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Abstract

We present a principled approach to the problem of belief re-
vision in (non-monotonic) logic programming under the an-
swer set semantics. Unlike previous approaches we use a be-
lief base approach. Belief bases are sets of sentences that are,
in contrast to belief sets, not deductively closed. We show that
many of the classic base revision postulates are applicable to
the logic programming case. We discuss further postulates
for logic program revision and show that many of them follow
from classical base revision postulates. For those postulates
that do not follow from base revision postulates we propose
new postulates that may also be justified from the base re-
vision perspective. Moreover we develop a new construction
for prioritized multiple base revision based on a consolidation
operation via remainder sets. This construction is applicable
in the propositional and the logic programming case. We con-
nect postulates and construction by proving a representation
theorem showing that the construction is exactly character-
ized by the proposed set of postulates.

Introduction
Belief dynamics within propositional logics have been stud-
ied for over 25 years now (Fermé and Hansson 2011). The
theory of classic belief revision has well formulated notions
for theory change. The notions of the objects of change are
well defined. In general these can be belief sets or belief
bases. For both well defined sets of rationality postulates for
the change operation have been defined.

For logic programs, most approaches to dynamics are
very pragmatic and lack a formal representation of require-
ments of the process. Few works examined the formal prop-
erties of approaches to logic programming change. They
tried to link it to the classical theory in propositional logic
using different notions of the object of change as well as
interpretations of the desiderata of the operation itself. All
of these used the classic AGM postulates for change of be-
lief sets to logic programs. Hereby the adequate defini-
tion of a belief set, a consequence relation and a notion of
equality is crucial for the applicability of the classic Postu-
lates. First attempts showed that “the majority of the adapted
AGM and update postulates are violated . . . ” for a variety of
approaches based on the causal rejection principle (Eiter et
al. 2002). Hereby logic programs were interpreted as epis-
temic states and the set of rules satisfied by all answer sets

the belief set. The first successful approach of a relation to
the AGM theory was achieved by the use of monotonic SE-
Models first presented in (Delgrande et al. 2008) and later
on extended to merge operations (Delgrande et al. 2009;
Hué, Papini, and Würbel 2009) and to update operations
in the style of Katsuno and Mendelson by Slota and Leite
(Slota and Leite 2010; Slota and Leite 2012). They made use
of the semantic characterization of programs via SE-models
and applied an adapted version of distance based revision
operators from classic belief revision. This approach was
shown to satisfy the majority of the adopted AGM postu-
lates. AGM style change operations for answer set program-
ming (ASP) have disadvantages and show undesired results
from the ASP point of view as first noted in (Slota and Leite
2010). These undesired results for change operations in ASP
are due to the application of a semantic approach to ASP.

In this work we approach change operations of ASP from
the Belief Base perspective. The well developed classical
base revision approach has not been considered in the light
of ASP before. Moreover, we argue that the belief base ap-
proach is the natural one for ASP. AGM change operations
on belief sets can be seen as operations on the knowledge
level, abstractly describing how an ideal reasoner would
change its beliefs. This underlies the assumption of an om-
nipotent reasoner while ASP’s main features are efficient
computation of finite programs with finite answer sets. Nei-
ther for programs nor for answer sets the deductive closure
is defined. Belief bases are also more expressive, on the
knowledge level one cannot distinguish between inferred be-
liefs and fundamental, or self-supporting, ones. While this
abstraction from the fundamental beliefs and their syntactic
representation have some advantages for the global picture
of belief change we argue that ASP is an inherently syntax
based approach. A key feature of ASP is that beliefs are
formulated in form of easily understandable rules that allow
for explicit exceptions. Inferences can be explained by use
of the formulated rules. From the base revision perspective
the result of a change operation for ASP should be founded,
understandable and close to the original syntax.

The main contributions of this paper are the following.
We present a general exploration of the application of clas-
sic base revision theory to change operations on ASP. We
discuss ASP specific postulates from the literature in the
light of a base revision approach, proofs of the relationships



among both and formulation of adapted postulates. Devel-
opment of a base revision construction which is applicable
to ASP and proof of a characterization theorem for it.

The remainder of this paper is structured as follows. In the
next two sections we give some preliminaries on belief base
revision and answer set programming. Following on this we
develop base revision postulates for ASP, discuss them and
relate them to other postulates for ASP belief change. After
that we present our construction of multiple base revision
and show it applicability to ASP and the correspondence to
the postulates. Finally we discuss our approach and con-
clude.

Belief Base Revision
The classic theory of belief revision is formulated for a
propositional language Lprop. A belief base B ⊆ Lprop
is a set of propositional sentences and a belief set BS is
a deductively closed set of sentences. The theory of be-
lief base change operations has been intensively studied in
(Hansson 1991; Hansson 2001). Postulates have been estab-
lished as well as constructions and representation theorems
connecting both. As we consider belief bases for knowl-
edge representation we start with the corresponding pos-
tulates for belief base revision (Hansson 2001). Let ∗ be
a base revision operator which given a belief base B and
a sentence α ∈ Lprop constitutes the revised belief base
B ∗ α. Moreover an expansion operator + is defined for
belief bases as the non-closing expansion operator defined
as B + α = B ∪ {α}. The basic set of postulates demanded
for a belief base revision operator is:

Success α ∈ B ∗ α
Inclusion B ∗ α ⊆ B + α

Vacuity If B ∪ α is consistent then B + α ⊆ B ∗ α
Consistency If α is consistent then B ∗ α is consistent
Relevance If β ∈ (B ∪ α) \ (B ∗ α) then there is a set H

such that B ∗ α ⊆ H ⊆ B ∪ α and H is consistent but
H ∪ {β} is inconsistent

Uniformity If for all B′ ⊆ B,B′ ∪ α is inconsistent if and
only if B′∪β is inconsistent, then B∩(B∗α) = B∩(B∗β)

The success postulate states that the new information should
be part of the revision result. Inclusion demands that revi-
sion by some information should not introduce more infor-
mation than the expansion. Vacuity demands that if the new
information is consistent with the belief base then no infor-
mation should be discarded. Consistency postulates that if
the new information is consistent in itself then the result of
the revision is consistent as well. Relevance states that any
discarded piece of information would have lead to inconsis-
tency in a super set of the revision result. Any operator that
satisfies Relevance and Inclusion satisfies Vacuity, (Hansson
2001). Uniformity demands for the independence of exact
input if the set of inconsistent sets are equal.

