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Minimal Model Semantics of Definite Rules

Recall

Definite programs are finite sets of definite clauses, also called definite
rules: A← B1 ∧ . . . ∧Bn with n ≥ 0.
Definite programs admit a very natural semantics definition:

• Each program Π is satisfiable.
• The intersection of all its Herbrand models is a model of Π.
• This is the minimal model of Π.
• Precisely the atoms implied by Π are true in the minimal model.

Definite rules are a special case of universal and inductive formulas.
The interesting model-theoretic properties of definite rules are inherited
from these more general classes of formulas.

Theorem
Each set S of definite rules (i.e., each definite program) has a unique minimal
Herbrand model. This model is the intersection of all Herbrand models of S.
It satisfies precisely those ground atoms that are logical consequences of S.
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Minimal Models beyond Herbrand Interpretations

Generalisation

Minimal Models are also defined for non-Herbrand interpretations
They make sense also for generalizations of non-inductive formulas
Uniqueness and intersection property might be lost
Still the results can be useful

Definition (Generalised Rules)

A generalised rule is a formula of the form ∀∗(ψ ← ϕ) where ϕ is positive and ψ
is positive and quantifier-free.

Example
The rule (p(a) ∨ p(b)← >) is a generalised rule (which is indefinite).

Generalised rules are not necessarily universal: p(a)← ∀x.q(x)
Thomas Eiter and Reinhard Pichler November 30, 2010 5/51
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Supportedness in Minimal Models

Definition (Supported Atoms)

Let I be an interpretation, V a variable assignment in dom(I) and
A = p(t1, . . . , tn) an atom, n ≥ 0.

an atom B supports A in I[V ] iff
I[V ] |= B and B = p(s1, . . . , sn) and sI[V ]

i = t
I[V ]
i for 1 ≤ i ≤ n.

a set C of atoms supports A in I[V ] iff
I[V ] |= C and there is an atom in C that supports A in I[V ].
a generalised rule ∀∗(ψ ← ϕ) supports A in I iff for each variable
assignment V with I[V ] |= ϕ there is an implicant C of ψ that supports A
in I[V ].

Informally, an implicant C of ψ is a set of atoms which logically implies ψ
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Implicant of a Positive Quantifier-Free Formula

Definition (Pre-Implicant and Implicant)

Let ψ be a positive quantifier-free formula. The set primps(ψ) of pre-implicants
of ψ is defined as follows:

primps(ψ) = { {ψ} } if ψ is an atom or > or ⊥.
primps(¬ψ1) = primps(ψ1).
primps(ψ1 ∧ ψ2) = { C1 ∪ C2 | C1 ∈ primps(ψ1), C2 ∈ primps(ψ2) }.
primps(ψ1 ∨ ψ2) = primps(ψ1⇒ψ2) = primps(ψ1) ∪ primps(ψ2).

The set of implicants of ψ is obtained from primps(ψ) by removing all sets
containing ⊥ and by removing > from the remaining sets.

Lemma

1 If C is an implicant of ψ, then C |= ψ.

2 For any interpretation I, if I |= ψ then there exists an implicant C of ψ
with I |= C.
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Supportedness Result

Theorem (Minimal Models Satisfy Only Supported Ground Atom)

Let S be a set of generalised rules. If I is a minimal model of S, then for each
ground atom A with I |= A there is a generalised rule in S that supports A in I.

Example
Consider a signature containing a unary relation symbol p and constants a and b.
Let S = { (p(b)← >) }.
The interpretation I with dom(I) = {1} and aI = bI = 1 and pI = {(1)} is a
minimal model of S.
Moreover, I |= p(a). By the theorem, p(a) is supported in I by p(b), which can
be confirmed by applying the definition.

