Foundations of DKS

Outline

Foundations of Data and Knowledge Systems $_{\rm VU\ 181.212,\ WS\ 2010}$

4. Foundations of Rule and Query Languages

Thomas Eiter and Reinhard Pichler

Institut für Informationssysteme Technische Universität Wien

23 November, 2010

4. Foundations of Rule and Query Languages

- 4.1 Fragments of First-Order Predicate Logic
- 4.2 Assessment of Tarski Model Theory
- 4.3 Herbrand Model Theory
- 4.4 Finite Model Theory
- 4.5 Minimal Model Semantics of Definite Rules

Thomas Eiter and Reinhard Pichler	23 November, 2010		1/38	Thomas Eiter and Reinhard Pichler	23 November, 2010	2/38
Foundations of DKS	4. Rule and Query Languages	4.1 Fragments of FOL		Foundations of DKS	4. Rule and Query Languages	4.1 Fragments of FOL
Outline				Fragments of First	-Order Predicate Log	gic
				Motivation		
4. Foundations of Rule a	and Query Languages			query languages; in	first-order predicate logic ar particular <mark>rule languages</mark> . appropriate deviations from 7	
•			Notation			
 4.1 Fragments of First-Order Predicate Logic 4.2 Assessment of Tarski Model Theory 4.3 Herbrand Model Theory 4.4 Finite Model Theory 4.5 Minimal Model Semantics of Definite Rules 				 φ is called the anter A rule ψ ← ⊤ may A rule ⊥ ← φ may Implicit Quantificat universal closure: L possibly in φ) and g 	notation for a (not necessarily eccedent or body and ψ the con- point be written $\psi \leftarrow \psi$ with empty to be written $\leftarrow \varphi$ with empty tion. Typically, a rule is a short set \vec{x} denote the free variables \vec{y} the free variables occurring the $\forall \vec{x} \forall \vec{y} (\psi \leftarrow \varphi)$ is logically e	ponsequent or head. y antecedent. y consequent. porthand notation for its so occurring in ψ (and g in φ but not in ψ . Then

Fragments of FOL

Logic Programming

Clause Classification

The following names are defined for special forms of clauses:

Name	Form	
definite clause	$A \leftarrow B_1 \land \ldots \land B_n$	
unit cl.	$A \leftarrow$	$k = 1, \ n = 0$
definite goal	$\leftarrow B_1 \wedge \ldots \wedge B_n$	$k=0, n \ge 0$
empty cl.		$k = 0, \ n = 0$
normal clause	$A \leftarrow L_1 \land \ldots \land L_n$	$k=1, \ n \ge 0$
normal goal	$\leftarrow L_1 \land \ldots \land L_n$	$k=0, n \ge 0$
disjunctive clause	$A_1 \lor \ldots \lor A_k \leftarrow B_1 \land \ldots \land B_n$	$k \ge 0, \ n \ge 0$
general clause	$A_1 \lor \ldots \lor A_k \leftarrow L_1 \land \ldots \land L_n$	$k\geq 0,\ n\geq 0$

atoms A, A_j, B_i , literals $L_i, k, n \in \mathbb{N}$

Logic Programming

Foundations of DKS

- Logic programming considers a finite set of clauses with non-empty consequent as a program and clauses with empty consequent as goals used for program invocation. Unit clauses are also called facts.
- In a definite program, all clauses are definite. Together with definite goals, they represent a fragment of first-order predicate logic with especially nice semantic properties cf. "pure Prolog" in the context of Prolog.

Datalog: special case of logic programming

- Function symbols other than constants are excluded. Thus, the only terms are variables and constants.
- Relation symbols are partitioned into those that may occur in the data to be queried, called extensional, and those that may not, called intensional.
- Clauses are assumed to be range restricted, which essentially requires that all variables in the consequent of a clause also occur in its antecedent.

Thomas Eiter and Reinhard Pichler	23 November, 2010		5/38	Thomas Eiter and Reinhard Pichler	23 November, 2010		6/38
Foundations of DKS	4. Rule and Query Languages	4.1 Fragments of FOL		Foundations of DKS	4. Rule and Query Languages	4.1 Fragments of FOL	

Some Versions of Datalog

Definition

Many (restricted or extended) versions of datalog have been studied because of their interesting expressive power and/or complexity or by their correspondence to classes of queries defined by other formalisation approaches.

