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Abstract

Recently, the stage and cf2 semantics for abstract argu-
mentation attracted specific attention. By distancing from
the notion of defense, they are capable to select arguments
out of odd-length cycles. Furthermore, the maximality cri-
terion of naive sets ensures reasonable solutions. The SCC-
recursive schema, where the cf2 semantics is defined in, guar-
antees that some specific evaluation criteria, like direction-
ality, weak- and CF-reinstatement, are fulfilled. Beside sev-
eral desirable properties, both stage and cf2 semantics still
have some drawbacks. The stage semantics does not satisfy
the above mentioned evaluation criteria, whereas cf2 seman-
tics produces some questionable results on frameworks with
cycles of length≥ 6. That’s why we suggest to combine stage
semantics with the SCC-recursive schema of cf2 semantics.
The resulting stage2 semantics overcomes the problems re-
garding cf2 semantics and still fulfills the mentioned evalua-
tion criteria. Furthermore, we analyze redundant patterns for
stage2 semantics, and we provide a complexity analysis of
the associated reasoning problems.

Introduction
For abstract argumentation frameworks (AFs) there are
many semantics with different requirements, properties and
meanings. In this work we concentrate on semantics based
on maximal conflict-free sets, so called naive sets.

While traditional argumentation semantics build on the
concept of admissible sets, i.e. sets where each argument
attacking an argument in the set is also attacked by the
set, recently, some semantics raised attention because they
abandon the notion of admissibility and build on naive sets.
Following this observation, a distinction is drawn between
these kinds of semantics, the so called admissible-based and
naive-based semantics.

Recent investigations (Baroni, Giacomin, and Guida
2005; Baroni and Giacomin 2007; Bodanza and Tohm
2009; Bench-Capon 2003) showed, in certain situations the
admissible-based semantics do not provide satisfying re-
sults. For instance the appearance of odd-length cycles and
in particular self-attacking arguments as a special case of
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them, have a strong and sometimes undesired influence on
the computation of solutions. None of the admissible-based
semantics is able to select arguments of such a cycle as ac-
cepted, and moreover, they reject arguments just because
they are attacked by a self-attacking argument. The rea-
son for this behavior is that in an odd-length cycle, argu-
ments defend their own attacker. As naive-based seman-
tics do not rely on the notion of defense, one can accept
both, arguments in an odd-length cycle, as well as argu-
ments attacked by such arguments. One attempt to treat
odd- and even-length cycles in a uniform way is met by
cf2 semantics, built on the SCC-recursive schema of Ba-
roni et al. (Baroni, Giacomin, and Guida 2005). However,
cf2 semantics deal odd-length cycles in a more sensitive
way, the evaluation of odd-cycle-free AFs e.g. if even-
length cycles occur, is now questionable (Gabbay 2012;
Gaggl and Woltran 2012). On the other side, stage seman-
tics (Verheij 1996) can also handle odd-length cycles and
does not change the behavior of odd-cycle-free AFs. The
disadvantages of stage semantics are that very basic prop-
erties are not satisfied, for example the skeptical acceptance
of unattacked arguments, i.e. the weak reinstatement prop-
erty (Baroni and Giacomin 2007) is violated.

While naive-based semantics seem to be the right can-
didates when the above described behavior of admissible-
based semantics is unwanted, there are several shortcomings
with existing approaches, as mentioned above. To overcome
those problems we propose a new semantics combining con-
cepts from cf2 and stage semantics, which we name stage2 .
The contributions of this work are the following:
• We have a closer look at the properties of, and differences

between, existing naive-based semantics stage and cf2 ,
highlighting their shortcomings.

• We suggest to combine the concepts of stage and cf2 se-
mantics, where we use the SCC-recursive schema of cf2
semantics and instantiate the base case with stage seman-
tics. In this way, we obtain the novel stage2 semantics.

• We point out the basic properties of the novel semantics
and show that it solves most of the above mentioned prob-
lems. In particular, we evaluate stage2 semantics with the
criteria proposed by Baroni and Giacomin (2007).

