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Foundations of DKS 6. Operational Semantics of Rule Languages

Evaluation Strategies

There are two basic evaluation strategies of rule bases:

1 Forward Chaining: In the spirit of Modus Ponens:

ϕ, ϕ⇒ ψ

ψ

Apply the rules to conclude new facts (cf. immediate consequence
operator TS).
This leads to a bottom-up evaluation of rules, from the facts to the desired
conclusion.

2 Backward Chaining: In the spirit of Abductive Reasoning:

ψ, ϕ⇒ ψ

ϕ

Reduce proving ψ via a rule with consequent ψ to proving its antecedent ϕ.
This leads to a top-down evaluation of rules, from a desired conclusion
(goal) towards the facts.

Mixed forms of evaluation exist (realizing a bidirectional search).
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Foundations of DKS 6. Operational Semantics of Rule Languages 6.1 Semi-Naive Evaluation

Semi-Naive Evaluation

Recall
Datalog: a special case of Logic Programming

No functions symbols, only constants; no negation
Partitioning of the predicate symbols of a program P , called the schema of
P , into

• the set ext(P ) of extensional predicates, and
• the set int(P ) of intensional predicates.

Extensional predicates can not occur in rule heads. By default, all
predicates occurring only in rule heads are assumed to be extensional.
Usually, all variables in the consequent of a clause also occur in the
antecedent (range-restriction, safety).

Semantically, a fact-free Datalog program P specifies a mapping from each
Herbrand interpretation I of ext(P ) to one of int(P ) given by
HI (lfp(TP∪I|ext(P ))).
(I|ext(P ) . . . restriction of I to ext(P )).
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Example

Program P (including extensional facts):

feeds_milk(betty ).

lays_eggs(betty ).

has_spines(betty ).

monotreme(X)←
lays_eggs(X), feeds_milk(X).

echidna(X)←
monotreme(X), has_spines(X).
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Example

Program P (including extensional facts):

feeds_milk(betty ).

lays_eggs(betty ).

has_spines(betty ).

monotreme(X)←
lays_eggs(X), feeds_milk(X).

echidna(X)←
monotreme(X), has_spines(X).

Schema of P :
{ feeds_milk, lays_eggs, has_spines, monotreme, echidna }
Calculation of lfp(TP ) (b = betty):

TP ↑ 1 = {b}feeds, {b}lays, {b}spines, {}monotreme, {}echidna

TP ↑ 2 = {b}feeds, {b}lays, {b}spines, {b}monotreme, {}echidna

TP ↑ 3 = {b}feeds, {b}lays, {b}spines, {b}monotreme, {b}echidna

= lfp(TP )
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Naive Evaluation

Straight implementation of the immediate consequence operator TP :

I0 := ∅
I1 := ground_fact s (P )
i := 1
wh i l e Ii 6= Ii−1 do

i := i + 1
Ii := Ii−1
wh i l e (R = Ru l e s . next ( ) )

I n s t s := i n s t a n t i a t i o n s (R , Ii−1 )
wh i l e ( i n s t = I n s t s . next ( ) )

Ii := Ii ∪ head(inst)
r e t u r n Ii

instantiations (R, I): all instances r of rules in R s.t. body(r) is satisfied by I.

Disadvantage

Refiring of rules (e.g., all facts are reobtained in each step; monotreme(betty) again
in Step 3).

Idea: only consider rules which involve newly derived atoms.
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Semi-Naive Evaluation

incremental forward chaining:

KnownFacts := ∅
I nk := { Fact | ( Fact ← t r u e ) ∈ P }
wh i l e ( I nk 6= ∅)

I n s t s := i n s t a n t i a t i o n s (R , KnownFacts , I nk )
KnownFacts := KnownFacts ∪ I nk
Ink := heads ( I n s t s )

r e t u r n KnownFacts

instantiations (R, KnownFacts, Ink): all instances r of rules in R s.t. body(r) is satisfied
by KnownFacts ∪ Ink using some fact from Ink.

