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Abstract their systems provide a set of “postulates” (or closure ¢ond
tions) that the intended consequence relations mustgatisf
Alternatively, these postulates may be seemudss to de-
rive new conditionals from given ones. We take a slightly
different viewpoint, shared among others by Halpern and

This paper provides a general semantic framework for
nonmonotonic reasoning, based on a minimal models
semantics on the top of KLM systems for nonmonotonic
reasoning. This general framework can be instantiated

in order to provide a semantic reconstruction within Friedman (Friedman and Halpern 2001) (see Section 8) and
modal logic of the notion of rational closure, introduced Boutilier (Boutilier 1994) who proposed a modal interpreta
by Lehmann and Magidor. We give two characteriza- tion of KLM systemsP andR: in our understanding these
tions of rational closure: the first one in terms of min- systems are ordinary logical systems in which a conditional
imal models where propositional interpretations asso- A |~ B is a propositional formula belonging to the object
ciated to worlds are fixed along minimization, the sec- language. Whenever we restrict our consideration, as done
ond one where they are allowed to vary. In both cases a by Kraus Lehmann and Magidor, to the entailment of a con-

knowledge base must be expanded with a suitable set of
consistency assumptions, represented by negated con-
ditionals. The correspondence between rational closure
and minimal model semantics suggests the possibility

ditional from a set of conditionals, the two viewpoirms-
incide a conditional is a logical consequence in 0GR
of a set of conditionals if and only if it belongs to all pref-

of defining variants of rational closure by changing ei- erential/rational consequence relations extending ttabfs
ther the underlying modal logic or the comparison rela- conditionals, or (in semantic terms), it is valid in all pzef
tion on models. ential/rational models (as defined by KLM) of that set.

Here is the axiomatization of logiédandR, in our pre-
. sentation KLM postulates/rules are jasioms We usé- p¢
Introduction (resp. =pc) to denote provability (resp. validity) in the
In a seminal work Kraus Lehmann and Magidor (Kraus, propositional calculus.
Lehmann, and Magidor 1990) (henceforth KLM) proposed . — .
an axiomatic approach to nonmonotonic reasoning. Plausi- All 2xioms and rules of propositional logic

ble inferences are represented by nonmonotonic condition- 4 ~ A (REF)
als of the formA |~ B, to be read as “typically or normally ~ if Frc A < Bthen(A |~ C) — (B |~ O), (LLE)
A entails B”: for instancemonday |~ go_work, “normally if tpc A — Bthen(C ~ A) — (C |~ B) (Rw)
on Monday | go to work”. The conditional is nonmonotonic (A~ B) A (A~ C)) = (AAB |~ C) (CM)
since fromA |~ B one cannot derivel A C' ~ B, in our (A~ B)AN(ARC)) = (A BAQ) (AND)
example, one cannot deriveonday A ill ~ go-work. (A C)N(BRC)) = (AVBRKCO) (OR)
KLM proposed a hierarchy of four systems, from the weak- ((A ~ B) A =(A |~ =C)) — (ANC) ~ B) (RM)

est to the strongest: cumulative log@; loop-cumulative
logic CL, preferential logicP and rational logicR. Each
system is characterized by a set of postulates expressing
natural properties of nonmonotonic inference. We present
below an axiomatization of the two stronger loglesand

R (C andCL being too weak to be taken as an axiomatic
base for nonmonotonic reasoning). But before presenting
the axiomatization, let us clarify one point: in the oridina
presentation of KLM systems, (Kraus, Lehmann, and Magi-
dor 1990) a conditionall |~ B is considered as a conse-
guence relation between a pair of formukaand B, so that

The axiom (CM) is called cumulative monotony and it is
characteristic of all KLM logics, axiom (RM) is called ra-
tional monotony and it characterizes the logic of rational
entailmentR. The weaker logic of preferential entailment
P contains all axioms, but (RMP andR seem to capture
the core properties of nonmonotonic reasoning, as shown in
(Friedman and Halpern 2001) they are quite ubiquitous be-
ing characterized by different semantics (all of them being
instances of so-called plausibility structures).

LogicsP andR enjoy a very simple modal semantics, ac-
tually it turns out that they are the flat fragment of some
Copyright(© 2012, Association for the Advancement of Artificial ~ well-known conditional logics. FoP the modal semantics
Intelligence (www.aaai.org). All rights reserved. is defined by considering a set of worltis equipped by



an accessibility (or preference) relatien assumed to be
transitive, irreflexive, and satisfying the so-called Stheo
ness Condition. For the strong@r< is further assumed to
be modular. Intuitively the meaning af < y is thatz is
more typical/more normal/less exceptional thanNe say
that A |~ B is true in a model ifB holds in all most normal
worlds whereA is true, i.e. in allk<-minimal worlds satisfy-
ing A.

KLM systems formalize desired properties of nonmono-
tonic inference. However, they are too weak to perform
useful nonmonotonic inferences. For instance KLM sys-
tems cannot handle irrelevant information in conditionals
from monday |~ go_work, there is no way of concluding
monday A shines |~ go_work in any one of KLM sys-
tems. Partially motivated by the weakness of the axiomatic
approach, Lehmann and Magidor have proposed a true non-
monotonic mechanism on the top of lodkccalledrational
closure Rational clsure on the one hand preserves the prop-
erties ofR, on the other hand allows one to perform some
truthful nonmonotonic inferences, like the one just men-
tioned (nonday A shines ~ go_work).r The authors has
given a syntactic procedure to calculate the set of cornditio
als entailed by the rational closure as well as a quite coxmple
semantic construction. It is worth noticing that a strormgly

we may think of studying variants of rational closure based
on other modal logics and/or on other comparison relations
on models. Secondly, being a purely semantic approach (the
preference relation is independent from the language), our
semantics can cope with a larger language than the one con-
sidered in KLM framework. To this regard, already in this
paper, we consider a richer language allowing boolean com-
binations of conditionafs In the future, we may think of
applying our semantics to Nonmonotonic Description Log-
ics, where an extension of rational closure has been regcentl
considered (Casini and Straccia 2010).

In any case, the quest of a modal characterization of ra-
tional closure turns out to be harder than expected. Our se-
mantic account is based on the minimization of kegght
of worlds in models, where the height of a world is defined
in terms of length of the<-chains starting from the world.
Intuitively, the lower the height of a world, the more normal
(or less exceptional) is the world and our minimization cor-
responds intuitively to the idea of minimizing less-normel
less-plausible worlds (or maximizing most plausible ones)

We begin by considering the nonmonotonic inference re-
lation determined by restricting considerations to models
which minimize theheight of worlds In this first charac-

lated construction has been proposed by Pearl (Pearl 1990)terization we keep fixed the propositional interpretatien a

with his notion of 1-entailment, motivated by a probabitist
interpretation of conditionals.