The standard construction in belief base revision is via
the Levi-Identity by use of an appropriate contraction− and
expansion + operator:

B ∗ α = (B − ¬α) + α

Hereby − is an appropriate contraction operator character-
ized by a set of rationality postulates. Via the Levi-Identity
connections between properties of the contraction and the
revision operator can be drawn. A contraction operatorB−α
can be defined as the intersection of a selection of maximal
sets not containing α. Formally for a given belief base B and
a sentence α the set of remainder sets denoted by B ⊥ α is
such that for each X ∈ B ⊥ α: X ⊆ B, α 6∈ Cn(X) and
there is no X ′ such that X ⊂ X ′ ⊆ B and α 6∈ Cn(X ′).
Let B be a set of sentences. A function γ is a selection func-
tion for B if and only if for all sentences α if B ⊥ α 6= ∅
then ∅ 6= γ(B ⊥ α) ⊆ B ⊥ α and if B ⊥ α = ∅ then
γ(B ⊥ α) = {B}. The partial meet contraction operator is
then defined as

B −γ α =
⋂
γ(B ⊥ α).

It has been shown that a revision operator satisfies all of the
above postulates if and only if it is constructible via the Levi-
identity and a partial meet contraction operator.

Partial meet contraction can be applied to belief sets in
the same way as for belief bases. The difference between
the revision of belief sets and belief bases results from the
difference of the expansion operator. For belief bases the
non-closing expansion operator defined as B + α = B ∪ α
is used and for belief sets the closing expansion operator
B u α = Cn(B ∪ α). This slight difference has implica-
tions for the resulting revision operator. These implications
are reflected by the corresponding postulates for the revi-
sion of belief sets (Alchourron, Gärdenfors, and Makinson
1985). The postulates of Success and Consistency are iden-
tical and the postulates Inclusion and Vacuity only differ in
the expansion operator. In addition to these four postulates
the basic six AGM postulates contain the postulate Closure:
K ∗ α = Cn(K ∗ α) and the postulate Extensionality: If
α ⇔ β ∈ Cn(∅) then K ∗ α = K ∗ β. The first postulate
states that all logical consequences of the belief set should
be contained in the belief set which makes it infinite in gen-
eral. The second postulate demands for irrelevance of syn-
tax, that is, all logically equivalent formulas shall lead to the
same change. While Closure is an inherent features of the
knowledge level approach and is definitely not appropriate
in a base change framework, the idea of Extensionality as
a postulate to control semantic differences caused by slight
syntactic variations should also be kept in mind for belief
base changes.

Answer Set Programming
In this work we focus on extended logic programs under the
answer set semantics (Gelfond and Lifschitz 1988), but most
results also hold for generalized disjunctive logic programs.
Extended logic programs consist of rules over a set of propo-
sitional atoms A using strong negation ¬ and default nega-
tion not. A literal L can be an atomA or a negated atom ¬A.
The complement of a literal L is denoted by ¬L and is A if
L = ¬A and ¬A if L = A. Let A be the set of all atoms
and Lit the set of all literals Lit = A ∪ {¬A | A ∈ A}.
D = {not L | L ∈ Lit} denotes the set of all default negated
literals. And L = Lit ∪ D represents the set of all literals



and default negated literals. Throughout this paper we also
call default negated literals assumptions. A rule r is written
as

L← L0, . . . , Lm, not Lm+1, . . . , not Ln.
where the head of the rule H(r) = L is either empty
or consists of a single literal and the body B(r) =
{L0, . . . , Lm, not Lm+1, . . . , not Ln} is a subset of L. The
body consists of a set of literals B(r)+ = {L0, . . . , Lm} and
a set of default negated literals denoted by B(r)− = {Lm+1,
. . . , Ln}. Given this we can write a rule as

H(r)← B(r)+,B(r)−.
If B(r) = ∅ we call r a fact and if H(r) = ∅ we call r
a constraint. We call a program without default negation a
strict program. A set of literals which is consistent, i. e. it
does not contain complementary literals L and ¬L, is called
a state I . A literalL is true in I iffL ∈ I and false otherwise.
The body B(r) of a given rule r is true in I iff each L ∈
B(r)+ is true in I and each L ∈ B(r)− is false in I . A rule
r is true in I iff H(r) is true in I whenever B(r) is true in
I . A state is a model of a program P if r is true in I for all
r ∈ P . The reduct PS of a program P relative to a set S of
literals is defined as:

PS = {H(r)← B+(r) | r ∈ P,B−(r) ∩ S = ∅}.
An answer set of a program P is a state I which is a mini-
mal model of P I . The set of answer sets of a program P is
denoted by AS(P ) and the set of all constructible programs
by P .

