
Defeasible Inheritance Networks and Linear Logic:
Horn Fragments and Proof Nets

Ryo Takemura
Nihon University, Japan.

takemura.ryo@nihon-u.ac.jp

Abstract

Based on a remark of Girard (1992) and a formalization
given by Fouqueŕe and Vauzeilles (1994), we investigate a
formalization of defeasible inheritance reasoning in terms of
linear logic. We show a correspondence between defeasible
inheritance networks, a Horn fragment of linear logic, and
proof nets for linear logic. In particular, we show a structural
correspondence between defeasible inheritance networks and
proof nets for our fragment of linear logic.

1 Introduction
Linear logic was introduced in (Girard 1987), and its the-
oretical studies have been much developed in the last cou-
ple of decades. Recently, it has been further applied to stud-
ies not only in computer science but also in various areas
such as quantum physics and molecular biology. Linear log-
ical structure is considered a refined basic logical structure
for traditional logic such as classical logic and intuitionistic
logic. In particular, it is well known that the duality prin-
ciple of classical logic and the constructive nature of intu-
itionistic logic, which are considered to be incompatible in
the traditional framework, are compatible in the basic log-
ical structure that is revealed by linear logic. Thus, linear
logic has provided new insight into various issues discussed
in the framework of traditional logic such as relationships
between intuitionistic logic and classical logic, and between
syntax and semantics.

In linear logic, the traditional logical structure of propo-
sitions and connectives is divided into two parts: “linear”
and “stable,” cf. (Okada 2008). Traditional logic, such as
classical and intuitionistic logic, is captured in the stable
part with the use of exponential modality operators “!” and
“?.” In contrast, the implication−◦, called linear impli-
cation, in the linear part naturally captures the notion of
state transition, which is known to be difficult to formal-
ize in traditional logic. Thus, the basic part of linear logic
has been applied in studying state transition systems, AI
planning, etc. See, for example, (Kanovich-Vauzeilles 2001;
Masseron-Tollu-Vauzeilles 1993; Pfenning 2008). By de-
composing the traditional logical structure, linear logic pro-
vides a framework in that various logical systems, studied in
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terms of traditional logic, are uniformly characterized as its
subsystems. Furthermore, for such a variety of subsystems,
efficient proof-search/proof-construction strategies and their
computational complexities have been extensively studied,
and various logic programming languages have been devel-
oped. See, e.g., (Lincoln 1995; Miller 1995) for surveys.
Also, in view of the semantics, various models have been
proposed for linear logic. In particular, not only traditional
models that characterize the notion of provability but also
models at a profounder level that characterize the notion of
proofs and also of computation have been developed.

Among these various characteristics and applications of
linear logic, we focus here on its wealth of expressive power.
By decomposing the traditional logical structure, even the
most basic part of linear logic, there are almost twice as
many logical connectives as those in traditional logic. This
means that we are able to express more subtle differences
in meaning of sentences by linear logic than by traditional
logic. In particular, we are able to formalize various nega-
tions in linear logic without adding nor modifying infer-
ence rules. For example, the most basic linear negation, ex-
pressed by the symbol( )⊥, is not necessarily characterized
in terms of the contradiction, but is characterized in terms
of the De Morgan duality. The intuitionistic negation¬A,
which means “the contradiction is derived fromA”, can be
expressed as!A−◦0 in linear logic. The negation in classical
logic, which is characterized by the boolean complement,
also can be expressed as?(A⊥). Cf. (Girard 1987). Further-
more, we are able to express a negation meaning the lack of
a propertyA asA −◦ 1, in which 1 is a propositional con-
stant of linear logic that is neutral with respect to the (multi-
plicative) conjunction, i.e., “1 ‘and’ A” is equivalent to “A.”
This negation expressing the lack of a property is remarked
on in (Girard 1992), and formalized in (Fouqueré-Vauzeilles
1993; Fouqueŕe-Vauzeilles 1994) to apply linear logic to the
study of defeasible inheritance reasoning.

In the system of (Fouqueré-Vauzeilles 1994), defeasible
inheritance networks, which are called taxonomic networks
with exceptions, are characterized in a fragment of intuition-
istic multiplicative exponential linear logic called taxonomic
linear theories. We observe that in the system, each atomic
formula is triplicated with the use of+ and− signs: an un-
signed usual atomA, a positive-signed atomA+, and a nega-
tive signed atomA−. Although the negative-sign can be con-



sidered informally to express a certain kind of negation, it is
not exactly so as remarked in (Fouqueré-Vauzeilles 1994).
Furthermore, the relationship between an unsigned atomA
and a positive-signed atomA+ is not clear. Thus, it seems to
be difficult to give semantic meaning for these+,− signs,
and they seem to be just anad hocsyntactic convention.

In this paper, we characterize the defeasible inheritance
networks of (Horty 1994) by a well-established fragment
of linear logic, that is, by a “Horn fragment” of linear
logic, which is extensively studied in (Kanovich 1992;
Kanovich 1994), without changing the language and infer-
ence rules but just restricting the language of linear logic. It
is, of course, not possible in traditional classical logic, and
linear logic works effectively for that purpose. Furthermore,
characterizing defeasible inheritance networks by only re-
stricting the language of linear logic, we are able to ap-
ply well-developed studies of linear logic such as seman-
tic frameworks straightforwardly to the study of defeasible
inheritance reasoning. Compared with the system of (Fou-
queŕe-Vauzeilles 1994), our system is simple with respect to
the following points: (1) our atoms are those of the usual
linear logic without introducing any syntactic decorations;
(2) our system is a fragment of the most basic “exponential-
free” linear logic, i.e., multiplicative linear logic.

