline

6. Operational Semantics of Rule Languages
6.1 Semi-Naive Evaluation
6.2 RETE Algorithm
6.3 SLD Resolution
6.4 OLDT Resolution
6.5 Magic Templates Transformation
6.6 Well-Founded Semantics: Alternating Fixpoint

Reduce proving ψ via a rule with consequent ψ to proving its antecedent φ. This leads to a top-down evaluation of rules, from a desired conclusion (goal) towards the facts.
Mixed forms of evaluation exist (realizing a bidirectional search).

Semi-Naive Evaluation

Recall

Datalog: a special case of Logic Programming
■ No functions symbols, only constants; no negation

- Partitioning of the predicate symbols of a program P, called the schema of P, into
- the set $\operatorname{ext}(P)$ of extensional predicates, and
- the set $\operatorname{int}(P)$ of intensional predicates.

Extensional predicates can not occur in rule heads. By default, all predicates occurring only in rule heads are assumed to be extensional.

- Usually, all variables in the consequent of a clause also occur in the antecedent (range-restriction, safety).

Semantically, a fact-free Datalog program P specifies a mapping from each Herbrand interpretation I of $\operatorname{ext}(P)$ to one of $\operatorname{int}(P)$ given by

$$
H I\left(\operatorname{lfp}\left(\mathbf{T}_{P \cup I_{\mid e x t(P)}}\right)\right) .
$$

($I_{\mid \operatorname{ext}(P)} \ldots$ restriction of I to $\operatorname{ext}(P)$).

Schema of P :

- $\operatorname{ext}(P)$
- $\operatorname{int}(P)$

Example

Program P (including extensional facts):

```
feeds_milk(betty)
lays_eggs(betty).
has_spines(betty)
monotreme(X)}
lays_eggs(X), feeds_milk(X)
echidna(X)
```

 monotreme \((X)\), has_spines \((X)\).

Thomas Eiter and Reinhard Pichler December 7, 2010

Example

Program P (including extensional facts):
feeds_milk(betty).
lays_eggs(betty).
has_spines(betty)
monotreme $(X) \leftarrow$
lays_eggs(X), feeds_milk(X)
echidna $(\mathrm{X}) \leftarrow$
monotreme (X), has_spines (X)

■ Schema of P :
\{ feeds milk, lays eggs, has spines, monotreme, echidna \}

- Calculation of $\operatorname{lfp}\left(\mathbf{T}_{P}\right)(b=$ betty $)$:
$\mathbf{T}_{P} \uparrow 1=\{b\}_{\text {feeds }},\{b\}_{\text {lays }},\{b\}_{\text {spines }},\{ \}_{\text {monotreme }},\{ \}_{\text {echidna }}$
$\mathbf{T}_{P} \uparrow 2=\{b\}_{\text {feeds }},\{b\}_{\text {lays }},\{b\}_{\text {spines }},\{b\}_{\text {monotreme }},\{ \}_{\text {echidna }}$
$\mathbf{T}_{P} \uparrow 3=\{b\}_{\text {feeds }},\{b\}_{\text {lays }},\{b\}_{\text {spines }},\{b\}_{\text {monotreme }},\{b\}_{\text {echidna }}$ $=l f p\left(\mathbf{T}_{P}\right)$

Naive Evaluation

Straight implementation of the immediate consequence operator \mathbf{T}_{P}

```
\(I_{0}:=\emptyset\)
\(I_{1}:=\) ground_facts \((P)\)
:= 1
while \(I_{i} \neq I_{i-1}\) do
    \(\mathrm{i}:=\mathrm{i}+1\)
    while ( \(\mathrm{R}=\) Rules. next () )
        Insts \(:=\) instantiations (R, \(\left.I_{i-1}\right)\)
        while (inst = Insts.next ())
            \(I_{i}:=I_{i} \cup\) head(inst)
return \({ }^{I_{i}}\)
```

instantiations (R, I) : all instances r of rules in R s.t. $\operatorname{body}(r)$ is satisfied by I.

Disadvantage

Refiring of rules (e.g., all facts are reobtained in each step; monotreme(betty) again in Step 3).

Idea: only consider rules which involve newly derived atoms

Foundations of DKS
 6. Operational Semantics of Rule Language 6.2 RETE Algorithm

Outline

6. Operational Semantics of Rule Languages
6.1 Semi-Naive Evaluation
6.2 RETE Algorithm
6.3 SLD Resolution
6.4 OLDT Resolution
6.5 Magic Templates Transformation
6.6 Well-Founded Semantics: Alternating Fixpoint

Semi-Naive Evaluation

incremental forward chaining:

```
Ink \(:=\{\) Fact \(\mid(\) Fact \(\leftarrow\) true \() \in P\}\)
while (Ink \(\neq \emptyset)\)
    Insts := instantiations(R, KnownFacts, Ink)
    KnownFacts := KnownFacts U Ink
    ink := heads(Insts)
return KnownFacts
```

instantiations (R, KnownFacts, Ink): all instances r of rules in R s.t. body(r) is satisfied
by KnownFacts \cup Ink using some fact from Ink.

■ Further improvements: e.g.

- use only rule instances with head not in KnownFacts \cup Ink
- store partially instantiated rules (incremental satisfaction of the body)
- in addition, share common body parts between rules (\sim RETE Algorithm)

■ Other view: map Datalog to Relational Algebra

- Search solution for system of equations, using algebraic methods (e.g., Gauß-Seidel iteration (see [Ceri, Gottlob, Tanca 1990])
■ Extensive treatment: [Abiteboul et al., 1995]

RETE Algorithm

- By Charles Forgy (1990), for forward chaining (production) systems
- Storage of partially instantiated rules

■ Sharing of instantiated literals among similar rules
■ Several optimizations, industrial use (Clips, Drools, JRules, ...)
Basic approach:

- Use
- production memory PM (rule store) and
- working memory WM (current facts)
- Different kinds of nodes:
- alpha-node: represents a single atomic condition in rule bodies (across rules); it contains all WM elements that make it true;
- beta-node: represents a conjunction of alpha-nodes; it contains tuples of WM elements satisfying them.
- join-node: for computational purposes (combining alpha and/or beta nodes)
- production-node: one per rule, holding all tuples of WM elements that satisfy its body.