Monadic datalog 1-ary intensional relation symbols

Nonrecursive datalog no (direct or indirect) recursion

Linear datalog at most one intensional atom per antecedent Disjunctive datalog disjunctive clauses

Datalog[¬] normal clauses

- Nonrecursive datalog $\urcorner\,$ normal clauses, no recursion
- Disjunctive datalog general clauses

Conjunctive Queries

Definition (Conjunctive query)

A conjunctive query is a datalog rule

$$ans(\vec{u}) \leftarrow r_1(\vec{u}_1) \land \ldots \land r_n(\vec{u}_n)$$

where $n \geq 0$, the r_i are extensional and ans is an intensional relation symbol, $\vec{u}, \vec{u}_1, \ldots, \vec{u}_n$ are lists of terms of appropriate length, and the rule is range restricted, i.e., each variable in \vec{u} also occurs in at least one of $\vec{u}_1, \ldots, \vec{u}_n$.

A boolean conjunctive query is a conjunctive query where \vec{u} is the empty list, i.e., the answer relation symbol *ans* is propositional.

Remark

Conjunctive queries correspond to the SPJ subclass (or SPC subclass) of relational algebra queries constructed with selection, projection, join (or, alternatively, cartesian product).

Fragments of FOL

Foundations of DKS

Examples of Conjunctive Queries

Extensional relation symbols: parent, male, female

$ans() \leftarrow parent(Mary, Tom)$	Is Mary a parent of Tom?
$ans() \leftarrow parent(Mary, y)$	Does Mary have children?
$ans(x) \leftarrow parent(x, Tom)$	Who are Tom's parents?
$ans(x) \leftarrow female(x) \land$	Who are Tom's grandmothers?
$parent(x, y) \land parent(y, Tom)$	
$ans(x,z) \leftarrow male(x) \land$	Who are grandfathers and their grandchildren?
$parent(x,y) \land parent(y,z)$	grandchildren?

Limitations of Conjunctive Queries

The following queries cannot be expressed as Conjunctive Queries:

- who are parents of Tom or Mary? requires disjunction in rule antecedents or more than a single rule.
- 2 who are parents, but not of Tom? requires negation in rule antecedents.
- who are women all of whose children are sons?
 requires universal quantification in rule antecedents.
 Note that variables occurring only in the antecedent of a conjunctive query are interpreted as if existentially quantified in the antecedent.
- who are ancestors of Tom? requires recursion, i.e., intensional relation symbols in rule antecedents.

Thomas Eiter and Reinhard Pichler	23 November, 2010	9/38	Thomas Eiter and Reinhard Pichler 23 November, 2010				
Foundations of DKS	4. Rule and Query Languages	4.2 Assessment of Tarski Model Theory	el Theory Foundations of DKS 4. Rule and Query Languages 4.2 Assessment of Tarski Model Theory				
Outline			Tarski Model Theor	ry for Logic and Math	nematics in General		

4. Foundations of Rule and Query Languages

4.1 Fragments of First-Order Predicate Logic

4.2 Assessment of Tarski Model Theory

- 4.3 Herbrand Model Theory
- 4.4 Finite Model Theory
- 4.5 Minimal Model Semantics of Definite Rules

Important Characteristics

domain of an interpretation may be any nonempty set:

first-order predicate logic can model statements about any arbitrary application domain

- excellent clarification of relationship syntax/semantics
- simple recursive definition of semantics
- rich body of results
- quite successful for mathematics

4.2 Assessment of Tarski Model Theory

Inadequacy for Query Languages

1: Unique name assumption

- different constants to be interpreted differently
- frequent requirement in applications
 a mechanism making it available by default would be useful
- not supported by Tarski model theory explicit formalisation is cumbersome

2: Function symbols as term constructors

- grouping pieces of data that belong together
- makes sense in many applications
- terms as compound data structures
- not supported by Tarski model theory

3: Closed world assumption

Foundations of DKS

- nothing holds unless explicitly specified
- tacit understanding in many applications (transportation timetables)
- cannot be expressed in first-order predicate logic with Tarski model theory

4: Disregard infinite models

- real-world query answering applications are often finite
- in this case infinite domains are irrelevent
- moreover, they cause "strange" phenomena
- restricting interpretations to finite ones is not possible finiteness cannot be expressed in first-order predicate logic with Tarski model theory