Non-Minimal Supportedness
The converse of the Theorem fails, e.g. S = { (p← p) }.
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Proof
Assume that I is a minimal model of S with domain D and there is a ground
atom A with I |= A, such that no r ∈ S supports A in I.
Let I ′ be identical to I except that I ′ 6|= A. Then I ′ < I.
Consider any r = ∀∗(ψ ← ϕ) from S. By assumption, r does not support A.
Let V be an arbitrary variable assignment in D. We show I ′[V ] |= (ψ ← ϕ).
If I[V ] 6|= ϕ, as ψ is positive, also I ′[V ] 6|= ϕ; hence I ′[V ] |= (ψ ← ϕ).
If I[V ] |= ϕ, then I[V ] |= ψ because I is a model of S.
Furthermore, by assumption for each implicant C of ψ either I[V ] 6|= C or no
atom in C supports A in I[V ]. Consider two cases:

If I[V ] 6|= C for each implicant C of ψ, then I[V ] 6|= ψ by the above
Lemma (part 2); contradiction.
If I[V ] |= C for some implicant C of ψ, then by assumption no atom in C
supports A in I[V ]. By construction, I ′[V ] agrees with I[V ] on all atoms
except those supporting A in I[V ], thus I ′[V ] |= C. By the above Lemma
(part 1), I ′[V ] |= ψ. Hence I ′[V ] |= (ψ ← ϕ).

In all possible cases I ′ satisfies r; thus I ′ is a model of S, contradicting the
minimality of I.

Thomas Eiter and Reinhard Pichler November 30, 2010 9/51

Foundations of DKS 5. Declarative Semantics of Rules 5.1 Minimal Model Semantics

Semantic vs Syntactic Support

The above theorem is semantic in nature:
In the above example, p(a) is supported by p(b)
There is no syntactic connection between these atoms.
It holds under suitable conditions.

Definition (Unique Name Property)

An interpretation I has the unique name property, if for each term s, ground
term t, and variable assignment V in dom(I) with sI[V ] = tI[V ] there exists a
substitution σ with sσ = t.

Herbrand interpretations have the unique name property.
The relationship between the supporting atom and the supported ground
atom specialises to the (syntactic and decidable) ground instance
relationship.
Sometimes, unique names are postulated (Unique Names Assumption)
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Minimal Model Construction

Outline

The minimal models semantics is not constructive.
We need algorithms to compute the / reason from the minimal model
Different methods exist, including

• algebraic approaches (fixpoints of consequence operators, “bottom up”)
• proof-theoretic approaches (special resolution procedures, “top down”)

We consider here first fix-point construction, for which we need concepts
from operator theory.
We confine here to a specific case of operators, applied to elements M of
the powerset P(X) (the set of subsets) of a set X.
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Operators

Definition (Operator)

Let X be a set. An operator on X is a mapping Γ : P(X)→ P(X).

Definition (Monotonic operator)

Let X be a set. An operator Γ on X is monotonic, iff for all subset
M ⊆M ′ ⊆ X holds: Γ(M) ⊆ Γ(M ′).

Definition (Continuous operator)

Let X be a nonempty set.
A set Y ⊆ P(X) of subsets of X is directed, if every finite subset of Y has an
upper bound in Y , i.e., for each finite Yfin ⊆ Y , there is a set M ∈ Y such that⋃
Yfin ⊆M .

An operator Γ on X is continuous, iff for each directed set Y ⊆ P(X) of
subsets of X holds: Γ(

⋃
Y ) =

⋃{Γ(M) |M ∈ Y }.
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Continuous vs Monotone Operators

Lemma
Each continuous operator on a nonempty set is monotonic.

Proof.
Let Γ be a continuous operator on X 6= ∅. Let M ⊆M ′ ⊆ X. Since Γ is
continuous, Γ(M ′) = Γ(M ∪M ′) = Γ(M) ∪ Γ(M ′), thus Γ(M) ⊆ Γ(M ′).

The converse does not hold.

Example
Let Γ(X) = ∅, if X is finite, and Γ(X) = X, if X is infinite.

Γ is monotonic.
Γ is not continuous in general. E.g., let X = N and
Y = {{0, 1, . . . n} | n ∈ N}.
Then Γ(

⋃
Y ) = N but

⋃
M∈Y Γ(M) = ∅.
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Fixpoints of Monotonic and Continuous Operators

Definition (Fixpoint)

Let Γ be an operator on a set X. A subset M ⊆ X is
a pre-fixpoint of Γ iff Γ(M) ⊆M ;
a fixpoint of Γ iff Γ(M) = M .

