
Computing a Finite Horizon Optimal Strategy Using Hybrid ASP

Alex Brik, Jeffrey Remmel
Department of Mathematics, UC San Diego, USA

Abstract

In this paper we shall show how the extension of ASP called
Hybrid ASP introduced by the authors in (Brik and Remmel
2011) can be used to combine logical and probabilistic rea-
soning. In particular, we shall show how Hybrid ASP can be
used to create efficient, robust representations of dynamic do-
mains whose stable models compute optimal finite horizon
policies for the agents acting in such domains. We discuss
a prototype implementation and show that the complexity of
computing optimal policies is EXP-complete in the length of
the input program.

Introduction
Hybrid Answer Set Programming (H-ASP) is an extension
of Answer Set Programming (ASP) introduced by the au-
thors in (Brik and Remmel 2011) that allows users to com-
bine ASP type rules and numerical algorithms. The goal of
this paper is to show how H-ASP can be used to create effi-
cient, robust representations of dynamic domains whose sta-
ble models compute optimal finite horizon policies for the
agents acting in the domains.

H-ASP is a general formalism for combining ASP type
rules and numerical algorithms. H-ASP is applicable to a
wide range of problems. Thus, the particular problem of
computing optimal finite horizon policies considered in this
paper is just one example of possible applications of H-ASP.
One of the properties of H-ASP is that while allowing the
programmer to use both logical reasoning and numerical al-
gorithms, the formalism keeps the numerical processing as
separate from logic as possible. Thus the rules act as input-
output devices for the algorithms. This feature of H-ASP is
extremely conducive to a practical integration of logic rules
and numerical processing.

Markov Decision Processes (MDPs) are widely used to
model decision-making problems and were first described
in (Bellman 1957). At a specific time, a decision maker ob-
serves the state of the system and decides upon which action
to perform. Upon performing an action, the decision maker
incurs a reward that depends on the state of the system and
the action chosen. The system then non-deterministically
moves to a new state with a known probability, at which

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time a decision maker again observes the state of the sys-
tem and decides upon which action to perform. The goal is
to determine a policy that maximizes a cumulative expected
reward.

There are many applications of MDPs, for instance: in
communication networks (Altman 2000), in computer sci-
ence (Strehl, Li, and Littman 2009), in finance (Trench et
al. 2003) to name a few. Finding an optimal policy for an
MDP is a well-studied topic in control theory (see (Puterman
1994) for an overview). In the discrete finite horizon case,
which is the case that we will be considering, the problem
is usually solved numerically using the Dynamic Program-
ming algorithm (DP algorithm for short). Thus one could en-
code a probabilistic model of the domain from the descrip-
tion, and then run the DP algorithm with the probabilistic
model encoded as an input to generate a finite horizon opti-
mal strategy. We will call this approach the ad hoc approach.

It is then reasonable to ask whether solving the problem
using H-ASP provides an advantage over the ad hoc ap-
proach? We will argue in this paper that solving the problem
using H-ASP provides a number of advantages over the ad
hoc approach. One advantage is that a H-ASP formulation of
the problem allows the user to easily modify the underlying
search space by imposing logical constraints on the system
in much that same way that an ASP programmer can im-
pose constraints on the intended set of stable models of the
program.

There are various approaches for combining logic and
probability that are described in the literature. In (Saad
2008), Saad shows that normal hybrid probabilistic logic
programs with answer set semantics introduced in (Saad and
Pontelli 2006) can be used to describe possible finite trajec-
tories of MDPs and to compute finite horizon optimal poli-
cies. We will discuss this and other related work in the con-
clusion.

First, we describe a dynamic domain that will be used as
the main example in this paper. The dynamic domain and the
associated problem will be called the Merchant Problem. It
is a typical example of a problem for the DP algorithm.

The Merchant Problem.
Suppose that a certain merchant Q plans to travel from

one coastal city C1 to another coastal city C5 by sea. On
the way he plans to visit 3 more coastal cities C2, C3, C4
one after another, so that he will visit C1, C2, C3, C4, C5

in the specified sequence. Q owns a small cargo ship with a
cargo capacity of 6 containers. Q has an expertise in trading
three goods: flour, wine and wool. The prices of these goods
under normal conditions in each city are known. However,
the conditions in each city can change. First, the weather
can change from normal to stormy. If that happens then the
prices of the goods at a city will change in a specified way.
Second, a city may choose to enact a tax on any subset of the
three goods. This will also change the prices of goods in a
specified way. The probability of a storm or of a particular
tax for each city is known. The question is what should Q buy
and sell in each city to maximize his total profit. Of course
Q’s action in each city will depend on the prices of goods
at the city when Q arrives there and on the content of Q’s
cargo. Moreover we will assume that every transaction will
result in buying or selling an integer number of containers
of goods and that Q will not buy more goods than he can
store in the ship’s cargo.

A few comments about the problem description should
be made. First, the problem description specifies the laws
of the domain. Then the probabilistic model, i.e. the proba-
bilities of moving from one state to another under a partic-
ular action, needs to be computed using the laws specified
in the description. While the laws in the Merchant Problem
are simple and easily yield the probabilistic model, one can
see that the laws could be more complicated and that cre-
ating a probabilistic model from the description could be a
challenging problem in itself. Second, the number of states
and state transitions will be on the order of millions. Thus
to be practical, the software that generates and analyzes the
probabilistic model needs to be efficient. Third, even small
changes to the problem description can significantly change
the probabilistic model. This is because adding, changing or
removing a law can affect all the states. For instance sup-
pose that the problem description of the Merchant Problem
is changed by adding a fourth good that Q trades. This will
significantly change the probabilistic model and the state
space.

Our first comment justifies the idea that it is desirable to
produce a probabilistic model of a domain by encoding a do-
main description in a language that has syntactic constructs
for specifying laws of the domain. H-ASP rules are syntactic
constructs that allow specifying laws of dynamic domains.
Our third comment justifies the need for a general approach.
In this paper we will describe a general approach based on
H-ASP. The H-ASP formulation of the problem allows the
user to change the laws of the underlying system with little
restructuring of the rest of the H-ASP program.

The paper discusses one way of solving the Merchant
Problem using H-ASP. However, the techniques we use are
general and can be applied to many other problems. For the
implementation purposes we will introduce a new language
closely related to H-ASP called H-ASP#. We have imple-
mented a prototype H-ASP# solver, created a H-ASP# pro-
gram for the Merchant Problem, and have used the solver
with the program to solve the problem.

In this paper we present a number of theoretical results.
Because of the space constraints we are not able to include
the proofs. However, the proofs can be found in (Brik 2012).