• Moreover, we analyze redundant patterns w.r.t. stage2 se-
mantics, where it turns out that it is the second semantics,



beside cf2 , satisfying the succinctness property (Gaggl
and Woltran 2012).

• Finally, we study computational properties of stage2 se-
mantics, providing a complexity analysis for the standard
argumentation reasoning tasks. We show that complexity
from stage semantics carries over to stage2 semantics and
therefore stage2 is among the computationally hardest ar-
gumentation semantics.

Preliminaries
In this section we introduce the basics of abstract argumen-
tation, the semantics we need for further investigations fol-
lowed by a comparison of cf2 and stage semantics.

Abstract Argumentation
We first give the formal definition of abstract argumentation
frameworks as introduced by Dung (1995).
Definition 1. An argumentation framework (AF ) is a pair
F = (A,R), where A is a finite set of arguments and R ⊆
A×A is the attack relation. The pair (a, b) ∈ R means that
a attacks b. A set S ⊆ A of arguments attacks b (in F ), if
there is an a ∈ S, such that (a, b) ∈ R. An argument a ∈ A
is defended by S ⊆ A (in F ) iff, for each b ∈ A, it holds
that, if (b, a) ∈ R, then S attacks b (in F ). Moreover, given
an AF F , we use AF to denote the set of it is arguments and
resp. RF to denote its attack relation.

The inherent conflicts between the arguments are solved
by selecting subsets of arguments, where a semantics σ as-
signs a collection of sets of arguments to an AF F . The basic
requirement for all semantics is that none of the selected ar-
guments attack each other.
Definition 2. Let F = (A,R) be an AF. A set S ⊆ A
is said to be conflict-free (in F ), if there are no a, b ∈ S,
such that (a, b) ∈ R. We denote the collection of sets which
are conflict-free (in F ) by cf (F ). A set S ⊆ A is max-
imal conflict-free or naive, if S ∈ cf (F ) and for each
T ∈ cf (F ), S 6⊂ T . We denote the collection of all naive
sets of F by naive(F ). For the empty AF F0 = (∅, ∅), we
set naive(F0) = {∅}.

Towards the definition of the semantics we introduce the
following formal concepts.
Definition 3. Given an AF F = (A,R) and let S ⊆ A.
The characteristic function FF : 2A → 2A of F is defined
as FF (S) = {x ∈ A | x is defended by S}. We define the
range of S as S+

R = S ∪ {b | ∃a ∈ S, s. t. (a, b) ∈ R}.
In the following we give brief definitions of the standard

semantics in abstract argumentation (Dung 1995) together
with the definition of stage semantics (Verheij 1996). For
comprehensive surveys on argumentation semantics the in-
terested reader is referred to (Baroni and Giacomin 2009;
Baroni, Caminada, and Giacomin 2011).
Definition 4. Let F = (A,R) be an AF, then S ∈ cf (F ) is

• a stable extension (of F ), i.e. S ∈ stable(F ), if S+
R = A;

• an admissible extension, i.e. S ∈ adm(F ), if each a ∈ S
is defended by S;

• a preferred extension, i.e. S ∈ prf (F ), if S ∈ adm(F )
and for each T ∈ adm(F ), S 6⊂ T ;

• the grounded extension (of F ), i.e. S = grd(F ), if it is the
least fixed-point of the characteristic function FF ;

• a stage extension (of F ), i.e. S ∈ stg(F ), if for each T ∈
cf (F ), S+

R 6⊂ T
+
R .

Next we consider cf2 semantics, which is based on a
decomposition along the strongly connected components
(SCCs) of an AF depending on a given set S of arguments.
For a detailed discussion on the cf2 semantics we refer
to (Baroni, Giacomin, and Guida 2005; Baroni and Gia-
comin 2009; Gaggl and Woltran 2012). We require some
further formal machinery and concepts from graph theory.
By SCCs(F ), we denote the set of strongly connected com-
ponents of an AF F = (A,R), i.e. sets of vertices of the
maximal strongly connected1 sub-graphs of F ; SCCs(F ) is
thus a partition of A. Moreover, for an argument a ∈ A, we
denote by CF (a) the component of F where a occurs in,
i.e. the (unique) set C ∈ SCCs(F ), such that a ∈ C. AFs
F1 = (A1, R1) and F2 = (A2, R2) are called disjoint if
A1 ∩A2 = ∅. Moreover, the union between (not necessarily
disjoint) AFs is defined as F1 ∪ F2 = (A1 ∪A2, R1 ∪R2).