Theorem (Knaster-Tarski, existence of least and greatest fixpoint)

Let Γ be a monotonic operator on a nonempty set X. Then Γ has a least
fixpoint lfp(Γ) and a greatest fixpoint gfp(Γ) with

lfp(Γ) =
⋂
{M ⊆ X | Γ(M) = M} =

⋂
{M ⊆ X | Γ(M) ⊆M}.

gfp(Γ) =
⋃
{M ⊆ X | Γ(M) = M} =

⋃
{M ⊆ X | Γ(M) ⊆M}.

This is a fundamental result with many applications in Computer Science.
It holds for more general structures (complete partial orders).
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Proof.
For the least fixpoint let L =

⋂{M ⊆ X | Γ(M) ⊆M}.
Consider an arbitrary M ⊆ X with Γ(M) ⊆M .
By definition of L we have L ⊆M . Since Γ is monotonic, Γ(L) ⊆ Γ(M). With
the assumption Γ(M) ⊆M follows Γ(L) ⊆M . Therefore

Γ(L) ⊆
⋂
{M ⊆ X | Γ(M) ⊆M} = L. (1)

For the opposite inclusion, from (1) and since Γ is monotonic it follows that
Γ(Γ(L)) ⊆ Γ(L). By definition of L therefore

L ⊆ Γ(L). (2)

From (1) and (2) it follows that L is a fixpoint of Γ.

Now let L′ =
⋂{M ⊆ X | Γ(M) = M}.

Then L′ ⊆ L, because L is a fixpoint of Γ.
The opposite inclusion L ⊆ L′ holds, since every set M involved in the
intersection defining L′ is also involved in the intersection defining L.
The proof for the greatest fixpoint is similar.
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Ordinal Powers
Ordinal numbers

Ordinal numbers are the order types of well-ordered sets (i.e., totally order
sets where each set has a minimum.)
The generalize natural numbers, and can be defined as hereditarily
transitive sets (J. von Neumann).
There are successor ordinals β, given by β = α+ 1 for ordinal α, and limit
ordinals λ (not of this form).
The first limit ordinal, ω, corresponds to the set N of all natural numbers.

Definition (Ordinal powers of a monotonic operator)

Let Γ be a monotonic operator on a nonempty set X. For each ordinal, the
upward and downward power of Γ is defined as

Γ ↑ 0 = ∅ (base case) Γ ↓ 0 = X
Γ ↑ α+1 = Γ(Γ ↑ α) (successor case) Γ ↓ α+1 = Γ(Γ ↓ α)
Γ ↑ λ =

⋃{Γ ↑ β | β < λ} (limit case) Γ ↓ λ =
⋂{Γ ↓ β | β < λ}
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Lemma
Let Γ be a monotonic operator on a nonempty set X. For each ordinal α holds:

1 Γ ↑ α ⊆ Γ ↑ α+ 1
2 Γ ↑ α ⊆ lfp(Γ).
3 If Γ ↑ α = Γ ↑ α+ 1, then lfp(Γ) = Γ ↑ α.

Idea.
1. and 2. are shown by transfinite induction on α. Item 3. is shown as follows:
If Γ ↑ α = Γ ↑ α+ 1, then Γ ↑ α = Γ(Γ ↑ α), i.e., Γ ↑ α is a fixpoint of Γ,
therefore Γ ↑ α ⊆ lfp(Γ) by 2., and lfp(Γ) ⊆ Γ ↑ α by definition.

Theorem
For any monotonic operator Γ on X 6= ∅, lfp(Γ) = Γ ↑ α for some ordinal α.

Proof.
Otherwise, for all ordinals α by the previous lemma Γ ↑ α ⊆ Γ ↑ α+ 1 and
Γ ↑ α 6= Γ ↑ α+ 1. Thus Γ ↑ injectively maps the ordinals to P(X), a
contradiction (there are “more” ordinals than any set can have elements).
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Least Fixpoint of Continuous Operator

Theorem (Kleene)

Let Γ be a continuous operator on a nonempty set X. Then

lfp(Γ) = Γ ↑ ω.