Postulates for ASP Base Revision
In contrast to postulates for revision of belief sets, the pos-
tulates for belief base revision do not demand many prop-
erties of the objects of change and are general for sets of
propositional formulas and, in this case, sets of rules. That
is, we consider a revision operator ∗ : P × P → P . The
only notion to be defined is the one of consistency of a set.
Classically the consistency bases on a notion of models of
a given theory. A belief base is consistent if and only if it
has a model. For logic programs the notion of a model is not
uniquely defined and dependent on the used semantics. Here
we consider logic programs under the answer set semantics
and use the following definition.
Definition 1. Let P be a program. P is called consistent if
and only if AS(P ) 6= ∅.

Note that we defined answer sets of a program based on a
state which does not contain complementary literals. There
are other notions of answer sets in the literature in which
answer sets can contain complementary literals but usually
are defined to equal the whole set of literals in this case. It
would be easy to adapt the notion of consistency to such
cases.

A notable property of the notion of consistency of logic
programs is that the state of inconsistency of a program is
non-monotonic. While in the propositional case any subset
of a consistent set of sentences is consistent, for a consistent
logic program Q there can be a subset P ⊂ Q such that P is
inconsistent.

Example 1. The program P = {a., ¬a ← not b.} is obvi-
ously inconsistent. P ′ = P ∪ {b← not c.} has {a, b} as its
only answer set. P ′′ = P ′ ∪ {c.} is inconsistent again.

The base revision postulates given above can be directly
translated to the logic programming case with + being the
non-closing expansion P + Q = P ∪ Q. We start with the
direct translation of the base revision postulates to logic pro-
grams. Let ∗ be a base revision operator for logic programs.
Success Q ⊆ P ∗Q
Inclusion P ∗Q ⊆ P +Q

Vacuity If P +Q is consistent then P +Q ⊆ P ∗Q
Consistency If Q is consistent then P ∗Q is consistent.
Relevance If r ∈ (P ∪Q)\ (P ∗Q) then there is a program
H such that P ∗Q ⊆ H ⊆ P ∪Q and H is consistent but
H ∪ {r} is inconsistent.

Fullness If r ∈ (P ∪Q) \ (P ∗Q), then P ∗Q is consistent
and (P ∗Q) ∪ {r} is inconsistent.

Uniformity If for all P ′ ⊆ P, P ′ ∪ {Q} is inconsistent if
and only if P ′ ∪ {R} is inconsistent, then P ∩ (P ∗Q) =
P ∩ (P ∗R)

The postulate of Fullness is a stronger version of Relevance
and resembles a stronger requirement to the minimality of
change. For the propositional case Fullness is arguably too
strong (Hansson 2001), however for weaker logics it has also
been proven to be useful, cf. (Delgrande 2008). For logic
programing it also does not have the same undesirable im-
plications as we shall see later on.

Due to the non-monotonicity of inconsistency we can
strengthen the Consistency postulate for the logic program-
ming case such that they capture the same idea as for the
propositional case. The Consistency postulate expresses in
the propositional case that the outcome of the revision shall
be consistent whenever possible. For propositional logic this
is possible if and only if the input is consistent. That is, due
to the Success postulate and the monotonicity of inconsis-
tency any revision with an inconsistent input will be incon-
sistent. If the input is consistent, if necessary, rejecting all
previous information leads to a consistent belief base. For
logic programming the input can be inconsistent and a sub-
set of the revision outcome and still the revision outcome
can be consistent.
Example 2. Let P = {b., ¬a.} and Q = {a., ¬a ←
not b.}. The program Q is inconsistent but the revision
P ∗ Q = {b., a., ¬a ← not b.} is consistent and satisfies
all other postulates.

The following formulation of NM-Consistency consid-
ers non-monotonic inconsistency by use of an appropriate
premise for the possibility of consistency.
NM-Consistency If there exists some consistent X , Q ⊆
X ⊆ P ∪Q then P ∗Q is consistent.

Proposition 1. Let ∗ be a revision operator. If ∗ satisfies
Consistency then it satisfies NM-Consistency.

Proof. If Q is consistent then X = Q is consistent such that
the premise of NM-Consistency is satisfied.



The base revision postulates have been accepted as char-
acterizations of desirable change operations for proposi-
tional belief bases. The postulates can be applied to belief
bases represented as logic programs as just shown. How-
ever, it has to be shown that the defined postulates for belief
base change lead to desirable inference behavior given the
non-monotonicity of the answer set semantics. Further pos-
tulates for the connection of the change on the program level
and the resulting answer sets might have to be formulated. In
previous works such properties have been formulated which
we consider in the following.

The ASP specific revision postulates have been pro-
posed in (Eiter et al. 2002) and adopted by several au-
thors for the evaluation of their approaches afterwards (Del-
grande, Schaub, and Tompits 2007; Delgrande et al. 2008;
Delgrande 2010; Osorio and Cuevas 2007). The postulates
base on a notion of equivalence of programs which is de-
fined through the identity of the sets of answer sets in (Eiter
et al. 2002)1, through the equivalence of SE-Models in (Del-
grande et al. 2008) and partially by means of uniform equiv-
alence (Eiter and Fink 2003) in (Delgrande 2010).

Here, we generalize the postulates by considering differ-
ent notions of equivalence. Therefore we parameterize them
with a notion of equivalence based on ◦. We obtain the orig-
inal postulates with ◦ = AS but consider a family of equiv-
alences ◦ ∈ {AS,UE, SE, P} with AS being equivalence
of sets of answer sets, UE being uniform equivalence, SE
being strong equivalence and P the syntactic identity of the
programs. The equivalences are increasingly stronger with
the order given above. More precisely, it holds that for any
two programs P and P ′ that if P ≡P P ′ then P ≡SE P ′,
if P ≡SE P ′ then P ≡UE P ′ and if P ≡UE P ′ then
P ≡AS P ′. Thus apart from the original postulates we also
consider stronger versions of these. It should be noted that
this family of notions of equivalence could be extended by
all intermediate notions as formalized in (Woltran 2008).