Foundations of DKS

6. Operational Semantics of Rule Language 6.3 SLD Resolution

SLD Resolution: Principles

- goal driven evaluation of logic programs (backward chaining)
- to show that $P \models \varphi$, show that $P \cup\{\neg \varphi\}$ is unsatisfiable
- uses unification and resolution: basically,

$$
\frac{\varphi_{1} \vee \psi, \quad \neg \psi \vee \varphi_{2}}{\varphi_{1} \vee \varphi_{2}}
$$

($\psi \ldots$ atomic formula)

■ recall that $\varphi \leftarrow \psi$ is equivalent to $\varphi \vee \neg \psi$

- SLD resolution: Selected Literal Definite Clause
- resolution with backtracking is used as control mechanism in Prolog

Observe

- A goal $\leftarrow a_{1}, \ldots, a_{n}$ is a syntactical variant of the first-order sentence $\forall x_{1} \ldots \forall x_{m}\left(\perp \leftarrow a_{1} \wedge \ldots \wedge a_{n}\right)$ where x_{1}, \ldots, x_{m} are all variables occurring in $a_{1}, \ldots a_{n}$.
- This is equivalent to $\neg \exists x_{1} \ldots \exists x_{m}\left(a_{1} \wedge \ldots \wedge a_{n}\right)$.
- $P \vDash \exists x_{1} \ldots \exists x_{m}\left(a_{1} \wedge \ldots \wedge a_{n}\right)$ iff $P \cup\left\{\leftarrow a_{1}, \ldots, a_{n}\right\}$ is unsatisfiable

6. Operational Semantics of Rule Languages
6.1 Semi-Naive Evaluation
6.2 RETE Algorithm
6.3 SLD Resolution
6.4 OLDT Resolution
6.5 Magic Templates Transformation
6.6 Well-Founded Semantics: Alternating Fixpoint

Thomas Eiter and Reinhard Pichler

December 7, 2010

Foundations of DKS
 6. Operational Semantics of Rule Language 6.3 SLD Resolution

Definition (SLD Resolvent)

Let C be the clause $b \leftarrow b_{1}, \ldots, b_{k}$ and G a goal

$$
\leftarrow a_{1}, \ldots, a_{m}, \ldots, a_{n}
$$

such that G and C share no variables (otherwise, rename variables in C).
Then G^{\prime} is an SLD resolvent of G and C using ϑ, if G^{\prime} is the goal

$$
\leftarrow\left(a_{1}, \ldots a_{m-1}, b_{1}, \ldots b_{k}, a_{m+1}, \ldots a_{n}\right) \vartheta
$$

where ϑ is the mgu of a_{m} and b.

Definition (SLD Derivation)

An SLD derivation of $P \cup\{G\}$ consists of
■ a sequence G_{0}, G_{1}, \ldots of goals where $G=G_{0}$,
■ a sequence C_{1}, C_{2}, \ldots of variants of program clauses of P, and
■ a sequence $\vartheta_{1}, \vartheta_{2}, \ldots$ of mgu's such that G_{i+1} is a resolvent from G_{i} and C_{i+1} using ϑ_{i+1}.
An SLD-refutation is a finite SLD-derivation whose last goal is empty.

Example

$$
\begin{aligned}
& 1: \mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{e}(\mathrm{X}, \mathrm{Y}) . \\
& 2: \mathrm{t}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}(\mathrm{X}, \mathrm{Y}), \mathrm{e}(\mathrm{Y}, \mathrm{Z}) . \\
& 3: \mathrm{e}(1,2) . \\
& 4: \mathrm{e}(2,1) . \\
& 5: \leftarrow \mathrm{t}(1, \mathrm{~A}) .
\end{aligned}
$$

Foundations of DKS

6. Operational Semantics of Rule Language 6.3 SLD Resolution

Example
1: $t(X, Y) \leftarrow e(X, Y)$.
$2: t(X, Z) \leftarrow t(X, Y), e(Y, Z)$.
$3: ~ e(1,2)$.
$4: e(2,1)$.
$5: \leftarrow t(1, A)$.

Foundation of DKS

Example

```
1: \(\mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{e}(\mathrm{X}, \mathrm{Y})\). \(:-\mathrm{t}(1, A)\)
2: \(t(X, Z) \leftarrow t(X, Y), e(Y, Z)\). \(\quad\) 1, \(\{X|1, Y| A\}\)
3: e(1,2)
:-e(1,A)
\(5: \leftarrow \mathrm{t}(1, \mathrm{~A})\).
```

3. [A/2\}

Example

Foundations of DKS	6. Operational Semantics of Rule Language	6.3 SLD Resolution

Example
1: $t(X, Y) \leftarrow e(X, Y)$.
$:-t(1, A)$
2: $t(X, Z) \leftarrow t(X, Y), e(Y, Z)$.
3: $e(1,2)$. 1. $\{X|1, Y| A\} 2,\{X|1, Z| A\}$
4: e(2,1).
$5: \leftarrow \mathrm{t}(1, \mathrm{~A})$.

$3,\{Y \mid$
$:-e(2, A)$

Example
1: $t(X, Y) \leftarrow e(X, Y)$.

- $\mathrm{t}(1, \mathrm{~A})$
2: $\mathrm{t}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}(\mathrm{X}, \mathrm{Y}), \mathrm{e}(\mathrm{Y}, \mathrm{Z})$

1. $\{X / 1, Y / A\} \quad 2,\{X / 1, Z \mid A\}$
3: e(1,2).
4: e(2,1).
$5: \leftarrow \mathrm{t}(1, \mathrm{~A})$.

$$
:-e(1, A)
$$

$$
:-t(1, Y), e(Y, A)
$$

Y
 :-e(1,Y),e(Y,A)

Thomas Eiter and Reinhard Pichler

Foundations of DKs

6. Operational Semantics of Rule Language 6.3 SLD Resolution

Computation rules

In each resolution step, the selected literal and the clause C are chosen non-deterministically.

