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Foundations of DKS 3. Foundations of ATP

Roadmap

Motivation

This part of the lecture is based on the following book:
Alexander Leitsch: The Resolution Calculus, Texts in Theoretical Computer
Science, Springer-Verlag Berlin, Heidelberg, New York, 1997.
Several fundamental results on First-Order Predicate Logic have been
stated without proof in the first part of this lecture, like the Completeness
Theorem, the Compactness Theorem, and the Löwenheim-Skolem Theorem.
We proceed in the spirit of Automated Theorem Proving and first prove
Herbrand’s Theorem. It is then easy to prove the other results.
In the article of Bry et al., the argumentation is in the opposite direction:
Herbrand’s Theorem is obtained as an easy consequence of the
Compactness Theorem which in turn follows easily from the Completeness
Theorem (which is stated without proof).
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Substitutions

Definition (Substitution)

A substitution is a function σ, written in postfix notation, that maps terms to
terms and is

homomorphous, i.e., f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) for compound terms
and cσ = c for constants.
identical almost everywhere, i.e., {x | x is a variable and xσ 6= x} is finite.

The domain of a substitution σ is the finite set of variables on which it is not
identical. Its codomain is the set of terms to which it maps its domain.
A substitution σ is represented by the finite set {x1 7→x1σ, . . . , xk 7→xkσ}
where {x1, . . . , xk} is its domain and {x1σ, . . . , xkσ} is its codomain.
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(Ground) Instances

Definition (Ground substitution, ground instance)

A ground substitution is a substitution whose codomain consists of ground
terms only. A grounding substitution for a term t is a ground substitution σ
whose domain includes all variables in t, such that tσ is ground. A ground
instance of t is an instance of t that is ground.

Definition (Instance of a formula)

Let ϕ be a formula and σ a ground substitution. Then ϕσ is the formula
obtained from ϕ by replacing each free variable occurrence x in ϕ by xσ.

Definition (Ground instance of a formula)

Let ϕ be a formula. Let ϕ′ be a rectified form of ϕ. Let ϕ′′ be obtained from ϕ′

by removing each occurrence of a quantifier for a variable. A ground instance
of ϕ is a ground instance of ϕ′′.

Thomas Eiter and Reinhard Pichler 16 November, 2010 6/36



Foundations of DKS 3. Foundations of ATP 3.1 Substitutions and Unification

Unification

Definition (Unification)

Two terms s and t are unifiable, if there exists a substitution σ with sσ = tσ. In
this case σ is called a unifier of s and t.
A most general unifier or mgu of s and t is a unifier σ, s.t. for any other unifier
σ′ of s and t, there exists a substitution ϑ with σ′ = σϑ.
If σ is a most general unifier of s and t, then the term sσ is called a most
general common instance of s and t.

Remarks

For any two terms s and t, if they are unifiable, then there exists an mgu
of s and t. In this case, the most general common instance is unique up to
variable renaming.
Testing if s and t are unifiable and, if so, computing an mgu can be done
efficiently. However, care is required concerning the used data structures
(e.g., dag representation rather than string representation of terms).
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Example
s = h(x1, x2, . . . , xn)
t = h(f(x0, x0), f(x1, x1), . . . , f(xn−1, xn−1))
Unification of s and t yields the mgu
{x1 7→ f(x0, x0), x2 7→ f(f(x0, x0), f(x0, x0)), . . .}

Remarks

The mgu maps each xi to a complete binary tree of height i.
The size of the mgu (represented as a string or a tree) is exponential in the
size of the input due to copying (or duplication) of (sub)terms.
Better alternative. Represent terms as directed acyclic graphs.
Intuition. Build up a substitution by collecting a list of bindings without
duplicating terms, i.e. {x1 7→ f(x0, x0), x2 7→ f(x1, x1), . . .}
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Overview of the Transformation

Transformation
Every formula ϕ can be transformed into a formula ψ, s.t.

ψ is a set (or conjunction) of closed, universally quantified clauses
ϕ and ψ are sat-equivalent, i.e., ϕ is satisfiable iff ψ is satisfiable.