The Tautology postulate uses the notion of tautologi-
cal programs which are denoted by P>. For propositional
logic tautologies are defined as being true in all interpreta-
tions. Formally a sentence α> is a tautology if and only if
α> ∈ Cn(∅), due to Mod(∅) ⊆ Mod(α>). We can give a
definition of tautologies and set of tautologies, tautological
programs.

Definition 2. Given a program P over the set of literals Lit.
P is tautological if and only if for each rule r ∈ P , r is true
in all states I ⊆ Lit. A tautological program is denoted by
P>.

There is also a syntactic characterization of tautologies
for ASP. If P> is a tautological program then it holds for all
rules r ∈ P> that H(r) ∈ B+(r).

The generalized postulates for ASP revision from (Eiter
et al. 2002) are given here:

Initialisation◦ : ∅ ∗ P ≡◦ P
Idempotence◦ : P ∗ P ≡◦ P
Absorption◦ : (P ∗Q) ∗Q ≡◦ P ∗Q

1For finite alphabets.

Tautology◦ : P ∗ P> ≡◦ P
Disjointness◦ : If P = P1∪P2 and P1 and P2 have disjoint

sets of literals then P ∗Q ≡◦ (P1 ∗Q) ∪ (P2 ∗Q).

Parallelism◦ : If Q1 and Q2 have disjoint sets of literals
then P ∗ (Q1 ∪Q2) ≡◦ (P ∗Q1) ∪ (P ∗Q2).

The implications on the equivalences lead to implications
of the resulting postulates. Most importantly we get that,
if an operator ∗ satisfies InitialisationP then it also satis-
fies InitialisationSE , InitialisationUE and InitialisationAS .
On the other hand, if ∗ is shown to violate InitialisationAS ,
then it also violates InitialisationUE , InitialisationSE and
InitialisationP . In the following we only show results for the
strongest version of a postulate and omit the implications of
them.

We obtain the following results for the connection of base
revision postulates and ASP change postulates:

Proposition 2. Let ∗ be a change operator on logic pro-
grams. If ∗ satisfies

1. Success and Inclusion then it satisfies InitialisationP
2. Success and Inclusion then it satisfies IdempotenceP
3. Success, Consistency, Inclusion and Vacuity then it satis-

fies AbsorptionP

Proof. From Success follows P ⊆ ∅∗P and from Inclusion
follows ∅ ∗ P ⊆ P . From Success follows P ⊆ P ∗ P and
from Inclusion follows P ∗ P ⊆ P . From Success follows
Q ⊆ P ∗Q and together with Consistency that (P ∗Q)∪P is
consistent. Then it follows from Vacuity and Inclusion that
(P ∗Q) ∗Q = P ∗Q.

Hence, we have just shown, that the first three ASP postu-
lates follow, for all considered notions of equivalence, from
very basic base revision postulates. This verifies the ade-
quateness of the base revision approach for ASP.

However, the remaining four ASP postulates do not only
not follow from the base revision postulates, they are even
inconsistent with them. This is not entirely surprising since
they were formulated for a very different approach for han-
dling update sequences of logic programs. However, the un-
derlying ideas can be adapted to the base revision setting.

In the following we have a closer look at the ASP pos-
tulates that are in conflict with the base revision postulates.
The TautologyAS postulate is violated if the belief base is
inconsistent and consistent after revising by a tautology.

Example 3. Let P = {a.,¬a.} and Q = {b ← b.} with
AS(P ) = ∅ andAS(Q) = {∅}. For any revision operator ∗
satisfying TautologyAS we getAS(P ∗Q) = ∅, e. g. P ∗Q =
{a.,¬a., b← b.}. Consistency on the other hand allows for
changes to make the belief base consistent. For any revision
operator ∗′ satisfying Consistency we get AS(P ∗′ Q) 6= ∅,
e. g. P ∗′ Q = {a., b← b.}.

Thus tautology cannot be satisfied by any operator satisfy-
ing consistency because of the case in which an inconsistent
belief base is made consistent by the revision by a tautology.

Proposition 3. Let ∗ be a change operator on logic pro-
grams. If ∗ satisfies



1. Consistency then it violates TautologyAS
2. Success then it violates TautologyP

Proof. See Appendix.

However, TautologyAS in general addresses an important
issue in ASP revision, namely that if the belief base is con-
sistent, the revision by a tautology should not lead to any
changes. This is not satisfied by many approaches to dy-
namics in ASP.

To adapt the TautologyAS postulate to the base revision
setting it is desirable that TautologyAS is satisfied, except
for the case in which the belief base is inconsistent. To
this end we introduce a new postulate as a weakening of
TautologyAS .
Consistent TautologyAS If P is consistent, then P ∗
P> ≡AS P .

We consider Consistent Tautology in its weakest form, based
on ≡AS , here. Clearly, demanding Consistent TautologyP
to be satisfied conflicts with Vacuity. For Consistent
TautologyAS we can show that it follows from basic base
revision postulates. Before that we give a stronger version
of the postulate.

The problem of the approaches not satisfying the tautol-
ogy postulate is, that they make unnecessary changes not
only for tautological revisions. Any revision by program
that does not influence the generation of the answer sets of
the belief base should not add any answer sets. This idea has
been discussed in (Alferes et al. 2005) and (Sefránek and Si-
ika 2006) and formalized for dynamic logic programming as
the refined extension principle. Here we formalize this idea
in the following postulate:
IrrelevanceAS If ∅ 6= AS(P ) = AS(P ∪Q) then AS(P ∗
Q) ⊆ AS(P ).