Definition (Computation Rule)

Call a function that maps to each goal one of its atoms a computation rule

[^0]Let a correct answer for a program P and goal G be any substitution ϑ such that $P=G \vartheta$.

Proposition (Soundness and Completeness of Logic Programming)

Let P be a program and let Q be a query. Then

- every computed answer of P and G is a correct answer, and
- for every correct answer σ of P and G there exists a computed answer ϑ such that ϑ is more general that σ.

Definition (SLD Procedure)

An SLD-procedure is any deterministic SLD-resolution algorithm constrained by

- a computation rule and
- an order for visiting the finite branches of an SLD-tree (search strategy)
- The completeness of a SLD procedure depends on the search strategy
- To be complete, each leaf of a (finite) branch must be visited after finitely many steps (fairness).

Foundations of DKS

Example (cont'd)

Example

Example

6. Operational Semantics of Rule Languages
6.1 Semi-Naive Evaluation
6.2 RETE Algorithm
6.3 SLD Resolution
6.4 OLDT Resolution
6.5 Magic Templates Transformation
6.6 Well-Founded Semantics: Alternating Fixpoint

Foundations of DKS \quad 6. Operational Semantics of Rule Language 6.4 OLDT Resolution

OLDT Resolution

- Non-termination of SLD resolution due to infinite branches

■ Infinite branches $B=\left[G_{0}, G_{1}, \ldots\right]$ due to
1 variants of the same goal on the infinite branch, i.e., in some subsequence [$\left.G_{i_{0}}, G_{i_{1}}, \ldots\right]$, for all $j, k \in \mathbb{N}, G_{i_{j}}$ and $G_{i_{k}}$ contain an equal atom (up to renaming of variables) or

2 subsuming goals on the infinite branch, i.e. in some subsequence [$\left.G_{i_{0}}, G_{i_{1}}, \ldots\right]$, for all $j \in \mathbb{N}, G_{i_{j}}$ contains an atom which is a real instance of an atom in $G_{i_{j-1}}$.

Ideas

- Avoid repeated evaluation of a subgoal on the same computation path through tabling or memorization, similar as in dynamic programming.
- Side effect: no repeated evaluations of subgoals at all.
- Use designated tabled predicates.
- Make distinction between solution nodes (goals) and lookup nodes (goals).

OLDT - Basic Elements

Definition (OLDT-structure)

An OLDT-structure $\left(T, T_{S}, T_{L}\right)$ consists of

- an SLD-tree T,
- a solution table T_{S}, i.e., a set of pairs $\left(a, T_{S}(a)\right)$ where
- a is an atom and
- $T_{S}(a)$ is a list of instances of a called the solutions of a, and

■ a lookup table T_{L}, i.e., a set of pairs $\left(a, T_{L}(a)\right)$ where a is an atom and $T_{L}(a)$ is a pointer to an element of $T_{S}\left(a^{\prime}\right)$ such that a is an instance of a^{\prime}. T_{L} contains one pair $\left(a, T_{L}(a)\right)$ for an atom a occurring as a leftmost atom of a goal in T.

- The initial OLDT-structure has as T the goal and void T_{S} and T_{L}.
- The OLDT-structure is stepwise extended, using SLD resolution and lookup, employing a left-to-right computation rule.

| Thomas Eiter and Reinhard Pichler | December 7, 2010 | |
| :--- | :---: | :--- | :--- |
| | | |
| Foundations of DKS | 6. Operational Semantics of Rule Language | 6.4 OLDT Resolution |

Example

Example

Foundations of DKS

6. Operational Semantics of Rule Language 6.4 OLDT Resolutio

Example

1: $t(X, Y) \leftarrow e(X, Y)$
2: $\mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{t}(\mathrm{X}, \mathrm{Z}), \mathrm{e}(\mathrm{Z}, \mathrm{Y})$.
3: e(1,2)
4: e(2,1).
$5: \leftarrow \mathrm{t}(1, \mathrm{~A})$

Let t be a table predicate

Example

3, $\{A / 2\}$ 1, $\{X / 1, Y / Z\} 2^{\prime},\left\{X^{\prime} / 1, Y^{\prime} / Z\right\}$ be a table predicate

Thomas Eiter and Reinhard Pichler December 7, 2010

Foundations of DKS
 6. Operational Semantics of Rule Language 6.4 OLDT Resolution

Completeness

OLDT-resolution is not complete in general
$\mathrm{p}(\mathrm{x}) \leftarrow \mathrm{q}(\mathrm{x}), \mathrm{r}$
$\mathrm{q}(\mathrm{s}(\mathrm{x}))$
\leftarrow
$\mathrm{q}(\mathrm{x})$
$\mathrm{q}(\mathrm{s}(\mathrm{x})) \leftarrow \mathrm{q}(\mathrm{x})$
$\mathrm{q}(\mathrm{a}) \leftarrow$
$r \leftarrow$.
$\leftarrow \mathrm{p}(\mathrm{x})$

Problem

- Reduction steps are only applied to lookup goal $\leftarrow q\left(x^{\prime}\right)$, r
- No solutions for $p(x)$ will be produced in finite time.

Remedy

Special search strategy (multi-stage depth first, MSDFS): Order the nodes in the OLDT tree, avoid repeating reduction of a node if other nodes are available.

Above: avoid reducing the lookup goal $\leftarrow q\left(x^{\prime}\right), r$. twice, and reduce $\leftarrow r$.

- Under MSDFS, OLDT-resolution becomes complete.