It turns out to be convenient to use two different concepts
to obtain sub-frameworks of AFs. Let F = (A,R) be an AF
and S a set of arguments. Then,F |S = ((A∩S), R∩(S×S))
is the sub-framework of F w.r.t. S, and we also use F −
S = F |A\S . We note the following relation (which we use
implicitly later on), for an AF F and sets S, S′: F |S\S′ =
F |S − S′ = (F − S′)|S .

We now give the definition of the cf2 semantics which
slightly differs in notation from (but is equivalent to) the
original definition in (Baroni, Giacomin, and Guida 2005).

Definition 5. Let F = (A,R) be an AF and S ⊆ A. A
b ∈ A is component-defeated by S (in F ), if there exists an
a ∈ S, s.t. (a, b) ∈ R and a /∈ CF (b). The set of arguments
component-defeated by S in F is denoted by DF (S).

Definition 6. Let F = (A,R) be an argumentation frame-
work and S a set of arguments. Then, S is a cf2 extension
of F , i.e. S ∈ cf2 (F ), iff

• in case |SCCs(F )| = 1, then S ∈ naive(F ),
• else, ∀C ∈ SCCs(F ), (S ∩ C) ∈ cf2 (F |C −DF (S )).

In words, an AF is recursively decomposed along its
SCCs depending on a set S, where in the base case S needs
to be a naive extensions. We illustrate the behavior of the
introduced semantics in the following example.

Example 1. Consider the following AF F = (A,R) with
A = {a, b, c} and R = {(a, b), (b, c), (c, b), (c, c)}.

Then, the above defined semantics yield the following exten-
sions. stable(F ) = ∅; adm(F ) = {{}, {a}}; prf (F ) =

1A directed graph (an AF) is called strongly connected if there
is a path from each vertex to every other vertex of the graph.



grd(F ) = {{a}}; and naive(F ) = stg(F ) = {{a}, {b}}.
S = {a} is the only cf2 extension of F , as F has two SCCs
C1 = {a} and C2 = {b, c} and DF (S) = {b}. Then,
(S ∩ C1) ∈ cf2 (F |C1

) holds as {a} ∈ naive(F |C1
), and

(S ∩ C2) ∈ cf2 (F |C2
− {b}) holds as ∅ ∈ naive(F |{c}).

Regarding stage semantics, S = {b} is a stage extension as
S+
R = {b, c} and there is not T ∈ cf (F ) s.t. T+

R ⊃ S
+
R . ♦

Properties of cf2 and Stage Semantics
To avoid the recursive computation of sub-frameworks,
Gaggl and Woltran (2010) introduced an alternative char-
acterization of cf2 semantics which requires the following
concepts. The motivation for this was to design a compact
Answer-set Programming (ASP) encoding which has also
been incorporated in the system ASPARTIX2 (Egly, Gaggl,
and Woltran 2010). Furthermore, it facilitated the analysis of
redundant patterns w.r.t. cf2 semantics (Gaggl and Woltran
2011; 2012) and the proof of general complexity results for
reasoning problems regarding the cf2 semantics (Gaggl and
Woltran 2012).

The first concept describes that an AF is separated if there
are no attacks between different SCCs and the separation of
an AF deletes all attacks between different SCCs.
Definition 7. An AF F = (A,R) is called separated if
for each (a, b) ∈ R, CF (a) = CF (b). We define [[F ]] =⋃
C∈SCCs(F) F |C and call [[F ]] the separation of F .