Irrelevance is a postulate formulating some form of minimal
change on the answer set level. The two basic postulates for
minimal change of the base revision postulates, Inclusion
and Vacuity, are sufficient to guarantee IrrelevanceAS .
Proposition 4. If ∗ satisfies Inclusion and Vacuity then it
satisfies IrrelevanceAS .

Proof. If ∅ 6= AS(P ) = AS(P∪Q) thenP+Q is consistent
and from Vacuity follows P + Q ⊆ P ∗ Q. Together with
Inclusion follows P + Q = P ∗ Q and from the premise
follows that AS(P ∗ Q) = AS(P ) such that IrrelevanceAS
is satisfied.

We consider Parallelism and Disjointness together since
the underlying idea is similar. The problem with Parallelism
and Disjointness is that the respective third program can
contain rules connecting the disjoint sets of literals such that
inconsistencies arise in combination of both sets of literals
but not based on a single one.
Proposition 5. Let ∗ be a change operator on logic pro-
grams. If ∗ satisfies

1. Success, Consistency and Vacuity then it violates
ParallelismAS

2. Vacuity and Consistency then it violates DisjointnessAS

Proof. See Appendix.

Consider the following example which demonstrates that
DisjointnessAS is in conflict with the principle of minimal
change in base revision.
Example 4. Let P = {a., b.} such that P = P1 ∪ P2 with
P1 = {a.} and P2 = {b.}, and Q = {¬a ← b.}. The
revision of P1 ∗ Q we can note that there is no conflict and
AS(P1 ∪ Q) = {a.} such that there is no need to change
anything, such thatP1∗Q = P1∪Q seems to be a reasonable
revision. The same holds for P2∗QwithAS(P2∪Q) = {b.}.
The DisjointnessAS postulate demands that AS(P ∗ Q) =
AS((P1 ∗ Q) ∪ (P2 ∗ Q)). In this case AS((P1 ∗ Q) ∪
(P2 ∗Q)) = ∅ which is clearly not a desirable outcome for
AS(P ∗Q).

DisjointnessAS is in conflict with the minimal change of
the revisions of P1 ∗ Q and P2 ∗ Q. In order to satisfy
DisjointnessAS the the revisions of P1 ∗Q and P2 ∗Q have
to be cautious enough to anticipate possible inconsistencies
with additional input. Here we consider that inconsistencies
with some input should be handled by a revision operator
applied to this input and not by a previous revision.

Hence these postulates are too strong to be satisfiable by
a base revision approach. Therefore we present weakened
versions of the postulates that allow for minimal change op-
erations.
Weak Disjointness◦ : If P = P1 ∪ P2 and P1 and P2 have

disjoint sets of literals A1 and A2 and for each set of
literals Ar of a rule r ∈ Q it holds Ar ∩ A1 = ∅ or
Ar ∩ A2 = ∅ then P ∗Q ≡◦ (P1 ∗Q) ∪ (P2 ∗Q).

Weak Parallelism◦ : If Q1 and Q2 have disjoint sets of lit-
erals A1 and A2, and for each set of literals Ar of a rule
r ∈ P it holds Ar ∩ A1 = ∅ or Ar ∩ A2 = ∅ then
P ∗ (Q1 ∪Q2) ≡◦ (P ∗Q1) ∪ (P ∗Q2).

These weakened versions of disjointness and parallelism are
not in conflict with the proposed set of base revision postu-
lates, but are still strong enough such that they do not follow
from the base revision postulate set. Thus we add them to
the set of desirable postulates.

To sum up, we have shown that all postulates for ASP re-
vision that are not in conflict with the base revision setting
follow from the base revision postulates. For those ASP re-
vision postulates that are in conflict with the base revision
postulates we gave adequately weakened versions. There-
fore we are looking for an operator which satisfies Suc-
cess, Inclusion, Consistency, Relevance, Uniformity, Weak
DisjointnessP and Weak ParallelismP .

Construction of ASP Base Revision
The direct transfer of the construction of belief base opera-
tors via the Levi identity to logic programs does not work,
because neither the negation nor the inference of a rule is
defined and inconsistency cannot be reduced to complemen-
tary literals. Even in the very restricted case of Q = {L.}
consisting of a single fact, it would not be sufficient to con-
tract such that ¬L 6∈ ∩AS(P ).

So we have to look for different constructions which im-
plement the idea of the Levi-Identity while being adequate



for the ASP case. The idea of the Levi-Identity is, that af-
ter contracting by ¬α the belief base is consistent with α.
That is the belief base is made consistent with the informa-
tion to be added, before adding it. This does not work in
general for the logic programming case because the depen-
dencies within a program are complex and cannot be antic-
ipated without including the input program. The inconsis-
tency of a program P with a new program Q can only be
determined by considering P ∪Q, as the interaction of rules
of both programs generates the inconsistency. Base revision
constructions of this type are called external revision since
a sub-operation takes place outside of the original set. Ex-
ternal revisions do not make sense for belief sets since all
inconsistent belief sets are equal.

Hence the base revision construction for logic programs
has to consider P ∪ Q to determine inconsistency. From
P ∪ Q rules are removed such that the resulting program
is consistent with Q. This idea amounts to the consolida-
tion of P ∪ Q under certain constraints. In the base revi-
sion literature the unary operator ! is called a consolidation
operator and results in a consistent subset of the input. A
consolidation operator has been used in (Hansson 1997) to
define semi-revision, which is defined as B ∗?α = (B∪α) !.
The problem with semi-revision for our means is that it is
non-prioritized, i. e. the success postulate is not satisfied in
general.