The rest of the paper is structured as follows. In section
2, we will review the DP algorithm. In section 3, we will re-
view H-ASP. In section 4, we will show how the Merchant
Problem can be solved using H-ASP. Section 5 will discuss
the implementation related issues and the language H-ASP#.
The same section will discuss the computational complexity
of H-ASP# programs. We end with our conclusion and a dis-
cussion of related work.

The Dynamic Programming Algorithm
A MDP M is a tuple M = 〈S, S0, A, T, r〉 where S is a set
of states, S0 ⊆ S is the set of initial states, A is the set of
actions, T : S × A × S → [0, 1] is the stationary transition
function such that for all s ∈ S and a ∈ A, T (s, a, ·) is the
probability distribution over S, i.e. T (s, a, s′) is the proba-
bility of moving to a state s′ when action a is executed in
state s. r : S ×A→ R is the reward function, i.e. r (s, a) is
the reward gained by taking action a in state s.

A trajectory θ is a sequence of states θ1, θ2,. . . , θm for
some m ≥ 0, where θ1, θ2,. . . , θm ∈ S. A policy π is
a map S × Z+ → A where Z+ is the set of all the pos-
itive integer numbers, that maps each state s ∈ S and
time i ∈ Z+ to an action π (s, i). Let an MDP M , and
a finite horizon κ be given. κ is the maximum length of
the trajectories that we will be considering. The probability
Probπ (θ) of a trajectory θ under a policy π is Probπ (θ) =
|θ|−1∏
i=1

T (θi, π (θi, i) , θi+1) where |θ| is the length of the tra-

jectory. The reward Rnπ (θ) of a trajectory θ at time n under

a policy π is Rnπ (θ) =

|θ|∑
i=1

r (θi, π (θi, n+ i− 1)).

Let Θ (s, i) be the set of all the trajectories of length i
starting at state s ∈ S. Note that Θ (s, 1) = (s). The
performance of a policy π at time i with initial state s
is the expected sum of rewards received on the next κ +
1 − i steps by following the policy π. That is Rπ (s, i) =∑
θ∈Θ(s,κ+1−i)

Probπ (θ) ·Riπ (θ).

The finite horizon optimal policy problem is to find a pol-
icy π∗ that would maximize the κ step performance, i.e. find
π∗ such that for all the policies π for all s0 ∈ S0

Rπ∗ (s0, 1) ≥ Rπ (s0, 1)

The performance for a policy π at time i satisfies the fol-
lowing recursive formula

Rπ (s, i) = (1)

r (s, π (s, i)) +
∑
s′∈S

T (s, π (s, i) , s′) ·Rπ (s′, i+ 1)

where Rπ (s, κ) = r (s, π (s, κ)). It is the case that there
exists π∗ such that for all s ∈ S and for all the policies π
Rπ∗ (s, 1) ≥ Rπ (s, 1). π∗ can be constructed as follows.
First define π∗ (s, κ) = argmaxa∈A r (s, a). Then for 1 ≤

i < κ, let

π∗ (s, i) = argmaxa∈A
∑
s′∈S

T (s, a, s′) ·Rπ∗ (s′, i+ 1) .

(2)
The above recursive equations defines the DP algorithm.

The algorithm proceeds by first computing π∗ (s, κ) and
Rπ∗ (s, κ) for every s ∈ S. Now, assuming that for every
s ∈ S π∗ (s, i+ 1) and Rπ∗ (s, i+ 1) are computed, com-
pute π∗ (s, i) using formula 2 and then Rπ∗ (s, i) using for-
mula 1 for all s ∈ S, except for i = 1 where π∗ (s, 1) needs
to be computed only for the initial states S0 and Rπ∗ (s, 1)
need not be computed. It is easy to see that the DP algorithm
is a polynomial time algorithm in |S| and |A|.

A flat representation of a MDP 〈S, S0, A, T, r〉 is a set of
|S| × |S| tables for the transition function - one table for
each action and a table for a reward function (Mundhenk et
al. 2000).

Hybrid ASP
In this section we give a brief review of H-ASP.

A H-ASP program P has an underlying parameter space
S. Elements of S are of the form p = (t, x1, . . . , xm) where
t is time and xi are parameter values. We shall let t(p) de-
note t and xi(p) denote xi for i = 1, . . . ,m. We refer to the
elements of S as generalized positions.

Let At be a set of atoms of P . Then the universe of P is
At× S. For ease of notation, we will often identify an atom
and the string representing atom.

If M ⊆ At × S, we let M̂ = {x ∈ S : (∃a ∈
At)((a,p) ∈ M)}. A block B is an object of the form
B = a1,. . . , an, not b1, . . . , not bm where a1,. . . , an,
b1,. . . , bm ∈ At. Given M ⊆ At × S, B = a1,. . . , an, not
b1, . . . , not bm, and p ∈ S, we say that M satisfies B at the
generalized position p, writtenM |= (B,p), if (ai,p) ∈M
for i = 1, . . . , n and (bj ,p) /∈ M for j = 1, . . . ,m. If B
is empty, then M |= (B,p) automatically holds. We define
B− = not b1, . . . , not bm.

There are two types of rules in H-ASP.

Advancing rules are of the form

B1;B2; . . . ;Br : A,O

a

where A is an algorithm, each Bi is of the form a1,. . . ,
an, not b1,. . . , not bm where a1,. . . , an, b1,. . . , bm, and a
are atoms, and O ⊆ Sr is such that if (p1, . . . ,pr) ∈ O,
then t(p1) < . . . < t(pr), A (p1, . . . ,pr) ⊆ S, and for all
q ∈ A (p1, . . . ,pr), t(q) > t(pr). Here and in the next
rule, we allow n or m to be equal to 0 for any given i. More-
over, if n = m = 0, then Bi is empty and we automatically
assume that Bi is satisfied by any M ⊆ At × S. We shall
refer to O as the constraint set of the rule and the algorithm
A as the advancing algorithm of the rule. The idea is that
if (p1, . . . ,pr) ∈ O and for each i, Bi is satisfied at the
generalized position pi, then the algorithmA can be applied
to (p1, . . . ,pr) to produce a set of generalized positions O′
such that if q ∈ O′, then t(q) > t(pr) and (a,q) holds.

Stationary rules are of the form
B1;B2; . . . ;Br : H,O

a
where each Bi is of the form a1,. . ., an, not b1,. . . , not bm
where a1,. . . , an, b1,. . . , bm and a are atoms, O ⊆ Sr is
such that if (p1, . . . ,pr) ∈ O, then t(p1) < · · · < t(pr),
and H is a Boolean algorithm defined on O. We shall re-
fer to O as the constraint set of the rule and the algorithm
H as the Boolean algorithm of the rule. The idea is that if
(p1, . . . ,pr) ∈ O and for each i,Bi is satisfied at the gener-
alized position pi, andH((p1, . . . ,pr)) is true, then (a,pr)
holds.