Defeasible inheritance reasoning is regarded as a type of
nonmonotonic reasoning, which is formalized, for example,
by using (Reiter 1980)’s Default logic. The author aims to
apply linear logical studies not only to defeasible inheritance
reasoning but also to more general nonmonotonic logic. As
a first step toward to this end, we investigate a relationship
among defeasible inheritance networks, a Horn fragment of
linear logic, and proof nets for linear logic (or essential nets
of (Lamarche 1994)). In particular, we show a structural cor-
respondence between defeasible inheritance networks and
proof nets for our fragment. Proof nets, which were intro-
duced in (Girard 1987) as a graph-theoretical representation
of logical proofs, are extensively studied and applied to the-
ory of computation, and hence we are able to apply such
results to the study of defeasible inheritance reasoning.

In Section 2, we review the defeasible inheritance net-
work. In Section 3, we review the most basic Horn fragment
of linear logic, and give a translation of defeasible inher-
itance networks into our Horn fragment. In Section 4, we
briefly review proof nets for intuitionistic multiplicative lin-
ear logic, and give a transformation of the proof nets into
defeasible inheritance networks. In Section 5, we summa-
rize our results, and discuss future work.

2 Defeasible inheritance networks
We review the defeasible inheritance network of (Horty
1994), and we define our notion of reachability in a network.

Definition 2.1 A defeasible inheritance network(or, DI-
net for short) is a labeled finite directed acyclic graphD =
(D,→, ̸→), where:

• D is a nonempty set of labeled nodes,
• → is a directed edge calleddefeasible edge,
• ̸→ is a directed edge calleddefeasible negative edge.

We usually do not distinguish a node and its label, and we
refer to a node by its label.

We give an informal interpretation of a DI-net.a → b is
read as “typicala is b” or, “it is most natural to suppose that
a is b.” → is interpreted as a reflexive and transitive relation:
we have “typicala is a,” and we obtain “typicala is c” when
there exists edgesa→ b andb→ c.
a ̸→ b is read as “typicala is notb” or, “it is most natural

to suppose thata is notb.” In contrast to→ above,̸→ is not
transitive in general: we do not generally have “typicala is
not c,” from edgesa ̸→ b andb ̸→ c. Note also that we have
“typical a is not c” from a → b andb ̸→ c, but we do not
generally have it froma ̸→ b andb→ c. For example, from
“penguins do not fly” and “flying things have wings,” we do
not have “penguins do not have wings.”

Definition 2.2 We define apath in a DI-net as a sequence
of different (labels of) nodes connected by→-edges and̸→-
edges. We denote bya ↠ b a path consisting only of→-
edges. We define thelength of a path as the number of nodes
that constitute the path.

To define our notion of reachability, let us consider the
following well-known example of Tweety.

Example 2.3 (Tweety)Assume first that we know “Tweety
(t) is a bird (b),” “Birds (b) fly (f ),” and “Flying things have
wings (w).” Those facts are represented as follows:

b -t - f - w

Then, further assume that we obtain the following facts:
“Tweety is a penguin (p)”, “Penguins are birds,” and “Pen-
guins do not fly.”

b -t - f - w

p
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Observe that, in the above DI-netD, we have “Tweety flies”
and “Tweety does not fly.” In such a case, we say that the
nodef is conflicting with respect tot, and we assume that
nothing can be implied aboutt (Tweety) with respect tof
(flying things), i.e., we cannot say anything about whether
Tweety can fly or not. In other words, Tweety lacks certitude
with property of “fly,” i.e., Tweety has neither the property
“fly” nor its negation “not fly.”

Definition 2.4 When we havea ↠ b, and we havea ̸→ b
or a ↠ c ̸→ b for somec in a DI-net, we say thatb is a
conflicting nodewith respect toa.

How about the property of “has wings (w)” in the above
DI-netD? For our characterization of DI-nets in linear logic,
we assume that “Tweety has wings” holds. This is because
we are able to consider that the property “has wings” is in-
herited from the property “is a bird” via the property “fly”,
even if the property “fly” turns out to be in conflict.

Although our assumption may obtain some understand-
ing in the above example, it may be more appropriate to as-
sume that if Tweety does not have the property “fly” then so
does any property that is inherited from “fly.” For example, if
we replace the above property “has wings” by “takes flight,”
it is natural to conclude “Tweety does not take flight.” In



A,B ::= 1 a A⊗B A−◦B

A ⊢ A
ax

Γ ⊢ A A,∆ ⊢ C

Γ,∆ ⊢ C
cut ⊢ 1 1

Γ ⊢ C
1,Γ ⊢ C

1L

A,B,Γ ⊢ C

A⊗B,Γ ⊢ C
⊗L Γ ⊢ A ∆ ⊢ B

Γ,∆ ⊢ A⊗B
⊗R

Γ ⊢ A B,∆ ⊢ C

A−◦B,Γ,∆ ⊢ C
−◦L

A,Γ ⊢ B

Γ ⊢ A−◦B −◦R

Table 1 Formulas and inference rules ofIMLL

fact, (Fouqueŕe-Vauzeilles 1994) adopted such an interpre-
tation in their basic system, and hence, Tweety does not have
properties “fly” or “has wings.” We may call such interpreta-
tions of DI-nets “strict” interpretation, and our interpretation
“weak.”

In general, when we have the following form of DI-net,

a j
*�

b - c

it seems to be difficult, without considering each concrete
situation, to decide betweena implies c holds (weak) and
not (strict). This difficulty is avoided in the study of defea-
sible inheritance reasoning or default logic with the use of
the essentially model-theoretic notion ofextension. How-
ever, instead of using such a model-theoretic notion, we can
assume, whena does not implyc (i.e.,a ̸→ c) actually holds,
that it is given in the set of assumptions from the beginning.
On the other hand, whena implies c (i.e., a → c) actually
holds, although we need to add it to the assumptions under
the strict interpretation, we do not need such an arrangement
under the weak interpretation. Thus, the weak interpretation
is more economical than the strict interpretation, and hence,
we study the weak interpretation in this paper. In Section 5,
we briefly discuss how our characterization of DI-nets may
be extended to those DI-nets with strict interpretation.