Proof.
By 1. from the previous lemma, it suffices to show that Γ ↑ ω + 1 = Γ ↑ ω.
Γ ↑ ω + 1 = Γ(Γ ↑ ω) by definition, successor case

= Γ
( ⋃{Γ ↑ n | n ∈ N} )

by definition, limit case
=

⋃ {
Γ(Γ ↑ n) | n ∈ N

}
because Γ is continuous

=
⋃ {

Γ ↑ n+ 1 | n ∈ N
}

by definition, successor case
= Γ ↑ ω by definition, base case

Note: An analogous result for the greatest fixpoint does not hold.
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Immediate Consequence Operator

We now apply the above results for universal generalized definite rules.
Here X = HB and a subset M is a set B ⊆ HB of ground atoms.

Definition (Immediate consequence operator)

Let S be a set of universal generalised definite rules. Let B ⊆ HB be a set of
ground atoms. The immediate consequence operator TS for S is:
TS : P(HB) → P(HB)

B 7→ {A ∈ HB | there is a ground instance ((A1 ∧ . . . ∧An)← ϕ)
of a member of S with HI (B) |= ϕ and A = Ai

for some i with 1 ≤ i ≤ n }

Lemma (TS is continuous)

Let S be a set of universal generalised definite rules. The immediate
consequence operator TS is continuous (hence, also monotonic).
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Theorem
Let S be a set of universal generalised definite rules. Let B ⊆ HB be a set of
ground atoms. Then HI (B) |= S iff TS(B) ⊆ B.

Proof.
“only if:” Assume HI (B) |= S. Let A ∈ TS(B), i.e., A = Ai for some ground
instance ((A1 ∧ . . . ∧An)← ϕ) of a member of S with HI (B) |= ϕ.
By assumption HI (B) |= (A1 ∧ . . . ∧An), hence HI (B) |= A, hence A ∈ B
because A is a ground atom.
“if:” Assume TS(B) ⊆ B. Let r = ((A1 ∧ . . . ∧An)← ϕ) be a ground instance
of a member of S. It suffices to show that HI (B) satisfies r.

If HI (B) 6|= ϕ, it does.
If HI (B) |= ϕ, then A1 ∈ TS(B), . . . , An ∈ TS(B) by definition of TS .
By assumption A1 ∈ B, . . . , An ∈ B.
As all Ai are ground atoms, HI (B) |= A1, . . . ,HI (B) |= An. Thus HI (B)
satisfies r.
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Corollary (Fixpoint Characterization of the Least Herbrand Model)

a Let S be a set of universal generalised definite rules. Then
(i) lfp(TS) = TS ↑ ω = Mod∩(S) = {A ∈ HB | S |= A} and
(ii) HI (lfp(TS)) is the unique minimal Herbrand model of S.

Proof.
(i): By the Lemma above, TS is a continuous operator on HB , and by Kleene’s
Theorem, lfp(TS) = TS ↑ ω. Note that ModHB (S) 6= ∅ (as HI (HB) |= S)
Now,
lfp(TS) =

⋂{B ⊆ HB | TS(B) ⊆ B} by the Knaster-Tarski Theorem
=

⋂{B ⊆ HB | HI (B) |= S} by the previous Theorem
=

⋂
ModHB (S) by definition of ModHB

= Mod∩(S) by definition of Mod∩
= {A ∈ HB | S |= A} as S is universal (see unit 4)

(ii): By (i), HI (lfp(TS)) is the intersection of all Herbrand models of S, and
HI (lfp(TS)) |= S, as S is satisfiable.
Hence, HI (lfp(TS)) is the unique minimal Herbrand model of S.
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Charcterization Summary

The “natural meaning” of a set S of universal generalised definite rules can
defined in different but equivalent ways:

• as the unique minimal Herbrand model of S;
• as the intersection HI (Mod∩(S)) of all Herbrand models of S;
• as the set {A ∈ HB | S |= A} of ground atoms entailed by S;
• as the least fixpoint lfp(TS) of the immediate consequence operator

Declarative and procedural (forward chaining) semantics coincide.
Further equivalent procedural semantics, based on SLD resolution, exists
(backward chaining).
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Declarative Semantics of Rules with Negation

If a database of students does not list “Mary”, then one may conclude that
“Mary” is not a student. The principle underlying this is called closed world
assumption (CWA).