Thomas Eiter and Reinhard Pichler	23 November, 2010	13/38	Thomas Eiter and Reinhard Pichler	23 November, 2010	14/38
Foundations of DKS	4. Rule and Query Languages	4.2 Assessment of Tarski Model Theory	Foundations of DKS	4. Rule and Query Languages	4.2 Assessment of Tarski Model Theory
5: Definability of transitive closure			Alternative Semant	cics Definitions	
e.g., traffic application	onnections between junctions		Alternative Approach	es	
t should be interpreted as the transitive closure of r cannot be expressed in first-order predicate logic with Tarski model theory $\forall x \forall z \left(t(x, z) \Leftrightarrow \left(r(x, z) \lor \exists y \left[t(x, y) \land t(y, z) \right] \right) \right)$ does not do it!		 Several approaches aim at overcoming some of these problems 1 to 6, e.g.: Herbrand Model Theory. Considering only Herbrand interpretations and Herbrand models instead of general interpretations addresses points 1 and 2. Minimal model semantics. Considering only minimal Herbrand models addresses point 3. Applying the minimal model semantics to (definite) rule addresses point 5. 			

- 6: Application-specific restrictions
 - e.g., to domains with a given cardinality, with odd cardinality, etc.
 - cannot be expressed in first-order predicate logic with Tarski model theory

addresses point 4.

Finite Model Theory. Considering only *finite* interpretations and models

4. Foundations of Rule and Query Languages

4.1 Fragments of First-Order Predicate Logic

4.5 Minimal Model Semantics of Definite Rules

4.2 Assessment of Tarski Model Theory

4.3 Herbrand Model Theory4.4 Finite Model Theory

4.3 Herbrand Model Theory

4. Rule and Query Languages

Herbrand Model Theory

Definition

Foundations of DKS

For formulas or sets of formulas φ and ψ :

 $\begin{array}{l} \varphi \text{ is Herbrand valid iff it is satisfied in each Herbrand interpretation.} \\ \varphi \text{ is Herbrand satisfiable iff it is satisfied in some Herbrand interpretation.} \\ \varphi \text{ is Herbrand unsatisfiable iff it is falsified in each Herbrand interpretation.} \\ \mathcal{I} \models_{Hb} \varphi \text{ iff } \mathcal{I} \text{ is an Herbrand interpretation and } \mathcal{I} \models \varphi. \\ \varphi \models_{Hb} \psi \text{ iff for each Herbrand interpretation } \mathcal{I} \text{ if } \mathcal{I} \models_{Hb} \varphi \text{ then } \mathcal{I} \models_{Hb} \psi. \end{array}$

Example

Assume a signature with a unary relation symbol p and a constant a and no other symbol, such that the Herbrand universe is $HU = \{a\}$.

The set $S = \{p(a), \exists x \neg p(x)\}$ is Tarski satisfiable, but Herbrand unsatisfiable. However, S is Herbrand satisfiable with respect to a larger signature containing an additional constant b.

Thomas Eiter and Reinhard Pichler	23 November, 2010		17/38	Thomas Eiter and Reinhard Pichler	23 November, 2010		18/38
Foundations of DKS 4. Rule and Query Languages 4.3 Herbrand Model Theory			Foundations of DKS	4. Rule and Query Languages	4.4 Finite Model Theory		
Foundations of DKS 4. Rule and Query Languages 4.3 Herbrand Model Theory Herbrand Model Theory vs. Tarski Model Theory				Outline	4. Nuie and Query Languages	4.4 Finite Wodel Theory	

Some Observations

- Obviously, each Herbrand satisfiable formula or set of formulas is Tarski satisfiable. The converse does not hold.
- Herbrand satisfiability depends on the chosen signature.
- Jacques Herbrand: For clause sets (or, more generally, for universal closed formulas), Herbrand satisfiability and Tarski satisfiability coincide!
- With Tarski model theory, there is no strong correspondence between individuals in the semantic domain and names, i.e., terms as syntactic representations of semantic individuals.
- With Herbrand model theory, every semantic individual has a name and different ground terms represent different individuals.

4. Foundations of Rule and Query Languages

- 4.1 Fragments of First-Order Predicate Logic
- 4.2 Assessment of Tarski Model Theory
- 4.3 Herbrand Model Theory

4.4 Finite Model Theory

4.5 Minimal Model Semantics of Definite Rules

4.4 Finite Model Theory

Finite Model Theory

Definition

A finite interpretation is an interpretation with finite domain.