Based on the above example, we formally define our no-
tion of reachability in a DI-net as follows.

Definition 2.5 Let D = (D,→, ̸→) be a DI-net. LetD be
the set{a | a ∈ D} of overlined labels of nodes ofD. For
each nodea ∈ D, we define a setreach(a) ⊆ D ∪ D of
labels and overlined labels those arereachable froma:

1. a ∈ reach(a)

2. If a ↠ b in D, and if there is no path such thata ↠ c ̸→ b
for somec or a ̸→ b in D, thenb ∈ reach(a).

3. If a ↠ c ̸→ b for somec or a ̸→ b in D, and if there is no
path such thata ↠ b in D, thenb ∈ reach(a).

When reach(a) = {b1, . . . , bn, c1, . . . , cm}, it is inter-
preted as “a has propertiesb1 and . . . andbn, and notc1 and
. . . and notcm.”

Example 2.6 (Reachability) In Example 2.3 of Tweety,
reach(t) = {t, p, b, w}, and hence “Tweety is a penguin,
is a bird, and has wings.” In the following Fig. 1, we have
reach(a) = {a, c}. In Fig. 2,g is not reachable fromd and
reach(d) = {d, e, f}.

a j
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b - c

Fig.1

d - e -�� f - g

Fig.2

3 A Horn fragment of linear logic and
defeasible inheritance networks

In Section 3.1, we briefly review the syntax of intuitionistic
multiplicative linear logicIMLL, in which formulas are con-
structed by⊗ (the multiplicative conjunction),−◦ (the lin-
ear implication), and1 (a propositional constant).IMLL is a
fragment of classical multiplicative linear logicMLL (con-
sisting of the above connectives and⊥), that is, inference
rules of IMLL is obtained by those ofMLL by restricting
each sequent to have at most one formula on the conclusion
side of the sequent. Based on the cut-elimination theorem,
IMLL is equivalent toMLL in our fragment: a Horn sequent
is provable inIMLL if and only if it is provable inMLL. This
is because each cut-free proof ofMLL for a given Horn se-
quent is exactly that ofIMLL, since our fragment does not
contain the usual negation( )⊥ (nor the constant0). (See,
for example, (Kanovich 1994), whose discussion is natu-
rally extended to our fragment.) Hence we identify them,
and instead of classicalMLL, we here introduce the sim-
pler intuitionistic IMLL. We further review the most basic
Horn fragment of linear logic, for which properties, compu-
tational complexity, and applications are extensively studied
in (Kanovich 1992; Kanovich 1994). In Section 3.2, we give
a translation of DI-nets into our Horn fragment.

3.1 Intuitionistic linear logic IMLL and its Horn
fragment

Definition 3.1 Formulas of IMLL, i.e., the {⊗,−◦,1}-
fragment ofLL and the sequent calculusinference rules of
IMLL are defined as in Table 1. We assume that a sequence
of formulasΓ is a multiset, and hence, the exchange rule is
assumed implicit in the above inference rules. We usually
will omit the overline above theax- and1-rules.

We extend slightly the most basic Horn fragment of
(Kanovich 1994), including only the above connectives, by
introducing negative atoms of the forma := a−◦1. It is well
known that the usual intuitionistic negation¬a is defined as
a → ⊥, which means “the contradiction is derived froma.”
Hence, with this negation, we have:

a ∧ (a→ ⊥) ∧ b =⇒ ⊥∧ b⇔ ⊥



On the other hand, with our negationa−◦ 1, we have:

a⊗ (a−◦ 1)⊗ b =⇒ 1⊗ b⇔ b

since1 is neutral with respect to the multiplicative conjunc-
tion⊗. Thus,a−◦1 cancelsa without leading to the contra-
diction, and we may say that the negationa −◦ 1 expresses
“the lack of the propertya.”

Definition 3.2 Positive atomsarea, b, c, . . . .
A negative atomis defined asa := a−◦ 1,
where1 is a constant of linear logic which is the unit of the
⊗ connective, i.e.,A⊗ 1 = 1⊗A = A.
We assume that the constant1 appears only in the above
form a−◦ 1.
Positive atoms and negative atoms are collectively called
literals, and a literal is denoted byL,M,N, . . . . Multi-
sets of literals, such asL1 · · ·Ln (which is also written as
L1, . . . , Ln particularly when it appears on the left-hand side
of a sequent), are denoted byL⃗, N⃗ , M⃗ , . . . .
In particular, a multisetL · · ·L of n literals formed from the
same literalL is denoted byLn.

Under associativity and commutativity of the⊗ con-
nective, we identify the multiset of literalsL1 · · ·Ln (or
L1, . . . , Ln) and the tensor productL1 ⊗ · · · ⊗ Ln. Thus
we do not explicitly treat the⊗ connective in what follows.

Definition 3.3 A formula of the formL⃗ −◦ M⃗ is called a
program formula , and a set of program formulas, called a
program set, is denoted byP,Q,P1,P2, . . . .
For a program setP, and multiset of literals⃗L and M⃗ , a
sequent of the formP, L⃗ ⊢ M⃗ is called aHorn sequent.

Note that our negative atoma may occur in any position
in a Horn sequent generally. However, as we will find later
in Definition 3.5 and Theorem 4.3, occurrences ofa are re-
stricted to the succedent of a program formula, and to the
conclusion side of a Horn sequent.