In this work we tackle the problem of giving a purely
semantic characterization of rational closure, stemming d
rectly from the modal semantics of logi: Notice that we
restrict our attention to finite knowledge bases. More pre-
cisely, we try to answer to the following question: given the
fact that logicR is characterized by a specific class of Kripke
models, how can we characterize the Kripke models of the
rational closure of a set of positive conditionals?

The characterization we propose may be seen as an in-
stance of a general recipe for defining nonmonotonic infer-
ence: (i) fix an underlying modal semantics for conditionals
(such as the one @f or R), (ii) obtain nonmonotonic infer-
ence by restricting semantic consequence to a class of “min-
imal” models according to some preference relation on mod-
els. The preference relation in itself is defined indepetigen
from thelanguageand from theset of conditionalgknowl-

edge base) whose nonmonotonic consequences we want to

determine. In this respect our approach is similar in sfurit
“minimal models” approaches to nonmonotonic reasoning,
such as circumscription.

The general recipe for defining nonmonotonic inference
we have sketched may have a wider interest than that of cap-
turing Lehmnan and Magidor’s rational closure. First of all

!Actually the main motivation of Lehmann and Magidor lead-
ing to the definition of rational closure waschnical it turns out
that the intersection of all rational consequence relatgatisfying
a set of conditionals coincides with the legseferential conse-
quence relation satisfying that set, so that (i) the axiata/(RM)
does not add anything and (ii) such relation in itdaifs to satisfy
(RM). Their notion of rational closure provides a solutientoth
problems and can be seen as the “minimal” (in some sensehahti
consequence completing a set of conditionals.

sociated to worlds. The consequence relation makes sense
in its own, but as we show it istrictly weakerthan rational
closure. We can obtain nonetheless a first characterization
of rational closure if we further restrict attention to nmral
canonical modelghat is to say, to models that contain all
propositional interpretations compatible with the knaige
baseK (i.e. all propositional interpretations except those
that satisfy some formulas inconsistent with the knowledge
baseK). Restricting attention to canonical models amounts
to expandingK by all formulas—(A |~ 1) (read as A is
possible”, as it encodes SM) for all formulasA such that

K £r A~ L. We thus obtain a very simple and neat char-
acterization of rational closure, but at the price ofexpo-
nentialincrease of thex.

We then propose a second characterization that does not
entail this exponential blow up. In analogy with circumgeri
tion, we consider a stronger form of minimization where we
minimize the height of worlds, buwe allow to vary the
propositional interpretation associated to worlds. Aghi
resulting minimal consequence relation makes sense in its
own, but as we show it still does not correspond to rational
closure. In order to capture rational closure, we must basi-
cally add the assumption that there are “enough” worlds to
satisfy all conditionals consistent with the knowledgeébas
K. This amounts to adding small set of consistency as-
sumptions (represented by negative conditionals). In this
way we capture exactly rational closure, without an expo-
nential increase of the knowledge base.

2An extension of rational closure to knowledge bases compris
ing both positive and negative conditionals has been pexpas
(Booth and Paris 1998).



General Semantics

In KLM framework the language of both logid3 and R
consists only of conditionalsl |~ B. We consider here a
richer language allowing boolean combinations of condi-
tionals (and propositional formulas). Our languades de-
fined from a set of propositional variablesl’M/. We use

A, B,C, ... to denote propositional formulas (not contain-
ing ), andF, G, . . . to denote arbitrary formulas. More pre-
cisely, the formulas ofZ are defined as follows: ifd is a
propositional formulad € £; if A andB are propositional
formulas,A ~ B € L; if F'is a boolean combination of
formulas ofZ, F' € L. A knowledge basd( is any set of
formulas: as already mentioned in this work we restrict our
attention to finite knowledge bases.

The semantics d? andR is defined respectively in terms
of preferential and rationdimodels, that are possible world
structures equipped with a preference relatignntuitively
x < y means that the world/individual is more normal
more typicalthan the world/individual;. The intuitive idea
is that A ~ B holds in a model if the most typical/normal
worlds/individuals satisfyingd satisfy alsoB. Preferential
models presented in (Kraus, Lehmann, and Magidor 1990)
characterize the systeR) whereas the more restricted class
of rational models characterizes the systif.ehmann and
Magidor 1992).

Definition 1 A preferentiaimodel is a triple
M=W,<,V)
where:

e W is a non-empty set of items

e < is an irreflexive, transitive relation ol satisfying the
Smoothness relation defined below;

e VisafunctionV : W —— 24TM which assigns to every
world w the set of atoms holding in that world.

If £ is a boolean combination of formulas, its truth condi-
tions (M, w [= F) are defined as for propositional logic.
Let A be a propositional formula; we defing/in2!(A)
{fw e W | Myw E A andVu', w' < w implies
M,w" = A}. We also defineM,w = A ~ B if for all

W', if w € Min'(A) thenM,w’ = B. Last we define the
Smoothness Conditioif M, w | A, thenw € Min'(A)

or there isw’ € Min'(A) such thatw’ < w. Validity and
satisfiability of a formula are defined as usual. Given a set of
formulasK of £ and a modeM = (W, <, V), we say that

M is a model ofK’, written M = K, if, for everyF € K,

and everyw € W, we have thaiM,w = F. K preferen-
tially entails a formular’, written K |=p F'if F is valid in

all preferential models ofs.

Since we limit our attention to finite knowledge bases, we
can restrict our attention to finite models, as the logic en-
joys the finite model property (observe that in this case the
smoothness condition is ensured trivially by the irrefléyiv

of the preference relation). From Definition 1, we have that

3We use the expression “rational model” rather than “ranked
model” which is also used in the literature in order to avony a
confusion with the notion of rank used in rational closure.

the truth condition ofA |~ B is “global” in a modelM =
(W, <, V): given a worldw, we have thatM,w = A |~ B
if, for all w’, if w’' € Min'(A) thenM,w' = B. Itimme-
diately follows thatA |~ B holds inw if only if A ~ B is
valid in a model, i.e. it holds thatt,w’ = A |~ B for all
w’ in W; for this reason we will often write\l = A |~ B.
Moreover, when the reference to the modelis unambigu-
ous, we will simply writeMin. (A) instead ofMin2(A).

Definition 2 A rational model is a preferential model in
which < is further assumed to bmodular for all x,y, 2z €
W, if z < ythen eitherr < z or z < y. K rationally entails
a formulaF, written K =g F if F is valid in all rational
models ofK'.