Further improvements: e.g.,
• use only rule instances with head not in KnownFacts ∪ Ink
• store partially instantiated rules (incremental satisfaction of the body)
• in addition, share common body parts between rules (; RETE Algorithm)

Other view: map Datalog to Relational Algebra
• Search solution for system of equations, using algebraic methods (e.g.,

Gauß-Seidel iteration (see [Ceri, Gottlob, Tanca 1990])

Extensive treatment: [Abiteboul et al., 1995]
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RETE Algorithm

By Charles Forgy (1990), for forward chaining (production) systems
Storage of partially instantiated rules
Sharing of instantiated literals among similar rules
Several optimizations, industrial use (Clips, Drools, JRules, ...)

Basic approach:

Use
• production memory PM (rule store) and
• working memory WM (current facts)

Different kinds of nodes:
• alpha-node: represents a single atomic condition in rule bodies (across

rules); it contains all WM elements that make it true;
• beta-node: represents a conjunction of alpha-nodes; it contains tuples of

WM elements satisfying them.
• join-node: for computational purposes (combining alpha and/or beta nodes)
• production-node: one per rule, holding all tuples of WM elements that

satisfy its body.
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Example

Working memory:
w1: anna feeds milk
w2: anna lays eggs
w3: anna married_to pierre
w4: pierre is poisonous
w5: betty feeds milk
w6: betty lays eggs
w7: betty has spines
w8: tux has wings
w9: tux lays eggs

Production memory:
p1: X lays eggs, X has wings ==>
      X is_a bird
p2: X feeds milk ==> X is_a mammal
p3: X feeds milk, X lays eggs ==>
      X is_a monotreme
p4: X feeds milk, X lays eggs,
      X has_spines ==> X is_a echidna
p5: X feeds milk, X lays eggs, 
      X married_to Y, Y is poisonous
      ==> X is_a platypus, 
             Y is_a platypus

X lays eggs

X feeds milk

w2, w6, w9

w1, w5

w1^w2, w5^w6

(w1^w2), (w5^w6)

X has spines

w7

X has_husband Y

w3

X has wings

w8

Y is poisonous

w4

w8^w9

(X lays eggs), 
(X feeds milk),

(X married_to Y)
(Y is poisonous)

(X lays eggs), 
(X feeds milk),

(X married_to Y)

(X lays eggs), 
(X feeds milk),
(X has spines)

X is_a monotreme

X is_a platypus,
Y is_a platypus

(X lays eggs), 
(X feeds milk),

X is_a echidna

(X lays eggs), 

(X lays eggs),
(X has wings)

X is_a bird

X is_a mammal

dummy  top
node

w2, w6, w9

w5^w6^w7

w1^w2^w3

w1^w2^w3^w4

join on X

join on X

join on X join on X

join on Y

w5^w6^w7

w8^w9

w1, w5

w1^w2^w3^w4
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SLD Resolution: Principles

goal driven evaluation of logic programs (backward chaining)
to show that P |= ϕ, show that P ∪ {¬ϕ} is unsatisfiable
uses unification and resolution: basically,

ϕ1 ∨ ψ, ¬ψ ∨ ϕ2

ϕ1 ∨ ϕ2

(ψ . . . atomic formula)
recall that ϕ← ψ is equivalent to ϕ ∨ ¬ψ
SLD resolution: Selected Literal Definite Clause
resolution with backtracking is used as control mechanism in Prolog

Observe

A goal ← a1, . . . , an is a syntactical variant of the first-order sentence
∀x1 · · · ∀xm(⊥ ← a1 ∧ . . . ∧ an) where x1, . . . , xm are all variables
occurring in a1, . . . an.
This is equivalent to ¬∃x1 · · · ∃xm(a1 ∧ . . . ∧ an).
P |= ∃x1 · · · ∃xm(a1 ∧ . . . ∧ an) iff P ∪ {← a1, . . . , an} is unsatisfiable
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Definition (SLD Resolvent)

Let C be the clause b← b1, . . . , bk and G a goal
← a1, . . . , am, . . . , an

such that G and C share no variables (otherwise, rename variables in C).

Then G′ is an SLD resolvent of G and C using ϑ, if G′ is the goal
← (a1, . . . am−1, b1, . . . bk, am+1, . . . an)ϑ

where ϑ is the mgu of am and b.

Definition (SLD Derivation)

An SLD derivation of P ∪ {G} consists of
a sequence G0, G1, . . . of goals where G = G0,
a sequence C1, C2, . . . of variants of program clauses of P , and
a sequence ϑ1, ϑ2, . . . of mgu’s such that Gi+1 is a resolvent from Gi and
Ci+1 using ϑi+1.

