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Fragments of First-Order Predicate Logic

Motivation

Some fragments of first-order predicate logic are particularly well suited as
query languages; in particular rule languages.
We shall later see appropriate deviations from Tarski Model Theory.

Notation

A rule ψ←ϕ is a notation for a (not necessarily closed) formula ϕ⇒ ψ.
ϕ is called the antecedent or body and ψ the consequent or head.
A rule ψ←> may be written ψ← with empty antecedent.
A rule ⊥←ϕ may be written ←ϕ with empty consequent.
Implicit Quantification. Typically, a rule is a shorthand notation for its
universal closure: Let ~x denote the free variables occurring in ψ (and
possibly in ϕ) and ~y the free variables occurring in ϕ but not in ψ. Then
the universal closure ∀~x∀~y(ψ←ϕ) is logically equivalent to ∀~x(ψ←∃~yϕ).
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Logic Programming

Clause Classification
The following names are defined for special forms of clauses:

Name Form
definite clause A ← B1 ∧ . . . ∧Bn k = 1, n ≥ 0

unit cl. A ← k = 1, n = 0
definite goal ← B1 ∧ . . . ∧Bn k = 0, n ≥ 0

empty cl. ← k = 0, n = 0

normal clause A ← L1 ∧ . . . ∧ Ln k = 1, n ≥ 0
normal goal ← L1 ∧ . . . ∧ Ln k = 0, n ≥ 0

disjunctive clause A1 ∨ . . . ∨Ak ← B1 ∧ . . . ∧Bn k ≥ 0, n ≥ 0
general clause A1 ∨ . . . ∨Ak ← L1 ∧ . . . ∧ Ln k ≥ 0, n ≥ 0

atoms A, Aj , Bi, literals Li, k, n ∈ N
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Logic Programming

Logic programming considers a finite set of clauses with non-empty
consequent as a program and clauses with empty consequent as goals
used for program invocation. Unit clauses are also called facts.
In a definite program, all clauses are definite. Together with definite goals,
they represent a fragment of first-order predicate logic with especially nice
semantic properties – cf. “pure Prolog” in the context of Prolog.

Datalog: special case of logic programming

Function symbols other than constants are excluded. Thus, the only terms
are variables and constants.
Relation symbols are partitioned into those that may occur in the data to
be queried, called extensional, and those that may not, called intensional.
Clauses are assumed to be range restricted, which essentially requires that
all variables in the consequent of a clause also occur in its antecedent.

Thomas Eiter and Reinhard Pichler 23 November, 2010 6/38

Foundations of DKS 4. Rule and Query Languages 4.1 Fragments of FOL

Some Versions of Datalog

Definition
Many (restricted or extended) versions of datalog have been studied because of
their interesting expressive power and/or complexity or by their correspondence
to classes of queries defined by other formalisation approaches.

Monadic datalog 1-ary intensional relation symbols
Nonrecursive datalog no (direct or indirect) recursion

Linear datalog at most one intensional atom per antecedent
Disjunctive datalog disjunctive clauses

Datalog¬ normal clauses
Nonrecursive datalog¬ normal clauses, no recursion
Disjunctive datalog¬ general clauses
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Conjunctive Queries

Definition (Conjunctive query)

A conjunctive query is a datalog rule

ans(~u)← r1(~u1) ∧ . . . ∧ rn(~un)

where n ≥ 0, the ri are extensional and ans is an intensional relation symbol,
~u, ~u1, . . . , ~un are lists of terms of appropriate length, and the rule is range
restricted, i.e., each variable in ~u also occurs in at least one of ~u1, . . . , ~un.
A boolean conjunctive query is a conjunctive query where ~u is the empty list,
i.e., the answer relation symbol ans is propositional.

Remark
Conjunctive queries correspond to the SPJ subclass (or SPC subclass) of
relational algebra queries constructed with selection, projection, join (or,
alternatively, cartesian product).
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Examples of Conjunctive Queries
Extensional relation symbols: parent , male, female

ans()← parent(Mary ,Tom) Is Mary a parent of Tom?
ans()← parent(Mary , y) Does Mary have children?
ans(x)← parent(x,Tom) Who are Tom’s parents?
ans(x)← female(x) ∧ Who are Tom’s grandmothers?

parent(x, y) ∧ parent(y,Tom)
ans(x, z)← male(x) ∧ Who are grandfathers and their

parent(x, y) ∧ parent(y, z) grandchildren?
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Limitations of Conjunctive Queries
The following queries cannot be expressed as Conjunctive Queries:

1 who are parents of Tom or Mary?
requires disjunction in rule antecedents or more than a single rule.