Two approaches to coping with this form of negation:
axiomatization within first-oder predicate logic
deduction methods not requiring specific axioms conveying the CWA

The second approach is desirable but it poses the problem of the declarative
semantics, or model theory.
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Not all Minimal Models convey the CWA

Example

S1 = { (q ← r ∧ ¬p), (r ← s ∧ ¬t), (s← >) }
Minimal Herbrand models: HI ({s, r, q}), HI ({s, r, p}), and HI ({s, t}).
Intuitively, p and r are not “justified” by the rules on S1.
S2 = { (p← ¬q), (q ← ¬p) }
Minimal Herbrand models: HI ({p}), HI ({q}).
Intuitively, exactly one of p and q should be true, but it is unclear which.
S3 = { (p← ¬p) }
Minimal Herbrand model: HI ({p}).
p can not be arguably justified from S3, which is intuitively not consistent.
S4 = { (p← ¬p), (p← >) }
Minimal Herbrand model: HI ({p}).
Here, p is arguably justified and S4 should be consistent.

Note: different from classical logic, a subset of a consistent rule set
(S3 ⊆ S4) may be inconsistent!
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Non-Monotonic Consequence

A consequence operator is a mapping that assigns a set S of formulas a set
of formulas Th(S) (satisfying certain properties).
We can view Th(S) as an operator considered above.
S3 and S4 suggest that a consequence operator for rules with negation
should be non-monotonic (if Th(S) for “inconsistent” S yields all formulas).
But also for “consistent” sets of formulas, consequence should act
non-monotonic, if it is based on canonical models, which are preferred
minimal Herbrand models (denoted Thcan(S)).

Example
S5 = { (q ← ¬p) } has the minimal Herbrand models: HI ({p}) and HI ({q}).
Only HI ({q}) conveys the intuitive meaning under the CWA and should be retained as
(the only) canonical model. Therefore, q ∈ Thcan(S5).

S′5 = S5 ∪ { (p← >) } has the single minimal Herbrand model HI ({p}), which also
conveys the intuitive meaning under the CWA and should be retained as a canonical
model. Therefore, q /∈ Thcan(S′5).

Thus, S5 ⊆ S′5, but Thcan(S5) 6⊆ Thcan(S′5).
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Stratifiable Rule Sets

Basic Idea
Avoid cases like (p← ¬p) and more generally recursion through negative literals.

Definition (Stratification)

Let S be a set of normal clauses (rules). A stratification of S is a
partition S0, . . . , Sk of S such that

For each relation symbol p there is a stratum Si, such that all clauses of S
containing p in their consequent are members of Si.
In this case one says that the relation symbol p is defined in stratum Si.
For each stratum Sj and positive literal A in the antecedents of members
of Sj , the relation symbol of A is defined in a stratum Si with i ≤ j.
For each stratum Sj and negative literal ¬A in the antecedents of members
of Sj , the relation symbol of A is defined in a stratum Si with i < j.

A set of normal clauses is called stratifiable, if there exists a stratification of it.
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Example

Each definite program is stratifiable by making it its only stratum.
The set S = { (r ← >), (q ← r), (p← q ∧ ¬r) } is stratifiable:
the stratum S0 contains the first clause and the stratum S1 the last one,
while the middle clause may belong to either of the strata.
The set S = { (p← ¬p) } is not stratifiable.
Any set of normal clauses with a “cycle of recursion through negation”
(defined syntactically via a dependency graph is not stratifiable.
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Stratifable Rule Sets – Canoncial Model

Principal Idea

The stratum S0 always consists of definite clauses (positive definite rules).
Hence the truth values of all atoms of stratum S0 can be determined
without negation being involved.
After that the clauses of stratum S1 refer only to such negative literals
whose truth values have already been determined in S0.
After that the clauses of stratum S2 refer only to such negative literals
whose truth values have already been determined in S0 and S1.
And so on.

That is, work stratum by stratum.

Stratification Theorem (Apt, Blair and Walker)

Each stratifiable rule set has a well-defined canonical model (also called perfect
model), which is independent of a particular stratification.
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Stable Model Semantics

Basic Idea
Perform assumption-based evaluation, where negation takes the value in the
final result.