An SLD-refutation is a finite SLD-derivation whose last goal is empty.

Thomas Eiter and Reinhard Pichler December 7, 2010 14/45



Foundations of DKS 6. Operational Semantics of Rule Languages 6.3 SLD Resolution

Definition (SLD Tree)

An SLD tree T w.r.t. a program P and a goal G is a labeled tree where
every node of T is a goal,
the root of T is G, and
if G is a node in T then G has a child G′ connected to G by an edge
labeled (C, ϑ) iff G′ is an SLD-resolvent of G and C using ϑ.

Definition (Computed Answer)

Given a definite program P and a definite goal G, a computed answer ϑ for
P ∪ {G} is the substitution obtained by restricting the composition of the
sequence of mgu’s ϑ1, . . . ϑn used in some SLD-refutation of P ∪ {G} to the
variables occurring in G.
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Example

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)
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3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t
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:- t(1,A)

:- e(1,A)

1, {X/1, Y/A}
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Example

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)

:- e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}
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Example

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)

:- e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}

:- t(1,Y),e(Y,A)

2,{X/1,Z/A}
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Example

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)

:- e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}

:- t(1,Y),e(Y,A)

2,{X/1,Z/A}

:- e(1,Y),e(Y,A)

1,{X/1,Y'/Y}
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Example

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)

:- e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}

:- t(1,Y),e(Y,A)

2,{X/1,Z/A}

:- e(1,Y),e(Y,A)

1,{X/1,Y'/Y}

:- e(2,A)

3,{Y/2}
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Computation rules

In each resolution step, the selected literal and the clause C are chosen
non-deterministically.

Definition (Computation Rule)

Call a function that maps to each goal one of its atoms a computation rule.

Proposition (Independence of the Computation Rule)

Let P be a definite program and G be a definite goal. Suppose there is an
SLD-refutation of P ∪ {G} with computed answer ϑ. Then, for every
computation rule R, there exists an SLD-refutation of P ∪ {G} using the atom
selected by R as selected atom in each step with computed answer ϑ′ such that
Gϑ is a variant of Gϑ′.
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Let a correct answer for a program P and goal G be any substitution ϑ such
that P |= Gϑ.

Proposition (Soundness and Completeness of Logic Programming)

Let P be a program and let Q be a query. Then
every computed answer of P and G is a correct answer, and
for every correct answer σ of P and G there exists a computed answer ϑ
such that ϑ is more general that σ.

Definition (SLD Procedure)

An SLD-procedure is any deterministic SLD-resolution algorithm constrained by
a computation rule and
an order for visiting the finite branches of an SLD-tree (search strategy).

The completeness of a SLD procedure depends on the search strategy.
To be complete, each leaf of a (finite) branch must be visited after finitely
many steps (fairness).
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Example (cont’d)

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)

:- e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}

:- t(1,Y),e(Y,A)

2,{X/1,Z/A}

:- e(1,Y),e(Y,A)

1,{X/1,Y'/Y}

:- e(2,A)

3,{Y/2}

:-

4,{A/1}
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Example (cont’d)

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)

:- e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}

:- t(1,Y),e(Y,A)

2,{X/1,Z/A}

:- e(1,Y),e(Y,A)

1,{X/1,Y'/Y}

:- e(2,A)

3,{Y/2}

:-

4,{A/1}

:- t(1,Y'),
   e(Y',Y),
   e(Y,A)

2',{X'/1,Z'/Y}

...

....
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Example (cont’d)

1: t(X,Y)←e(X,Y).
2: t(X,Z)←t(X,Y),e(Y,Z).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

2

1

e e

t

t

t t

:- t(1,A)

:- e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}

:- t(1,Y),e(Y,A)

2,{X/1,Z/A}

:- e(1,Y),e(Y,A)

1,{X/1,Y'/Y}

:- e(2,A)

3,{Y/2}

:-

4,{A/1}

:- t(1,Y'),
   e(Y',Y),
   e(Y,A)

2',{X'/1,Z'/Y}

...