2 who are parents, but not of Tom?
requires negation in rule antecedents.

3 who are women all of whose children are sons?
requires universal quantification in rule antecedents.
Note that variables occurring only in the antecedent of a conjunctive query
are interpreted as if existentially quantified in the antecedent.

4 who are ancestors of Tom?
requires recursion, i.e., intensional relation symbols in rule antecedents.
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Tarski Model Theory for Logic and Mathematics in General

Important Characteristics

domain of an interpretation may be any nonempty set:

first-order predicate logic can model statements
about any arbitrary application domain
excellent clarification of relationship syntax/semantics
simple recursive definition of semantics
rich body of results
quite successful for mathematics
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Inadequacy for Query Languages

1: Unique name assumption

different constants to be interpreted differently
frequent requirement in applications
a mechanism making it available by default would be useful
not supported by Tarski model theory
explicit formalisation is cumbersome

2: Function symbols as term constructors

grouping pieces of data that belong together
makes sense in many applications
terms as compound data structures
not supported by Tarski model theory
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3: Closed world assumption

nothing holds unless explicitly specified
tacit understanding in many applications
(transportation timetables)
cannot be expressed in first-order predicate logic
with Tarski model theory

4: Disregard infinite models

real-world query answering applications are often finite
in this case infinite domains are irrelevent
moreover, they cause “strange” phenomena
restricting interpretations to finite ones is not possible
finiteness cannot be expressed in first-order predicate logic
with Tarski model theory
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5: Definability of transitive closure

relevant in many query answering applications

e.g., traffic application
r represents direct connections between junctions
t represents indirect connections

t should be interpreted as the transitive closure of r
cannot be expressed in first-order predicate logic
with Tarski model theory

∀x∀z
(
t(x, z)⇔ (

r(x, z) ∨ ∃y [
t(x, y) ∧ t(y, z)] ))

does not do it!

6: Application-specific restrictions

e.g., to domains with a given cardinality, with odd cardinality, etc.
cannot be expressed in first-order predicate logic
with Tarski model theory
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Alternative Semantics Definitions

Alternative Approaches
Several approaches aim at overcoming some of these problems 1 to 6, e.g.:

Herbrand Model Theory. Considering only Herbrand interpretations and
Herbrand models instead of general interpretations addresses points 1
and 2.
Minimal model semantics. Considering only minimal Herbrand models
addresses point 3. Applying the minimal model semantics to (definite) rules
addresses point 5.
Finite Model Theory. Considering only finite interpretations and models
addresses point 4.
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Herbrand Model Theory

Definition
For formulas or sets of formulas ϕ and ψ:
ϕ is Herbrand valid iff it is satisfied in each Herbrand interpretation.
ϕ is Herbrand satisfiable iff it is satisfied in some Herbrand interpretation.
ϕ is Herbrand unsatisfiable iff it is falsified in each Herbrand interpretation.
I |=Hb ϕ iff I is an Herbrand interpretation and I |= ϕ.
ϕ |=Hb ψ iff for each Herbrand interpretation I: if I |=Hb ϕ then I |=Hb ψ.

Example
Assume a signature with a unary relation symbol p and a constant a and no
other symbol, such that the Herbrand universe is HU = {a}.
The set S = {p(a), ∃x¬p(x)} is Tarski satisfiable, but Herbrand unsatisfiable.
However, S is Herbrand satisfiable with respect to a larger signature containing
an additional constant b.
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Herbrand Model Theory vs. Tarski Model Theory

Some Observations

Obviously, each Herbrand satisfiable formula or set of formulas is Tarski
satisfiable. The converse does not hold.
Herbrand satisfiability depends on the chosen signature.
Jacques Herbrand: For clause sets (or, more generally, for universal closed
formulas), Herbrand satisfiability and Tarski satisfiability coincide!
With Tarski model theory, there is no strong correspondence between
individuals in the semantic domain and names, i.e., terms as syntactic
representations of semantic individuals.
With Herbrand model theory, every semantic individual has a name
and different ground terms represent different individuals.
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Finite Model Theory

Definition
A finite interpretation is an interpretation with finite domain.
For formulas or sets of formulas ϕ and ψ:
ϕ is finitely valid iff it is satisfied in each finite interpretation.
ϕ is finitely satisfiable iff it is satisfied in some finite interpretation.
ϕ is finitely unsatisfiable iff it is falsified in each finite interpretation.
I |=fin ϕ iff I is a finite interpretation and I |= ϕ.
ϕ |=fin ψ iff for each finite interpretation I: if I |=fin ϕ then I |=fin ψ.