For formulas or sets of formulas φ and ψ :

 φ is finitely valid $% \varphi$ if finite interpretation.

 φ is finitely satisfiable $% \varphi$ if finitely satisfiable iff $% \varphi$ is satisfied in some finite interpretation.

- φ is finitely unsatisfiable $% \varphi$ iff it is falsified in each finite interpretation.
- $\mathcal{I}\models_{\mathit{fin}}\varphi \;\; \mathrm{iff} \;\; \mathcal{I} \; \mathrm{is \; a \; finite \; interpretation \; and } \; \mathcal{I}\models\varphi.$
- $\varphi \models_{\mathit{fin}} \psi \ \text{ iff for each finite interpretation } \mathcal{I}: \ \text{ if } \mathcal{I} \models_{\mathit{fin}} \varphi \text{ then } \mathcal{I} \models_{\mathit{fin}} \psi.$

Example

 $\begin{array}{ll} \mbox{Let } \varphi = \{ \mbox{ } \forall x \, \neg (x < x), & \forall x \forall y \forall z (x < y \ \land \ y < z \Rightarrow x < z), & \forall x \exists y \ x < y \ \} \\ \mbox{Then } \varphi \ \mbox{is a satisfiable, but finitely unsatisfiable.} \end{array}$

Let $\psi = [\forall x \neg (x < x) \land \forall x \forall y \forall z (x < y \land y < z \Rightarrow x < z)] \Rightarrow \exists x \forall y \neg (x < y)$ Then ψ is finitely valid, but not valid.

Thomas Eiter and Reinhard Pichler	23 November, 2010		21/38	Tho
Foundations of DKS	4 Rule and Query Languages	4.4 Einite Model Theory		Eou

Undecidability

Theorem (Trakhtenbrot)

For signatures with a non-propositional relation symbol and a relation or function symbol of arity ≥ 2 , finite satisfiability is undecidable.

Corollary

Finite unsatisfiability, finite validity, and finite entailment are not semi-decidable. Hence, there is no complete calculus for finite entailment.

Theorem

The finiteness/compactness theorem does not hold for finite model theory.

Proof

For each $n \in \mathbb{N}$ let φ_n be a finitely satisfiable formula all of whose models have domains with cardinality $\geq n$. Then each finite subset of $S = \{\varphi_n \mid n \in \mathbb{N}\}$ is finitely satisfiable, but S is not finitely satisfiable.

(Semi-)Decidability

Theorem

Let \mathcal{I} be a finite interpretation. Given a formula φ , it is decidable if $\mathcal{I} \models_{fin} \varphi$ (i.e., $\mathcal{I} \models \varphi$) holds.

Proof idea

The model relationship \models is defined by a recursive algorithm for evaluating a formula in an interpretation. This algorithm terminates over finite domains. \Box

Proposition

For finite signatures, the problem whether a finite set of closed formulas has a model with a given finite cardinality, is decidable.

Corollary

For finite signatures, the problems of finite satisfiability, finite falsifiability, and finite non-entailment of finite sets of closed formulas are semi-decidable.

Equidations of DKS 4 Rule and Query Languages 4.4 Finite Model Theory	21/38	Thomas Eiter and Reinhard Pichler	23 November, 2010		22/38
Foundations of DKS 4 Rule and Query Languages 4.4 Finite Model Theory					
		Foundations of DKS	4. Rule and Query Languages	4.4 Finite Model Theory	

Finite Model Theory

Summary

- Recall that finiteness is not expressible in first-order predicate logic.
- Tarksi unsatisfiability is semi-decidable and Tarski satisfiability is not, whereas finite satisfiability is semi-decidable and finite unsatisfiability is not.
- Finite model theory is fundamental to database theory, e.g.: Answering relational queries over a database (i.e., a finite relational structure) corresponds to evaluating logical formulas over a finite structure.
- Important research directions in finite model theory:
 - Descriptive complexity (e.g., Fagin's Theorem)
 - Inexpressibility results (Ehrenfeucht-Fraïssé games, 0-1 Laws)

Found	ations	ot	DKS

Outline

Minimal Model Semantics of Definite Rules

Motivation

Foundations of DKS

- Recall: Definite programs are finite sets of definite clauses, also called definite rules: $A \leftarrow B_1 \land \ldots \land B_n$ with $n \ge 0$.
- Definite programs admit a very natural semantics definition:
 - Each program II is satisfiable.
 - The intersection of all its Herbrand models is a model of $\Pi.$
 - This is the minimal model of Π .
 - Precisely the atoms implied by Π are true in the minimal model.
- Definite rules are a special case of universal and inductive formulas.
- The interesting model-theoretic properties of definite rules are inherited from these more general classes of formulas.