The transformation proceeds in two steps:
1 Transformation into prenex form whose matrix is in CNF.
2 Skolemization: eliminate all existential quantifiers

Theorem
Every formula is equivalent to a formula in prenex form whose matrix is in
conjunctive normal form (CNF).
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Model-preserving Transformations

Proposition (Model-preserving transformations)

Let ϕ, ϕ′, ψ, ψ′, χ be formulas. The following equivalences hold:
ϕ |=| ϕ′ if ϕ′ is a rectified form of ϕ
ϕ |=| ϕ′ if ψ |=| ψ′ and ϕ′ is obtained from ϕ by replacing an occurrence
of the subformula ψ by ψ′

((ϕ ∨ ψ) ∧ χ) |=| ((ϕ∧χ) ∨ (ψ∧χ)), ((ϕ ∧ ψ) ∨ χ) |=| ((ϕ∨χ) ∧ (ψ∨χ))
(⊥ ∨ ϕ) |=| ϕ, (> ∧ ϕ) |=| ϕ, (ϕ ∨ ¬ϕ) |=| >, (ϕ ∧ ¬ϕ) |=| ⊥
(ϕ ∨ ϕ) |=| ϕ, (ϕ ∧ ϕ) |=| ϕ, ¬¬ϕ |=| ϕ
¬(ϕ ∨ ψ) |=| (¬ϕ ∧ ¬ψ), ¬(ϕ ∧ ψ) |=| (¬ϕ ∨ ¬ψ)
(ϕ⇒ ψ) |=| (¬ϕ ∨ ψ)
∀x∀yϕ |=| ∀y∀xϕ, ∃x∃yϕ |=| ∃y∃xϕ, ¬∀xϕ |=| ∃x¬ϕ, ¬∃xϕ |=| ∀x¬ϕ
∃x(ϕ∧ ψ) |=| (ϕ∧ ∃xψ) and ∀x(ϕ∧ ψ) |=| (ϕ∧ ∀xψ) if x is not free in ϕ
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Skolemization

Definition (Skolemization step)

Let ϕ be a closed formula in prenex form and let ∃x be the outermost
existential quantifier in the quantifier prefix. Moreover, suppose that ∃x is in
the scope of the universal quantifiers ∀y1 . . . ∀yk with k ≥ 0.
Let f be a k-ary function symbol that does not occur in ϕ. Let ϕs be ϕ, s.t. ∃x
is dropped and every occurrence of x in the matrix of ϕ is replaced by
f(y1, . . . , yk). Then the transformation from ϕ to ϕs is a Skolemization step
with Skolem function symbol f and Skolem term f(y1, . . . , yk).

Proposition
If a Skolemization step transforms ϕ to ϕs, then ϕs |= ϕ, and for each
interpretation I with I |= ϕ there exists an interpretation I ′ with I ′ |= ϕ and
I ′ |= ϕs. Moreover, I ′ coincides with I except possibly fI

′ 6= fI .
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Clause Form

Notation

A clause is either the empty clause (denoted by 2) or a disjunction of
literals. The variables in a clause are thought of as universally quantified.
A universally quantified formula in CNF can therefore be represented as a
clause set. The latter representation is more common in automated
deduction (and will be used in the remainder of this part of the lecture).

Example
Let F0 = ¬[(∀x∃yP (x, g(y, f(x))) ∧ ∃zQ(z)) ∨ ∃y∀xR(x, y))].
The transformation into clause form can be done as follows:
F1 = ¬[(∀x∃yP (x, g(y, f(x))) ∧ ∃zQ(z)) ∨ ∃v∀uR(u, v))] (rectification)
F2 = (∃x∀y¬P (x, g(y, f(x))) ∨ ∀z¬Q(z)) ∧ ∀v∃u¬R(u, v) (shift ¬)
F3 = ∃x∀y∀z∀v∃u(¬P (x, g(y, f(x))) ∨ ¬Q(z)) ∧ ¬R(u, v) (prenex form)
F4 = ∀y∀z∀v(¬P (a, g(y, f(a))) ∨ ¬Q(z)) ∧ ¬R(h(y, z, v), v) (Skolemization)
C = {C1, C2} with C1 = ¬P (a, g(y, f(a))) ∨ ¬Q(z), C2 = ¬R(h(y, z, v), v)).
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Herbrand Interpretations

Motivation

An interpretation according to Tarski’s model theory may use any
nonempty set as its domain. This makes it apparently incomputable.
Herbrand interpretations have as domain the so-called Herbrand universe,
the set of all ground terms constructible with the signature considered.
Some important properties of Herbrand interpretations:

• Ground terms are interpreted “by themselves”. An Herbrand interpretation
for a closed formula is therefore fully characterized by the set of ground
atoms that are true in it.