Example
Let ϕ = { ∀x¬(x<x), ∀x∀y∀z(x<y ∧ y < z ⇒ x<z), ∀x∃y x<y }
Then ϕ is a satisfiable, but finitely unsatisfiable.

Let ψ = [∀x¬(x<x) ∧ ∀x∀y∀z(x<y ∧ y < z ⇒ x<z)]⇒ ∃x∀y ¬(x<y)
Then ψ is finitely valid, but not valid.
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(Semi-)Decidability

Theorem
Let I be a finite interpretation.
Given a formula ϕ, it is decidable if I |=fin ϕ (i.e., I |= ϕ) holds.

Proof idea
The model relationship |= is defined by a recursive algorithm for evaluating a
formula in an interpretation. This algorithm terminates over finite domains.

Proposition
For finite signatures, the problem whether a finite set of closed formulas has a
model with a given finite cardinality, is decidable.

Corollary
For finite signatures, the problems of finite satisfiability, finite falsifiability, and
finite non-entailment of finite sets of closed formulas are semi-decidable.
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Undecidability

Theorem (Trakhtenbrot)

For signatures with a non-propositional relation symbol and a relation or
function symbol of arity ≥ 2, finite satisfiability is undecidable.

Corollary
Finite unsatisfiability, finite validity, and finite entailment are not semi-decidable.
Hence, there is no complete calculus for finite entailment.

Theorem
The finiteness/compactness theorem does not hold for finite model theory.

Proof
For each n ∈ N let ϕn be a finitely satisfiable formula all of whose models have
domains with cardinality ≥ n. Then each finite subset of S = {ϕn | n ∈ N} is
finitely satisfiable, but S is not finitely satisfiable.
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Finite Model Theory

Summary

Recall that finiteness is not expressible in first-order predicate logic.
Tarksi unsatisfiability is semi-decidable and Tarski satisfiability is not,
whereas finite satisfiability is semi-decidable and finite unsatisfiability is not.
Finite model theory is fundamental to database theory, e.g.: Answering
relational queries over a database (i.e., a finite relational structure)
corresponds to evaluating logical formulas over a finite structure.
Important research directions in finite model theory:

• Descriptive complexity (e.g., Fagin’s Theorem)
• Inexpressibility results (Ehrenfeucht-Fraïssé games, 0-1 Laws)
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Minimal Model Semantics of Definite Rules

Motivation

Recall: Definite programs are finite sets of definite clauses, also called
definite rules: A← B1 ∧ . . . ∧Bn with n ≥ 0.
Definite programs admit a very natural semantics definition:

• Each program Π is satisfiable.
• The intersection of all its Herbrand models is a model of Π.
• This is the minimal model of Π.
• Precisely the atoms implied by Π are true in the minimal model.

Definite rules are a special case of universal and inductive formulas.
The interesting model-theoretic properties of definite rules are inherited
from these more general classes of formulas.
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Universal and Inductive Formulas

Definition (Universal and Inductive Formulas)

Recall the transformation of any formula into prenex from.

A formula is called universal if it can be transformed into a prenex form
with universal quantifiers only.
A formula is called inductive if it can be transformed into a prenex form
with the following properties:

• The quantifier prefix starts with universal quantifiers for all variables in the
consequent followed by arbitrary quantifiers for the remaining variables.

• The quantifier-free part is of the form (A1 ∧ . . . ∧An)← ϕ, where n ≥ 0
and ϕ is a positive formula (i.e., it contains no negation).