When the logic is clear from the context we shall wiife=
FinsteadofK Ep ForK =x F.
From now on, we restrict our attentionr@tional models

Definition 3 The height , of a worldw in M is the length
of any chainwy < ... < w fromw to awy such that for no
w' it holds thatw’ < wq 4.

Notice that in a rational modéW, V, <), k. is uniquely
determined. Moreover, finite Rational models can be equiv-
alently defined by postulating the existence of a function
k: W — N, and then letting: < y iff k(x) < k(y).
Definition 4 The heightka(F') of a formula F is i
min{km(w) : M,w |= F}. Ifthereis how : M,w | F,
F has no height.

It is immediate to verify that:

Proposition 1 For any M = (W, V, <) and anyw € W,
we haveM = A v Biff kp(A A B) < kam(AN-B).

As already mentioned, although the operatoj is non-
monotonig the notion of logical entailment just defined is
itself monotonic if K Ep F and K C K’ then also
K' =p F (the same holds fdeg). In order to define a non-
monotonic entailment we introduce our second ingredient of
minimal models. The underlying idea is to restrict attemtio
to models that minimiz¢he height of worldsInformally,
given two models of(, one in which a giverr has height
2 (because for instance< y < x) , and another in which
it has height 1 (because only < z), we would prefer the
latter, as in this model is “more normal” than in the former.

In analogy with circumscription, there are mainly two
ways of comparing models with the same domain: 1) by
keeping the valuation function fixed (only comparing
and M’ if V andV’ in the two models respectively coin-
cide); 2) by also comparingt and M’ in caseV # V'. We
consider the two possible semantics resulting from these al
ternatives. The first semantics idiged interpretations min-
imal semanticsfor short FIMS.

“In the literature the functiok ., is usually calledanking but
we call itheightin order to avoid any confusion with the different
notion ofrankingas defined by Lehmann and Magidor and used in
this paper as well. Our notion of ranking is similar to the onigi-
nally introduced by Spohn (Spohn 1988) and to the one intredu
by Pearl (Pearl 1990). The definition of height can be adapied
preferential models by considering thengestchain rather than
any chain in the definition.



Definition 5 (FIMS) GivenM = (W, <, V) and M’ =
(W', <", V') we say thatM is preferred taM’ with respect
to the fixed interpretations minimal semantids! (< g
MYIEW =W,V =V’ and forallz, ka(x) < k()
whereas there exists' : ka(2') < ka (/). We say that
M is minimal with respect te< pypss in case there is no
M’ such thatM’ <prys M. We say thatX' minimally
entails a formulaF with respect toFIMS, and we write
K Erms F, if Fis valid in all models of K which are
minimal with respect te< zy;s.

The following theorem shows that we can characterize min-
imal models with fixed interpretations in terms of condition
als that are falsified by a world. Intuitively minimal models
are those where the worlds of heighsatisfy all condition-
als, and the height{ 0) of a world z is determined by the
heightk((C') of the antecedents of conditionaldalsified

by z. Given a modeM = (W, <, V) andxz € W, we de-
fineS, ={C~De K| M,z =CA-D}.

Proposition 2 Let K be a knowledge base and a model,
then M = K if and only if M satisfies the following, for
everyr € W:

1. if kpm(z) = 0thenS, =0
2. if S, # 0, thenkq(z) > kamq(C) foreveryC ~ D € S,.

Proof. (Only if part) We prove condition 2. Le€ ~ D €
S, suppose, we hawet, = = C A—D, sinceM = C ~ D
we obtain that: ¢ Min(C), which entails thak ,((z) >
kam(C). Conditionl is a consequence of conditi@nsince
by 2 if S, # 0 then trivially ko (z) > 0.

(If part) Let A ~ B € K, suppose that\ satisfies the
two conditions above, we show thatt = A  B. Let
x € Minc(A), if kpm(x) = 0, thenS, = (), thus we get
that M,z = A — B, whenceM,z = B. Suppose now
thatka(x) > 0, if M,z = AA-B, thend ~ B € S,,
but then by hypothesis we gkl (z) > kar(A) against the
factthatr € Min.(A). [ |

In the proof of Proposition 2, we have observed that condi-
tion 1 is a consequence of conditi@) we have explicitly
mentioned it for clarity (see the subsequent propositiah an
theorem).

Proposition 3 Let K be a knowledge base and &t be a
minimalmodel ofK" with respect taF'IMS; then M satisfies
for everyx € W:

1. if S, = 0 thenka(z) = 0.
2. if Sy # 0, thenka(z) =14+ maz{km(C) | C ~ D € S, }.

Proof. Let M = (W, <, V). Suppose that, = 0, but
kam(z) > 0, define a modeM’ = (W, <', V) by letting
kame () = 0 andka (y) = km(y) fory # x. We show
that M’ = K, obtaining a contradiction with the hypoth-
esis thatM is minimal. LetA ~ B € K, suppose that
w € Min'(A). If w = z, sinceS, = 0, we have that
M’z | B (the evaluation function afM’ is the same as
the one inM). If w # 2 andw € Min' (A) we must have
thatw € Min'(A), otherwise there would be a world
with M,y = A and withk e (v) < km(y) < kam(w) =

kv (w), against the fact that € Min!'(A); we then con-
clude by the fact tham = A ~ B so thatM,w = B,
whenceM’, w |= B.

Suppose now thatS, # 0, but kap(z) # 1 +
max{km(C) | C ~ D € S,}. By Proposition 2, it must
beky(x) > 14+ max{km(C) | C ~ D € S.}. Inthis
case, we define a moddh’ W, <, V), by stipulat-
ing kaq(x) 1+ max{km(C) | C ~ D € S} and
kame(y) = kam(y) for y # 2. We show thatm” = K,
obtaining a contradiction with the hypothesis thet is
minimal. LetA B € K and letw € Min''(A). If
w # x we get as before that € Min2!(A) and we con-
clude by the fact tham = A ~ B. Let noww = z,
if A~ B ¢ S, we are done ag\’, A — B.If
A~ B € S, then it must be: ¢ Min'(A), thus there
isyst M,y = A, with kp(y) = km(A) andka(y) <
kam(z). Sincekne (y) = kam(y) (@ndkag (A) = ka(A))
we get thatk v (x) > kaq (A), against the hypothesis that
x e Min'(A). |

Theorem 1 Let K be a knowledge base and &t be any
model, thenM is a FIMS minimal model ofi if and only
if M satisfies for every € W:

1. Sy = 0iff kaa(z) = 0.

2. if Sy # 0, thenka(z) = 1+ max{km(C) | C ~ D € Sy }.
Proof. The only if direction immediately follows from
Proposition 3. For thé direction, letM = (W, <, V) be a
model with associatekly, if M satisfies the two conditions
by Proposition 2 it follows that! = K. Let M’ = K with
M = (W, <’, V), and associatefl,, then M’ satisfies
the conditions of Proposition 2. By induction éry (x) we
show thatkM(Z') < kM/(Z') If kM/(x) = 0thenS, = 0
so that by Lemma F(z) 0. Let kpp(x) > 0:f
Sy = 0 thenkap(z) = 0 < K'(x). If S, # 0, then:
() kpv(x) > kae(C) for everyC ~ D € S, and (i)
ki (z) 1+ max{kpm(C) | C ~ D € S;}. By (i)
and induction hypothesis it follows, (C) < ke (C),
thus: k(z) = 1 4+ max{kpm(C) | C ~ D € S,} <
1 4+ max{kp(C) | C ~ D € Sy} < kam(z). We
have shown that for alt € W, kx(z) < kv (z), hence
M’ £pivs M, and M is minimal. [ ]

In our second semantics, we let the interpretations varg. Th
semantics is called variable interpretations minimal sema
tics, for shortVIMS.

Definition 6 (VIMS) Given M = (W, <, V) and M’
(W', <", V') we say thatM is preferred toM’ with re-
spect to the variable interpretations minimal semanticg] a
write M <yys M, if W = W', and for allz, kg (z) <
kav () whereas there exists’ : kaq(2') < kae(2'). We
say thatM is minimal with respect ta< 5 in case there
isnoM’ such thatM’ <y s M. We say thak” minimally
entails (with respecttd’IMS) F,and writeK =g F, if

F is valid in all models of which are minimal with respect
to <vyrms-

It is easy to realize that the two semantid§/MS and
VIMS, define different sets of minimal models. This is il-
lustrated by the following example.



Example 1 Let
K = {penguin r bird, penguin ~ —fly, bird ~ fly}.
We derive that
K Epius penguin A black i~ = fly.

Indeed inFIMS there can be a modé¥t in which W
{z,y,z}, V(x) = {penguin,bird, fly,black}, V(y)
{penguin,bird}, V(z) = {bird, fly}, andz < y < =x.

M is a model ofK, and it is minimal with respect t6'7M.S
(indeed once fixedl" (x), V(y), V(z) as above, it is not pos-
sible to lower the height of nor of y nor of = unless we
falsify K). Furthermore, inM z is a typical black penguin
(since there is no other black penguin preferred to it) that
flies. Therefore K V- pivs penguin A black ~ — fly.

On the other handM is not minimal with respect to
VIMS. Indeed, consider the modétt’ = (W, <’, V') ob-
tained fromM by lettingV’(x) = {penguin, bird, black},
V'(y) =V (y),V'(z) = V(z) and by defining<’ as:z <’ y
andz <’ z. ClearlyM’ = K, and M’ <yrms M, since
kar (z) < kam(x), while ke = kg for all other worlds.

The example above shows th&BIMS and VIMS lead to
different sets of minimal models for a givén. Notice how-
ever that the modeM’ we have used to illustrate this fact is
not a minimal model fos in VIMS. A minimal model in
VIMS for K that can be defined on the domawis given

by V(z) = V(y) = V(2) = {bird, fly}, and the empty
relation<. This is quite a degenerate modelgfin which
there are no penguins. This illustrates the strengtiiafs:

in case of knowledge bases that only contain positive condi-
tionals, logical entailment if/IMS collapses into classical
logic entailment. This feature corresponds to a similar fea
ture of the non-monotonic logiP,,.;,, in (Giordano et al.
2010), and can be proven in the same way.

Proposition 4 Let K be a set of positive conditionals. Let
us replace all formulas of the for| ~ B in K with A —

B, and call K’ the resulting set of formulas. We have that
K ):VIMS A~ DB if and Only if K’ ':pc A — B.

As for P,,;, this strong feature o/ IMS can be avoided
when considering knowledge bases that include existence
assertions: these are negated conditionals, in the exdample
instance we could add(penguin |~L) to force us to con-
sider non trivial models in which penguins exist. In the next
section, we will useVIMS in this kind of way, by always

knowledge basé is just a finite set of positive conditional
assertions. We recall the notion rational closure, givisg i
syntactical definition in terms afink of a formula.

Definition 7 Let K be a knowledge base (i.e. a finite set of
positive conditional assertions) andl a propositional for-
mula. A is said to beexceptionafor K iff K =g T |~ —AS.

A conditional formulaA |~ B is exceptional forK if its
antecedentd is exceptional forK. The set of conditional
formulas which are exceptional fak will be denoted as
E(K). Itis possible to define a non-decreasing sequence of
subsets ofK’ Cy D C4,... by letting Cy = K and, for

i > 0,C; = E(C;_1). Observe that, being finite, there is

an > 0 such that for allm > n,C,, = C, orC,, = 0.

Definition 8 A propositional formulad hasrank: for K iff
i is the least natural number for which is not exceptional
for C;. If Ais exceptional for alC; then A has no rank.

The notion of rank of a formula allows to define the rational
closure of a knowledge bageé.

Definition 9 Let K be a conditional knowledge base. The
rational closureK of K is the set of allA |~ B such that
either (1) the rank ofd is strictly less than the rank oA A

— B (this includes the casd has a rank and4 A =B has
none), or (2)A has no rank.

The rational closure of a knowledge baseseemingly con-
tains all conditional assertions that, in the analysis ai-no
monotonic reasoning provided in (Lehmann and Magidor
1992), one rationally wants to derive from. For a full dis-
cussion, see (Lehmann and Magidor 1992).

Can we capture rational closure within our semantics?
A first conjecture might be that thBIMS of Definition 5
could capture rational closure. However, we are soon forced
to recognize that this is not the case. For instance, Exam-
ple 1 above illustrates thdpenguin |~ bird, penguin |~
-fly,bird ~ fly} FErms penguin A black ~ —fly.

On the contrary, it can be easily verified thatnguin A
black |~ —fly is in the rational closure ofpenguin |~
bird, penguin ~ —fly,bird ~ fly}. Therefore FIMS as

it is does not allow us to define a semantics corresponding
to rational closure. Things change if we consid&n/s ap-
plied to models that contaiall possible valuations “com-
patible” with a given knowledge bad€. We call these mod-
elscanonical models

considering knowledge bases that include existence asser-Example 2 Consider Example 1 above. If we restrict our

tions (expressed by negated conditionals).