We extend the idea of the semi-revision construction to be
able to define a prioritized revision operator for logic pro-
grams. To this end we define a screened consolidation oper-
ator !R with R being a set of core sentences that are immune
to change like in screened revision (Makinson 1997).

We propose the following set of postulates for a screened
consolidation:

C-Screen R ⊆ P !R.

C-Screen-Consistency If there exists some consistent X ,
R ⊆ X ⊆ P then P !R is consistent.

C-Inclusion P !R ⊆ P
C-Relevance If r ∈ P and r 6∈ P !R, then there is a set P ′

such that P !R ⊆ P ′ ⊆ P . and that P ′ is consistent but
P ′ ∪ {r} is inconsistent.

C-Fullness If r ∈ P and r 6∈ P !R, then P !R is consistent
and P !R ∪ {r} is inconsistent.

C-Screen-Uniformity Let R,R′ and P be sets of rules and
R and R′ be consistent. If for all X ⊆ P , R ∪ X is
consistent iff R′ ∪X is consistent then P ∩ (P ∪R)!R =
P ∩ (P ∪R′)!R′ .

Note that as in the propositional case satisfaction of C −
Fullness implies satisfaction of C −Relevance.
Proposition 6. Let !R be a screened consolidation operator.
If !R satisfiesC−Fullness then it satisfiesC−Relevance.

Proof. Let r ∈ P and r 6∈ P !R. We have P !R ⊆ P !R ⊆ P
and from C − Fullness it follows that P !R is consistent
and P !R ∪ {r} is inconsistent such that C − Relevance is
satisfied.

We consider this as a basic set of postulates for a screened
consolidation operation.
Definition 3 (Screened Consolidation). An operator !R is an
operator of screened consolidation if and only if it satisfies
C-Screen, C-Screen-Consistency, C-Inclusion, C-Relevance,
C-Fullness and C-Screen-Uniformity.

As stated earlier, the new postulates of Weak-Disjointness
and Weak-Parallelism do not follow from the basic set of be-
lief base postulates. This is also true for the postulate set for
screened consolidation presented here. For their satisfaction
we introduce the notion of topic independence as defined in
(Hansson 1997), which bases on topicalizations.
Definition 4. (Hansson 1997) Given a set P , a set B ⊆
P(P ) is a topicalization of P if and only if:

1. P =
⋃

B

2. If R ⊆ P , then R is consistent if R ∩ B is consistent for
all B ∈ B

A topicalization B of P is hence a cover of P for which
it holds that the consistency of each subset of P is only de-
pendent on the consistency of its projection for each topic
B ∈ B.
C-Topic-Independence (Hansson 1997) If B is a topical-

ization of P , then P \ P !R =
⋃
B∈B(B \B!R)

The postulate of C − Topic− Independence demands that
given a topicalization of P each rule that has been removed
from P by the consolidation operation !R is also removed
from each topic B ∈ B with r ∈ B by the respective con-
solidation of the topic and each rule removed by all consoli-
dations of topics of P containing it, is removed from P .
Definition 5. Given a screened consolidation operator !R
we define a multiple ASP base revision operator by setting:

P ∗Q = (P ∪Q)!Q

Proposition 7. Let ∗ be a multiple base revision opera-
tor defined as P ∗ Q = (P ∪ Q)!Q. If !R is a screened
consolidation operator that satisfies C-Topic-Independence
then ∗ satisfies Success, Inclusion, Vacuity, Consistency,
NM-Consistency, Relevance, Fullness, Uniformity, Weak-
Disjointness and Weak-Parallelism.

Proof. See Appendix for partial proof.

We reduced the revision operation to a consolidation op-
eration and characterized the latter by a set of postulates.
We need a construction of a screened consolidation oper-
ator that is suitable for the application to logic programs.
Two constructions of consolidation operations are available
from belief base theory, partial meet and kernel consolida-
tion (Hansson 1997). We use a partial meet construction
here.

We start by defining a screened version of remainder sets
for logic programs in which all remainder sets contain the
screened set of rules.
Definition 6 (Screened Remainder Sets). For sets of sen-
tences P and R with R ⊆ P the set of screened consistent
remainder sets of P , denoted by P ⊥! R is such that for
each X ∈ P ⊥! R:



1. R ⊆ X ⊆ P
2. X is consistent
3. There is no X ′ such that X ⊂ X ′ ⊆ P and X ′ is consis-

tent

The definition of screened remainder sets differs from the
original formulation only in the first condition which isX ⊆
P originally.

In contrast to the propositional case, the intersection of
remainders of logic programs is not necessarily consistent
due to the non-monotonicity of logic programs.

Example 5. Let P = {a ← b.,¬a., b.,← not ¬a, not b.}.
The set of remainder sets with the empty screen are

P ⊥! ∅ = { {a← b., b., ← not ¬a, not b.},
{¬a., b., ← not ¬a, not b.},
{a← b., ¬a., ← not ¬a, not b.}}

The intersection of the first two remainders, {b., ←
not ¬a, not b.} is consistent. The intersection of the last two
remainders, {a← b., ← not ¬a, not b.} is inconsistent.

This leaves us with the option of selecting exactly one of
the remainders which also has the advantage of performing
less change.

A selection function is specific to a certain belief base
since it shall evaluate to the belief base if no remainder sets
exits. We obtain a global selection function by making use
of a two place selection function (Gärdenfors and Rott 1995)
with the belief base a parameter.

Definition 7 (Global maxichoice selection function). Let P
be a set of sentences. γP is a selection function for P if and
only if for all sets of sentences R

1. If P ⊥! R 6= ∅ then γP (P ⊥! R) = X for some X ∈
P ⊥! R.

2. If P ⊥! R = ∅ then γP (P ⊥! R) = P .

A global maxichoice selection function is a function γ
such that for each P ⊆ L, γ(P, ·) = γP (·) is a selection
function for P. We drop the index P if it is obvious.