• In an Herbrand interpretation, quantification reduces to ground instantiation
(i.e., semantics can be expressed in terms of syntax).

• Result due to Jacques Herbrand: If a universal formula is true in any
interpretation, then this formula is also true in an Herbrand interpretation.
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Herbrand Interpretations

Definition (Herbrand universe and base)

Let L be a signature for first-order predicate logic. The Herbrand universe HUL
is the set of all ground L-terms. The Herbrand base HBL is the set of all
ground L-atoms.
(We assume that L specifies at least one constant.)

Definition (Herbrand interpretation)

An interpretation I is an Herbrand interpretation if dom(I) = HU and
fI(t1, . . . , tn) = f(t1, . . . , tn) for each n-ary function symbol f and all
t1, . . . , tn ∈ HU .
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Semantics vs. Syntax

Theorem
Let I be an Herbrand interpretation and ϕ a formula:

I |= ∀xϕ iff I |= ϕ{x 7→ t} for each t ∈ HU .
I |= ∃xϕ iff I |= ϕ{x 7→ t} for at least one t ∈ HU .

i.e., the effect of modifying the interpretation’s variable assignment can be
achieved by applying the ground substitution {x 7→ t} to ϕ.

Corollary
Let S be a set of universal closed formulas and Sground the set of all ground
instances of members of S.
For each Herbrand interpretation I we have: I |= S iff I |= Sground .
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Representation of Herbrand Interpretations

Definition (Herbrand interpretation given by a set of ground atoms)

Let V be some fixed variable assignment in HU . Let B ⊆ HB be a set of
ground atoms. Then HI (B) is the Herbrand interpretation with variable
assignment V and pHI (B) = {(t1, . . . , tn) | p(t1, . . . , tn) ∈ B} for each n-ary
relation symbol p.

Definition (Herbrand interpretation induced by an interpretation)

Let I be an arbitrary interpretation. The Herbrand interpretation induced by I,
denoted HI (I), is HI ({A ∈ HB | I |= A}).

Theorem (Herbrand model induced by a model)

Let ϕ be a universal closed formula. Each model of ϕ induces an Herbrand
model of ϕ, that is, for each interpretation I, if I |= ϕ then HI (I) |= ϕ.
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Motivating Example

Example
Consider the clause set C = {C1, C2, C3} with C1 = P (x, f(a)),
C2 = ¬P (u, v) ∨Q(f(v)) and C3 = ¬Q(z) over the signature L with function
symbols a, f and predicate symbols P,Q. We claim that C is unsatisfiable.
Suppose that C has an Herbrand interpretation I with B = {A ∈ HB | I |= A}.
Since C3 = ¬Q(z) is true in I, we have Q(t) 6∈ B for each ground term
t ∈ HBL. Hence, since C2 = ¬P (u, v) ∨Q(f(v)) is true in I, we have
P (s, t) 6∈ B for any two ground terms s, t ∈ HBL.
But then C1 = P (x, f(a)) is false in I, which is a contradiction.

Remark
The above argument yields a semantical counterpart of a resolution-based
refutation. This technique of excluding interpretations from being models can
be systematized and represented in the form of so-called semantic trees.
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Semantic Tree Representation

Example continued
C = {C1, C2, C3} with C1 = P (x, f(a)), C2 = ¬P (u, v) ∨Q(f(v)), and
C3 = ¬Q(z) is unsatisfiable. Even C′ = {C ′1, C ′2, C ′3} with C ′1 = P (a, f(a)),
C ′2 = ¬P (a, f(a)) ∨Q(f(a)), and C ′3 = ¬Q(f(a)) is unsatisfiable.
The following semantic tree represents all possible truth values of all possible
(Herbrand) interpretations of C restricted to the atoms P (a, f(a)) and Q(f(a)).
In all cases, at least one clause is falsified (since the labels along each branch
contain the dual literals of some ground instance of some clause in C).