6. Operational Semantics of Rule Languages
6.1 Semi-Naive Evaluation
6.2 RETE Algorithm
6.3 SLD Resolution
6.4 OLDT Resolution
6.5 Magic Templates Transformation
6.6 Well-Founded Semantics: Alternating Fixpoint

Until now, we have seen

- forward chaining (data driven) evaluation of LP
- backward chaining (goal driven) evaluation of LP
- improvement of backward chaining by tabling

Idea of the magic templates transformation:

- take the best of both worlds:
- Efficiency of goal directedness
- Good termination properties of forward chaining
- Easy implementation of a forward chaining rule engine

Goal-directed evaluation

- Bottom-up evaluation produces many facts
$t(a, b), t(a, c), t(a, d), t(b, c), t(b, d), t(c, d)$
■ Only $\mathrm{t}(\mathrm{b}, \mathrm{c}), \mathrm{t}(\mathrm{b}, \mathrm{d})$ are relevant for query answers.

Example

$$
\begin{aligned}
& t(X, Y) \leftarrow r(X, Y) \\
& r(a, b) . \\
& r(b, c) . \\
& r(c, d) . \\
& \leftarrow \quad t(b, \text { Answer }) .
\end{aligned}
$$

Goal-directed evaluation

- Bottom-up evaluation produces many facts:
$t(a, b), t(a, c), t(a, d), t(b, c), t(b, d), t(c, d)$
- Only $\mathrm{t}(\mathrm{b}, \mathrm{c}), \mathrm{t}(\mathrm{b}, \mathrm{d})$ are relevant for query answers.
- Idea:
- Utilize information about which variables in atom are bound or free for evaluation.
- Rewrite the program into an adorned program, respecting binding patterns.
- Transform the adorned program into a set of rules that can be efficiently evaluated bottom up.

Rule Adornment

- Given a rule

$$
p\left(t_{1}, \ldots, t_{n}\right) \leftarrow p_{1}\left(t_{1,1}, \ldots, t_{1, n_{1}}\right), \ldots p_{m}\left(t_{m, 1}, \ldots, t_{m, n_{m}}\right)
$$

and a binding pattern $b p=x_{1} \cdots x_{n}$ for p, the rule adorned with $b p$,

$$
p^{b p}\left(t_{1}, \ldots, t_{n}\right) \leftarrow p_{1}^{a_{1}}\left(t_{1,1}, \ldots, t_{1, n_{1}}\right), \ldots p_{m}^{a_{m}}\left(t_{m, 1}, \ldots, t_{m, n_{m}}\right)
$$

is constructed left to right, where for extensional $p_{i}, a_{i}=\epsilon$ and otherwise in $a_{i}=x_{i, i_{1}} \cdots x_{i, n_{i}}$ we have $x_{i, j}=b$ iff $t_{i, j}$ is either a constant or equal some t_{j}^{\prime} or some $t_{i^{\prime}, j^{\prime}}$ where $i^{\prime}<i$.
■ Starting with the binding pattern $b p$ for the query atom $q\left(t_{1}, \ldots, t_{n}\right)$, all rules whose head unifies with the query atom $q\left(t_{1}, \ldots, t_{n}\right)$ are adorned with $b p$.
■ Recursively, for each adorned atom $p_{i}^{a_{i}}\left(t_{i, 1}, \ldots, t_{i, n_{i}}\right)$, all rules whose head unifies with $p_{i}\left(t_{i, 1}, \ldots, t_{i, n_{i}}\right)$ are adorned with a_{i}.

Adornment of Datalog programs

Sideways Information Passing Strategy

A sideways information passing strategy (SIPS) determines how variable bindings gained from the unification of a rule head with a goal or sub-goal are passed to the body of the rule, and how they are passed from a set of literals in the body to another literal

■ Evaluation in Prolog implements a special SIPS (head-to-body, left to right).

- Many other SIPS might be convenient.

■ W.l.o.g., the query Q is of form $\leftarrow q\left(t_{1}, \ldots, t_{n}\right)$.

Binding Pattern

A binding pattern for an n-ary predicate is a string $x_{1} \cdots x_{n}, n \geq 0$, where each $x_{i} \in\{b, f\}$ (intuitively, b means "bound" and f means "free").
The binding pattern for the query atom $q\left(t_{1}, \ldots, t_{n}\right)$ is $x_{1} \cdots x_{n}$ such that $x_{i}=b$ iff t_{i} is a constant.
Thomas Eiter and Reinhard Pichler
Foundations of DKs
Example

$\quad \mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{r}(\mathrm{X}, \mathrm{Y})$
$\mathrm{t}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}(\mathrm{X}, \mathrm{Y}), \mathrm{t}(\mathrm{Y}, \mathrm{Z})$
$\mathrm{r}(\mathrm{a}, \mathrm{b})$.
$\mathrm{r}(\mathrm{b}, \mathrm{c})$.
$\mathrm{r}(\mathrm{c}, \mathrm{d})$.
$\leftarrow \mathrm{t}(\mathrm{b}$, Answer).
$t(X, Y) \leftarrow r(X, Y)$
$r(a, b)$.
$r(b, c)$.
$\leftarrow \mathrm{t}(\mathrm{b}$, Answer $)$.

Goal-directed evaluation

$$
\begin{aligned}
& \mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{r}(\mathrm{X}, \mathrm{Y}) \\
& \mathrm{t}_{1}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}_{2}(\mathrm{X}, \mathrm{Y}), \mathrm{t}_{3}(\mathrm{Y}, \mathrm{Z}) \\
& \mathrm{r}(\mathrm{a}, \mathrm{~b}) . \\
& \mathrm{r}(\mathrm{~b}, \mathrm{c}) . \\
& \mathrm{r}(\mathrm{c}, \mathrm{~d}) . \\
& \leftarrow \mathrm{t}(\mathrm{~b}, \text { Answer }) .
\end{aligned}
$$

Goal-directed evaluation
Label occurrences of t for better distinction

Information passing
■ t \hookrightarrow_{X} r.
$\mathrm{t}_{1} \hookrightarrow_{X} \mathrm{t}_{2}$.

- $\mathrm{t}_{2} \hookrightarrow_{Y} \mathrm{t}_{3}$.