The idea is that in an implemented system, the algorithms
in H-ASP rules are allowed to be any sort of algorithms, for
instance algorithms for solving differential or integral equa-
tions, solving a set of linear equations or linear programming
equations, etc.

A H-ASP Horn program is a H-ASP program which does
not contain any negated atoms in At.

Let P be a Horn H-ASP program, let I ∈ S be an initial
condition. Then the one-step provability operator TP,I is de-
fined so that given M ⊆ At × S, TP,I(M) consists of M
together with the set of all (a, J) ∈ At× S such that
(1) there exists a stationary rule C = B1;B2;...;Br:H,O

a and

(p1, . . . ,pr) ∈ O∩
(
M̂ ∪ {I}

)r
such that (a, J) = (a,pr),

M |= (Bi,pi) for i = 1, . . . , r, and H(p1, . . . ,pr) = 1 or
(2) there exists an advancing rule C = B1;B2;...;Br:A,O

a

and (p1, . . . ,pr) ∈ O ∩
(
M̂ ∪ {I}

)r
such that J ∈

A(p1, . . . ,pr) and M |= (Bi,pi) for i = 1, . . . , r.
The stable model semantics for H-ASP programs is de-

fined as follows. Let M ⊆ At×S, let I ∈ S. Then we form
the Gelfond-Lifschitz reduct of P over M and I , PM,I as
follows. An H-ASP rule C = B1;...,Br:A,O

a is inconsistent

with (M, I) if for all (p1, . . . ,pr) ∈ O ∩
(
M̂ ∪ {I}

)r
,

either (i) there is an i such that M 6|= (B−i ,pi) (ii)
A (p1, . . . ,pr) ∩ M̂ = ∅ if A is an advancing algorithm,
or (iii) A(p1, . . . ,pr) = 0 if A is a Boolean algorithm.
(1) Eliminate all rules with are inconsistent with (M, I).
(2) If the advancing rule C = B1;...,Br:A,O

a is not elim-

inated by (1), then replace it by B+
1 ;...,B+

r :A+,O+

a where
for each i, B+

i is the result of removing all the negated
atoms from Bi, O+ is equal to the set of all (p1, . . . ,pr) in

O ∩
(
M̂ ∪ {I}

)r
such that M |= (B−i ,pi) for i = 1, . . . , r

andA(p1, . . . ,pr)∩M̂ 6= ∅, andA+(p1, . . . ,pr) is defined
to be A(p1, . . . ,pr) ∩ M̂ .
(3) If the stationary rule C = B1;...,Br:H,O

a is not elimi-

nated by (1), then replace it by B+
1 ;...,B+

r :H|O+ ,O
+

a where
for each i, B+

i is the result of removing all the negated
atoms from Bi, O+ is equal to the set of all (p1, . . . ,pr) in

O ∩
(
M̂ ∪ {I}

)r
such that M |= (B−i ,pi) for i = 1, . . . , r

and H(p1, . . . ,pr) = 1.

We then say that M is a stable model of P with initial

condition I if
∞⋃
k=0

T kPM,I ,I (∅) = M.

We say that M is a single trajectory stable model of P
with initial condition I if M is a stable model of P with the
initial condition I and for each t ∈ {t (p) | p ∈ S} there
exists at most one p ∈ M̂ ∪ {I} such that t (p) = t.

Given M ⊆ At × S and p ∈ S, we define WM (p) - the
state at p to beWM (p) = {a| (a,p) ∈M}. A hybrid state
for p is a pair 〈WM (p) ,p〉.

We say that an advancing algorithm A lets a parameter
y be free if the domain of y is Y and for all generalized
positions p and q and all y′ ∈ Y , whenever q ∈ A(p), then
there exist a q′ ∈ A(p) such that y (q′) = y′ and q and q′

are identical in all the parameter values except possibly y.

Solving the Merchant Problem using H-ASP
In this section we will describe our formalization of the
Merchant Problem as a H-ASP program. Details about the
H-ASP solver used to implement the program will be given
in section 5. The construction of the desired H-ASP program
will proceed in 3 steps. In step 1, we will discuss a H-ASP
program P such that the single trajectory stable models of P
describe the possible trajectories of the Merchant Problem.
In step 2, we will describe a transform of P to a H-ASP pro-
gram P ′. P ′ has the property that its unique maximal stable
model M ′max captures all the possible single trajectory
stable models of P . M ′max can be computed by the Local
Algorithm, also introduced in step 2. Finally in step 3, we
will show how P ′ can be modified to a H-ASP program P ′′

that uses the DP algorithm to compute the optimal policy π∗.

Step 1: Modeling the Merchant Problem.
Let κ be a policy horizon. By a trajectory of the Mer-

chant Problem we mean a finite sequence of the form
(s1, a1, s2, a2, . . . , sn, an) where s1,. . . , sn are states of the
Merchant Problem domain, a1, . . . , an are actions chosen
by the merchant Q in the states s1, . . . , sn correspondingly.
We will make the following assumptions about the H-ASP
program P whose single trajectory stable models describe
the trajectories of the Merchant Problem.
(1) Every initial condition I is such that t (I) = γ for some
fixed γ.
(2) All the advancing rules have the form B:A,O

a where
γ ≤ t (q) =≤ γ + 2κ∆ if p ∈ O. Here ∆ > 0 is a program
dependent constant.
(3) All the stationary rules have the form B1;B2:H,O∗

a or
B:H,O
a where t (p) ≥ γ if p ∈ O or (p,q) ∈ O∗.

(4) There exists ∆ > 0 such that if A is an advancing algo-
rithm and q ∈ A (p), then t (q) = t (p) + ∆.
(5) For every stationary rule B1;B2:H,O

a , t (p) + ∆ = t (q)
if (p,q) ∈ O.

These conditions are designed to allow us to prove a num-
ber of useful properties of the stable models of P . In partic-
ular, ifM is a single trajectory stable model of P , then every
hybrid state (U,q) depends on at most one other state (V,p)
with the property that t (p)+∆ = t (q). Since in MDPs, ev-

ery state depends only on the previous state, P will be able
to describe an MDP.

We will need the following parameters: CARGO,
PRICE, TAXES, PROFIT. With these parameters we will
describe cargo contents, the price of goods at the current
city, the taxes at the current city, and the immediate profit
of the last action, respectively. We will also need the pa-
rameters Act, Prob, LEVEL. The values of the parameter
CARGO will be triples with each triple specifying the num-
ber of cases of goods: flour, wool and wine in the cargo. The
values of the parameter PRICE will be triples specifying
the prices of goods in the current city. The values of the pa-
rameter TAXES will be triples specifying whether taxes on
goods are enacted. The values of PROFIT will be real num-
bers. The meaning of Act, Prob, LEVEL will be explained
further in this section.