Example 3.4 (Sequent calculus)We have the following
sequent calculus proof of the Horn sequentt, t −◦ tp, p −◦
pb, b−◦ bf, f −◦ fw, p−◦ pf ⊢ tpbw, which corresponds to
the DI-netD in Example 2.3 of Tweety. The sequent ex-
presses that under the knowledge of the program set, we
know that “Tweety is a penguin, is a bird, and has wings.”

t ⊢ t

p ⊢ p

b ⊢ b

f ⊢ f

p ⊢ p

f ⊢ f

t, b, w, p ⊢ tpbw

t, b, w, p, 1 ⊢ tpbw

t, b, fw, p, f ⊢ tpbw

t, p, b, fw, p−◦ pf ⊢ tpbw

t, p, bf, f −◦ fw, p−◦ pf ⊢ tpbw

t, pb, b−◦ bf, f −◦ fw, p−◦ pf ⊢ tpbw

tp, p−◦ pb, b−◦ bf, f −◦ fw, p−◦ pf ⊢ tpbw

t, t−◦ tp, p−◦ pb, b−◦ bf, f −◦ fw, p−◦ pf ⊢ tpbw

Note that since we identify the multisett, b, w, p and the for-
mulatpbw (≡ t⊗ p⊗ b⊗w), the top-sequent is obtained by
theax-rule.

3.2 Translation of DI-nets into a Horn fragment
In this section, we give a translation of DI-nets into our Horn
fragment of linear logic. We first give our definition of the
translation of DI-nets. Then, the soundness of the translation
(Theorem 3.9) will be demonstrated later, after we introduce
natural deduction-style inference rules for DI-nets.

Definition 3.5 (Translation of DI-nets) WhenD is a DI-
net, we define a program setD∗ as follows:

• Each nodea of D is translated into an atoma of IMLL.
• a−◦ ab ∈ D∗ if and only if there is an edgea→ b in D.

• a−◦ ab ∈ D∗ if and only if there is an edgea ̸→ b in D.
• For each nodea ∈ D,

a · · · a︸ ︷︷ ︸
in→(a)

−◦a ∈ D∗, if the indegreein→(a) ≥ 2, and

a · · · a︸ ︷︷ ︸
in̸→(a)

−◦a ∈ D∗, if the indegreein̸→(a) ≥ 2.

Here, the indegreein→(a) (resp.in̸→(a)) of a is the
number of edges of the formc→ a (resp.c ̸→ a).

We call the above formulas of the formLn−◦L contrac-
tion formulas.

To prove the soundness of our translation of DI-nets,
we introduce natural deduction-style inference rules. Tradi-
tional natural deduction-style rules are not very often ap-
plied to linear logic, since the description of structural rules
of sequent calculus becomes somewhat complicated. How-
ever, as seen in Section 2, natural reading of DI-nets corre-
sponds to transitive (or inheritance) reasoning on properties,
and such reasoning is more intuitively characterized by in-
ference rules of natural deduction than those of sequent cal-
culus. Thus, we here introduce our natural deduction as an
intermediary between DI-nets and sequent calculus. These
natural deduction-style inference rules make our translation
of DI-nets considerably clear and intuitive.

Based on the above translation of DI-nets, we observe that
program formulas are restricted to either forma−◦aL (with
a ̸≡ L) or Ln −◦ L. Thus, instead of introducing natural
deduction-style inference rules for the full Horn-fragment,
we introduce it only sufficient for the translation of DI-nets.

Definition 3.6 (Natural deduction-style inference rules for DI-nets)

a−◦ a ax

....
a−◦ L⃗c c−◦ cM

a−◦ L⃗cM
trans

....
a−◦ L⃗Mn Mn −◦M

a−◦ L⃗M
contr

....
a−◦ L⃗cc
a−◦ L⃗

cancel

Note that one of the upper formulas in the rules of
trans, contr is restricted to be an open assumption (or
an axiom), which is not derived from other formulas, and
hence, our natural deduction proofs are just chains of infer-
ence rules.
We say thata−◦ L⃗ is provable from a program setP, when
there exists a natural deduction proof ofa−◦L⃗ from open as-
sumptionsP, for which each program is used exactly once.



We show that the above natural deduction-style inference
rules are simulated byIMLL sequent calculus rules.

Proposition 3.7 If a formulaa−◦ L⃗ is provable from a pro-
gram setP with natural deduction-style inference rules, then
the Horn sequenta,P ⊢ L⃗ is provable inIMLL.

Proof. By the induction on the construction of natural de-
duction proof ofa−◦ L⃗ fromP.

1. Whena −◦ a is provable by theax-rule, a ⊢ a is also
obtained by theax-rule in IMLL.

2. WhenP = {a −◦ L⃗} and it forms a proof, the Horn se-
quenta, a−◦ L⃗ ⊢ L⃗ is provable inIMLL as follows:

a ⊢ a L⃗ ⊢ L⃗

a, a−◦ L⃗ ⊢ L⃗
−◦L

(The same applies to the case ofP = {Ln −◦ L}.)

3. Whena −◦ L⃗cM is provable by the following applica-
tion of thetrans-rule on the left, it is transformed into an
IMLL-proof on the right.

Q.
.
.
.

a −◦ L⃗c c −◦ cM

a −◦ L⃗cM
trans

.

.

.

.
IH

a,Q ⊢ L⃗c

c ⊢ c L⃗, cM ⊢ L⃗cM

L⃗, c, c −◦ cM ⊢ L⃗cM
−◦L

a,Q, c −◦ cM ⊢ L⃗cM
cut

4. Whena−◦L⃗M is provable by the following application of
thecontr-rule on the left, it is transformed into anIMLL-
proof on the right.

Q.
.
.
.

a −◦ L⃗Mn Mn −◦ M

a −◦ L⃗M
contr

.

.

.