C3

P (a, f(a))

C3

¬P (a, f(a))

Q(f(a))

C2

P (a, f(a))

C1

¬P (a, f(a))

¬Q(f(a))
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Semantic Trees

Definition (Semantic Tree)

A semantic tree for a set of clauses C over signature L is an edge-labelled tree
T = 〈NOD,E, ξ〉 with nodes NOD, edges E and labelling function ξ, s.t. the
following conditions are fulfilled:

1 ξ : E → HBL ∪ {¬A | A ∈ HBL}.
2 T is a proper binary tree (i.e., every non-leaf node has exactly 2 children).
3 If e1 and e2 are edges starting from a common node then ξ(e1) and ξ(e2)

are dual literals (i.e., A and ¬A for some A ∈ HBL).
4 Let N be a node in T and π the (unique) path connecting N with the root

and let γN = {L | ∃e ∈ E, s.t. e is an edge on π and ξ(e) = L}. Then γN

does not contain complementary literals (i.e., γN is satisfiable).

Intended meaning
A node in a semantic tree represents a partial truth assignment for HBL, which
can be extended to those truth assignments where all literals in γN are true.
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Example
Consider a clause set C over the signature L with function symbols a, f and
predicate symbols P,Q. Then T1 is a semantic tree while T2 and T3 are not.

Q(f(a))

P (a, f(a)) ¬P (a, f(a))

¬Q(f(a))

T1

Q(a)

P (a, f(a)) ¬P (a, f(a))

¬Q(f(a))

T2

Q(f(a))

Q(f(a)) ¬Q(f(a))

¬Q(f(a))

T3
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Complete Semantic Trees

Definition (Branch)

Let T be a semantic tree. A path π of T is called a branch if the following
properties are fulfilled:

1 π starts at the root of T .
2 π is either infinite or it goes from the root to some leaf.

We define the (partial) interpretation γ(π) as follows:
1 If π is finite, then we set γ(π) = γN , where N is the leaf node on π.
2 If π is infinite with nodes (Ni)i∈N, then we set γ(π) =

⋃
i∈N γNi .

Definition (Complete semantic tree)

Let T be a semantic tree for a clause set C over the signature L. Then T is
called complete if for every branch π in T and every A ∈ HBL, either A ∈ γ(π)
or ¬A ∈ γ(π) (i.e., every branch represents a full Herbrand interpretation).
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Construction of a Complete Semantic Tree

Construction
Let ψ : N → HBL be an enumeration of HBL

Set T0 = 〈NOD0, E0, ξ0〉 with NOD0 = {root}, E0 = ∅, and ξ0 = ∅

Let n < |HBL|, let F INn denote the set of all leaf nodes in NODn. Moreover,
for every node N ∈ F INn, let α1(N) and α2(N) denote two new nodes.

Then we set Tn+1 = 〈NODn+1, En+1, ξn+1〉 with

NODn+1 = NODn ∪
⋃

N∈FINn

{α1(N), α2(N)},

En+1 = En ∪
⋃

N∈FINn

{(N,α1(N)), (N,α2(N))},

ξn+1 = ξn ∪
⋃

N∈FINn

{((N,α1(N)), ψ(n)), ((N,α2(N)),¬ψ(n))},
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Limit Tree
Let α = |HBL|. Then we define the limit tree T̂ = 〈 ˆNOD, Ê, ξ̂〉 with

ˆNOD =
⋃α

i=0 NODi Ê =
⋃α

i=0Ei ξ̂ =
⋃α

i=0 ξi

Motivation

Clearly, a clause set C is unsatisfiable iff in a complete semantic tree every
branch falsifies (at least one ground instance of some clause in) C.
If HBL is infinite, we cannot construct the entire semantic tree T̂ .
However, we may stop expanding a node that falsifies some clause in
C ∈ C, since all branches resulting from this expansion are guaranteed to
falsify this clause as well.
This idea will be formalized in the notion of failure nodes and will be
crucial for the proof of Herbrand’s Theorem.
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Failure Nodes and Complete Semantic Trees

Definition (Failure node)

Let T = 〈NOD,E, ξ〉 be a semantic tree for clause set C over signature L.
Let N ∈ NOD and C ∈ C. We say that N falsifies C if there exsits a ground
instance C ′ of C s.t. for all literals L in C ′, the dual of L is contained in γN .
Let N ∈ NOD. We call N a failure node if N falsifies some clause C ∈ C but
no ancestor node of N falsifies any clause in C.