The set of atoms At will contain atoms: STORM, BUY,
SELL, MOVE, FAIL. The atom STORM will model the
presence or the absence of a storm at the current city. The
atoms BUY, SELL, MOVE will specify whether the next
action is to buy, to sell or to move to the next city respec-
tively. FAIL will be used for constraints as in not FAIL

FAIL and
thus will never be part of a stable model.

The merchant will first choose an action of the type (buy,
b1, b2, b3) where b1, b2, b3 are the numbers of cases of 3
goods that he will buy. At the next time step he will move to
the next city by choosing an action (move). Then the mer-
chant will sell a certain amount of goods by choosing an
action of the form (sell, x1, x2, x3) where x1, x2, x3 are
the amounts of goods that he wants to sell. Then the cycle
repeats with the merchant buying goods and moving to the
next city. The process will stop after 12 steps as merchant
sells some of his goods at the last city.
P will have to derive action choices, derive consequences

of actions and derive the transition probabilities. To achieve
this, P will be partitioned into three disjoint sets of rules
P = PA∪PC∪PP wherePA are the rules for deriving action
choices, PC are the rules for deriving the consequences of
actions and PP are the rules for deriving the probabilities.
The parameter Act will be used to model the actions. To
model probabilities, we will use the parameter Prob.

Deriving action choices and their consequences will oc-
cur in two stages. First an action will be chosen. Second,
the action’s consequences will be derived. To model the two
stage process, we will use the parameter LEVEL that will
take values 0 or 1. Choosing an action a at a generalized
position p with LEVEL (p) = 0 is modeled by an appro-
priate advancing algorithm producing a generalized position
p̂ which is identical to p in all the parameter values except
t (p̂) = t (p) + ∆, Act (p̂) = a and LEVEL (p̂) = 1. We
will ensure that if O ⊆ X (O ⊆ X2) is a constraint set oc-
curring in PC ∪PP , then LEVEL (p) = 0 whenever p ∈ O
((q,p) ∈ O). On the other hand, if O ⊆ X (O ⊆ X2)
is a constraint set occurring in PA, then LEVEL (p) = 1
whenever p ∈ O ((q,p) ∈ O). We will also require that for
all the advancing algorithms G in PA, if q ∈ G (p), then
LEVEL (q) = 1 and, for all the advancing algorithms G in
a rule in PC , if q ∈ G (p), then LEVEL (q) = 0.

For example the following advancing rule generates ac-

tion of the form (move):

MOVE : isLevel0, actMove

MOVE
(3)

Here isLevel0 (p) = 1 iff LEVEL (p) = 0. actMove (p) =
{p̂} where p̂ is identical to p except that t (p̂) = t (p) + ∆,
Act (p̂) = (move) and LEVEL (p̂) = 1.
PP will consist only of the stationary rules of the form

B1;B2, not FAIL:H,O
FAIL . Here for (p̂,q) ∈ O, H ((p̂,q)) = 1

iff the unnormalized probability of transitioning from a hy-
brid state 〈W, p̂〉 satisfyingW |= B1 to a hybrid state 〈U,q〉
satisfying U |= B2 under action Act (p̂) is not Prob (q).
That is, the rule restricts transitions (p̂,q) only to those
where the value of Prob (q) is the correct one. Since the
rules of PP will only restrict the generalized positions, ev-
ery advancing algorithms in PC will let Prob be free.

Intuitively, the relation between the unnormalized proba-
bilities of transitioning and the (normalized) probabilities of
transitioning is as follows. If F is the set of the generalized
positions corresponding to all the possible transitions from
the generalized position p̂ and q ∈ F , then the probability
of transitioning from p̂ to q is Prob (q) /

∑
r∈F

Prob (r). We

can use the unnormalized probabilities since the denomina-
tor can be computed later in 1 and 2.

Using unnormalized probabilities in the algorithms rather
than (normalized) probabilities allows one to easily model a
statement such as: a storm is twice as likely as its absence.
What is required is that in the event of a storm the unnor-
malized probability is multiplied by 2.

Due to space restrictions we will not reproduce the
program P here. The program can be found in (Brik 2012).

Step 2: The program transform.
To apply the DP algorithm we will transform P to another

H-ASP program P ′. P ′ will have a unique maximal stable
model M ′max and all the single trajectory stable models of
P ′ will correspond to certain subsets of M ′max. Thus M ′max
can be used to create a flat representation of the MDP for the
Merchant Problem.
P ′ needs to be different from P because of the following

two issues.
(A) For two hybrid states 〈A1,p〉 and 〈A2,p〉 where A1 6=
A2, 〈A1,p〉 and 〈A2,p〉 cannot both be hybrid states in the
same stable model of P . Since it is possible that for some
generalized position p, 〈A1,p〉 is a hybrid state in one of
the single trajectory stable models of P and 〈A2,p〉 is a hy-
brid state in another single trajectory stable model of P , it is
possible that no stable model of P will capture all the single
trajectory stable models of P .
(B) For generalized positions p and q with t (q) = t (p) +
∆, it is not clear how to determine whether a hybrid state
〈B,q〉 is a successor of the hybrid state 〈A,p〉. Since this
information is needed to construct a flat representation of a
MDP, stable models of P cannot be used to construct flat
representations of MDPs.

The first problem occurs because the elements of the sta-
ble models are pairs (a,p). Hence, at most one hybrid state
can correspond to a generalized position p. The second

problem occurs because in a stable model, there may be two
generalized positions p and r with p 6= r and t (p) = t (r).
Thus if t (q) = t (p) + ∆, q could be a successor of either
p or r.

We will introduce two parameters AV and prev that will
be part of the parameter spaceX ′ of P ′ in addition to the pa-
rameters of P . The parameterAV will encode a set of atoms
of a hybrid state and the parameter prev will record the in-
formation necessary to determine a predecessor generalized
position.