Thomas Eiter and Reinhard Pichler	23 November, 2010	25/38	Thomas Eiter and Reinhard Pichler	23 November, 2010	26/38
Foundations of DKS	4. Rule and Query Languages	4.5 Minimal Model Semantics	Foundations of DKS	4. Rule and Query Languages	4.5 Minimal Model Semantics

Universal and Inductive Formulas

Definition (Universal and Inductive Formulas)

Recall the transformation of any formula into prenex from.

- A formula is called universal if it can be transformed into a prenex form with universal quantifiers only.
- A formula is called inductive if it can be transformed into a prenex form with the following properties:
 - The quantifier prefix starts with universal quantifiers for all variables in the consequent followed by arbitrary quantifiers for the remaining variables.
 - The quantifier-free part is of the form (A₁ ∧ ... ∧ A_n) ← φ, where n ≥ 0 and φ is a *positive* formula (i.e., it contains no negation).
- An inductive formula is either a generalised definite rule (if $n \ge 1$) or a generalised definite goal (if n = 0).

Outline of the Subsection

Roadmap

- Definition: compatible interpretations, intersection of interpretations
- Definition: intersection of Herbrand models $HI(Mod_{\cap}(S))$
- Definition: order on models, minimal (Herbrand) model
- Theorem: For universal formulas S, $Mod_{\cap}(S) = \{A \in HB \mid S \models A\}$.
- Observation: $HI(Mod_{\cap}(S))$ is not necessarily a model of S.
- Theorem: Satisfiability of definite inductive formulas.
- Theorem: For inductive formulas *S*, the intersection of compatible models is a model.
- Main result: Minimal Herbrand Model *HI*(*Mod*∩(Π)) of a Definite Program Π.

Thomas Eiter and Reinhard Pichler

4. Foundations of Rule and Query Languages

- 4.1 Fragments of First-Order Predicate Logic
- 4.2 Assessment of Tarski Model Theory
- 4.3 Herbrand Model Theory
- 4.4 Finite Model Theory
- 4.5 Minimal Model Semantics of Definite Rules

Intersection of (Compatible) Interpretations

Definition (Compatible set of interpretations)

A set $\{\mathcal{I}_i \mid i \in I\}$ of interpretations with index set I is called compatible, iff $I \neq \emptyset$.

- $D = \bigcap \{ dom(\mathcal{I}_i) \mid i \in I \} \neq \emptyset.$
- all interpretations of a function symbol coincide on the common domain: $f^{\mathcal{I}_i}(d_1, \ldots, d_n) = f^{\mathcal{I}_j}(d_1, \ldots, d_n)$ for each *n*-ary $(n \ge 0)$ function symbol *f*, for all $i, j \in I$, and for all $d_1, \ldots, d_n \in D$.
- each variable is identically interpreted in all interpretations: $x^{\mathcal{I}_i} = x^{\mathcal{I}_j}$ for each variable x and all $i, j \in I$.

Definition (Intersection of a compatible set of interpretations)

Let $\{\mathcal{I}_i \mid i \in I\}$ be a compatible set of interpretations. Then $\bigcap \{\mathcal{I}_i \mid i \in I\}$ is defined as the interpretation \mathcal{I} with

- $dom(\mathcal{I}) = D = \bigcap \{ dom(\mathcal{I}_i) \mid i \in I \}.$
- a function symbol is interpreted as the intersection of its interpretations: $f^{\mathcal{I}}(d_1, \ldots, d_n) = f^{\mathcal{I}_i}(d_1, \ldots, d_n)$ for each *n*-ary $(n \ge 0)$ function symbol *f*, for an arbitrary $i \in I$, and for all $d_1, \ldots, d_n \in D$.
- a relation symbol is interpreted as the intersection of its interpretations: $p^{\mathcal{I}} = \bigcap_{i \in I} p^{\mathcal{I}_i}$ for each relation symbol p.
- a variable is interpreted like in all given interpretations: $x^{\mathcal{I}} = x^{\mathcal{I}_i}$ for each variable x and an arbitrary $i \in I$.