.
IH

a,Q ⊢ L⃗Mn

Mn ⊢ Mn L⃗,M ⊢ L⃗M

L⃗,Mn,Mn −◦ M ⊢ L⃗M
−◦L

a,Q,Mn −◦ M ⊢ L⃗M
cut

5. Whena −◦ L⃗ is obtained by the following application of
thecancel-rule on the left, it is transformed into anIMLL-
proof on the right.

P....
a−◦ L⃗cc
a−◦ L⃗

cancel

.... IH

a,P ⊢ L⃗cc

c ⊢ c

L⃗ ⊢ L⃗

1, L⃗ ⊢ L⃗
1L

L⃗, c, c ⊢ L⃗
−◦L

a,P ⊢ L⃗
cut

Before we prove the soundness of our translation, we
explain how to construct a natural deduction proof from a
given DI-net by the following example.

Example 3.8 (Translation of DI-nets) Let us consider the
DI-netD of Example 2.3 of Tweety. For simplicity, we omit
the nodew.

We first introduce a weaker notion ofsemi-reachabilitythan
reachability that is obtained by regarding conflicting nodes
as also reachable. (See the definition given in the proof
of Theorem 3.9 below.) We denote bysemireach(a) the
set of nodes semi-reachable from a nodea. For exam-
ple, in Example 2.3 of Tweety, we havesemireach(t) =
{t, p, b, f, f , w}. For Figs. 1 and 2 of Example 2.6, we
havesemireach(a) = {a, b, b, c} and semireach(d) =

{d, e, f}, respectively. Thus,reach(a) is obtained from
semireach(a) by taking all conflicting nodes away. Then,
the DI-netD is translated as follows.

For nodesp andb that are reachable in one step fromt,
we havet−◦ tb, t−◦ tp ∈ D∗ by the definition of translation
of DI-nets. Thus by combining these formulas with the use
of thetrans-rule, we obtain the following proof (1).

Next, for each nodeb, f, f that is reachable in two steps
from t, there exists an edge from a node that is reachable in
one step fromt. In this case, we haveb → f , p → b, and
p ̸→ f in D, and hence we haveb−◦ bf, p−◦ pb, p−◦ pf ∈
D∗. Thus, by combining these formulas one by one with the
above proof (1), we obtain the following proof (2).

For the nodef that is reachable in three steps fromt, we
haveb→ f in D. However, the fact that there exists an edge
from b to f is already reflected in the above proof. That is,
thetrans-rule is already applied to the formulab−◦ bf , and
hence, we do not repeat this.

In the above proof (2), the last formulat −◦ tpfbbf con-
tains a repetition ofb. For this nodeb with in→(b) = 2, we
haveb2 −◦ b ∈ D∗ by definition, and hence, by applying the
contr-rule, we obtaint−◦ tpfbf .

Thus resultant formulat−◦tpfbf still contains conflicting
f andf . Hence, by applying thecancel-rule at the end, we
obtain the following proof oft−◦ tpb.

t−◦ tb t−◦ tp
t−◦ tpb b−◦ bf

t−◦ tpbf p−◦ pb
t−◦ tpbbf p−◦ pf

t−◦ tpfbbf bb−◦ b
t−◦ tpfbf

contr

t−◦ tpb cancel

(1)

{
(2)


As we have already seen, the above proof is translated into a
sequent calculus proof ofIMLL. Then, by applying the cut-
elimination theorem ofIMLL, we obtain the proof of Exam-
ple 3.4 (without the atomw).

Now, let us prove the following theorem by formalizing
the above example.

Theorem 3.9 (Translation of DI-nets) Let D be a DI-net.
For each nodea of D, if reach(a) = {L1, . . . , Ln}, then
the Horn sequenta,P ⊢ L1 · · ·Ln is provable inIMLL for
someP ⊆ D∗.

Proof.We show the theorem by translating a given DI-netD
into a natural deduction proof. Then, by translating it into a
sequent calculus proof ofIMLL, we obtain the theorem.
We first introduce the notion of semi-reachability as follows:
Definition (Semi-reachability): For each nodea of D, the
set of nodessemireach(a) is defined as follows:

1. a ∈ semireach(a).

2. If a ↠ b in D, thenb ∈ semireach(a).

3. If a ↠ c ̸→ b for somec or a ̸→ b in D, then b ∈
semireach(a).

WhenL ∈ semireach(a), we say thatL is semi-reachable
from a. By definition, we havereach(a) ⊆ semireach(a),



andreach(a) is obtained fromsemireach(a) by taking all
conflicting nodes away.

We show the following slightly weaker lemma, in which
reach(a) of the theorem is replaced bysemireach(a), and
from which the theorem is easily obtained.

For a setS, we denote by[S] a multiset consists of all
elements ofS by allowing some repetitions.
Lemma: For each node a of D, a formula a −◦
[semireach(a)] is provable fromD∗ with a natural deduc-
tion proof.
We observe that the setsemireach(a) is expressed by the
following union of not necessarily disjoint subsets:
semireach(a) = semireach1(a)∪· · ·∪semireachk(a),

where semireachi(a) is the set of nodes to whicha is
semireachable by a path of lengthi, in other words, the set
of nodes that are semireachable froma in i− 1 steps. Then,
we show the above lemma by induction onk.
(Base step) Whenk = 1, semireach1(a) = {a}, anda−◦a
is an axiom.
(Induction step) Whenk > 1, let semireachk+1(a) =
{L1, . . . , Ll}. By I.H., a −◦ [

∪
1≤i≤k semireachi(a)]

is provable from D∗, and we show that a −◦
[
∪

1≤i≤k semireachi(a)] · L1 · · ·Ll is provable fromD∗.
Note that for eachc ∈ semireachk+1(a) (resp. c ∈

semireachk+1(a)), we haveb → c (resp.b ̸→ c) in D for
someb ∈ semireachk(a). Thus, by the definition of trans-
lation, we haveb −◦ bc ∈ D∗ (resp.b −◦ bc ∈ D∗). If it
has already been applied in the former construction of the
proof, there is no more to be done. Otherwise, by applying
thetrans-rule tob−◦bc (resp.b−◦bc), we have the following
proof (the case ofb−◦ bc is similar):