The Program Transform is defined as follows.
(I) Define the parameter space X ′ for P ′ to be the set
of all tuples of the form p′ = (t, x1, . . . , xn+2) where
p = (t, x1, . . . , xn) ∈ X . The value xn+2 denoted
AV (p′) is a bit vector of length |At|. The value xn+1

denoted prev (p′) has the form (t−∆, y1, . . . , yn, z)
where (t−∆, y1, . . . , yn) ∈ X and z is a bit vector of
length |At|.
(II) Suppose that the initial condition I has the
form (γ, x1, x2, . . . , xn). Define J (I) = (γ −
∆, x1, . . . , xn, ∅, 0) where 0 denotes the vector of ze-
ros. J (I) will be the initial condition of P ′.
(III) For q = (t, x1, . . . , xn+2) ∈ X ′ the projec-
tion of q onto X is ΠX (q) = (t, x1, . . . , xn). We
need to change the advancing rules of P so that the
algorithms and the constraint sets of P ′ ignore the
new parameters AV and prev. That is for every ad-
vancing rule B:A,O

a ∈ P , P ′ has an advancing rule
B:A′,O′

a where for all q = (t, x1, . . . , xn+2) ∈ X ′

A′ (q) = {(t+ ∆, y1, . . . , yn+2) | ∃ (t+ ∆, y1, . . . , yn) ∈
A (ΠX (q)) and yn+1 = (t, x1, . . . , xn, xn+2) and
q ∈ O′ ←→ ΠX (q) ∈ O}. Note that A′ lets the last
parameter AV be free.
(IV) As in (III) above, the stationary rules of P are
modified to ignore the new parameters AV and prev
except when it is necessary to determine whether q
is a successor of p. That is, for every stationary rule
B:H,O
a ∈ P , P ′ has a stationary rule B:H′,O′

a where for
all q ∈ X ′, q ∈ O′ iff ΠX (q) ∈ O and H ′ (q) = 1
iff H (ΠX (q)) = 1. Similarly, for every stationary rule
B1;B2:H,O

a ∈ P , P ′ has a stationary rule B1;B2:H′,O′

a
where for all q1 = (t, x1, . . . , xn+2) ∈ X ′ and for all
q2 ∈ X ′, (q1,q2) ∈ O′ iff [(ΠX (q1) ,ΠX (q2)) ∈ O &
prev (q2) = (t, x1, . . . , xn, xn+2)] and H ′ ((q1,q2)) = 1
iff H ((ΠX (q1) ,ΠX (q2))) = 1.
(V) We will now specify how the parameter AV is used
to encode the set of atoms of the hybrid states. Let(
a1, . . . , a|At|

)
be a fixed enumeration of At, and for

aj ∈ At define i (aj) = j. Then for each a ∈ At,
P ′ will contain the following two stationary rules
a, not FAIL:H[a], X′

FAIL and not a, not FAIL: H[a], X′

FAIL where
H [a] and H [a] are Boolean algorithms and for all q ∈ S′
H [a] (q) = 1 if AV (q) (i (a)) = 0 and H [a] (q) = 0

otherwise. H [a] (q) = AV (q) (i (a)). It is easy to see
that the rules enforce the following condition on any stable

model M ′ of P ′ with the initial condition J (I)

∀q ∈ M̂ ′ ∪ {J (I)} ∀a ∈ At (a,q) ∈M ′ ←→

AV (q) (i (a)) = 1.

Thus for a stable modelM ′ of P ′ with the initial condition
J (I), a generalized position q ∈ M̂ ′ ∪ {J (I)} contains in-
formation necessary to determine the set of atoms WM ′ (q)
corresponding to a hybrid state for q.
(VI) We need a rule that will copy the parameter values of
the initial condition J (I) to the time γ. That is we add to P ′

the advancing rule :AJ ,OJ

new where for p ∈ X ′∪J (I) p ∈ OJ
←→ t (p) = γ − ∆ and for p = (γ − ∆, x1, . . . , xn+2)
AJ (p) = {(γ, x1, . . . , xn, ∅, z)| z is a bit vector of length
|At|}.
(VII) Besides the rules in (III)-(VI), P ′ has no other rules.

Thus the transform of rule 3 is MOVE: isLevel0′, actMove′

MOVE

where isLevel0′ (p) = 1 iff LEVEL (p) = 0.
actMove′ (p) = {p̂} where p̂ is identical to p except that
t (p̂) = t (p)+∆,Act (p̂) = (move), LEVEL (p̂) = 1 and
if p = (x1, ..., xn+2) then prev (p̂) = (x1, ..., xn, xn+2).

Theorem There exists a bijection between the set of the sin-
gle trajectory stable models of P with the initial condition I
and the set of the single trajectory stable models of P ′ with
the initial condition J (I).

The proof shows how to construct such a bijection and
is omitted due to the considerations of space. The theorem
shows that the single trajectory stable models of P ′ with the
initial condition J (I) describe the trajectories of the MDP
for the Merchant Problem.

Step 3: Computing the optimal policy.
Given the H-ASP program P ′ which is the transform of

P we want to be able to construct a flat representation of the
MDP for the Merchant Problem. To do so, for every hybrid
state 〈A,p〉 of a single trajectory stable model of P ′ with
the initial condition J (I) we need to be able to compute
all the possible successor hybrid states of 〈A,p〉. That is,
we want to be able to compute the set L (A,p) of hybrid
states where for each 〈B,q〉 ∈ L (A,p) there exists a single
trajectory stable model M ′ of P ′ with the initial condition
J (I) and 〈A,p〉 and 〈B,q〉 are both hybrid states inM ′ and
t (p) + ∆ = t (q). Also, for each single trajectory stable
model M ′ of P ′ with the initial condition J (I) if 〈A,p〉,
〈C, r〉 are hybrid states of M ′ and t (r) = t (p) + ∆ then
〈C, r〉 ∈ L (A,p).

This can be accomplished by the Local Algorithm. We
will state the Local Algorithm and then we will show that
its output defines the unique maximal stable modelM ′max of
P ′ with the initial condition J (I).

Let K ⊆ At × S′ and let p ∈ X ′. Define Adv (K,p) =

{(a,q) | there exists an advancing rule B:A′,O′

a ∈ P ′ and
p ∈ O′ and K |= (B,p) and q ∈ A′ (p)}.

The Local Algorithm produces a sequence {Li}∞i=−1

where Li ⊆ At×X ′ for i = −1, 0, . . .
Define L−1 = ∅.

Assume that Li is defined. Let p ∈ L̂i if i ≥ 0 and
p = J (I) if i = −1. For q ∈ ̂Adv (Li,p), A ⊆ At de-
fine PA (p,q) as follows.
(1) For a stationary rule B:H′,O′

a ∈ P ′, if q ∈ O′, H ′ (q) =

1, and A |= B−, then B+

a ∈ P
A (p,q) .

(2) For a stationary rule B1;B2:H′,O′

a ∈ P ′, if (p,q) ∈ O′,
H ′ ((p,q)) = 1, Li |= (B1,p), and A |= B−2 , then
B+

2

a ∈ P
A (p,q).

Define Ui(A,p,q) =
∞⋃
k=0

T kPA(p,q)

(
WAdv(Li,p) (q)

)
.