An inductive formula is either a generalised definite rule (if n ≥ 1) or a
generalised definite goal (if n = 0).
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Outline of the Subsection

Roadmap

Definition: compatible interpretations, intersection of interpretations
Definition: intersection of Herbrand models HI (Mod∩(S))
Definition: order on models, minimal (Herbrand) model

Theorem: For universal formulas S, Mod∩(S) = {A ∈ HB | S |= A}.
Observation: HI (Mod∩(S)) is not necessarily a model of S.

Theorem: Satisfiability of definite inductive formulas.
Theorem: For inductive formulas S, the intersection of compatible models
is a model.

Main result:
Minimal Herbrand Model HI (Mod∩(Π)) of a Definite Program Π.
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Intersection of (Compatible) Interpretations

Definition (Compatible set of interpretations)

A set {Ii | i ∈ I} of interpretations with index set I is called compatible, iff
I 6= ∅.
D =

⋂{dom(Ii) | i ∈ I} 6= ∅.
all interpretations of a function symbol coincide on the common domain:
fIi(d1, . . . , dn) = fIj (d1, . . . , dn) for each n-ary (n ≥ 0) function
symbol f , for all i, j ∈ I, and for all d1, . . . , dn ∈ D.
each variable is identically interpreted in all interpretations:
xIi = xIj for each variable x and all i, j ∈ I.
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Definition (Intersection of a compatible set of interpretations)

Let {Ii | i ∈ I} be a compatible set of interpretations. Then
⋂{Ii | i ∈ I} is

defined as the interpretation I with
dom(I) = D =

⋂{dom(Ii) | i ∈ I}.
a function symbol is interpreted as the intersection of its interpretations:
fI(d1, . . . , dn) = fIi(d1, . . . , dn) for each n-ary (n ≥ 0) function
symbol f , for an arbitrary i ∈ I, and for all d1, . . . , dn ∈ D.
a relation symbol is interpreted as the intersection of its interpretations:
pI =

⋂
i∈I p

Ii for each relation symbol p.
a variable is interpreted like in all given interpretations:
xI = xIi for each variable x and an arbitrary i ∈ I.
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Intersection of Herbrand Models

Lemma
Let {Bi | i ∈ I} be a set of sets of ground atoms, i.e., Bi ⊆ HB for each i ∈ I.
If this set is nonempty, then

{HI (Bi) | i ∈ I} is a compatible set of interpretations.⋂{HI (Bi) | i ∈ I} = HI
( ⋂{Bi | i ∈ I}

)
i.e., its intersection is the

Herbrand interpretation induced by the intersection of inducers.

Definition (Set of inducers of Herbrand models of a set of formulas)

For a set S of formulas, the set of inducers of its Herbrand models is
ModHB (S) = {B ⊆ HB | HI (B) |= S}.

Notation
For a set S of formulas:

Mod∩(S) =
{ ⋂

ModHB (S) if ModHB (S) 6= ∅
HB if ModHB (S) = ∅
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Order on Models

Definition (Order on Models)

I1 ≤ I2 for interpretations I1 and I2 if
dom(I1) = dom(I2).
the interpretations of a function symbol coincide on the common domain:
fI1(d1, . . . , dn) = fI2(d1, . . . , dn) for each n-ary (n ≥ 0) function
symbol f and all d1, . . . , dn ∈ dom(I1).
the “smaller” interpretation of a relation symbol is a restriction of the other:
pI1 ⊆ pI2 for each n-ary (n ≥ 0) relation symbol p.
each variable is identically interpreted in the interpretations:
xI1 = xI2 for each variable x.
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Minimal Model

Definition (Minimal model)

A minimal model of a set of formulas is a ≤-minimal member I of the set of all
its models with domain dom(I).

Proposition
Let S be a set of formulas. An Herbrand model HI (B) of S is minimal iff there
is no proper subset B′ ⊂ B such that HI (B′) is also a model of S.

Lemma
Let S be a set of formulas.

An Herbrand model HI (B) of S is minimal iff B is a ⊆-minimal member of
ModHB (S).
If HI (Mod∩(S)) is a model of S, then it is the unique minimal Herbrand
model of S.
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Theorem
If S is universal, then Mod∩(S) = {A ∈ HB | S |= A}.