Next we consider a restricted reachability relation identi-
fying whether there is a path from an argument to another
only using arguments in a specific set B.
Definition 8. Let F = (A,R) be an AF, arguments a, b ∈ A
and B ⊆ A. We say that b is reachable in F from a modulo
B, in symbols a ⇒B

F b, if there exists a path from a to b
in F |B , i.e. there exists a sequence c1, . . . , cn (n > 1) of
arguments such that c1 = a, cn = b, and (ci, ci+1) ∈ R ∩
(B ×B), for all i with 1 ≤ i < n.

The operator ∆F,S(.) (applied to D = ∅) computes re-
cursively all arguments which are attacked by the set S and
can not reach their attacker without going over arguments
already in ∆F,S(.).
Definition 9. For an AF F = (A,R), D ⊆ A and S ⊆ A,

∆F,S(D) = {a ∈ A | ∃b ∈ S : b 6= a, (b, a) ∈ R,

a 6⇒A\D
F b}.

∆F,S(.) is monotonic and thus it has a least fixed-point
(lfp). With slightly abuse of notation we will denote the least
fixed-point as ∆F,S .

Now the cf2 extensions can be characterized as follows.
Proposition 1. For any AF F ,

cf2 (F ) = {S | S ∈ naive(F ) ∩ naive([[F −∆F,S ]])}.
In the following we illustrate how the characterization of

Proposition 1 can be used for identifying cf2 extensions, for
a more detailed explanation we refer to (Gaggl and Woltran
2010; 2012).

2See http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/ for a web
front-end.

Example 2. To exemplify the behavior of ∆F,S and [[F −
∆F,S ]] let us consider the AF F of Example 1. F has two
naive sets, namely S = {a} and T = {b}. First, we con-
centrate on the set S and compute ∆F,S = {b} and [[F −
∆F,S ]] = ({a, c}, {(c, c)}). Thus, S ∈ naive([[F −∆F,S ]])
and clearly S ∈ cf2 (F ).
For T we obtain ∆F,T = ∅ and [[F − ∆F,T ]] =
(A, {(b, c), (c, b), (c, c)}). Now, T 6∈ naive([[F − ∆F,T ]]),
as there is the set T ′ = {a, b} ⊃ T and T ′ ∈ cf ([[F −
∆F,T ]]).

Now, we focus on the special behavior of cf2 and stage
semantics. They are both based on naive sets, thus they are,
in contrast to admissible-based semantics, capable to select
arguments out of odd-length cycles as accepted. Consider
the following example.

Example 3. Suppose there are three witnesses A, B and C,
where A states that B is unreliable, B states that C is un-
reliable and C states that A is unreliable. Moreover, C has
a statement S. The graph of the framework F is illustrated
on the left side. Any admissible-based semantics returns the
empty set as its only extension. But if we have four rather
than three witnesses, let’s call the fourth one X , as in the
AF G on the right side, the situation changes, and the pre-
ferred extensions of G are {a, c, s} and {b, x}.

On the other hand, the naive-based semantics return
stg(F ) = cf2 (F ) = {{b}, {a, s}, {c, s}} and stg(G) =
cf2 (G) = {{a, c, s}, {b, x}}. ♦

The motivation behind selecting arguments out of an odd-
length cycle is to see the arguments as different choices
and to be able to choose between them. There is no need
for defense, and the naive sets ensure I-maximality (Baroni
and Giacomin 2007). A special case of odd-length cycles
are self-attacking arguments. One might think that it is not
necessary to defend against those ”broken” arguments. But,
admissible-based semantics are not able to distinguish if it
is necessary to defend against an attack or not. In this case it
might also be desired to abandon defense and take the naive
sets as the basic requirement.

So far, we only discussed the positive behavior of the cf2
semantics, but unfortunately there are also some disadvan-
tages.