Goal-directed evaluation
Label occurrences of t for better distinction

Information passing
■ t \hookrightarrow_{X} r.
$\square \mathrm{t}_{1} \hookrightarrow_{X} \mathrm{t}_{2}$

- $\mathrm{t}_{2} \hookrightarrow_{Y} \mathrm{t}_{3}$

Adornment (bound, free)

Goal-Directed Rewriting

- Given the adorned program $P^{a d}$, transform it into a program $P_{m}^{a d}$ such that all sub-goals relevant for answering Q can be computed from additional rules in $P_{m}^{a d}$.
- Intuition: provide possible values for the bound arguments of a predicate (magic sets).

Foundations of DKS
 6. Operational Semantics of Rule Language 6.5 Magic Templates Transformatio

Method:
1 For each adorned predicate p^{a}, create a predicate magic_ p^{a} whose arity is the number of b 's in a.
2 For the query atom $q\left(t_{1}, \ldots, t_{n}\right)$ with binding pattern a, add to $P^{a d}$ a fact magic_q ${ }^{a}\left(c_{1}, \ldots, c_{m}\right)$ where c_{1}, \ldots, c_{m} are the constants among t_{1}, \ldots, t_{n} (seed)
3 Introduce rules for computing subgoals reflecting SIP
For

$$
\begin{equation*}
p^{b p}\left(t_{1}, \ldots, t_{n}\right) \leftarrow p_{1}^{a_{1}}\left(\overrightarrow{t_{1}}\right), \ldots, p_{m}^{a_{m}}\left(\overrightarrow{t_{m}}\right) \tag{1}
\end{equation*}
$$

add to $P^{a d}$ for $j \leq j<m$ rules
$\operatorname{magic} _\mathrm{p}_{j+1}^{a_{j+1}}\left(x_{1}, \ldots, x_{n_{j+1}}\right) \leftarrow \operatorname{magic}_{-} \mathrm{p}^{b p}\left(t_{1}, \ldots, t_{n}\right), p_{1}\left(\overrightarrow{t_{1}}\right), \ldots, p_{j}\left(\overrightarrow{t_{j}}\right)$
where p_{j+i} is intensional and $x_{1}, \ldots, x_{n_{j+1}}$ are the bound variables among \vec{t}_{j+1}.
4 Adapt the original rules (1) of $P^{a d}$.
Add in the body

- magic_p ${ }^{b p}\left(t_{1}, \ldots, t_{n}\right)$
- magic_- $\mathrm{p}_{j+1}^{a_{j+1}}\left(x_{1}, \ldots, x_{n_{j+1}}\right)$ for each magic rule (2) above, unless all x_{i} are bound by extensional predicates.

Example

```
t bf}(\textrm{X},\textrm{Y})\leftarrowr(\textrm{X},\textrm{Y}
\mp@subsup{\textrm{t}}{1}{}}\mp@subsup{}{}{bf}(\textrm{X},\textrm{Z})\leftarrow \mp@subsup{\textrm{t}}{2}{}\mp@subsup{}{}{bf}(\textrm{X},\textrm{Y}), \mp@subsup{\textrm{t}}{3}{}\mp@subsup{}{}{bf}(\textrm{Y},\textrm{Z}
r(a,b).
r(b,c).
r(c,d)
t(b, Answer).
```


Example

$\mathrm{t}^{b f}(\mathrm{X}, \mathrm{Y}) \leftarrow r(\mathrm{X}, \mathrm{Y})$	Goal-directed evaluation
$\mathrm{t}_{1}{ }^{b f}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}_{2}^{b f}(\mathrm{X}, \mathrm{Y}), \mathrm{t}_{3}^{b f}(\mathrm{Y}, \mathrm{Z})$	Information passing
$\mathrm{r}(\mathrm{a}, \mathrm{b})$.	$\mathrm{t} \hookrightarrow_{X} \mathrm{r}$.
$\mathrm{r}(\mathrm{b}, \mathrm{c})$.	$\mathrm{t}_{1} \hookrightarrow_{X} \mathrm{t}_{2}$.
$\mathrm{r}(\mathrm{c}, \mathrm{d})$.	$\mathrm{t}_{2} \hookrightarrow_{Y} \mathrm{t}_{3}$.
$\leftarrow \mathrm{t}(\mathrm{b}$, Answer $)$.	Adornment (bound, free)
magic_t $^{b f}(\mathrm{~b})$.	seed
magic_ $\mathrm{t}^{b f}(\mathrm{X}) \leftarrow$ magic_t $^{b f}(\mathrm{X})$.	Magic Rules

Goal-directed evaluation Information passing

■ $\mathrm{t} \hookrightarrow_{X}$ r.

- $\mathrm{t}_{1} \hookrightarrow_{X} \mathrm{t}_{2}$.
$\square \mathrm{t}_{2} \hookrightarrow_{Y} \mathrm{t}_{3}$.
Adornment (bound, free)

Example

$$
\begin{aligned}
& \mathrm{t}^{b f}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{r}(\mathrm{X}, \mathrm{Y}) \\
& \mathrm{t}_{1}^{b f}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}_{2}^{b f}(\mathrm{X}, \mathrm{Y}), \mathrm{t}_{3}^{b f}(\mathrm{Y}, \mathrm{Z})
\end{aligned}
$$

Goal-directed evaluation Information passing

$$
r(a, b)
$$

$\square \mathrm{t} \hookrightarrow_{X} \mathrm{r}$.

$$
r(b, c)
$$

$\square \mathrm{t}_{1} \hookrightarrow_{X} \mathrm{t}_{2}$

$$
r(c, d) \text {. }
$$

■ $\mathrm{t}_{2} \hookrightarrow_{Y} \mathrm{t}_{3}$
$\leftarrow \mathrm{t}(\mathrm{b}$, Answer $)$
magic_t ${ }^{b f}(\mathrm{~b})$
Adornment (bound, free) seed