....Problem: Non-termination:
t(1,2),t(1,1),t(1,2),t(1,1),...
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Example

2: t(X,Z)←t(X,Y),e(Y,Z).
1: t(X,Y)←e(X,Y).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

:-t(1,A)

:-e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}

:-t(1,Y),e(Y,A)

2,{X/1,Z/A}

:-e(1,Y),e(Y,A)

1,{X/1,Y/Y}

:-e(2,A)

3,{Y/2}

:-

4,{A/1}

:-t(1,Y'),
  e(Y',Y),
  e(Y,A)

2',{X'/1,Z'/Y}

...

.... Non-Termination!

and no solutions
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Example

1: t(X,Y)←e(X,Y).
2: t(X,Z)←e(Y,Z),t(X,Y).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

:-t(1,A)

:-e(1,A)

1, {X/1, Y/A}

:-

3, {A/2}

:-e(Y,A),t(1,Y)

2,{X/1,Z/A}

:-t(1,1)

3,{Y/1,A/2}

:-t(1,2)

2',{Y'/2,A/1}

...

2

:-e(1,1)

1

false

:-e(Y',1),t(1,Y')
4,{Y'/2}

t(1,2)

2',{X'/1,Z'/1}

:-e(1,2)
1

:-
1 ...

2

Non-termination due to
circular data:
Solution A=1 is not found
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OLDT Resolution

Non-termination of SLD resolution due to infinite branches
Infinite branches B = [G0, G1, . . .] due to

1 variants of the same goal on the infinite branch, i.e., in some subsequence
[Gi0 , Gi1 , . . .], for all j, k ∈ N, Gij and Gik contain an equal atom (up to
renaming of variables) or

2 subsuming goals on the infinite branch, i.e. in some subsequence
[Gi0 , Gi1 , . . .], for all j ∈ N, Gij contains an atom which is a real instance
of an atom in Gij−1 .

Ideas

Avoid repeated evaluation of a subgoal on the same computation path
through tabling or memorization, similar as in dynamic programming.
Side effect: no repeated evaluations of subgoals at all.
Use designated tabled predicates.
Make distinction between solution nodes (goals) and lookup nodes (goals).
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OLDT – Basic Elements

Definition (OLDT-structure)

An OLDT-structure (T, TS , TL) consists of
an SLD-tree T ,
a solution table TS , i.e., a set of pairs (a, TS(a)) where

• a is an atom and
• TS(a) is a list of instances of a called the solutions of a, and

a lookup table TL, i.e., a set of pairs (a, TL(a)) where a is an atom and
TL(a) is a pointer to an element of TS(a′) such that a is an instance of a′.

TL contains one pair (a, TL(a)) for an atom a occurring as a leftmost atom
of a goal in T .

The initial OLDT-structure has as T the goal and void TS and TL.
The OLDT-structure is stepwise extended, using SLD resolution and
lookup, employing a left-to-right computation rule.
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OLDT-Extension

The extension of an OLDT structure (T, TS , TL) consists of three steps.

1 resolution step: a new goal G′ is added to T , resolving some goal
G =← a1, . . . , an in T that is
(i) a non-tabled goal or a solution goal, with a clause C, resp.
(ii) a lookup goal with the atom a from TL(a1).

2 classification step: G′ is
• a non-table goal, if the leftmost atom of G′, a′1, has not a table predicate.
• a table goal otherwise, and is

a lookup goal, if TS has some (a, TS(a)) where a is more general than a′1.
Then, add (a′1, p) to TL where p points to the first element of TS(a).
a solution node, if TS contains no (a, TS(a)) where a is more general than a′1.
In this case, add (a′1, [ ]) to TL.

3 table update step: add new solutions to TS :
• Suppose G′ =← a2, . . . , an results from some table goal

G =← a1, . . . , an in T by an SLD resolution G0, G1, . . . , Gm with
ϑ1, ϑ2, . . . , ϑm.

• Add the restriction ϑ of ϑ1 · · ·ϑm to the variables of a1 as answer for a1 to
TS(a1).
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Example

1: t(X,Y)←e(X,Y).
2: t(X,Y)←t(X,Z),e(Z,Y).
3: e(1,2).
4: e(2,1).
5: ←t(1,A).