....
a−◦ [

∪
1≤i≤k semireachi(a)] b−◦ bc

a−◦ [
∪

1≤i≤k semireachi(a)] · c
trans

In this way, we havea−◦[
∪

1≤i≤k semireachi(a)]·L1 · · ·Ll

fromD∗. □
By the above lemma, the theorem is obtained by applying

the appropriatecontr andcancel-rules as follows.
Note that[semireach(a)] of the above lemma may con-

tain some repetitions of literals. WhenL is such a repeated
literal, we havein→(L) ≥ 2 or in̸→(L) ≥ 2 in D. For
example, when we haveb → L ← c in D for some
b, c ∈ semireach(a) (i.e., a casein→(L) = 2), we obtain
the following inference:

....
a−◦ [semireach(a)] b−◦ bL

a−◦ [semireach(a)] · L trans
c−◦ cL

a−◦ [semireach(a)] · LL trans

In such a case, by the definition of translation, we haveLj−◦
L ∈ D∗ with j = in→(L) or = in̸→(L), and hence, we are
able to apply thecontr-rule and to eliminate repetitions of
literals. Thus, whensemireach(a) = {L1, . . . , Lm}, the
formulaa−◦ L1 · · ·Lm is provable fromD∗.

As we have already seen,reach(a) is obtained by taking
away all conflicting literals ofsemireach(a). LetLi, Lj ∈
semireach(a) be conflicting. Note that by the above appli-
cation of thecontr-rule, such a pair of conflicting literals
is found uniquely if any. Thus, by applying thecancel-rule,
we are able to eliminate all conflicting literals, and to obtain
a−◦ L1 · · ·Ln fromD∗.

It may be worth pointing that, as it is seen in the above
proof, the order of applications of natural deduction-style
inference rules is important: we first apply thetrans-rule,
then thecontr-rule, and then thecancel-rule.

4 Proof nets for linear logic and defeasible
inheritance networks

Proof nets, a graph-theoretical representation of logical
proofs, were introduced in (Girard 1987) as natural deduc-
tion for classical linear logic, as contrasted with sequent cal-
culus that is sensitive to usually inessential details such as
irrelevant orders of applications of inference rules. By ignor-
ing such inessential details, proof nets reveal the essence of
structures of proofs. For example, the computational nature
of proofs such as normalization and confluency are made
clear by proof nets, and a criterion of equivalence between
proofs is given in terms of proof nets.

Proof nets are defined as a correct subclass of undirected
graphs called proof-structures, in which nodes are formu-
las and the way of linking those nodes by edges is de-
fined as links (see Fig. 3 below). Proof nets are defined
graph-theoretically, and hence, we are able to apply graph-
theoretical methods and techniques to the study of proofs. In
particular, the non-sequential nature of graphical proof nets
is applied to the analysis of the concurrent computation, for
example.

Proof nets for intuitionisticIMLL is obtained from those
for classicalMLL under the identification betweenA −◦ B
andA⊥.................................................

............
.................................. B, where

.................................................
............
.................................. is the multiplicative disjunction of

MLL. While well-known correctness conditions of proof
nets for classicalMLL is given in (Girard 1987; Danos-
Regnier 1989), for intuitionisticIMLL, appropriate condi-
tions are given in (Lamarche 1994) with the use of directed
graphs. Lamarche called his proof netsessential nets. See,
e.g., (Lamarche 1994; Moot 2004).

In Section 4.1, we briefly review proof nets forIMLL. Our
definition mainly follows (Moot 2004). In Section 4.2, we
show that there is a structural correspondence between our
proof nets and DI-nets, by giving a transformation of the
proof nets.

4.1 Proof nets forIMLL (Essential nets)
Each formula ofIMLL is assigned with input (i) and out-
put (o) polarities, and these are written asAi, Bi, Ci, . . .
andAo, Bo, Co, . . . , respectively. Proof nets forIMLL con-
sist of the following (polarized)links of Fig. 3 that connect
(polarized) formulas.
A link has its premises at the top and its conclusions at the
bottom.ax-link has no premises and two conclusions.cut-
link has two premises and no conclusion. Each of the in-
put/output⊗/−◦-link has two premises and one conclusion.



Ai Ao

ax-link

Ai Ao

cut-link

Ai Bi

(A⊗B)i
@@ ��

input⊗-link

Ao Bi

(A−◦B)i
@@ ��

input−◦-link

Ao Bo

(A⊗B)o
@@ ��

output⊗-link

Ai Bo

(A−◦B)o
@@ ��

output−◦-link

Fig.3 (Polarized) links

Ai Ao
?

Ai Ao

6

Ai Bi

(A⊗B)i
@@I ���

Ao Bi

(A−◦B)i

-

���
Ao Bo

(A⊗B)o
@@R ��	

Ai Bo

(A−◦B)o
��	

Fig.4 Directed links

A proof-structure is a collection of links that satisfies the
following conditions:

1. Every formula is the conclusion of exactly one link;

2. Every formula is the premise of at most one link;

3. Formulas that are not the premise of a link are called the
conclusions of the proof-structure. A proof-structure has
exactly one ‘output’ conclusion.

Note that there are several conclusions in a proof-structure
in general. Based on the above condition (3), we may call
‘input’ conclusions “premises” of the proof-structure.

A proof-structure is called a proof net when it satisfies
certain correctness conditions. For the proof nets for intu-
itionistic IMLL, there is the following correctness condition,
cf. (Lamarche 1994; Moot 2004).