Proof
If S is unsatisfiable, both sides are equal to HB . So suppose that S is satisfiable:

“⊆”: Let A ∈ Mod∩(S), thus A ∈ B for each B ⊆ HB with HI (B) |= S.
We have to show S |= A.
Let I be an arbitrary model of S. By the correspondence of satisfiability and
Herbrand-satisfiability for universal formulas, HI (B′) |= S where
B′ = {A′ ∈ HB | I |= A′}. Hence, A ∈ B′ and, therefore I |= A.
Since I was arbitrary, we have shown S |= A.

“⊇”: Let A ∈ HB with S |= A, i.e., each model of S satisfies A.
Then for each B ⊆ HB with HI (B) |= S holds HI (B) |= A and thus A ∈ B.
Hence A ∈ Mod∩(S).
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Motivation
The above theorem shows that HI (Mod∩(S)) has an interesting property for
universal formulas. However, there remain two concerns:

S may be unsatisfiable:
HI (Mod∩(S)) is the Herbrand interpretation induced by those atoms
which are implied by S. This is non-trivial only if Mod∩(S) 6= ∅. We shall
see that for sets of definite inductive formulas, Mod∩(S) 6= ∅ is guaranteed.
HI (Mod∩(S)) is not necessarily a model of S:
This may be the case even if S is satisfiable (and universal). We shall see
that for sets of inductive formulas, HI (Mod∩(S)) is always a model of S.

Example
Assume a signature consisting of a unary relation symbol p and constants a, b.
Let S = {p(a) ∨ p(b)}. Then ModHB (S) = { {p(a)}, {p(b)}, {p(a), p(b)} }.
But HI (Mod∩(S)) = HI (∅) is not a model of S.
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Important Properties of Inductive Formulas

Theorem
For each set S of generalised definite rules, HI (HB) |= S.

Proof
Let S be a set of generalised definite rules. Thus each member of S is
equivalent to a formula of the form ∀~x[(A1 ∧ . . . ∧An)← ϕ] where ~x are the
variables occurring in A1 . . . An.
Clearly, for every ground instance Aiσ of each atom Ai in the conclusion, we
have HI (HB) |= Aiσ. Thus HI (HB) |= (A1 ∧ . . . ∧An)σ and, therefore, also
HI (HB) |= [(A1 ∧ . . . ∧An)← ϕ]σ for every ground substitution σ.
Hence, HI (HB) satisfies each member of S.
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Theorem
Let S be a set of inductive formulas. If {Ii | i ∈ I} is a set of compatible models
of S with the same domain D, then I =

⋂{Ii | i ∈ I} is also a model of S.

Proof Idea
Each member of S is (equivalent to) a formula ∀~x[(A1 ∧ . . . ∧An)← ϕ] with
n ≥ 0 where ~x are the variables in A1, . . . , An and ϕ is a positive formula.
Let V be an arbitrary variable assignment on ~x. Clearly I[V ] ≤ Ii[V ] for each i.
If ϕ is false in I[V ], then S is trivially true in I[V ]. Now suppose that
I[V ] |= ϕ. Then clearly Ii[V ] |= ϕ for each i ∈ I (since ϕ is positive).
By assumption, Ii[V ] |= (A1 ∧ . . . ∧An)← ϕ] holds. It follows that
Ii[V ] |= (A1 ∧ . . . ∧An). Thus I[V ] |= (A1 ∧ . . . ∧An) and, therefore
I[V ] |= [(A1 ∧ . . . ∧An)← ϕ]. Hence, (since V is arbitrary), also I |= S.

Corollary
If S is a set of inductive formulas and {Bi ⊆ HB | i ∈ I} is a nonempty set
with HI (Bi) |= S for each i ∈ I, then HI

( ⋂{Bi | i ∈ I}
) |= S.
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Minimal Model of Definite Programs

Theorem
Each set S of definite rules (i.e., each definite program) has a unique minimal
Herbrand model. This model is the intersection of all Herbrand models of S.
It satisfies precisely those ground atoms that are logical consequences of S.

Proof

Every set S of inductive formulas is satisfiable. Hence, HI (Mod∩(S)) is
the intersection of the Herbrand models of S.
The intersection of models of a set S of inductive formulas is a model of S.
Hence, HI (Mod∩(S)) is a model of S.
If HI (Mod∩(S)) is a model of S then it is the unique minimal Herbrand
model of S.
For universal formulas S, HI (Mod∩(S)) satisfies precisely those ground
atoms that are logical consequences of S.
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