With a global maxichoice selection function we can, in
contrast to one place selection functions, we obtain operator
that are not specific to one belief base is globally defined for
all belief bases. Properties of consolidation operators which
connect the consolidation results of several dependent belief
bases can only be expressed for global operators.

We define a screened maxichoice consolidation operation
based on a global maxichoice selection function.

Definition 8. Let P andR be sets of sentences and γ a maxi-
choice selection function for P . The operation P !R such
that

P !R = γ(P ⊥! R)

is a screened maxichoice consolidation based on γ.

The following representation theorem shows that any
screened maxichoice consolidation satisfies the set of pos-
tulates for screened consolidation and, moreover, that any
operation satisfying these postulates can be constructed as a
screened maxichoice consolidation.

Proposition 8. An operation !R is an operation of screened
maxichoice consolidation if and only if it satisfies C-
Inclusion, C-Screen-Consistency, C-Screen, C-Fullness and
C-Uniformity.

Proof. See Appendix.

Definition 9. A global selection function γ is monotone if
and only if for all P, P ′ ⊆ L, if for each X ∈ P ⊥! ∅ there
exists some X ′ ∈ P ′ ⊥! ∅ such that P \X = P \X ′ then
P \ γ(P ⊥! ∅) = P \ γ(P ′ ⊥! ∅).

An operator of screened consolidation is monotone if and
only if it is based on a monoton selection function.
Proposition 9. If a screened maxichoice consolidation op-
erator is based on a monotone maxichoice selection function
then it satisfies topic-independence.

Discussion
We have developed a base revision description and construc-
tion for belief bases represented by extended logic programs
under the answer set semantics. As already discussed in the
introduction the majority of work on the dynamics in logic
programming has focused on the implementation of incon-
sisency handling in sequences of logic programs via logic
programs, e. g. (Alferes et al. 2005; Delgrande, Schaub, and
Tompits 2007; Eiter et al. 2002; Zhang 2006; Krümpelmann
and Kern-Isberner 2008; Krümpelmann 2012). The few
principle based approaches used the classic AGM postu-
lates as reference and developed alternative postulates as
discussed previously, e. g. (Eiter et al. 2002; Alferes et al.
2005). The state transition system approach presented in
(Kudo and Murai 2004) was meant to satisfy base revision
postulates for the revision by a fact, but no formal results are
shown. The only construction adapted from classic belief
revision is the distance based construction via SE-Models
used in (Delgrande et al. 2008). Approaches to belief revi-
sion in other non-monotonic formalisms are often not based
on principles and very specific to the underlying logic (Wit-
teveen and van der Hoek 1997; Billington et al. 1999). A
principle based approach to contraction operations in logic
programs has been considered in (Krümpelmann and Kern-
Isberner 2010).

The results presented in this paper show that the base re-
vision approach to belief revision is applicable to revision of
logic programs and formalizes adequate properties such an
operation should satisfy and constructions satisfying them.
New postulates are presented. This resembles an impor-
tant foundation for base revision approaches to answer set
programming. Future work involves the further investiga-
tion of desirable postulates for ASP base revision, compar-
ison to other syntax base approaches and implementation.
Acknowledgements: This work has been supported by the
DFG, Collaborative Research Center SFB876, Project A5.
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Appendix: Proofs
Proposition 3. 1. Given a program P with AS(P ) = ∅
and a tautologic program P> then consistency demands that
AS(P ∗ P>) 6= ∅, in contradiction to TautologyAS

2. Given a program P and a tautologic program P> such
that P ∩P> = ∅. It follows from Success that P ∗P> 6= P ,
in contradiction to TautologyP .

Proposition 5. 1. Given Q1 and Q2 with disjoint sets of
literals and some program P . Assume that Q1 ∪ P is in-
consistent and Q2 ∪ P is consistent and that P,Q1 and
Q2 are strict programs. From Consistency it follows that
AS(P ∗ (Q1 ∪Q2)) 6= ∅. It follows from Vacuity that P ⊆
P ∗Q2 and from Success that Q1 ⊆ P ∗Q1. ParallelismAS

demands thatAS(P∗(Q1∪Q2)) = AS((P∗Q1)∪(P∗Q2)).
It holds that P ∪Q1 ⊆ (P ∗Q1)∪ (P ∗Q2). Since P ∪Q1

is inconsistent and P and Q1 are strict programs it holds
that AS((P ∗ Q1) ∪ (P ∗ Q2)) = ∅, in contradiction to
Consistency. Given P = P1 ∪ P2 and P1 and P2 have dis-
joint sets of literals and some program Q such that P1 ∪ Q
and P2 ∪ Q are consistent and P ∪ Q is inconsistent. As-
sume P and Q are strict programs. From Consistency it fol-
lows that AS(P ∗ Q) 6= ∅. From Vacuity it follows that
P1 ∪ Q ⊆ P1 ∗ Q and P2 ∪ Q ⊆ P2 ∗ Q. DisjointnessAS
demands that AS(P ∗ Q) = AS((P1 ∗ Q) ∪ (P2 ∗ Q)). It
holds that P ∪ Q ⊆ (P1 ∗ Q) ∪ (P2 ∗ Q). Since P ∪ Q is
inconsistent and P and Q are strict programs we have that
AS((P1 ∗ Q) ∪ (P2 ∗ Q)) = ∅ in contradiction to Consis-
tency.