Thomas Eiter and Reinhard Pichler

Foundations of DK

Example

$\mathrm{t}^{b f}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{r}(\mathrm{X}, \mathrm{Y})$	Goal-directed evaluation
$\mathrm{t}_{1}{ }^{b f}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}_{2}^{b f}(\mathrm{X}, \mathrm{Y}), \mathrm{t}_{3}{ }^{b f}(\mathrm{Y}, \mathrm{Z})$	Information passing
$\mathrm{r}(\mathrm{a}, \mathrm{b})$.	$\square \mathrm{t} \hookrightarrow_{X} \mathrm{r}$.
$\mathrm{r}(\mathrm{b}, \mathrm{c})$.	$\square \mathrm{t}_{1} \hookrightarrow_{X} \mathrm{t}_{2}$.
$\mathrm{r}(\mathrm{c}, \mathrm{d})$.	$\square \mathrm{t}_{2} \hookrightarrow_{Y} \mathrm{t}_{3}$.
$\leftarrow \mathrm{t}(\mathrm{b}$, Answer $)$.	Adornment (bound, free $)$
magic_t $^{b f}(\mathrm{~b})$.	seed
magic_ $^{b f}(\mathrm{X}) \leftarrow$ magic_t $^{b f}(\mathrm{X})$.	Magic Rules
magic_ $^{b f}(\mathrm{Y}) \leftarrow$ magic_t $^{b f}(\mathrm{X}), \mathrm{t}(\mathrm{X}, \mathrm{Y})$.	

Example

$\mathrm{t}^{\text {bf }}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{r}(\mathrm{X}, \mathrm{Y})$	Goa
$\mathrm{t}_{1}{ }^{\text {ff }}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}_{2}{ }^{\text {bf }}(\mathrm{X}, \mathrm{Y}), \mathrm{t}_{3}{ }^{\text {bf }}(\mathrm{Y}, \mathrm{Z})$	
$r(a, b)$.	
$r(b, c)$.	- $\mathrm{t}_{1} \hookrightarrow_{X}$
$r(c, d)$.	- $\mathrm{t}_{2} \hookrightarrow_{Y}$
$\leftarrow \mathrm{t}$ (b, Answer).	Adornment (b
magic_t ${ }^{\text {bf }}(\mathrm{b})$.	seed
magic_t ${ }^{\text {bf }}(\mathrm{X}) \leftarrow$ magic_ $\mathrm{t}^{\text {bf }}(\mathrm{X})$.	Magic Rules
magic_t ${ }^{\text {bf }}(\mathrm{Y}) \leftarrow \mathrm{magic}^{\text {b }}{ }^{\text {bf }}(\mathrm{X}), \mathrm{t}(\mathrm{X}, \mathrm{Y})$.	
$\mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{magic}_{\mathrm{t}}{ }^{\text {bf }}(\mathrm{X}), \mathrm{r}(\mathrm{X}, \mathrm{Y})$.	

Rewritten Rules

Example

$\mathrm{t}^{\text {bf }}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{r}(\mathrm{X}, \mathrm{Y})$	Goal-directed eva Information passing
$\mathrm{t}_{1}{ }^{\text {bf }}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}_{2}{ }^{\text {bf }}(\mathrm{X}, \mathrm{Y}), \mathrm{t}_{3}{ }^{\text {bf }}(\mathrm{Y}, \mathrm{Z})$	formation passing
$r(a, b)$.	$\square \mathrm{t} \hookrightarrow_{\text {- }} \mathrm{r}$.
$r(b, c)$.	- $\mathrm{t}_{1} \hookrightarrow_{X} \mathrm{t}_{2}$
$\mathrm{r}(\mathrm{c}, \mathrm{d})$.	- $\mathrm{t}_{2} \hookrightarrow_{Y} \mathrm{t}_{3}$
$\leftarrow \mathrm{t}$ (b, Answer).	Adornment (boun
magic_t ${ }^{\text {bf }}(\mathrm{b})$.	seed
magic_t ${ }^{\text {bf }}(\mathrm{X}) \leftarrow$ magic_ $\mathrm{t}^{\text {bf }}(\mathrm{X})$.	Magic Rules
magic_t ${ }^{\text {bf }}(\mathrm{Y}) \leftarrow$ magic_ $^{\text {bf }}(\mathrm{X}), \mathrm{t}(\mathrm{X}, \mathrm{Y})$.	
$\mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{magic}_{-} \mathrm{t}^{\text {bf }}(\mathrm{X}), \mathrm{r}(\mathrm{X}, \mathrm{Y})$.	
$\mathrm{t}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{magic}_{-} \mathrm{t}^{\text {f }}(\mathrm{X}), \mathrm{t}(\mathrm{X}, \mathrm{Y})$,	
${ }^{\text {bf }}$	Rewritten Rules