We first introduce the following directions for edges of
links as in Fig. 4, and we call such linksdirected links.

We call a proof-structure for which all links are directed a
correction graph.

Example 4.1 (Correction graph) We have a correction
graph in Fig. 5 for Example 2.3 of Tweety.

A proof-structure is correct, i.e., aproof net, if its correc-
tion graph satisfies the followingcorrectness conditions:

1. It is acyclic.

2. Every path from the input conclusions (i.e., premises) of
the graph reaches the output conclusion of the graph.

3. Every path from the input premise of an output−◦-link
passes through the output conclusion of the link.

The above condition (3) does not play an essential role in
our Horn fragment.

For our DI-net, we have negative atoms of the forma :=
a −◦ 1, and hence it seems that we need a link for the con-
stant1. However in our fragment, based on the definition of
translation of DI-nets, occurrences of1 are restricted in a
given Horn sequent, and hence, in a cut-free sequent calcu-
lus proof of the Horn sequent, inference rules for1 appear
only in the following form on the left. (We omit the trivial
case of axiom.)

a ⊢ a

L⃗,P ⊢ M⃗

1, L⃗,P ⊢ M⃗
1L

P, L⃗, a, a ⊢ M⃗
−◦L

...
↑
P

...
↑
L⃗ ai

...
↓
M⃗

ao 1i

ai

-

���

?

The sequent calculus proof corresponds to the correction
graph on the right above.
Hence, in our fragment, by introducing the
following form of axiom link by abbreviating
the above part of proof nets, we are able to
regarda as a kind of atom without decom-
posing it toa and1.

ai ai
?

Thus, with the help of the new axiom link, we are able to
regard our proof nets as the usual most basic nets without a
link for 1, and the results for them such as sequentialization
(cf. the following Proposition 4.2) are immediately applied
to our proof nets.

Let Γ ⊢ C be a sequent ofIMLL. Whenπ is a proof net
for which input conclusions (i.e., premises) are just formulas
of Γ, and for which the unique output conclusion isC, we
say thatπ is a proof net forΓ ⊢ C.

As an immediate consequence of the theorem given in
(Lamarche 1994), we have the following proposition.

Proposition 4.2 If a Horn sequentP, L⃗ ⊢ M⃗ is provable in
IMLL, then there is a proof net for the sequent.

4.2 Transformation of proof nets into DI-nets
We give a transformation of our proof nets into DI-nets.

Theorem 4.3 (Transformation of proof nets) Let P be a
program set consisting of formulas of the formsb−◦ bL with
b ̸≡ L andLn−◦L. Leta,M1, . . . ,Mm be different literals.
A proof net forP ⊢ a−◦ aM1 · · ·Mm is transformed into a
DI-netD = (D,→, ̸→) such that:

• The domain isD = {c | c or c appears in the sequent
P ⊢ a−◦ aM1 · · ·Mm}
• The translationD∗ = P, that is,

– b→ c in D if and only ifb−◦ bc ∈ P
– b ̸→ c in D if and only ifb−◦ bc ∈ P
• reach(a) = {a,M1, . . . ,Mm}
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Fig.6 Transformation of proof nets

Proof.Let π be a proof net ofP ⊢ a −◦ aM⃗ . Then, its cor-
rection graph is a directed acyclic graph, in whichai is an
initial node, and(a −◦ aM⃗)o and conflicting nodes of the
form c are the terminals. We transform the correction graph
into the required DI-net.
We observe that our correction graph for the above sequent
in general consists of the following parts (cf. Fig. 5):

• The terminal part that consists of the unique output con-
clusion(a−◦aM⃗)o of the proof net and its related formu-
lasai andaoM⃗o.

• A transition part that consists of a program formula of the
form (c−◦ cL)i and its related formulasco andciLi.

• A contraction part that consists of a program formula of
the form(Ln−◦L)i and its related formulasLo · · ·Lo, Li.

• A cancel part in which there is a link between conflicting

nodesci andci.

We transform each part as follows.

(1) Terminal part: This part takes the form appearing on
the left of the following diagram in Fig. 6. Here, the left-
mostai is an initial node of the given correction graph.
This terminal part is transformed into the form on the right
as follows: By ignoring thei, o-polarities, and by deleting
the conclusion formulaa−◦M1 · · ·Mm as well as its in-
cident edge, we obtain a graph, in which eachMi is a
terminal of the graph.

(2) Transition part: This part takes the form appearing on
the left in Fig. 6. By ignoring thei, o-polarities, by delet-
ing the program formulac −◦ cL as well as its incident
edge, and by dividing the edge ofc → cL into the form

c

c

L-��3 , we obtain the intermediate graph. We finally ob-



tain an edgec → L on the right, by contracting all nodes
of the same label.

(3) Contraction part: This part takes the form appearing
on the left in Fig. 6. For the simplicity, we consider a con-
traction formula of the formcc−◦ c. The same applies to
the general case. By ignoring thei, o-polarities, by delet-
ing the program formulacc −◦ c as well as its incident
edge, and by identifying the duplicated nodescc, we ob-
tain the intermediate graph. We finally obtain the node
c and its incident edges on the right, by contracting all
nodes of the same label.

(4) Cancel part: This part takes the form appearing at the
upper left in Fig. 6. By ignoring thei, o-polarities, by
deleting the program formulasc −◦ cL and b −◦ bL as
well as their incident edges, and by dividing the edges of
c → cL andb → bL, we obtain the graph at the upper
right. Then, by replacing the nodeL and its incident edge
of b → L to L andb ̸→ L, respectively, we obtain the
graph at the lower left. We finally obtain the graph at the
lower right that contains a conflicting nodeL, by contract-
ing all nodes of the same label.