Let t be a table
predicate

:- t(1,A)

:- e(1,A)

1,{X/1,Y/A}

:-

3, {A/2}

:- t(1,Z),e(Z,A)

2,{X/1,Y/A}

:- e(1,Z),e(Z,A)

1,{X/1,Y/Z}

:- e(2,A)

3,{Z/2}

:-

4,{A/1}

:- t(1,Z'),
   e(Z',Z),
   e(Z,A)

2',{X'/1,Y'/Z}

...

....
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{A/1}

Lookup-Node
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Thomas Eiter and Reinhard Pichler December 7, 2010 26/45

Foundations of DKS 6. Operational Semantics of Rule Languages 6.4 OLDT Resolution

Completeness

OLDT-resolution is not complete in general
p ( x ) ← q ( x ) , r .
q ( s ( x ) ) ← q ( x ) .
q ( a ) ← .
r ← .
← p ( x ) .

Problem

Reduction steps are only applied to lookup goal ← q(x′), r.
No solutions for p(x) will be produced in finite time.

Remedy

Special search strategy (multi-stage depth first, MSDFS): Order the nodes in
the OLDT tree, avoid repeating reduction of a node if other nodes are available.

Above: avoid reducing the lookup goal ← q(x′), r. twice, and reduce ← r.

Under MSDFS, OLDT-resolution becomes complete.
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Outline

6. Operational Semantics of Rule Languages
6.1 Semi-Naive Evaluation
6.2 RETE Algorithm
6.3 SLD Resolution
6.4 OLDT Resolution
6.5 Magic Templates Transformation
6.6 Well-Founded Semantics: Alternating Fixpoint
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Magic Templates Transformation

Until now, we have seen:

forward chaining (data driven) evaluation of LP
backward chaining (goal driven) evaluation of LP
improvement of backward chaining by tabling

Idea of the magic templates transformation:

take the best of both worlds:
• Efficiency of goal directedness
• Good termination properties of forward chaining
• Easy implementation of a forward chaining rule engine
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Example

t(X,Y) ← r(X,Y)
t(X,Z) ← t(X,Y), t(Y,Z)
r(a,b).
r(b,c).
r(c,d).

← t(b, Answer).

Goal-directed evaluation

Bottom-up evaluation produces many facts:
t(a,b), t(a,c ), t(a,d), t(b,c ), t(b,d), t(c,d)

Only t(b,c ), t(b,d) are relevant for query answers.

Idea:
• Utilize information about which variables in atom are bound or free for

evaluation.
• Rewrite the program into an adorned program, respecting binding patterns.
• Transform the adorned program into a set of rules that can be efficiently

evaluated bottom up.
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Adornment of Datalog programs

Sideways Information Passing Strategy
A sideways information passing strategy (SIPS) determines how variable
bindings gained from the unification of a rule head with a goal or sub-goal are
passed to the body of the rule, and how they are passed from a set of literals in
the body to another literal.

Evaluation in Prolog implements a special SIPS (head-to-body, left to
right).
Many other SIPS might be convenient.
W.l.o.g., the query Q is of form ← q(t1, . . . , tn).

Binding Pattern
A binding pattern for an n-ary predicate is a string x1 · · ·xn, n ≥ 0, where each
xi ∈ {b, f} (intuitively, b means “bound” and f means “free”).
The binding pattern for the query atom q(t1, . . . , tn) is x1 · · ·xn such that
xi = b iff ti is a constant.
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Rule Adornment

Given a rule

p(t1, . . . , tn)← p1(t1,1, . . . , t1,n1), . . . pm(tm,1, . . . , tm,nm)

and a binding pattern bp = x1 · · ·xn for p, the rule adorned with bp,

pbp(t1, . . . , tn)← pa1
1 (t1,1, . . . , t1,n1), . . . p

am
m (tm,1, . . . , tm,nm

),

is constructed left to right, where for extensional pi, ai = ε and otherwise
in ai = xi,i1 · · ·xi,ni

we have xi,j = b iff ti,j is either a constant or equal
some t′j or some ti′,j′ where i′ < i.
Starting with the binding pattern bp for the query atom q(t1, . . . , tn), all
rules whose head unifies with the query atom q(t1, . . . , tn) are adorned with
bp.
Recursively, for each adorned atom pai

i (ti,1, . . . , ti,ni), all rules whose head
unifies with pi(ti,1, . . . , ti,ni) are adorned with ai.
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Example

t(X,Y) ← r(X,Y)
t(X,Z) ← t(X,Y), t(Y,Z)
r(a,b).
r(b,c).
r(c,d).
← t(b, Answer).