$\begin{aligned} & \mathrm{t}^{b f}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{r}(\mathrm{X}, \mathrm{Y}) \\ & \mathrm{t}_{1}{ }^{b f}(\mathrm{X}, \mathrm{Z}) \leftarrow \mathrm{t}_{2}^{b f}(\mathrm{X}, \mathrm{Y}), \mathrm{t}_{3}^{b f}(\mathrm{Y}, \mathrm{Z}) \\ & \mathrm{r}(\mathrm{a}, \mathrm{~b}) . \\ & \mathrm{r}(\mathrm{~b}, \mathrm{c}) . \\ & \mathrm{r}(\mathrm{c}, \mathrm{~d}) . \\ & \leftarrow \mathrm{t}(\mathrm{~b}, \text { Answer }) . \end{aligned}$	Goal-directed evaluation Information passing $\begin{array}{llll} & \mathrm{t} & \hookrightarrow_{X} & \mathrm{r} . \\ - & \mathrm{t}_{1} \hookrightarrow_{X} & \mathrm{t}_{2} . \\ & \mathrm{t}_{2} \hookrightarrow_{Y} & \mathrm{t}_{3} . \end{array}$ Adornment (bound, free)
magic_t ${ }^{\text {bf }}(\mathrm{b})$.	seed
$\begin{aligned} & \operatorname{magic} \mathrm{t}^{b f}(\mathrm{X}) \leftarrow \text { magic_}^{b f}(\mathrm{X}) . \\ & \operatorname{magic_ } \mathrm{t}^{b f}(\mathrm{Y}) \leftarrow \operatorname{magic}^{b f}(\mathrm{X}), \mathrm{t}(\mathrm{X}, \mathrm{Y}) . \\ & \mathrm{t}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{magic}^{b f}(\mathrm{X}), \mathrm{r}(\mathrm{X}, \mathrm{Y}) . \end{aligned}$	Magic Rules
$\begin{aligned} \mathrm{t}(\mathrm{X}, \mathrm{Z}) \leftarrow & \operatorname{magic}^{2} \mathrm{t}^{b f}(\mathrm{X}), \mathrm{t}(\mathrm{X}, \mathrm{Y}), \\ & \text { magic_t }^{b f}(\mathrm{Y}), \mathrm{t}(\mathrm{Y}, \mathrm{Z}) . \end{aligned}$	Rewritten Rules
$r(a, b) . \quad r(b, c) . \quad r(c, d)$	Extensional Fact

Magic Set Transformation with Negation

Problem with negation

- Even for stratified programs, the magic set transformation (MST) may have unstratified outcome.

Causes for unstratification of the MST

1 positive and negative occurrence of a literal in a rule body
2 multiple negative occurrences of a literal in a rule body
3 negative literal in a recursive rule

Solution (Source 1)

- distinction of contexts of problematic atoms
label occurrences of predicate p to $p_{-} 1, p_{-} 2$ etc
- replicate each rule defining p with $p_{-} i$ (also in the body), for all $p_{-} i$

Thomas Eiter and Reinhard Pichler	December 7, 2010	37/45

Foundations of DKS

6. Operational Semantics of Rule Language \quad. 5 Magic Templates Transformation

Magic Set Transformation with Negation

Problem with negation

- Even for stratified programs, the magic set transformation (MST) may have unstratified outcome.

Causes for unstratification of the MST

1 positive and negative occurrence of a literal in a rule body
2 multiple negative occurrences of a literal in a rule body
3 negative literal in a recursive rule

Solution (Source 1)

- distinction of contexts of problematic atoms: label occurrences of predicate p to $p_{-} 1, p _2$ etc
- replicate each rule defining p with $p_{-} i$ (also in the body), for all $p _i$

Magic Set Transformation with Negation

Problem with negation

- Even for stratified programs, the magic set transformation (MST) may have unstratified outcome.

Causes for unstratification of the MST

1 positive and negative occurrence of a literal in a rule body
2 multiple negative occurrences of a literal in a rule body
3 negative literal in a recursive rule

Solution (Source 1)

- distinction of contexts of problematic atoms:
label occurrences of predicate p to $p _1, p _2$ etc
- replicate each rule defining p with $p_{-} i$ (also in the body), for all $p_{-} i$

Thomas Eiter and Reinhard Pichler	December 7, 2010	37/45

Example

$a(x) \leftarrow \operatorname{not} b(x), c(x, y), b(y)$.
$\mathrm{b}(\mathrm{x}) \leftarrow \mathrm{c}(\mathrm{x}, \mathrm{y}), \mathrm{b}(\mathrm{y})$.
magic_a ${ }^{b}$ (1).
$\operatorname{magic}_{-} \mathrm{b}^{b}(\mathrm{x}) \leftarrow \operatorname{magic}_{-} \mathrm{a}^{b}(\mathrm{x})$
magic_b ${ }^{b}(\mathrm{y}) \leftarrow$
magic_a ${ }^{b}(x), \operatorname{not} b(x), c(x, y)$.
$\mathrm{a}(\mathrm{x}) \leftarrow$
magic_a $a^{b}(x)$, not $b(x), c(x, y), b(y)$.
magic_ $b^{b}(y) \leftarrow \operatorname{magic}_{-} b^{b}(x), c(x, y)$.
$\mathrm{b}(\mathrm{x}) \leftarrow \operatorname{magic}_{-} \mathrm{b}^{b}(\mathrm{x}), \mathrm{c}(\mathrm{x}, \mathrm{y}), \mathrm{b}(\mathrm{y})$.

■ b occurs both negatively and positively in the first rule.

- Resulting program unstratifiable!
$\mathrm{a}(\mathrm{x}) \leftarrow$ not $\mathrm{b} _1(\mathrm{x}), \mathrm{c}(\mathrm{x}, \mathrm{y}), \mathrm{b} _2(\mathrm{y})$.
$b_{-} 1(x) \leftarrow c(x, y), b_{-} 1(y)$.
$b_{_} 2(x) \leftarrow c(x, y), b_{-} 2(y)$.
magic_a ${ }^{b}(1)$
magic_b_1 ${ }^{b}(\mathrm{x}) \leftarrow \operatorname{magic} \mathrm{a}^{b}(\mathrm{x})$.
magic_b_2 ${ }^{b}(\mathrm{y}) \leftarrow$
$\operatorname{magic} a^{b}(x), \operatorname{not} b_{-} 1(x), c(x, y)$.
magic_b ${ }^{b}(y) \leftarrow$
$\operatorname{magic} \mathrm{a}^{b}(\mathrm{x}), \operatorname{not} \mathrm{b}(\mathrm{x}), \mathrm{c}(\mathrm{x}, \mathrm{y})$.
$\mathrm{a}(\mathrm{x}) \leftarrow$
$\operatorname{magic} \mathrm{a}^{b}(\mathrm{x}), \operatorname{not} \mathrm{b}(\mathrm{x}), \mathrm{c}(\mathrm{x}, \mathrm{y}), \mathrm{b}(\mathrm{y})$.
$\operatorname{magic} \mathrm{B}_{\mathbf{\prime}} \mathrm{i}^{b}(\mathrm{y}) \leftarrow \operatorname{magic}_{-} \mathrm{b}_{-} \mathrm{i}^{b}(\mathrm{x}), \quad \mathrm{c}(\mathrm{x}, \mathrm{y})$.
$b_{_} i(x) \leftarrow$ magic_b_i ${ }^{b}(x), c(x, y), b_{-} i(y)$
$i=1,2$
- Context labeling of predicates
- Rule replication

- Result is stratifiable!