Definition (Closed Semantic Tree)

A semantic tree T is called closed if on every branch of T there is a failure node.
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Example
Consider the clause set C = {C1, C2, C3} with C1 = P (x, f(x)),
C2 = ¬P (a, f(y)) ∨R(y) and C3 = ¬R(z) over the signature L with function
symbols a, f and predicate symbols P,R.
We construct the limit tree T̂ for C via the following enumeration ψ of HBL:
ψ(0) = P (a, a), ψ(1) = R(a), ψ(2) = P (a, f(a)), etc. If we do not further
expand failure nodes, then we get the sequence T1, T2, T3 of semantic trees:

C3

R(a)

C2

P (a, f(a))

C1

¬P (a, f(a))

¬R(a)

P (a, a)

C3

R(a)

C2

P (a, f(a))

C1

¬P (a, f(a))

¬R(a)

¬P (a, a)

Thomas Eiter and Reinhard Pichler 16 November, 2010 28/36



Foundations of DKS 3. Foundations of ATP 3.4 Semantic Trees

Example
Consider the clause set C = {C1, C2, C3} with C1 = P (x, f(x)),
C2 = ¬P (a, f(y)) ∨R(y) and C3 = ¬R(z) over the signature L with function
symbols a, f and predicate symbols P,R.
We construct the limit tree T̂ for C via the following enumeration ψ of HBL:
ψ(0) = P (a, a), ψ(1) = R(a), ψ(2) = P (a, f(a)), etc. If we do not further
expand failure nodes, then we get the sequence T1, T2, T3 of semantic trees:

C3

R(a)

C2

P (a, f(a))

C1

¬P (a, f(a))

¬R(a)

P (a, a)

C3

R(a)

C2

P (a, f(a))

C1

¬P (a, f(a))

¬R(a)

¬P (a, a)

Thomas Eiter and Reinhard Pichler 16 November, 2010 28/36



Foundations of DKS 3. Foundations of ATP 3.4 Semantic Trees

Example
Consider the clause set C = {C1, C2, C3} with C1 = P (x, f(x)),
C2 = ¬P (a, f(y)) ∨R(y) and C3 = ¬R(z) over the signature L with function
symbols a, f and predicate symbols P,R.
We construct the limit tree T̂ for C via the following enumeration ψ of HBL:
ψ(0) = P (a, a), ψ(1) = R(a), ψ(2) = P (a, f(a)), etc. If we do not further
expand failure nodes, then we get the sequence T1, T2, T3 of semantic trees:

C3

R(a)

C2

P (a, f(a))

C1

¬P (a, f(a))

¬R(a)

P (a, a)

C3

R(a)

C2

P (a, f(a))

C1

¬P (a, f(a))

¬R(a)

¬P (a, a)
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Detecting Unsatisfiability via Semantic Trees

Theorem
Let T̂ be the limit tree for some enumeration of HBL and let C be a clause set
over signature L.
The clause set C is unsatisfiable iff T̂ is closed.

Proof idea
“⇒” Suppose that C is unsatisfiable. Let π be a branch in T̂ . Then C evaluates
to false in the interpretation corresponding to γ(π). Hence, there exists a
ground instance C ′ of some clause C ∈ C, s.t. C ′ is false in γ(π). But then
there exists a node N ∈ NOD, s.t. the dual of all literals in C ′ occurs in γN .
Thus N falsifies C and therefore N or some ancestor of N is a failure node.

“⇐” Suppose that T̂ is closed. Let I be an arbitrary Herbrand model. Then I
is the extension of the partial model represented by some branch π of T̂ (this
holds for any semantic tree, not only closed ones). Since π ends in a failure
node N (i.e., some clause C ∈ C is falsified by N), C is also false in I.
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Herbrand’s Theorem

Lemma
Let T = 〈NOD,E, ξ〉 be a closed semantic tree for clause set C over
signature L. Let C los(T ) denote the tree constructed from T by omitting all
paths starting at failure nodes. Then C los(T ) is finite.