A Semantical Reconstruction
of Rational Closure

We provide a semantic characterization of the well known
rational closure, described in (Lehmann and Magidor 1992)
within the two semantics described in the previous section.
More precisely, we can give two semantic characterizations
of rational closure, the first based dwMS, the second
based onVVIMS. Since in rational closure no boolean com-
binations of conditionals are allowed, in the followingeth

attention to models that also contaimiawith V(w) =
{penguin, bird, black} which is a black penguin that does
not fly and can therefore be assumed to be a typical penguin,
we are able to conclude that typically black penguins do not
fly, asin rational closure. Indeed, in all minimal modelgof
that also contaim with V(w) = {penguin, bird, black}, it
holds thatenguin A black ~ — fly.

®In (Lehmann and Magidor 1992} p is used instead dEg.
However when K contains only positive conditionals the tvas n
tions coincide (see footnote 1) and we prefer to jase here since
we consider rational models.



We are led to the conjecture th&f)/S restricted to canoni-
cal models could be the right semantics for rational clasure
Fix a propositional languagép,,, comprising a finite set
of propositional variablegl 7'M, a propositional interpreta-
tionv : ATM — {true, false} is compatiblewith K, if
there is no formul& € Lp,,, such thaw(A) = true and

K ':R A ~ L.

Definition 10 A modelM = (W, <, V) satisfying a knowl-
edge basél is said to becanonicalf it contains (at least) a
world associated to each propositional interpretation eom
patible with K, that is to say: ifv is compatible withi, then
there exists a worldv in W, such that for all propositional
formulasB M, w = B iff v(B) = true.

It can be easily shown that:

Theorem 2 For a given domain/V, there exists a unique
canonical modelM for K over )V such that, for all other
canonical modelg\1’ overW, we haveM < gy M.

In the following, we show that the canonical models that
are minimal with respect t6'/MS are an adequate semantic
counterpart of rational closure.

Proposition 6 Let M = (W, <, V) be a canonical model
of K, minimal with respect to<pys. For all w € W it
holds that: if M,w = A — Bforall A ~ Bin C;, then

Proof. The proof is by induction on. If ¢+ = 0, it immedi-
ately follows by Lemma 3 (1).

Fori > 0, let us considew € W such that for allA ~ B
inC;, M,w = A — Bbutky(w) > i. Let M’ be a model
obtained fromM by changing< in order to have: v (w) =
i. M’ is preferred toM and it is a model of{, as it satisfies
all the conditionals inK. Let A ~ B € K. Itis clear that,
for all the worldsw’ € W with v’ # w, w' satisfiesA
B in M’, as it satisfies it inM. To show thatw satisfies
A B, letw € Min®'(A). If A ~ B in C;, we know
from the hypothesis that satisfiesA — B, and henceyw
satisfiesB. If A ~ Bin K — C;, there is @ < i such that
ArBeC;,Cil/p T mAwhileCj_1 Fr T |~ 2A.
FormC; /r T ~ —A, by Fact 1, we have th&td’ —
B': A~ B'in C;_1} [~ —A. Hence, there is a world
w’' € W such thatw’ satisfies all the implicationsl’ —
B’ st A ~ B'in C;_; andw’ satisfiesA. By inductive
hypothesiska(w’) < i, and thereforéia(A) < 4. By

To prove the correspondence between the rational closure construction ofM’, kxq (w') < 4, and thereforé g (A) <

of a knowledge bas&” and the fixed interpretation minimal
model semantics ok, we need to prove some propositions.
The next one is a restatement for rational models of Lemma
5.18 in (Lehmann and Magidor 1992), and it can be proved
in a similar way. Note that, as a difference, point 2 in Lemma
5.18 is an “if and only if” rather than an “if” statement.

Proposition5 Let M = (W, <, V) be a rational model
of K. Let My = M and, for all4, let M; = W;, <;

, Vi) be the rational model obtained frooM by remov-
ing all the worldsw with ki (w) < 4, i.e, W; = {w €

W : km(w) > i}. For any propositional formula4, if

rank(A) > i, then: (1)km(A) >4, 2)IfC; Er A~ B

thenM; = A ~ B.

Proof. The proof is by induction ori. Fori = 0, item (1)
holds trivially. For item (2), observe thatt;, = M and
Co = K. From the hypothesis\1 is a rational model of<,
and hence a preferential modelét Thus, if K -z A |~ B,
then M satisfiesA |~ B.

Fori > 0, let us prove item (1). Asank(A) > i, then,
forall r < i, C, Fr T | —A. By inductive hypothesis
(item 2), M, satisfiesT |~ —=B. Hence, there is nd world
w With kaq(w) = r < i. Thereforeka(A) > i.

To prove item (2), observe that, asnk(A) > i, then, by
Lemma 2.21 in (Lehmann and Magidor 1992), +r A |~
BifandonlyifC; Fr A |~ B. Suppos€’; Fr A ~ B, then
Co Fr A ~ B and hence, by inductive hypothesis (case (2),
i=0) M satisfiesA ~ B. As we have shown in the proof of
item (1) that inM there is noA world w with &k (w) < 4,
then it must be that; satisfiesA |~ B. [ |

We need the next fact in order to prove the following propo-
sition.

Factl If {Al — Bl,...,An — Bn} Epc —C then
{A1~Bl,...,An~ Bn}Fr T |~ =C.

i which contradicts the hypothesis that € Min/<‘/l'(A).
Hence, M’ satisfies all the conditionals iR". The fact that
kEam(w) > i andkay (w) = ¢ contradicts the minimality of
M. hence, it must bé(w) < ¢, and the proof is overll

Proposition 7 Let M be a canonical model ok minimal
with respect to< prazs. Thenyrank(A) = i iff kg (A) = 4.

Proof. (Only if part)Let us assume thaaunk(A) = i. We
know thatC; /g T |~ —A. Hence, by Fact {A — B :
A~ B € C;} pc ~AThen, there is aworld) € W such
that, forallA ~ B € C;, w satisfiesA — B andw satis-
fies A. By Proposition 6k (w) < 4. Thus,ka(4) < i
As by Proposition 5 we know thaty((A) > i, we can con-
clude thatk ¢ (A) = . (If part) This direction is obvious: if
kam(A) = i thenrank(A) = i. Indeed ifrank(A) = j # i,
km(A) = j # i, against the hypothesis. |

We can now prove the following theorem:

Theorem 3 Let K be a knowledge base and be a canon-
ical model ofK” minimal with respect tec z1)ss . For all con-
ditionals A ~ B we have:

ME AR BifandonlyifA ~ B € K,
whereK is the rational closure ofs.