The second and third source of unstratifiability can be eliminated on the adorned rule set (preprocessing).
6. Operational Semantics of Rule Languages
6.1 Semi-Naive Evaluation
6.2 RETE Algorithm
6.3 SLD Resolution
6.4 OLDT Resolution
6.5 Magic Templates Transformation
6.6 Well-Founded Semantics: Alternating Fixpoint
-

Magic Sets for Unstratified Programs

Also for unstratified logic programs under stable model semantics, MST can be developed.
E.g., [Faber et al., ICDT 2005/JCSS 2007]:

- Geared towards query answering, assuming that the program has some stable model.
- They introduced a suitable notion of module and independent set, to focus computation on a subprogram.

■ The method makes also body-to-head propagation of values.
■ fruitful application of magic sets e.g. in the area of data integration (INFOMIX project)

Thomas Eiter and Reinhard Pichler December 7, 2010
6. Operational Semantics of Rule Languag 6.6 Well-Founded Semantics: Alternating

Well-Founded Semantics

Recall

- Idea: leave truth value incase of cyclic negation open (e.g., $p \leftarrow \neg p$)
- Use three-valued interpretations I (true, false, undefined), viewed as sets of ground literals.
■ Employ unfounded sets to make atoms definitely false; a unique maximal (=greatest) unfounded set exists for any interpretation I
- Define monotonic operators $\mathbf{T}_{S}(I)$ (immediate consequences), \mathbf{U}_{S} (greatest unfounded set), $\mathbf{W}_{S}=\mathbf{T}_{S} \cup \mathbf{U}_{S}$
■ The well-founded model of a set of normal clauses S is given by $l f p\left(\mathbf{W}_{S}\right)$; it may be partial or total

Problem

Computing unfounded set \mathbf{U}_{S} (guessing)
A possible solution: Alternating Fixpoint Procedure

The Alternating Fixpoint Procedure

Central Idea

- Iteratively build up a set of negative conclusions \tilde{A}, which underestimates the set of atoms that are false in WFS.
- The derivation of positive conclusions from the eventual \tilde{A} straightforward.

Method:

- Each iteration is a two-phase process

■ Suppose \tilde{I} is an underestimate of the negative conclusions under WFS 1 Transform \tilde{I} into an overestimate by

$$
\tilde{\mathbf{S}}_{P}(\tilde{I}):=\overline{l f p\left(\mathbf{T}_{P_{\tilde{I}}}\right)}:=\neg \cdot\left(H B_{P}-l f p\left(\mathbf{T}_{P_{\tilde{I}}}\right)\right),
$$

where $P_{\tilde{I}}=P \cup \tilde{I}$, viewing negated predicates as new predicate symbols ($H B_{P} \ldots$. Herbrand base of P)
2 Transform the overestimate back to an underestimate by

$$
\mathbf{A}_{P}(\tilde{I}):=\tilde{\mathbf{S}}_{P}\left(\tilde{\mathbf{S}}_{P}(\tilde{I})\right)
$$

- We have $\tilde{I} \subseteq \mathbf{A}_{P}(\tilde{I})=\tilde{\mathbf{S}}_{P}^{2}(\tilde{I})$; initially, set $\tilde{I}=\emptyset$.

Alternating Fixpoint Procedure: Example

- $H B_{P}=\{a, b, c, p, q, r, s, t\}$
$a \leftarrow c, \neg b$.
- $\tilde{I}_{0}=\emptyset$
$b \leftarrow \neg a$.
c.
$p \leftarrow q, \neg s$.
$p \leftarrow r, \neg s$
$p \leftarrow t$.
$q \leftarrow p$.
$r \leftarrow q$.
$r \leftarrow \neg c$.
- lfp $\left(\mathbf{T}_{P \cup \tilde{I}_{0}}\right)=\{c\}$
- $\tilde{I}_{1}=\tilde{\mathbf{S}}_{P}\left(\tilde{I}_{0}\right)=\neg \cdot\left(H B_{P}-l f p\left(\mathbf{T}_{P \cup \tilde{I}_{0}}\right)\right)=$ $\{\neg a, \neg b, \neg p, \neg q, \neg r, \neg s, \neg t\}$
- lfp $\left(\mathbf{T}_{P \cup \tilde{I}_{1}}\right)=\{c, a, b\}$
- $\tilde{I}_{2}=\tilde{\mathbf{S}}_{P}\left(\tilde{I}_{1}\right)=\neg \cdot\left(H B_{P}-l f p\left(\mathbf{T}_{P \cup \tilde{I}_{1}}\right)\right)=$ $\{\neg p, \neg q, \neg r, \neg s, \neg t\}$
- $\tilde{I}_{3}=\tilde{I}_{1}$ and $\tilde{I}_{4}=\tilde{I}_{2}$. Fixpoint reached!
- The well-founded model is $\{c, \neg p, \neg q, \neg r, \neg s, \neg t\}$.

Not

■ For propositional program P, the AFP computation is polynomial.

- It is unknown whether for such P, the well-founded model is computable in linear time.

Foundations of DKS

Alternating Fixpoint Procedure

[^0]: Proposition (Independence of the Computation Rule)
 Let P be a definite program and G be a definite goal. Suppose there is an SLD-refutation of $P \cup\{G\}$ with computed answer ϑ. Then, for every computation rule R, there exists an SLD-refutation of $P \cup\{G\}$ using the atom selected by R as selected atom in each step with computed answer ϑ^{\prime} such that $G \vartheta$ is a variant of $G \vartheta^{\prime}$.