Thomas Eiter and Reinhard Pichler	23 November, 2010	29)/38	Thomas Eiter and Reinhard Pichler	23 November, 2010	30/38
Foundations of DKS	4. Rule and Query Languages	4.5 Minimal Model Semantics		Foundations of DKS	4. Rule and Query Languages	4.5 Minimal Model Semantics
Intersection of Her	brand Models			Order on Models		
Lemma						
Let $\{B_i \mid i \in I\}$ be a set If this set is nonempty, t	t of sets of ground atoms, i.e., hen	$B_i \subseteq HB$ for each $i \in I$		Definition (Order on	Models)	
$\blacksquare \bigcap \{ HI(B_i) \mid i \in I \}$	a compatible set of interpreta = $HI(\bigcap \{B_i \mid i \in I\})$ i.e., its tion induced by the intersection	s intersection is the). of a function symbol coinci	de on the common domain:
Definition (Set of ind	lucers of Herbrand models	of a set of formulas))		$f^{\mathcal{I}_2}(d_1,\ldots,d_n)$ for each n - ,, $d_n \in dom(\mathcal{I}_1).$	ary ($n \ge 0$) function
For a set S of formulas, the set of inducers of its Herbrand models is $Mod_{HB}(S) = \{B \subseteq HB \mid HI(B) \models S\}.$				 the "smaller" interpretation of a relation symbol is a restriction of the op^I₁ ⊆ p^I₂ for each <i>n</i>-ary (n ≥ 0) relation symbol p. each variable is identically interpreted in the interpretations: 		
Notation				$x^{\mathcal{I}_1} = x^{\mathcal{I}_2}$ for each		
For a set S of formulas: $Mod_{\cap}(S)$	$= \left\{ \begin{array}{cc} \bigcap Mod_{HB}(S) & \text{if } Mod_{HB}\\ HB & \text{if } Mod_{HB} \end{array} \right.$	$ _{HB}(S) \neq \emptyset $				
Thomas Eiter and Reinhard Pichler	23 November, 2010	31	/38	Thomas Eiter and Reinhard Pichler	23 November, 2010	32/38

4.5 Minimal Model Semantics

Foundations of DKS

Minimal Model

Definition (Minimal model)

A minimal model of a set of formulas is a \leq -minimal member \mathcal{I} of the set of all its models with domain $dom(\mathcal{I})$.

Proposition

Let S be a set of formulas. An Herbrand model HI(B) of S is minimal iff there is no proper subset $B' \subset B$ such that HI(B') is also a model of S.

Lemma

Let S be a set of formulas.

- An Herbrand model HI(B) of S is minimal iff B is a ⊆-minimal member of Mod_{HB}(S).
- If HI(Mod_∩(S)) is a model of S, then it is the unique minimal Herbrand model of S.

Theorem

If S is universal, then $Mod_{\cap}(S) = \{A \in HB \mid S \models A\}$.

Proof

If S is unsatisfiable, both sides are equal to HB. So suppose that S is satisfiable:

" \subseteq ": Let $A \in Mod_{\cap}(S)$, thus $A \in B$ for each $B \subseteq HB$ with $HI(B) \models S$. We have to show $S \models A$.

Let \mathcal{I} be an arbitrary model of S. By the correspondence of satisfiability and Herbrand-satisfiability for *universal formulas*, $HI(B') \models S$ where $B' = \{A' \in HB \mid \mathcal{I} \models A'\}$. Hence, $A \in B'$ and, therefore $\mathcal{I} \models A$.

Since \mathcal{I} was arbitrary, we have shown $S \models A$.

" \supseteq ": Let $A \in HB$ with $S \models A$, i.e., each model of S satisfies A. Then for each $B \subseteq HB$ with $HI(B) \models S$ holds $HI(B) \models A$ and thus $A \in B$. Hence $A \in Mod_{\cap}(S)$.

Thomas Eiter and Reinhard Pichler	23 November, 2010	33/38	Thomas Eiter and Reinhard Pichler	23 November, 2010	34/38
Foundations of DKS	4. Rule and Query Languages	4.5 Minimal Model Semantics	Foundations of DKS	4. Rule and Query Languages	4.5 Minimal Model Semantics

Motivation

The above theorem shows that $HI(Mod_{\cap}(S))$ has an interesting property for universal formulas. However, there remain two concerns:

■ *S* may be unsatisfiable:

 $HI(Mod_{\cap}(S))$ is the Herbrand interpretation induced by those atoms which are implied by S. This is non-trivial only if $Mod_{\cap}(S) \neq \emptyset$. We shall see that for sets of definite inductive formulas, $Mod_{\cap}(S) \neq \emptyset$ is guaranteed.