Goal-directed evaluation

Label occurrences of t for
better distinction

Information passing
t ↪→X r.
t1 ↪→X t2.
t2 ↪→Y t3.

Adornment (bound, free)
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Goal-Directed Rewriting

Given the adorned program P ad, transform it into a program P ad
m such that

all sub-goals relevant for answering Q can be computed from additional
rules in P ad

m .
Intuition: provide possible values for the bound arguments of a predicate
(magic sets).
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Method:

1 For each adorned predicate pa, create a predicate magic_pa whose arity is the
number of b’s in a.

2 For the query atom q(t1, . . . , tn) with binding pattern a, add to P ad a fact
magic_qa(c1, . . . , cm) where c1, . . . , cm are the constants among t1, . . . , tn

(seed).

3 Introduce rules for computing subgoals reflecting SIP.
For

pbp(t1, . . . , tn)← pa1
1 (~t1), . . . , p

am
m ( ~tm) (1)

add to P ad for j ≤ j < m rules

magic_paj+1
j+1 (x1, . . . , xnj+1)← magic_pbp(t1, . . . , tn), p1(~t1), . . . , pj(~tj) (2)

where pj+i is intensional and x1, . . . , xnj+1 are the bound variables among ~tj+1.

4 Adapt the original rules (1) of P ad.
Add in the body

• magic_pbp(t1, . . . , tn),
• magic_paj+1

j+1 (x1, . . . , xnj+1) for each magic rule (2) above, unless all xi are
bound by extensional predicates.
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Example

tbf(X,Y) ← r(X,Y)
t1

bf(X,Z) ← t2
bf(X,Y), t3

bf(Y,Z)
r(a,b).
r(b,c).
r(c,d).
← t(b, Answer).

Goal-directed evaluation
Information passing

t ↪→X r.
t1 ↪→X t2.
t2 ↪→Y t3.

Adornment (bound, free)
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seed
Magic Rules

Rewritten Rules

Extensional Facts

Thomas Eiter and Reinhard Pichler December 7, 2010 36/45

Foundations of DKS 6. Operational Semantics of Rule Languages 6.5 Magic Templates Transformation

Example

tbf(X,Y) ← r(X,Y)
t1

bf(X,Z) ← t2
bf(X,Y), t3

bf(Y,Z)
r(a,b).
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Goal-directed evaluation
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t ↪→X r.
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Evaluation:
magic_tbf(b).
t(b,c).
magic_tbf(c).
t(c,d).
magic_tbf(d).
t(b,d).
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Magic Set Transformation with Negation

Problem with negation

Even for stratified programs, the magic set transformation (MST) may
have unstratified outcome.

Causes for unstratification of the MST

1 positive and negative occurrence of a literal in a rule body
2 multiple negative occurrences of a literal in a rule body
3 negative literal in a recursive rule

Solution (Source 1)

distinction of contexts of problematic atoms:
label occurrences of predicate p to p_1, p_2 etc
replicate each rule defining p with p_i (also in the body), for all p_i
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Example

a(x) ← not b(x), c(x,y), b(y).
b(x) ← c(x,y), b(y).

magic_ab(1).
magic_bb(x) ← magic_ab(x)
magic_bb(y) ←

magic_ab(x), not b(x), c(x,y).
a(x) ←

magic_ab(x), not b(x), c(x,y), b(y).
magic_bb(y) ← magic_bb(x), c(x,y).
b(x) ← magic_bb(x), c(x,y), b(y).

b occurs both
negatively and
positively in the first
rule.

magic_ab

magic_bb

a

b

Resulting program
unstratifiable!