Proposition 7. C-Screen implies thatQ ⊆ (P∪Q)!Q = P ∗
Q, i. e. Success. From C-Inclusion follows that (P ∪Q)!Q =
P ∗Q ⊆ P ∪Q, i. e. Inclusion. From C-Screen-Consistency
follows that if Q is consistent then (P ∪ Q)!Q = P ∗ Q is
consistent, i. e. Consistency. The satisfaction of C-Fullness
implies that if r ∈ (P∪Q)\P ∗Q then P ∗Q is consistent and
(P ∗Q)∪{r} is inconsistent, i. e. Fullness is satisfied. Note
that Relevance follows from Fullness and Vacuity follows
from Relevance and Inclusion.

The proofs of Weak DisjointnessP and Weak
ParallelismP are left out due to the page limitation.

Proposition 8. Construction to postulates: C-Screen We
need to show that for all R ⊆ P , R ⊆ γP (P ⊥! R). If
P ⊥! R = ∅ then γP (P ⊥! R) = P and R ⊆ P by
definition. If P ⊥! R 6= ∅ then by definition of screened
remainder sets R ⊆ X for all X ∈ (P ⊥! R) it directly
follows that R ⊆ γP (P ⊥! R).

C-Screen-Consistency We need to show that for all R ⊆
P , if there exists some consistent X , R ⊆ X ⊆ P then
γP (P ⊥! R) is consistent. In the case of P ⊥! R = ∅ there
does not exits a consistent setX ,R ⊆ X ⊆ P . In the case of
P ⊥! R 6= ∅ by definition of screened remainder sets each
X ∈ (P ⊥! R) is consistent and by definition γ(P ⊥! R) is
consistent.

C-Inclusion We need to show that for all R ⊆ P ,
γP (P ⊥! R) ⊆ P . If P ⊥! R = ∅ then γP (P ⊥! R) = P .
If P ⊥! R 6= ∅ then by definition of screened remainder
sets for all X ∈ (P ⊥! R), X ⊆ P and thus by definition
γ(P ⊥! R) ⊆ P .

C-Fullness We need to show that for all R, if r ∈ P and
r 6∈ γ(P ⊥! R) then γ(P ⊥! R) is consistent and γ(P ⊥!

R) ∪ {r} is inconsistent. If P ⊥! R = ∅ then γP (P ⊥!

R) = P and there is no r ∈ R and r 6∈ γ(P ⊥! R) such
that C-Fullness is satisfied vacuously. If P ⊥! R 6= ∅ and
r 6∈ γ(P ⊥! R) then from γ(P ⊥! R) = X for some X ∈
P ⊥! R it follows that X is consistent and from condition
3 of Definition 6 and X ⊂ X ∪ {r} ⊆ P it follows that
X ∪ {r} is inconsistent such that C-Fullness is satisfied.

C-Screen-Uniformity We need to show that all R,R′ and
P , and a selection function for P it holds that if for all X ⊆
P , R∪X is consistent iff R′ ∪X is consistent then γ(P ⊥!

R) ∩ P = γ(P ⊥! R
′) ∩ P . If for all X ⊆ P , R ∪ X is

consistent iff R′ ∪X is consistent then it follows that P ⊥!

R = P ⊥! R
′ and by definition of a selection function it

holds that γ(P ⊥! R) = γ(P ⊥! R
′).

Postulates to construction: Let !R be an operation for P
that satisfies C-Screen, C-Screen-Consistency, C-Inclusion,
C-Fullness and C-Uniformity. Let γ be such that: γ(P ⊥!

R) = P !R We need to show that (1) γ is a well-defined
function, that (2) γ is a maxichoice selection function, and
that (3) for all R, γ(P ⊥! R) = P !R. Part (1): γ is a well-
defined function if for all P ⊥! R = P ⊥! R

′ it holds that
γ(P ⊥! R) = γ(P ⊥! R

′). Suppose P ⊥! R = P ⊥! R
′

then it follows from C-Screen-Uniformity that P !R = P !R′ .
By definition of γ it follows that γ(P ⊥! R) = γ(P ⊥! R

′).
Part (2): For γ to be a maxichoice selection function we

have to show that if P ⊥! R 6= ∅ then γ(P ⊥! R) = X for
some X ∈ P ⊥! R and that if P ⊥! R = ∅ then γ(P ⊥
R!) = P .

If P ⊥! R 6= ∅ there exits some consistent X , R ⊆ X ⊆
P and it follows from C-Screen Consistency that P !R is
consistent. From C-Inclusion follows that P !R ⊆ P and
from C-Screen that R ⊆ P !R. To show that P !R ∈ P ⊥! R
we show that if P !R ⊂ H ⊆ P then H is inconsistent. Let
H be such that P !R ⊂ H ⊆ P . Then there exists some
r ∈ H and r 6∈ P !R and from C-Fullness it follows that
P !R ∪ {r} is inconsistent. It holds that P !R ∪ {r} ⊆ H
and P !R is due to the satisfaction of C-Fullness a maximal
consistent set, consequently H is inconsistent.

If P ⊥! R = ∅ then there does not exits a consistent set
X , R ⊆ X ⊆ P . Suppose to the contrary that P 6⊆ P !R and
let r ∈ P \ P !R. Then it follows from C-Screen-Fullness
that P !R is consistent and P !R ∪ {r} is inconsistent. This
is not possible since there does not exits a consistent set X ,
R ⊆ X ⊆ P and R ⊆ P !R by C-Screen and P !R ⊆ P by
C-Inclusion. Therefore we have shown that P ⊆ P !R and
since it follows from inclusion that P !R ⊆ P we have P =
P !R such that by definition of γ we have γ(P ⊥! R) = P
which was to show.

Part (3): That for all R, γ(P ⊥! R) = P !R follows di-
rectly from the construction.
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