Proof
C los(T ) is a binary tree. Suppose that C los(T ) is infinite. Then, by König’s
Lemma, C los(T ) must possess an infinite path (since the degree of all nodes in
C los(T ) is ≤ 3) and thus an infinite branch. But an infinite branch has no
failure node. Hence, T is not closed, which is a contradiction.
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Theorem (Herbrand’s Theorem)

Let C be a set of clauses over some signature L and let Cground denote the set
of all ground instances of C.
C is unsatisfiable iff there exists a finite unsatisfiable set C′ with C′ ⊆ Cground .

Proof Idea
Only the “⇒”-direction is non-trivial:
By the previous lemma, C los(T ) is finite. Moreover, every failure node falsifies
at most finitely many ground clauses. We define C′ as the set of all ground
instances of clauses in C which are falsified by a leaf node in C los(T ).
Clearly, C′ is finite. Moreover, it is easy to show that C′ is unsatisfiable.
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Outline
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Proof of Several Fundamental Theorems

Motivation

In the previous part of the lecture, we have stated without proof several
fundamental theorems of First-Order Predicate Logic:

• Completeness Theorem
• Compactness Theorem
• Löwenheim-Skolem Theorem

These results are easy to prove with Herbrand’s Theorem at hand.
Implicitly, we have just seen a proof of the Completeness Theorem:

1 Take an arbitrary closed formula F whose unsatisfiability shall be tested.
2 Transform F into a sat-equivalent clause set C.
3 Take any enumeration of the Herbrand Base HB and construct the sequence

C los(T1), C los(T2), C los(T3), . . . of semantic trees.
4 If C is unsatisfiable, our algorithm will eventually halt with the finite

semantic tree C los(T̂ ).

Thomas Eiter and Reinhard Pichler 16 November, 2010 33/36



Foundations of DKS 3. Foundations of ATP 3.5 Fundamental Theorems

Completeness Theorem

Theorem (Gödel, completeness theorem)

There exist calculi for first-order predicate logic such that S ` ϕ iff S |= ϕ for
any set S of closed formulas and any closed formula ϕ.

Proof via Herbrand’s Theorem
We know that entailment, validity, and unsatisfiability can be translated into
one another. The first automated theorem prover (Gilmore, 1960) tested the
unsatisfiability by a direct application of Herbrand’s Theorem:
W.l.o.g., we restrict ourselves to clause sets. Let C be a clause set over
signature L. Clearly, the Herbrand base HBL is computably enumerable as a
sequence (Hn)n∈N, s.t. at each step, one ground atom is added.
Let C′n := {Cσ | C ∈ C, all atoms in Cσ are contained in Hn}.
Clearly, C′n is finite for each n. We test the satisfiability of every set C′n. Since C′n
is ground, this comes down to a propositional sat-test. By Herbrand’s Theorem,
we shall eventually find some unsatisfiable set C′m if C is unsatisfiable.
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Compactness Theorem

Theorem (Gödel-Malcev, finiteness or compactness theorem)

Let S be an infinite set of closed formulas. If every finite subset of S is
satisfiable, then S is satisfiable.

Proof
W.l.o.g., we restrict ourselves to clause sets. Let C be an infinite clause set.
Suppose that C is unsatisfiable. By Herbrand’s Theorem, there exists a finite
subset C′ ⊆ Cground , s.t. C′ is unsatisfiable.

We construct a finite subset Ĉ ⊆ C as follows: For each C ′ ∈ C′, select one
C ∈ C, s.t. C ′ is a ground instance of C. Let Ĉ consist of these selected clauses
from C. Clearly, Ĉ ⊆ C is finite and unsatisfiable.
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Löwenheim-Skolem Theorem

Theorem (Löwenheim-Skolem)

Every satisfiable enumerable set of closed formulas has a model with a finite or
infinite enumerable domain.

Proof
Every enumerable set S of closed formulas is sat-equivalent to an enumerable
set Sc of clauses over some enumerable signature L, s.t. Sc |= S.
A set of clauses is satisfiable, iff it has a Herbrand model I. Depending on L,
the domain of I is either finite or infinite enumerable.
In summary, if S is satisfiable, then Sc is also satisfiable and has a model I
whose domain is either finite or infinite enumerable. By Sc |= S, we have that I
is also a model of S.
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