Proof. (Only if part)Let us assume thatt = (W, <, V)
satisfiesA |~ B. Then, for each worldv € Min.(A),
w satisfiesB. If Min.(A) = {, then there is nav s.t.
M,w = A, henceA has no height inM and by Propo-
sition 7 A has no rank. In this case by Definition® |
B € K. Letus assume thétv(A) = i. Askpm(A A B) <
kam(A A —B), thenky (A A —B) > i. By Proposition 7,
rank(A) =i andrank(A A—B) > i. Hence, by Definition
9,4 |~ B € K, the rational closure ok .

(If part) A |~ B belong toK, the rational closure of,
then, by Definition 9, either (@ank(A) < rank(AAN-DB),



or (b) A has no rank. In the first case (a), letnk(A A
-B) = ¢, andrank(A) < i. Suppose for a contradiction
that M does not satisfld ~ B, i.e., thatky((A A —-B) <
km(AAB). Hencefa(AN—-B) =iandkap (AAB) > i,
which contradicts the fact thatnk(A) < i.

In case (b), Suppose for a contradiction tAdtdoes not
satisfyA ~ B, i.e., thatip (A A —B) < kam(A A B). Let
kEam(A A =B) =i. Then, it must be thdt(A) = 4, which
contradicts the fact that has no rank. |

In Theorem 3 we have shown a correspondence betweenWe define a modelM

rational closure and minimal models with fixed interpreta-
tions, on the proviso thatve restrict our attention to min-
imal canonicalmodels. We can obtain the same effect by
extendingK into K’ by adding negated conditionalk?” =
KU{~(C r~L1) | K g (C ~L)}. Indeed it can be easily
verified that all models ok’ are canonical, hence restricting
FIMS to canonical models on the one hand and considering
the extension ofX as K’ on the other hand amounts to the

same effect. We can therefore restate Theorem 3 above aswith ka(y1) =

follows:

Theorem 4 Let K be a knowledge base and I&f = K U
{=(C ~1) | K g (C ~L1)}. For all conditionalsA ~ B
we have:

K' =rpms A~ BifandonlyifA ~ B € K
whereK is the rational closure of<.

Notice that the size oK’ is exponential in that off.
Can we lift the restriction to canonical models by adopt-

ing a semantics based on variable valuations? In the gen-

eral case, the answer is negative. We have already mentione
that if we consider knowledge bases consisting only pa@sitiv
conditionals logical entailment ii/MS collapses into clas-
sical logic entailment. To avoid this collapse, we can regjui
that, when we are checking for entailment of a conditional
A ~ Bfromak, at least amd A B world and andA A =B
world are present irk{. This can be obtained by adding to
K the conditionals-(A A B ~ L) and—=(A A =B |~ L).
Also in this case, however, we cannot give a positive answer
to the above question. In fact, it is possible to build a model
of K, minimal with respect td/IMS, which falsifies a con-
ditional A |~ B which on the contrary is satisfied in all the
canonical minimal models df underFIMS. This is shown

by the following example.

Example 3 Let K be the following:

{TrS

S~ D,
Li~P
R|~Ql
E~F,

H ~ G,

DR —-PA-QAN—-FA-G,
S~ (L AR),
S~ (L AE),
S~=(LAH),
S a(RAE),

Sk -(RAH),
S ﬁ(E/\H)}.

Let

A=DANSANRANLANENH,

B=-QAN-PAN-FA-G
and let

K =KU{~(AAB R~ 1), ~(AN-B |~ 1)}.

(W, <, V) of K’, which
is minimal with respect toVIMS, as follows: W
{z,w,y1.y2, y3}, where:

V() ={S,-D,-R,-~L,-E,-H,P,Q, F,G}
yg)—{ﬁSﬁDRLEHPQFG}

V(

V(ys) ={=S,-D,R,L,E,H,P,Q,F,G}

V(z)={D,S,R,L,E,H,-Q,—-P,—~F, -G}
( ):{Da R7L7E1H1QaﬁP;“F,ﬁG}

0, kam(y2) = 1, km(ys) = 1, kp(z) =2
andk(w) = 2. Observe thatt is anAA B minimal world;
w is anA A =B minimal world;y; is anS minimal world;
y2 IS @ minimal world forR, L, ¥ and H; andys is a D
minimal world.

M is a model of K which is minimal with respect to
VIMS. Also, A |~ B is falsified in M, while, on the con-
trary, A |~ B holds in all the canonical models minimal
with respect taF'IMS. Indeed, in all such models the height
of k(A A B) = 2 while k(A A -B) = 3. However, it
is not possible to construct a modét’ with 5 worlds so
that M’ <y;ms M. In particular, assigning ta: or w
height 1 would require the introduction of minimal worlds

dror R, L, E and H with height 0. But worldy, cannot be

given height 0, as it does not satisfy the conditionals with
antecedent. In canonical models there are distinct mini-
mal R worlds, L worlds, E worlds andH worlds height 0
(which are also minima$' worlds).

As suggested by this example, in order to characterize-ratio
nal closure in terms of/IMS, we should restrict our con-
sideration to models which contain “enough” worlds. In the
following, as in Theorem 4, we enricli with negated con-
ditionals but, as a difference withi’ of Theorem 4, we only
need to add td a polynomial number of negated condition-
als (instead of an exponential number). The purpose of the
addition is that of restricting our attention to models mini
mal with respect te< 15 that have a domain large enough
to have, in principle, a distinct most-preferred world fach
antecedent of conditional i. For this reason, we add for
each anteceder® of K a new corresponding atomc.

If the problem to be addressed is that of knowing whether
A |~ Bis logically entailed byK', we also introduc& s
and¢ 4a-p, and we defind(’ as follows.

Definition 11 We define:

o Ak ap = {C | either for someD, C ~ D € K or
C=AANBorC=AA-B,andK t/r C ~1};

o K'=KU{~(CNA¢c rl)|CeAga~p}U{(dc; A
bc; L) | Ci,Cj € Ak apB}-



We here establish a correspondence betwEéWS and
VIMS. By virtue of Theorem 3, this allows us to establish
a correspondence between rational closure &S, as
stated by Theorem 6.

Theorem 5 Let M be a canonical model of<, minimal
with respect toFIMS, and let K’ be the extension ok
defined as in Definition 11. We have that:

M':A\NBlﬁK/ ):V]M5A|~B.