Thomas Eiter and Reinhard Pichler December 7, 2010 38/45



Foundations of DKS 6. Operational Semantics of Rule Languages 6.5 Magic Templates Transformation

a(x) ← not b_1(x), c(x,y), b_2(y).
b_1(x) ← c(x,y), b_1(y).
b_2(x) ← c(x,y), b_2(y).

magic_ab(1).
magic_b_1b(x) ← magic_ab(x).
magic_b_2b(y) ←

magic_ab(x), not b_1(x), c(x,y).
magic_bb(y) ←

magic_ab(x), not b(x), c(x,y).
a(x) ←

magic_ab(x), not b(x), c(x,y), b(y).
magic_b_ib(y) ← magic_b_ib(x), c(x,y).
b_i(x) ← magic_b_ib(x), c(x,y), b_i(y).
i=1,2

Context labeling of
predicates
Rule replication

magic_ab

magic_b_1b

a

b_1

magic_b_2b b_2

Result is stratifiable!

The second and third source of unstratifiability can be eliminated on the
adorned rule set (preprocessing).
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Magic Sets for Unstratified Programs

Also for unstratified logic programs under stable model semantics, MST can be
developed.

E.g., [Faber et al., ICDT 2005/JCSS 2007]:

Geared towards query answering, assuming that the program has some
stable model.
They introduced a suitable notion of module and independent set, to focus
computation on a subprogram.
The method makes also body-to-head propagation of values.
fruitful application of magic sets e.g. in the area of data integration
(INFOMIX project).
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Well-Founded Semantics

Recall

Idea: leave truth value incase of cyclic negation open (e.g., p← ¬p)
Use three-valued interpretations I (true, false, undefined), viewed as sets of
ground literals.
Employ unfounded sets to make atoms definitely false; a unique maximal
(=greatest) unfounded set exists for any interpretation I.
Define monotonic operators TS(I) (immediate consequences), US

(greatest unfounded set), WS = TS ∪ US

The well-founded model of a set of normal clauses S is given by lfp(WS); it
may be partial or total

Problem
Computing unfounded set US (guessing)

A possible solution: Alternating Fixpoint Procedure
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The Alternating Fixpoint Procedure

Central Idea

Iteratively build up a set of negative conclusions Ã, which underestimates
the set of atoms that are false in WFS.
The derivation of positive conclusions from the eventual Ã straightforward.

Method:

Each iteration is a two-phase process
Suppose Ĩ is an underestimate of the negative conclusions under WFS

1 Transform Ĩ into an overestimate by

S̃P (Ĩ) := lfp(TP
Ĩ
) := ¬ · (HBP − lfp(TP

Ĩ
)),

where PĨ = P ∪ Ĩ, viewing negated predicates as new predicate symbols
(HBP . . . Herbrand base of P )

2 Transform the overestimate back to an underestimate by

AP (Ĩ) := S̃P (S̃P (Ĩ))

We have Ĩ ⊆ AP (Ĩ) = S̃2
P (Ĩ); initially, set Ĩ = ∅.
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Alternating Fixpoint Procedure

 

Ĩ

W̃ (negative) W ? (undefined) W+ (positive)
. . .

S̃P (Ĩ)

S̃2i+1
P (Ĩ)

. . .

Ãi
P (Ĩ) = S̃2i

P (Ĩ)

S̃5
P (Ĩ)

Ã2
P (Ĩ) = S̃4

P (Ĩ)

S̃3
P (Ĩ)

ÃP (Ĩ) = S̃2
P (Ĩ)
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Alternating Fixpoint Procedure: Example

a← c,¬b.
b← ¬a.
c.

p← q,¬s.
p← r,¬s.
p← t.
q ← p.
r ← q.
r ← ¬c.

HBP = {a, b, c, p, q, r, s, t}
Ĩ0 = ∅
lfp(TP∪Ĩ0

) = {c}
Ĩ1 = S̃P (Ĩ0) = ¬ · (HBP − lfp(TP∪Ĩ0

)) =
{¬a,¬b,¬p,¬q,¬r,¬s,¬t}
lfp(TP∪Ĩ1

) = {c, a, b}
Ĩ2 = S̃P (Ĩ1) = ¬ · (HBP − lfp(TP∪Ĩ1

)) =
{¬p,¬q,¬r,¬s,¬t}
Ĩ3 = Ĩ1 and Ĩ4 = Ĩ2. Fixpoint reached!

The well-founded model is {c,¬p,¬q,¬r,¬s,¬t}.

Note

For propositional program P , the AFP computation is polynomial.
It is unknown whether for such P , the well-founded model is computable in
linear time.
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