Definition (Gelfond-Lifschitz transformation)

Let S be a (possibly infinite) set of ground normal clauses, i.e., of formulas
A← L1 ∧ . . . ∧ Ln

where n ≥ 0 and A is a ground atom and the Li for 1 ≤ i ≤ n are ground
literals. Let B ⊆ HB . The Gelfond-Lifschitz transform GLB(S) of S with
respect to B is obtained from S as follows:

1 remove each clause whose antecedent contains a literal ¬A with A ∈ B.
2 remove from the antecedents of the remaining clauses all negative literals.
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Definition (Stable model)

Let S be a (possibly infinite) set of ground normal clauses. An Herbrand
interpretation HI (B) is a stable model of S iff it is the unique minimal
Herbrand model of GLB(S).
A stable model of a set S of normal clauses is a stable model of the (possibly
infinite) set of ground instances of S.

Example

S1 = { (q ← r ∧ ¬p), (r ← s ∧ ¬t), (s← >) } has one stable model:
HI ({s, r, q}).
S2 = { (p← ¬q), (q ← ¬p) } has two stable models: HI ({p}) and
HI ({q}).
S3 = { (p← ¬p) } has no stable model.
S4 = { (p← ¬p), (p← >) } has one stable model: HI ({p}).
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Stable Model Semantics –Properties

Theorem
Each stable model of a normal clause set S is a minimal Herbrand model of S.

Proof.
It suffices to consider a set S of ground normal clauses.
As easily seen, HI (B) |= GLB(S) implies HI (B) |= S.
Let B′ ⊆ B ⊆ HB such that HI (B) is a stable model of S and HI (B′) is also a
model of S, i.e., HI (B′) |= S. If we establish that HI (B′) |= GLB(S), then
B′ = B by the minimality of a stable model.
Let C ∈ GLB(S). By definition of GLB(S) there exists a clause D ∈ S, such
that C is obtained from D by removing the negative literals from its antecedent.
If ¬A is such a literal, then A /∈ B, and, since B′ ⊆ B, also A /∈ B′. Therefore,
C ∈ GLB′(S). As HI (B′) |= S, it follows HI (B′) |= C.

Proposition
Each stratifiable rule set has exactly one stable model, which coincides with the
respective canonical model.
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Stable Model Semantics – Evaluation

The Stable Model Semantics coincides with the intuitive understanding
based on the “Justification Postulate”.

It does not satisfy the “Consistency Postulate”.

It gracefully generalizes the canonical semantics.

To date, Stable Model Semantics is the predominant multiple model
non-montonic semantics for rule sets with negation.
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Outline
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Well-Founded Semantics

Basic Idea

Avoid cases like (p← ¬p) by using a third truth value, unkown.
Try to build a single partial model, in which p would be unknown.

Notation
For a literal L, L is its complement with A = ¬A and ¬A = A for an atom A.
For a set I of ground literals,

I = {L | L ∈ I }, pos(I) = I ∩HB , neg(I) = I ∩HB .
Thus, I = pos(I) ∪ neg(I).

Definition
A set I of ground literals is consistent, iff pos(I) ∩ neg(I) = ∅. Otherwise, I is
inconsistent.
Two sets I1 and I2 of ground literals are (in)consistent iff I1 ∪ I2 is.
A literal L and a set I of ground literals are (in)consistent iff {L} ∪ I is.
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Definition (Partial interpretation)

A partial interpretation is a consistent set I of ground literals; it is total, iff
pos(I) ∪ neg(I) = HB , i.e., for each ground atom A either A ∈ I or ¬A ∈ I.
For a total I, the Herbrand interpretation induced by I is HI (I) = HI (pos(I)).

Definition (Satisfaction for partial interpretations)
Let I be a partial interpretation.

Then > is satisfied in I and ⊥ is falsified in I.

A ground literal L is
satisfied or true in I iff L ∈ I.
falsified or false in I iff L ∈ I.
undefined in I iff L /∈ I and L /∈ I.

A conjunction L1 ∧ . . . ∧ Ln of ground literals, n ≥ 0, is
satisfied or true in I iff each Li for 1 ≤ i ≤ n is satisfied in I.
falsified or false in I iff at least one Li for 1 ≤ i ≤ n is falsified in I.
undefined in I iff each Li for 1 ≤ i ≤ n is satisfied or undefined in I

and at least one of them is undefined in I.
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Definition (Satisfaction, cont’d)
Let I be a partial interpretation.
A ground normal clause A← ϕ is
satisfied or true in I iff A is satisfied in I or ϕ is falsified in I.
falsified or false in I iff A is falsified in I and ϕ is satisfied in I.
weakly falsified in I iff A is falsified in I and ϕ is satisfied or undefined in I.