Proof. We show the contrapositive of the two directions.
First suppose&’ Evmys A v B. Let M = (W' </ V')
be a model of K’ minimal with respect to< s that
does not satisfyd ~ B, i.e., such thak ¢ (A A -B) <
ka (A A B). We want to show that alsé (= A ~ B, i.e.,
km(AN=B) < kam(AAB). For a contradiction, suppose in
the canonicaM, kap(AAN-B) = j > km(AAB) =i. By
Propositions 7 and %a (AA—-B) > jandkay (AAB) >

i, and since by hypothesis,¢ (A A —=B) < kap (AN B), it
follows thatk ¢ (A A B) > j > i. We show that this goes
against the minimality ofM’. ConsiderM* = (W*, <*

, V*) built from M by cutting out a portion containing:

in Min (A A B), 2’ € Min2'(A A —B) and an element
y € Min!(C) for each antecedext of conditional in K
st. K /r A ~L. For these worlds, we defing* = V
andk - = kaq. If the same elementis associated to two
different formulas it must be duplicated ingoandy’ (and
V*(y') = V*(y) andka=(y') = kame(y)). Furthermore,
for each worldy associated to a formul@, V*(y) is ex-
tended in order to includeéc. <* is straightly defined from

k- inthe obvious way. The construction is almost finished.

Notice that up to this point we have introducedi* no
more elements than those)t’. To conclude we have to re-
name the elements o¥* with the names as the elements of
W' that satisfy the sam@-, and we have to add td/* the
elements obV’ that are eventually missing (we let for these
cased/* = V' andk+ = kay).

It can be shown that1* is a model ofK’, andM* <v1us
M, against the minimality of\1’. First of all, we show that
M* is a model ofK’. Indeed, by construction we have in-
troduced a new element @# for eachC antecedent of con-
ditional in K or equal toA A B or A A =B, and this element
is still in Mint" (C) (otherwise k- (C) < kpm-(y) =
km(y) = kam(C), against Propositions 7 and 5). Hence,
M* satisfies all negated conditionals /Y. Consider now
the positive conditional€’ ~ D in K’. Consider any, that
inserted inM* from M. Lety € Min'" (C). Then also

y € Min2'(C) (otherwise anothey’ € Min?'(C) would
have been taken in the construction with*, ¢’ = C and
Eam-(y') < kam-(y), againsty € Mint (C)). Since M

is a model ofK, andC ~ D € K, M,y E D hence
alsoM*,y | D. Consider nowy introduced inM* from
M f y € Min*" (C), then we reason as follows to show

thaty € Min!'(C). First of all, we know thak - (y) =
kam(C). Indeed inM* we have inserted @' that was in
Min4(C). As shown abovey’ € Min' (C). Hence
kEam-(y) = kam-(y') (otherwisey ¢ Mint (C)), and
kam=(y) = kam(C). But by constructiork - (y) = ke (y)

and ify ¢ Min'(C), there would be ' s.t. M',y' = C
andkiam (y') < ka(y), hencekag (C) < kaq(C), against
Propositions 7 and 5. Hence, sin€e |~ D holds in M/,
M’ y = D and by constructiotM, y = D.

For the conditionals with form ¢, A ¢c, |~L: they hold in
M* since we have suitably extend&d in order to include
at most onej¢ at a time.

Last, it holds thatM* <y M'. Indeed the domain
of the two models coincide, and for ajltaken fromA’,
Eam=(y) = kv (y), and for ally taken fromM, they were
introduced as representatives of a gi¢éantecedent of con-
ditional or equal teA A B, A A =B. For all these formulas
by Propositions 7 and 5, it holds that- (C) = kam (C) <
kam (C), hencéia- (y) < kar (C). Furthermore, fod A B
we have shown above thiat« (AAB) = kxm(AAB) =i <
kam: (A A B), henceM™ <yys M’, which contradicts the
minimality of M’. We conclude that i’ F~vys A ~ B,
then alsoK FEpys A |~ B.

For the other direction, supposd [~ A |~ B, i.e.inamini-
mal canonical model &k, M, kx(AA—-B) < ka(AAB).
Let kpm (A A —B) = iandkay (A A B) = j. Consider the
model M* built as in the first part of the construction used
above. More preciselyM* = (W*, <* V*) is built from
M by cutting outits portion containing:in Min*'(AAB),

z' € Min(A A —-B) and an elemeny € Min'(C)
for each antecedentt’ of conditional in K (i.e. we intro-
duce an elemeny for each element ofl i 4).5). V* =V
andka- = kaq. If the same element is associated to two
different formulas, it must be duplicated injoandy’ (and
V*(y') = V*(y) andka-(y') = k- (y)). Furthermore,
for each worldy associated to a formul&, V*(y) is ex-
tended in order to includgc. Last,<* is obviously defined
from k<. By reasoning similarly to what we have done
above, we can show thatt* is a model ofi”. Furthermore,
there cannot be A1* <ys M*. Indeed, any model of
K’ must have a distinct elementatisfyingC' A ¢ for each

C'in Ak 4. Now suppose there was a modet*” of K’
with M* < yius M*. Suppose the same elements of the
domains ofM and M*" satisfy the samé' A ¢ for C' in
Ag app (henceM*, z = C A ¢c iff M* 2 |= C A dc,
otherwise consider the model equivalentAd*’ that re-
spects this constraint). 175 <vims M*, then for some
z, k() < kaqe(x). Suppose inM*,z = C A ¢¢
(and hence also\*’, z E C A ¢¢). By construction of
M*, kpge(2) = km(C). If by () < ke (2), then
ke (C) < kM*/(C), against Propositions 5 and 7. Then,
it cannot beM* <y M*, hence M* is a minimal
model of K. Furthermore by constructidiy - (AA - B) <
kam= (A A B). We conclude thak” & vrys A ~ B. [ |

From Theorem 3 and Theorem 5 just shown, it follows that:

Theorem6 A ~ B € K iff K’ Evius A ~ B for K’ of
Definition 11.

Relation with P,,;, and Pearl’s System Z

In (Giordano et al. 2010) an alternative nonmonotonic ex-
tension of preferential logi® called P,,,;, is proposed.