We let

Li+1 =
⋃

p∈L′i

⋃
q∈Adv(Li,p)

⋃
A⊆At

A=Ui(A,p,q)

Z (A,q)

where L′i = L̂i and Z (A,q) = M (A,q) if i ≥ 0 and
L′i = {J (I)} and Z (A,q) = M (A ∪ {new} ,q) if i =
−1.

In other words, we take every generalized position in L̂i
(or J (I) if i = −1), and use the advancing rules to generate
successor generalized positions. For each successor position
q and each A ⊆ At, we determine whether 〈A,q〉 corre-
sponds to a valid hybrid state, and, if so, then Z (A,q) is
added to Li+1.

We will define M ′max =

∞⋃
i=0

Li. We can then prove the

following theorem.
Theorem. M ′max is the unique maximal stable model of

P ′ with the initial condition J (I). Moreover, if N is a
stable model of P ′ with the initial condition J (I), then
N ⊆M ′max and, for all p ∈ N̂ , WN (p) = WM ′max

(p).
The theorem shows that we can use the Local Algorithm

to generate the unique maximal stable model M ′max of P ′
and that all the single trajectory stable models of P ′ are part
of M ′max.

Let Y ⊆ X ′ and let q = (t, x1, . . . , xn, xn+2). Define
ExtY (q) = {q′ ∈ Y | q′ = (t, x1, . . . , xn, z, xn+2) for
some z}. A set B ⊆ X ′ is called a chain if
(1) ∀q1,q2 ∈ B (t (q1) = t (q2)→ q1 = q2) and
(2) ∀q ∈ B (prev (q) = ∅ or |ExtB(prev (q) | = 1).

Theorem There exists a bijection between the set of
chains of M ′max and the set of single trajectory stable mod-
els of P ′ with the initial condition J (I).

The proof constructs the bijection and is omitted due to
the considerations of space. Since we have already shown
that there exists a bijection between the set of single trajec-
tory stable models of P and the set of single trajectory stable
models of P ′, we have established the existence of a bijec-
tion between the set of chains of M ′max and the set of single
trajectory stable models of P . Thus the Local Algorithm can
be used to generate the MDP for the Merchant Problem.

It is important to note that the Local Algorithm takes a
generalized position as its input. Thus the Local Algorithm
can be used within a H-ASP program in the same way as any
other algorithm. Thus to compute a finite-horizon optimal

policy we will transform P ′ to another H-ASP program P ′′

which in addition to the rules of P ′ will contain extra rules
that will use the Local Algorithm to compute the optimal
policy. P ′′ is defined as follows.
(1) Add to the parameters of X ′ a parameter LA that will
be used to store an optimal policy. The new parameter space
will be denoted X ′′.
(2) Replace the rule :AJ ,OJ

new of P ′ that was to be applied
at time t = γ by a new rule that will compute an optimal
policy. That is, replace :AJ ,OJ

new by the new rule :A′′J ,O
′′
J

new where
p ∈ O′′J implies t (p) = γ − ∆ and, for any p = (γ −
∆, x1, . . . , xn+2, π) ∈ O′′J ,

A′′J (p) =

{(γ, x1, . . . , xn, ∅, z, π∗)|(γ, x1, . . . , xn, ∅, z) ∈ L̂0}
where L0 is produced by the Local Algorithm run on the in-
put p, π∗ is the policy computed by the DP algorithm when
it is used on the MDP generated from the output of the Lo-
cal Algorithm run on the input p. That is, A′′J will run the
Local Algorithm and generate the flat representation of the
MDP for the Merchant Problem with the initial states corre-
sponding to the set of hybrid states at time γ. A′′J will then
run the DP algorithm on the flat representation to compute
an optimal policy π∗.
(3) We need to modify the algorithms and the constraint sets
of P ′ to ignore the new parameters. That is every advanc-
ing algorithm A′ in P ′ is replaced by an advancing algo-
rithm A′′ such that, for every r = (t, x1, . . . , xn+2, π

∗) ∈
X ′′, A′′ (r) = {(s, y1, . . . , yn+2, π

∗) | (s, y1, . . . , yn+2) ∈
A′ ((t, x1, . . . , xn+2))}, except for AJ in item 2 above.
Every constraint set O′ ⊆ X ′ is replaced by the con-
straint set O′′ ⊆ X ′′ where (t, x1, . . . , xn+2, π

∗) ∈ O′′ iff
(t, x1, . . . , xn+2) ∈ O′. The replacement of a constraint set
O′ ⊆ X ′2 and Boolean algorithms with the domain X ′ and
X ′2 is done analogously.

For I = (γ, x1, . . . , xn), the initial condition for P ′′ is
J ′′ (I) = (γ − ∆, x1, . . . , xn, ∅, 0, 0). We will assume that
P ′ is such that for every p ∈ M̂ ′max, Prob (p) ∈ R+ ∪ {0}
and PROFIT (p) ∈ R.

We can prove that for every stable model M ′ of P ′
with the initial condition J (I) there exists a unique
stable model U (M ′) of P ′′ with the initial condition
J ′′ (I) such that (a,p) |p = (t, x1, . . . , xn+2) ∈ M ′ iff
(a, (t, x1, . . . , xn+2, π

∗)) ∈ U (M ′) for an optimal policy
π∗. Similarly, for every stable model M ′′ of P ′′ with the
initial condition J ′′ (I), {(a,p) |p = (t, x1, . . . , xn+2) and
(a, (t, x1, . . . , xn+2, π

∗) ∈ M ′′} is a stable model of P ′
with the initial condition J (I).

It follows that U (M ′max) is the unique maximal stable
model of P ′′ with the initial condition J ′′ (I). The concept
of a chain for X ′′ can be defined similarly to the concept
of a chain for X ′. Then there exists a bijection between the
chains of U (M ′max) and the single trajectory stable models
of P ′′ with the initial condition J ′′ (I). Hence, an optimal
policy for the Merchant Problem is given by the values of
LA parameter of the elements of ̂U (M ′max).

Thus our solution to the Merchant Problem is as follows.
(1) Construct a H-ASP program P and the initial condition I
such that single trajectory stable models of P with the initial
condition I describe the trajectories of the Merchant Prob-
lem. P will satisfy the assumptions defined in Step 1.
(2) Transform P to P ′. Modify P ′ to obtain P ′′.
(3) Run the Local Algorithm with the input J (I) to compute
M ′max and the flat representation G (M ′max) of the MDP for
the Merchant Problem.
(4) Use the DP algorithm on G (M ′max) to construct an opti-
mal policy π∗.
(5) Construct U (M ′max) as U (M ′max) = {(a, (t, x1, . . . ,
xn+2, π∗)| (a, (t, x1, . . . , xn+2)) ∈M ′max}.