It is clear that the above transformations of a given cor-
rection graph maintain the directedness and acyclicity of the
graph. Furthermore, it does not change the fact thata is the
initial node (it is unique since all input program formulas are
deleted) andaM⃗ as well as some conflicting nodes are the
terminals of the graph. Since such conflicting nodes are not
reachable by definition, and since the initial nodea reaches
all of a,M1, . . . ,Mm by the correctness condition (2) of the
graph, we havereach(a) = {a,M1, . . . ,Mm}. Therefore,
we obtain the required DI-net by the above transformation.

Our transformation does not contain any non-trivial
rewriting, and hence, it shows that a correction graph of a
proof net and a DI-net share essentially the same structure.

Example 4.4 (Transformation) The correction graph
Fig. 5 given in Example 4.1 is transformed as follows. (We
keep thei, o-polarities for the graph on the left.)

ti → to → bi → bo → bi→��
ti
��

to→ pi → po → pi → po → pi → po��
ti��

to

?
bi

?
bobo → bi → bo

Z
Z
ZZ~

f
i

@R
f i :

▷ b -t - f

p

�
�
��3

?
Q
Q
QQs

��

Fig.7 Transformation of the correction graph of Example 4.1

5 Conclusion and future work
Towards a characterization of defeasible inheritance reason-
ing and more generally of nonmonotonic reasoning, we in-

vestigated in this paper a relationship between defeasible
inheritance networks, a Horn fragment of linear logic, and
proof nets (essential nets) for linear logic. We obtained the
following equivalence:

Corollary 5.1 LetP be a program set that consists of for-
mulas of the formsb −◦ bL with b ̸≡ L and Ln −◦ L.
Let a,M1, . . . ,Mm be different literals. The following are
equivalent:

1. There exists a proof net for the Horn sequenta,P ⊢
aM1 · · ·Mm.

2. The Horn sequenta,P ⊢ aM1 · · ·Mm is provable in
IMLL.

3. There exists a DI-netD such that D∗ = P and
reach(a) = {a,M1, . . . ,Mm}.

Proof. (3⇒ 2) is obtained by Theorem 3.9. (2⇒ 1) is ob-
tained by (Lamarche 1994). (1⇒ 3) is obtained by Theorem
4.3.

Thus, we characterized the notion of reachability from
a node in a DI-net by the provability of the corresponding
Horn sequent inIMLL. Furthermore, we showed that there is
a structural correspondence between DI-nets and proof nets.
Our result is important in view of implementation of defeasi-
ble inheritance reasoning, since various logic programmings
are developed for linear logic, and our exponential-free Horn
fragment is the most basic one of them.

As we pointed out after Example 2.3 of Section 2, our
characterization of DI-nets in the Horn fragment of linear
logic is based on a weaker interpretation of DI-nets than that
of (Fouqueŕe-Vauzeilles 1994). To extend our results to in-
clude the strict interpretation of DI-nets, when we cancel a
conflicting literals, sayf andf , we need to cancel all nodes
that inherit fromf or f at the same time. Although it is gen-
erally difficult to capture inheritance or consequence rela-
tionships among formulas at the level of formulas, in our
simple framework of defeasible inheritance, i.e., only transi-
tive inheritance relationships between atoms are concerned,
such transitive relationships seem to be captured with an ap-
propriate use of parentheses. This is illustrated by the fol-
lowing example of a natural deduction proof of Example 2.3
of Tweety. (For simplicity, we skip the nodet below.)

p−◦ (pb) b−◦ (bf)
p−◦ (p(bf)) trans

f −◦ (fw)

p−◦ (p(b(fw)))
trans

p−◦ (pf)
p−◦ ((pf)(b(fw)))

trans

p−◦ (pb) cancel

Note that in the above example, the inheritance relation is
naturally captured by parentheses. For example, in the for-
mulap−◦ ((pf)(b(fw))), the parentheses of(fw) indicates
thatw inherit fromf ; the outermost parentheses of(b(fw))
indicates thatfw inherit from b; and(pf) indicates thatf
inherit fromp. In the above application of thecancel-rule,
at the same time when we cancelf andf , we also cancel
w that is in the scope of the parentheses off , i.e., that in-
herit from f . Thus, in such a system, we need (1) to keep
structures of parentheses strictly, and (2) to cancel several



atoms at the same time. (1) suggests non-associative linear
logic, and (2) suggests a subsystem of affine linear logic, in
which the weakening rule is allowed for only atoms, i.e.,
(pf) −◦ p is derivable fromp −◦ p, and (b(fw)) −◦ b is
derivable fromb −◦ b. We leave a detailed discussion and
formalization thereof as future work.

In this paper, we only considered two types of edges in our
DI-nets: the defeasible edge (→) and the defeasible negative
edge (̸→). However, as discussed in (Horty 1994), we are
able to introduce another type of edges to DI-nets such as
the “strict edge,” which corresponds to the usual implication
admitting no exceptions. If we regard it as an intuitionistic
implication, we may be able to characterize it by the formula
!a−◦b in linear logic with the use of the exponential operator.
We also leave such an extension as future work.

Mainly for reasons of space, we are not able to discuss se-
mantics for our defeasible inheritance reasoning. Note how-
ever that our system is one of the simplest fragments of lin-
ear logic, i.e., we have only restricted the language of lin-
ear logic. Hence, we are able to straightforwardly apply se-
mantics of linear logic such as phase semantics (cf. (Okada
2008)) to our defeasible inheritance reasoning.
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Fouqueŕe, C. and Vauzeilles, J. Taxonomic Linear Theories,
Proc. of Symbolic and Quantitative Approaches to Reason-
ing and Uncertainty, European Conference, ECSQARU’93,
M. Clarke, R. Kruse, S. Moral (Eds.), Lecture Notes in Com-
puter Science, 747, 121-128, 1993.
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