Similarly to the semantics presented in this wakk,,;,, is
based on a minimal modal semantics. However the prefer-
ence relation among models is defined in a different way.
Intuitively, in P,,,;,, the fact that a world: is a minimal A-
world is expressed by the fact thatsatisfiesA A [0-A,
where is defined with respect to the inverse of the pref-
erence relation (i.e. with respect to the accessibilitgtieh
given by Ruw iff v < w). The idea is that preferred mod-
els are those that minimize the set of worlds where-A
holds, that isA-worlds which are not minimal. As a differ-
ence from the approach presented in this work, the seman-
tics of P,,;,, is defined starting from preferential models of
Definition 1, in which the relatior< is irreflexive and tran-
sitive (thus, no longer modularR.,,;, is a nonmonotonic
logic considering onlyP models that, intuitively, minimize
the non-typical worlds. More precisely, given a set of formu
las K, a modelM = (Wx, <m, V) of K and a model
N = Wy, <y, Vi) of K, we say thatM is preferred to

N if War = Wy, and the set of pairgu, -[0—A) such that
M, w = -O-A is strictly included in the corresponding set
for /. A model M is aminimal modefor K if it is a model

of K and there is no a modelt’ of K which is preferred

to M. Entailment inP,,,;,, is restricted to minimal models
of a given set of formulag(. In Section 3 of (Giordano et
al. 2010) it is observed that the logie,,;,, turns out to be
quite strong. In general, if we only consider knowledge
bases containing only positive conditionals, we get theesam
trivialization result (part of Proposition 1 in (Giordanbas.
2010)) as the one contained in Proposition 4 ¥an/s.

This does not hold for rational closure. This is the rea-
son why we have introduced the additional assumptions of
Definition 11 in order to obtain an equivalence with ratio-
nal closure. Similarly, in order to tackle this trivializa
in P, Section 3 in (Giordano et al. 2010) is focused on
the so calledvell-behaved knowledge basésat explicitly
include thatA is possible (A |~ L)) for all conditional
assertionsA |~ B in the knowledge base.

We can now wonder whetheP,,;, is equivalent to
VIMS, which is the semantics to which it resembles the
most. Or whetheIMS is equivalent to a stronger version
of P,,.;, obtained by replacin@ with R as the underlying
logic. We callR,,,,;,, this stronger version d?,,,;,.

Example 4 Let K {PhD —worker, PhD
adult, adult |~ worker,italian |~ house_owner, PhD |~
—house_owner}.

What do we derive inP,,;, and R,,;,, and what in
VIMS? By what said above, sinck only contains pos-
itive conditionals, both inP,,;, and R,,;,, on the one
side, and in VIMS, on the other side, we derive that
ttalian N PhD |~1. So let's add toK the constraint
that people who are italian and have a PhD do exist by
introducing in K a conditional —(italian A PhD |~L

), thus obtaining:K’ {PhD |~ —worker, PhD |~
adult, adult |~ worker,italian |~ house_owner, PhD |~
—house_owner,~(italian A PhD ~1)}.

Notice that since-(italian A PhD ~L) entails both that
—(italian L) and that-(PhD |~L), and that this in turn
entails—(adult ~ 1), K’ is also well-behaved.

= I~ I~

It can be easily verified that the logical consequences of
K'in Poin, Roin, and VIMS differ. In both P,,,;, and
R.,.in, for instance, we derive neither thatlian A PhD |~
house_owner nor thatitalian N\ PhD |~ —house_owner:
the two alternatives are equivalent. On the other hand, in
VIMS we derive thattalian N PhD ~ —house_owner.

The previous example shows that in some casgs/s

is stronger than bott#,,;, andR.,,;,. The following one
shows that the two approaches are incomparable, since there
are also logical consequences that hold for Bth;,, and
R,.in but not for VIMS.

Example 5 Let K {PhD adult, adult
work, PhD \~ —work, italian |~ house_owner}.

N ™

What do we derive about typicédalian A PhD N work, for
instance? Do they inherit the property of typical italiaris o
beinghouse_owner? Again, in order to prevent the entail-
ment ofitalian N PhD A work |~L from K both in VIMS

and inP,,;, andR,,;,,, we add toK the constraint that ital-
ians with a PhD who work exist, henceforth they also have
typical instances. Therefore we expalidnto:

K' = {PhD ~ adult, adult  work, PhD |~ ~work,
italian |~ house_owner, —(italian AN PhD N work ~L)}.

By reasoning as in Example 4 we can show tiiats a well-
behaved knowledge base. Now it can be shown that

italian A PhD A work |~ house_owner

is entailed inP,,,;, andR.,,;,, whereas nothing is entailed
in VIMS. This difference can be explained intuitively as fol-
lows. The set of properties for which an individual is atygbic
matters inP,,,;,, andR,,;, where one has to minimize the
set of distinct-0—C": even if anitalian A PhD A\ work is an
atypical PhD,P,,;, andR,,,;,, still maximize its typicality
as an italian, and therefore entail that it is a hooaer, as
all typical italians. As a difference, ifV¥IMS, what matters
is the set of individuals which are more typig¢hban a given
x, rather thanthe set of propertiesvith respect to which
they are more typical. As a consequence, since armich
is italian A PhD A work is an atypical PhD, there is no need
to maximize its typicality as an italian, as long as this does
not increase the set of individuals more typical than

In (Pearl 1990) Pearl has introduced two notions of O-
entailment and 1-entailment to perform nonmonotonic rea-
soning. We recall here the semantic definition of both and
then we remark upon their relation with our semantics and
rational closure. A modeM for a finite knowledge base
K has the formM = ({true, false}*™ k) where
{true, false}AT is the set of propositional interpretations
for, say, a fixed finite propositional language, dnd is our
height function mapping propositional interpretationg\fo
the definition of height ,((A) of a formula is the same as
in our semantic. A conditional |~ B is true in a modeM
if Eam(A A B) < kEpm(A A —-B). Then the two entailments
relations are defined as follows:

K Eo—ent A~ Bif A Bistruein all models of{
K F1—ent A ~ Bif A |~ Bis true in the (unique)
model M of K which isminimalwith respect td .



(minimal with respect tak,, means that no other model guages, notably in the context of nonmonotonic description
M’ assigns a lower valug, to any propositional inter- logics.

pretation). First, observe that Pearl’s semantics (bothd a
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model semantics and rational closure suggests the passibil
ity of defining variants of rational closure by varying the
three ingredients underlying our approach, namely: (i) the
properties of the preference relatiex for instance just
preorder, or multi-linear (Giordano et al. 2010), or weakly
connected (observe thRtis complete with respect to any of
the three classes); (ii) the comparison relation on moémis:
instance based on the heights of the worlds or on the inclu-
sion between the relations, or on negated boxed formulas
satisfied by a world, as in the log,,,;,,; (iii) the choice be-
tween fixed or variable interpretations. The systems obthin
by various combinations of the three ingredients are Igrgel
unexplored and may give rise to useful nonmonotonic log-
ics. We finally intend to extend our approach to richer lan-

0 Fo—ent/1—ent A ~ T whenevet-pc —A