Implementation

Because of the large number of generalized positions gen-
erated by the advancing algorithms, to implement our so-
lution, we introduce a slight variation of H-ASP called H-
ASP#. The semantics of a H-ASP# program W# is given
by the unique maximal stable model of W ′′ where W is the
translation of W# into H-ASP and is a program of type dis-
cussed in step 1. W ′′ is the result of performing the program
transforms of step 2 and step 3 on W .

The main reason for introducing H-ASP# is the following.
Because advancing algorithms can let parameters be free, it
is the case that even for problems of modest size, the number
of generalized positions that advancing algorithms produce
can be enormous. While most of these generalized positions
will not be a part of any stable model, producing them makes
implementations impossible. Thus we need to have a mech-
anism where the values of the parameters which are free are
not produced.

In (Brik and Remmel 2011), the authors have suggested
an indirect approach by which the advancing algorithms can
specify values for only some of the parameters. The ap-
proach requires extending the Herbrand base of P by new
atoms S1, S2, . . . , Sn one for each parameter. Suppose that
there is an advancing algorithm A in a rule B:A,O

a that spec-
ifies parameters with indexes i1, i2, . . . , ik and let other pa-
rameters be free. Then we add to P rules of the form B:A,O

Sij

for each j from 1 to k. This is repeated for every advancing
rule of P . Then if M is a stable model of P and p ∈ M̂ , we
will require that {S1, . . . , Sn} ⊆ WM (p). That is, we will
require that every parameter is set at p by some advancing
algorithm. To accomplish this, we add to P the following
stationary rules for i = 1, . . . , n not Si, not FAIL

FAIL .
We will assume that this mechanism is used in any H-ASP

programs that we will be considering. Then we can imple-
ment the mechanism implicitly. We will refer to the mecha-
nism as the Parameter Restriction Mechanism.

A H-ASP# program consists of parameter declarations,
algorithm declarations, commands, and rules. Parameter
declarations have the form param(p) where p is a parame-
ter to be used by the H-ASP# program. Parameters Act and
Prob do not need to be declared. An algorithm declaration
has the form program p(a1,. . . , ak) {c1; . . . ; cm} where p

is the name of the algorithm, a1, . . . , ak are the names of
the input arguments, c1, . . . , cm are commands. A signature
declaration has the form sig(p, (s1, . . . , sk)) where p is the
algorithm name, s1, . . . , sk are parameter names. A signa-
ture states that the algorithm’s output is a set of tuples of the
form (y1, . . . , yk) where yi is the value for the parameter
si. The signature declarations are required for the advancing
algorithms.

H-ASP# rules have the form a:-B1 : A,O or a:-B1;B2 :
A,O where a is a string representation of an atom, B1,
B2 are of the form c1, . . . , ck, not d1, . . . , not dm where
c1, . . . , ck, d1, . . . , dm are string representations of atoms.A
and O are the algorithm names as declared in the algorithm
declarations. O is a the name of a Boolean algorithm. The
algorithms used in rules can be those declared in H-ASP#
program or those provided by the solver. Since there are no
significant restrictions regarding which algorithms a solver
can provide, hypothetically H-ASP# rules can use arbitrary
algorithms.

H-ASP# implements the Parameter Restriction Mecha-
nism, with the parameter Prob excepted. That is, for H-
ASP# advancing rule a : −B : A,O, the algorithm A is
assumed to set the parameters that are specified in its sig-
nature declaration and let others be free. Since we require
that for every generalized position, every parameter is set by
some advancing algorithm, the free parameters are simply
not generated by the advancing algorithm. The rules corre-
sponding to B:A,O

Sij
and not Si, not FAIL

FAIL then are not included
in H-ASP# programs. It will be an error if at a generalized
position a parameter is set by more than one advancing al-
gorithm.

There is a number of other optimizations introduced in H-
ASP#. However we have to omit their description due to the
considerations of space.

We note that the transform of P to P ′ and of P ′ to P ′′ can
be applied to any H-ASP program W satisfying the criteria
of step 1. We will use this fact to define the stable model
semantics of H-ASP#.

The stable model of the H-ASP# program W# is the
unique maximal stable model of W ′′ with the initial condi-
tion J ′′ (I) where W is the H-ASP program obtained from
W# by explicitly stating all the implicit assumptions of H-
ASP#, and I is the initial condition specified in W#.

Let W# be a H-ASP# program , let I be an initial con-
dition, let κ be the horizon. Let {Li}∞i=−1 be the output of
the Local Algorithm for W ′ and J (I). For p ∈ L̂i, define
Succ (p) = {q|q ∈ Li+1 and p ∈ ExtLi

(prev (q))}. W#
is said to generate a MDP if for i = 0, 1, . . . , 2κ for p ∈ Li
|Succ (p)| ≥ 1 and, if LEVEL (p) = 1, then there exists
q ∈ Succ (p) such that Prob (q) > 0. That is, intuitively
W# generates a MDP if none of the branches of its trajec-
tory tree terminate in less than κ steps.

The computation with W# uses the Modified Local Al-
gorithm where the main difference with the version of step 3
is that the Modified Local Algorithm needs to assemble gen-
eralized positions from the outputs of H-ASP# advancing
algorithms that specify only some of the parameter values.
The Modified Local Algorithm processes fewer generalized

positions at every step than the Local Algorithm since the
generalized position where some parameters are not set are
not generated.

The Parameter Restriction Mechanism allows us to avoid
the explosion in the number of produced generalized posi-
tions. Because of this we can prove the following result.

Theorem. Let W# be a H-ASP# program that generates
a MDP, and let I be an initial condition. Let the length of
W# be the number of bits required to represent all the state-
ments of W# plus the number of bits required to encode all
the algorithms used in W# as Turing machines. Suppose
that for every advancing algorithm A in W# and for every
input p, the length of the output |A (p)| of A with the input
p is O (|W#|m1) for some m1 ≥ 0. Let the horizon be κ
which is O (|W#|m2) for some m2 ≥ 0. Suppose that ev-
ery algorithm used in W# is a polynomial time algorithm.
Then the question of whether there exists a policy with a
non-negative performance is EXP-complete in |W#|.

The proof of the result provides a reduction of the suc-
cinct circuit value problem to the problem of non-negative
policy existence for an appropriate H-ASP# program and is
based on the proof of Theorem 1 (Papadimitriou and Tsit-
siklis 1987).

Conclusion

The main advantages of using H-ASP or H-ASP# programs
over an ad hoc approach for finding an optimal policy is
that such programs produce robust and compact represen-
tations of dynamic domains which can be modified eas-
ily. Implementing even simple changes to an ad hoc model
of a dynamic domain may require creating a model from
scratch, depending on how the model is constructed. How-
ever making changes in a H-ASP# program often requires
only changing rules and algorithms that model the changed
parts.