■ HI(Mod_∩(S)) is not necessarily a model of S: This may be the case even if S is satisfiable (and universal). We shall see that for sets of inductive formulas, HI(Mod_∩(S)) is always a model of S.

Example

Assume a signature consisting of a unary relation symbol p and constants a, b. Let $S = \{p(a) \lor p(b)\}$. Then $Mod_{HB}(S) = \{ \{p(a)\}, \{p(b)\}, \{p(a), p(b)\} \}$. But $HI(Mod_{\cap}(S)) = HI(\emptyset)$ is not a model of S.

Theorem

For each set S of generalised definite rules, $HI(HB) \models S$.

Important Properties of Inductive Formulas

Proof

Let S be a set of generalised definite rules. Thus each member of S is equivalent to a formula of the form $\forall \vec{x}[(A_1 \land \ldots \land A_n) \leftarrow \varphi]$ where \vec{x} are the variables occurring in $A_1 \ldots A_n$.

Clearly, for every ground instance $A_i\sigma$ of each atom A_i in the conclusion, we have $HI(HB) \models A_i\sigma$. Thus $HI(HB) \models (A_1 \land \ldots \land A_n)\sigma$ and, therefore, also $HI(HB) \models [(A_1 \land \ldots \land A_n) \leftarrow \varphi]\sigma$ for every ground substitution σ . Hence, HI(HB) satisfies each member of S.

Foundations of DKS

4. Rule and Query Languages

4.5 Minimal Model Semantics

Theorem

Let S be a set of inductive formulas. If $\{\mathcal{I}_i \mid i \in I\}$ is a set of compatible models of S with the same domain D, then $\mathcal{I} = \bigcap \{\mathcal{I}_i \mid i \in I\}$ is also a model of S.

Proof Idea

Each member of S is (equivalent to) a formula $\forall \vec{x}[(A_1 \land \ldots \land A_n) \leftarrow \varphi]$ with $n \ge 0$ where \vec{x} are the variables in A_1, \ldots, A_n and φ is a positive formula. Let V be an arbitrary variable assignment on \vec{x} . Clearly $\mathcal{I}[V] \le \mathcal{I}_i[V]$ for each i. If φ is false in $\mathcal{I}[V]$, then S is trivially true in $\mathcal{I}[V]$. Now suppose that $\mathcal{I}[V] \models \varphi$. Then clearly $\mathcal{I}_i[V] \models \varphi$ for each $i \in I$ (since φ is positive). By assumption, $\mathcal{I}_i[V] \models (A_1 \land \ldots \land A_n) \leftarrow \varphi]$ holds. It follows that $\mathcal{I}_i[V] \models (A_1 \land \ldots \land A_n)$. Thus $\mathcal{I}[V] \models (A_1 \land \ldots \land A_n)$ and, therefore $\mathcal{I}[V] \models [(A_1 \land \ldots \land A_n) \leftarrow \varphi]$. Hence, (since V is arbitrary), also $\mathcal{I} \models S$. \Box

Corollary

If S is a set of inductive formulas and $\{B_i \subseteq HB \mid i \in I\}$ is a nonempty set with $HI(B_i) \models S$ for each $i \in I$, then $HI(\bigcap \{B_i \mid i \in I\}) \models S$.

23 November, 2010

7/38 Thomas Eiter and Reinhard Pichler

Minimal Model of Definite Programs

Theorem

Foundations of DKS

Each set S of definite rules (i.e., each definite program) has a unique minimal Herbrand model. This model is the intersection of all Herbrand models of S. It satisfies precisely those ground atoms that are logical consequences of S.

Proof

- Every set S of inductive formulas is satisfiable. Hence, $HI(Mod_{\cap}(S))$ is the intersection of the Herbrand models of S.
- The intersection of models of a set S of inductive formulas is a model of S. Hence, $HI(Mod_{\cap}(S))$ is a model of S.
- If HI(Mod_∩(S)) is a model of S then it is the unique minimal Herbrand model of S.
- For universal formulas S, $HI(Mod_{\cap}(S))$ satisfies precisely those ground atoms that are logical consequences of S.

23 November, 2010