A normal clause is
satisfied or true in I iff each of its ground instances is.
falsified or false in I iff at least one of its ground instances is.
weakly falsified in I iff at least one of its ground instances is.

A set of normal clauses is
satisfied or true in I iff each of its members is.
falsified or false in I iff at least one of its members is.
weakly falsified in I iff at least one of its members is.

Note: “weakly falsified” intuitively means that by turning from “undefined”
to “true”, the clause could be falsified.
For a total interpretation I, the cases “undefined” and “weakly falsified” are
impossible, and satisfaction in HI (I) amounts to the classical notion.
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Definition (Total and partial model)

Let S be a set of normal clauses.
A total interpretation I is a total model of S, iff S is satisfied in I.
A partial interpretation I is a partial model of S, iff there exists a total model I ′

of S with I ⊆ I ′.

If a ground normal clause C is weakly falsified, but not falsified in a partial
interpretation I, then its consequent is falsified in I and some literal L in
its antecedent are undefined in I.
No extension of I with additional literals can satisfy the consequent.
The only way to satisfy S is to extend I by the complement L of some
undefined antecedent literal L (which falsifies the antecedent).
Any extension of I that satisfies all antecedent literals L falsifies C.

Lemma (Weak Falsification)

Let S be a set of normal clauses and I a partial interpretation. If no clause in S
is weakly falsified in I, then I is a partial model of S.
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Unfounded Sets

Principle for Drawing Negative Conclusions
Given a partial interpretation I, a set U of ground atoms is “unfounded” wrt a
clause set, if each atom A in U is unjustified wrt I, taking U into account.

Example
Let S = {(p← q), (q ← p)}. For U = {p, q}, p, q are unjustified wrt {p, q}.

Definition (Unfounded set of ground atoms)

Let S be a set of normal clauses, and I a partial interpretation.
A set U ⊆ HB of ground atoms is an unfounded set wrt S and I, if for each
A ∈ U and for each ground instance r = A← L1 ∧ . . . ∧ Ln, n ≥ 1, of a
member of S, at least one of the following holds:

1 Li ∈ I for some positive or negative Li with 1 ≤ i ≤ n. (Li is falsified in I)
2 Li ∈ U for some positive Li with 1 ≤ i ≤ n. (Li is unfounded)

A respective Li is a witness of unusability for r.
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Example

Let S = {(p← q), (q ← p)}.
Then U = {p, q} is an unfounded set wrt S and I = {p, q}.
Both a and b are unfounded by condition 2.
Let S′ = { (q ← p), (r ← s), (s← r) } and I = {¬p,¬q}.
The set U ′ = {q, r, s} is unfounded wrt S′ and I.
The atom q is unfounded by condition 1, the atoms r and s by condition 2.

Lemma
Let S be a set of normal clauses and I a partial interpretation. There exists a
unique maximal (under set inclusion) unfounded set with respect to S and I,
GUSS(I), which is the union of all unfounded sets with respect to S and I.

Example (cont’d)

GUSS(I) = {p, q} and GUSS′(I ′) = {p, q, r, s}
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Observation

If all atoms in I are founded, by switching any unfounded atom(s) all rules
remain satisfied.
As no backtracking is needed, unfounded atoms can be safely made false.

Lemma
Let S be a set of normal clauses, I be a partial interpretation, and U ′ be an
unfounded set with respect to S and I, such that pos(I) ∩ U ′ = ∅.
For each U ⊆ U ′, its remainder U ′ \ U is unfounded w.r.t. S and I ∪ U .

A kind of opposite property is that false atoms are unfounded.

Lemma
Let S be a set of normal clauses and I = pos(I) ∪ neg(I) be a partial
interpretation. If no clause in S is weakly falsified in I, then neg(I) is
unfounded with respect to S and pos(I).
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The above properties are exploited to extend a partial interpretation.