There is extensive literature on combining logic and prob-
ability. However to our knowledge only the work of Saad
(Saad 2008) addresses the problem of computing optimal
policies of MDPs. In (Saad 2008) Saad introduces a Markov
Action Language AMD which allows to describe MDPs.
There are three main differences between the present work
and (Saad 2008). The statements in AMD can specify exact
probabilities, whereas in H-ASP# the probabilities as speci-
fied in the values of Prob parameter are unnormalized prob-
abilities. The difference can be significant for modeling. In
some cases only the ratio of probabilities is known. For in-
stance we may know that everything else being equal the
storm is twice as likely as its absence. This condition can be
easily modeled using unnormalized probabilities by multi-
plying by 2 the unnormalized probability of a state in case
of storm, and not multiplying the unnormalized probability
in case of storm’s absence. However, specifying the exact
probabilities would require the information about all the suc-
cessor states making probability assignment more difficult.
The second difference is that H-ASP# allows the use of algo-
rithms for modeling. For example, in H-ASP#, it is possible
to realistically model dynamic domains where physical pro-
cesses have to be modeled by the numerical methods. This

cannot be achieved in AMD. The third difference has to do
with computing an optimal policy. (Saad 2008) shows how
an AMD program B can be translated into a normal hybrid
probabilistic logic program BP . The probabilistic answer
sets of BP correspond to the valid trajectories of the under-
lying MDP. Saad suggests that optimal policy is found using
the flat representation of the underlying MDP. The issue of
how to create flat representations of MDPs when the trajec-
tories can be computed is crucial for efficient implementa-
tions and it is not addressed in (Saad 2008). For instance the
MDP for the Merchant Problem has over 4 × 1015 trajecto-
ries. It would be impractical to compute them all. In contrast
the present paper resolves the issue of computing the opti-
mal policy within the syntax and semantics of H-ASP#.

Baral et al. in (Baral, Gelfond, and Rushton 2004) have
introduced P-log - a declarative language based on ASP that
combines logical and probabilistic arguments. Basic prob-
abilistic information in P-log is expressed by probability
atoms pr (a (t) = y|c B) = v where, intuitively, a is caused
by factors determined byB with probability v. This is causal
probability as described in (Pearl 2000). Thus effect a is
independent of all factors except B and the effects of B.
The semantics of a probabilistic program Π is based on the
mapping of Π to a logic programming Π′, and is given by
the sets of beliefs of a rational agent associated with Π to-
gether with their probabilities. There are significant differ-
ences between P-log and H-ASP#. First, H-ASP# allows the
use of arbitrary algorithms, which allows complex physical
models to be created using H-ASP#. This is not the case
with P-log. Second difference is that the probabilities in H-
ASP# are assigned to states, whereas the probabilities in P-
log are assigned to atoms. Assigning probabilities to states
allows a somewhat greater flexibility in modeling probabil-
ities, whereas assigning probabilities to atoms can produce
somewhat more robust descriptions. Finally, H-ASP# pro-
vides a mechanism for constructing flat representations of
MDPs whereas such functionality is not explicitly provided
by P-log. Some of the similarities of two languages are that
both use ASP and that both use unnormalized probabilities.

In this paper we have shown that H-ASP can be used to
compute a finite horizon optimal policy for a dynamic do-
main. We have demonstrated our approach using the Mer-
chant Problem - a typical textbook example for an applica-
tion of MDPs and Dynamic Programming. Our solution is
based on considering a certain subset of H-ASP programs,
so that each program describes valid trajectories of the prob-
lem domain. Such a program W is transformed to another
program W ′′ with the property that the unique maximal sta-
ble model of W ′′ captures all the valid trajectories of the
problem domain and specifies an optimal policy. To imple-
ment our approach, we have described H-ASP# - a modi-
fication of H-ASP. Under mild assumptions, the computa-
tional complexity of a H-ASP# programs is EXP-complete
in the length of the program. We have implemented H-ASP#
prototype solver and have create H-ASP# program P# that
solves the Merchant Problem. P# contains 384 lines of
code including comments. Computing the stable model of
P# takes 4 minutes and 2 seconds on a 2.5 GHz Intel pro-
cessor. In the process of the computation, 1029276 states and

2499727 transitions are generated. This is as expected given
that H-ASP# program provides a compact representation of
the MDP of the problem domain. Both P# and the MDP for
the Merchant Problem can be found at
http://math.ucsd.edu/˜abrik/merchant/

References
Altman, E. 2000. Applications of markov decision pro-
cesses in communication networks: a survey. Rapport de
Recherche - Institut National de Recherche en Informatique
et en Automatique.
Baral, C.; Gelfond, M.; and Rushton, J. N. 2004. Probabilis-
tic reasoning with answer sets. In Lifschitz, V., and Niemelä,
I., eds., LPNMR, volume 2923 of Lecture Notes in Computer
Science, 21–33. Springer.
Bellman, R. 1957. Dynamic programming. Princeton Uni-
versity Press.
Brik, A., and Remmel, J. B. 2011. Hybrid ASP. In
Gallagher, J. P., and Gelfond, M., eds., ICLP (Technical
Communications), volume 11 of LIPIcs, 40–50. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik.
Brik, A. 2012. Extensions of Answer Set Programming.
Ph.D. Dissertation, UC San Diego.
Mundhenk, M.; Goldsmith, J.; Lusena, C.; and Allender, E.
2000. Complexity of finite-horizon markov decision process
problems. J. ACM 47(4):681–720.
Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The com-
plexity of markov decision processes. Mathematics of Op-
erations Research 12(3):441–450.
Pearl, J. 2000. Causality: Models, Reasning and Inference.
Cambridge University Press.
Puterman, M. 1994. Markov decision processes: discrete
stochastic dynamic programming. Wiley series in probabil-
ity and statistics. Wiley-Interscience.
Saad, E., and Pontelli, E. 2006. A new approach to hybrid
probabilistic logic programs. Ann. Math. Artif. Intell. 48(3-
4):187–243.
Saad, E. 2008. A logical framework to reinforcement learn-
ing using hybrid probabilistic logic programs. In Greco, S.,
and Lukasiewicz, T., eds., SUM, volume 5291 of Lecture
Notes in Computer Science, 341–355. Springer.
Strehl, A. L.; Li, L.; and Littman, M. L. 2009. Reinforce-
ment learning in finite mdps: Pac analysis. Journal of Ma-
chine Learning Research 10:2413–2444.
Trench, M. S.; Pederson, S. P.; Lau, E. T.; Ma, L.; Wang, H.;
and Nair, S. K. 2003. Managing credit lines and prices for
bank one credit cards. Interfaces 33:4–21.