Definition (Operators TS, US, WS)

Let PI = { I ⊆ HB ∪HB | I is consistent }, and note that P(HB) ⊆ PI.
Let S be a set of normal clauses. We define three operators:
TS : PI → P(HB)

I 7→ { A ∈ HB | there is a ground instance (A← ϕ)
of a member of S such that ϕ is satisfied in I }

US : PI → P(HB)
I 7→ the maximal subset of HB that is unfounded wrt S and I

WS : PI → PI
I 7→ TS(I) ∪US(I)

Starting from “knowing” I, the ground atoms in TS(I) have to be true;
those in US(I) are unfounded;
TS(I) ∩US(I) = ∅, thus WS(I) is consistent.

Lemma
TS , US , and WS are monotonic.
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Example
Suppose HB = {p, q, r, s, t}, and let I0 = ∅ and
S = { (q ← r ∧ ¬p), (r ← s ∧ ¬t), (s← >) }.
TS(I0) = {s}
US(I0) = {p, t}
WS(I0) = {s,¬p,¬t} = I1

TS(I1) = {s, r}
US(I1) = {p, t}
WS(I1) = {s, r,¬p,¬t} = I2

TS(I2) = {s, r, q}
US(I2) = {p, t}
WS(I2) = {s, r, q,¬p,¬t} = I3

TS(I3) = {s, r, q}
US(I3) = {p, t}
WS(I3) = I3
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Theorem (Existence of least fixpoint)

Let S be a set of normal clauses. (1) The operator WS has a least fixpoint
given by lfp(WS) =

⋂{I ∈ PI |WS(I) = I} =
⋂{I ∈ PI |WS(I) ⊆ I}.

Moreover, (2) lfp(WS) is a partial interpretation of S and (3) lfp(WS) is a
partial model of S.

Proof.
Part one follows from the Knaster-Tarski Theorem. For part two, both
consistency and that no clause in S is weakly falsified, are shown by transfinite
induction. The Weak Falsification Lemma ensures the model property.

Definition (Well-founded model)

The well-founded model of a set S of normal clauses is lfp(WS).

The well-founded model may be total (it specifies a truth value for each
ground atom) or partial (it leaves some atoms undefined).
If S is stratifiable, then S has a total well-founded model, which coincides
with the canonical (perfect model).
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Example

S1 = { (q ← r ∧ ¬p), (r ← s ∧ ¬t), (s← >) } has the well-founded
model {s, r, q,¬p,¬t}. It is total.
S2 = { (p← ¬q), (q ← ¬p) } has the well-founded model ∅. It is partial
and leaves the truth values of p and of q undefined.

S3 = { (p← ¬p) } has the well-founded model ∅. It is partial and leaves
the truth value of p undefined.

S4 = { (p← ¬p), (p← >) } has the well-founded model {p}. It is total.
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Well-Founded Semantics - Evaluation

The well-founded semantics coincides with an intuitive understanding based
on the “Justification Postulate”.
A set of normal clauses always has exactly one well-founded model, but
some ground atoms might be “undefined” in it (they can be defined,
however). Thus, the well-founded semantics coincides with the
“Consistency Postulate”.
The well-founded model might not be computable (in those not infrequent
cases where the fixpoint is reached after more than ω steps).

Example
S = { p(a)←>, p(f(x))← p(x), q(y)← p(y), s← p(z) ∧ ¬q(z), r ← ¬s }
i.e., the (standard) translation of the following set of generalised rules into
normal clauses:
{ p(a)←>, p(f(x))← p(x), q(y)← p(y), r ← ∀z(p(z)⇒ q(z)

) }
Then

lfp(WS) = WS ↑ ω+ 2
= { p(a), . . . , p(fn(a)), . . . } ∪ { q(a), . . . , q(fn(a)), . . . } ∪ {¬s, r }
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Stable and Well-Founded Semantics Compared

If a rule set is stratifiable, then it has a unique minimal model, which is its
only stable model and is also its well-founded model and total.
If a rule set S has a total well-founded model, then this model is also the
single stable model of S.
If a rule set S has a single stable model, then this model is not necessarily
the well-founded model of S.

Example
The set S = {p← ¬q, q ← ¬p, p← ¬p} has the single stable model {p},
but its well-founded model is ∅.

Stable model entailment does not imply well-founded entailment:

Example
Let S = {p← ¬q, q ← ¬p, r ← p, r ← q}.
Then r is true in all stable models but it is undefined in the well-founded model.

“reasoning by cases”
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