Example 4. Consider the AF F :

The framework consists of a single SCC, so we obtain
cf2 (F ) = naive(F ) = {{a, d}, {b, e}, {c, f}, {a, c, e},



{b, d, f}}. In this example we have an even-length cycle
and the cf2 semantics produce some strange extensions
like {a, d}, {b, e} and {c, f}. Every argument of those ex-
tensions is contained in one of the other two cf2 exten-
sions {a, c, e} and {b, d, f}, hence it does not make much
sense to also accept the extensions which defend their at-
tacker. In contrast, the stage extensions are stg(F ) =
{{a, c, e}, {b, d, f}}, as expected. ♦

Example 4 shows, that also the cf2 semantics has some
drawbacks. Furthermore, for AFs F with odd-length cycles
≥ 9, we can also obtain cf2 (F ) 6= stg(F ). Whereas, stage
semantics gives more reasonable results especially on sin-
gle SCCs and still guarantees a uniform treatment of odd-,
and even-length cycles. As stage semantics extends stable
semantics in the sense that both semantics coincide if at
least one stable extension exists, it holds that for SCCs with-
out odd-length cycles stage semantics proposes stable exten-
sions. Similar observations have also been made in (Gabbay
2012). However, for a stage extension it might be the case
that even unattacked arguments are not accepted and more
general, the grounded extension is not contained in every
stage extension. For instance consider the AF F in Exam-
ple 1 where grdF = {a} but {b} being a stage extension
not containing the unattacked argument a.

Combining Stage and cf2 Semantics
In the previous section, we observed that the stage semantics
has a more intuitive behavior on single SCCs, because there
cf2 semantics only selects the naive extensions.

Our suggestion is to combine the two semantics, where
we use the SCC-recursive schema of the cf2 semantics and
instantiate the base case with stage semantics. To retain the
naming introduced by Baroni, Giacomin, and Guida (2005),
we denote the obtained semantics as stage2 .
Definition 10. Let F = (A,R) be an AF and S ⊆ A. Then,
S is a stage2 extension of F , i.e. S ∈ stage2 (F ), iff
• in case |SCCs(F )| = 1, then S ∈ stg(F ),
• else, ∀C ∈ SCCs(F ), (S∩C) ∈ stage2 (F |C −DF (S )).

According to the alternative characterization of cf2 se-
mantics, one can also formulate stage2 semantics in the
same way.
Proposition 2. For any AF F ,

stage2 (F ) = {S | S ∈ naive(F ) ∩ stg([[F −∆F,S ]])}.
The remainder of this section is devoted to the proof

of Proposition 2. To show that the alternative characteriza-
tion is equivalent to Definition 10, we need to define two
more formal concepts. First, we define the set of recursively
component defeated arguments RDF (S) as in (Gaggl and
Woltran 2010).
Definition 11. Let F = (A,R) be an AF and S ⊆ A. We
define the set of arguments recursively component defeated
by S (in F ) as follows:
• if |SCCs(F )| = 1 thenRDF (S) = ∅; else,

• RDF (S)=DF (S)∪
⋃

C∈SCCs(F)

RDF |C−DF (S)(S ∩ C).

Next, we define the level of recursiveness a framework
shows with respect to a set S of arguments.

Definition 12. For an AF F = (A,R) and S ⊆ A, we
recursively define the level `F (S) of F w.r.t. S as follows:

• if |SCCs(F )| = 1 then `F (S) = 1;
• otherwise, `F (S) = 1+max ({`F |C−DF (S)(S∩C) | C ∈

SCCs(F )}).

Lemma 1. For any AF F = (A,R), S ⊆ A. Let R′F,C,S =

RDF |C−DF (S)(S ∩ C), then

(F |C −DF (S ))−R′F,C,S = F |C −RDF (S).

Proof. The observation has been proven in more detail
in (Gaggl and Woltran 2010). Here we just sketch the
idea. We fix a C ∈ SCCs(F ). Since for each further
C ′ ∈ SCCs(F ) (i.e. C 6= C ′), no argument from
RDF |C ′−DF (S)(S ∩ C ′) occurs in F |C , the assertion fol-
lows.

Lemma 2 gives the first alternative characterization of
stage2 .

Lemma 2. Let F = (A,R) be an AF and S ⊆ A. Then,

S ∈ stage2 (F ) iff S ∈ stg([[F −RDF (S)]]).

Proof. We show the claim by induction over `F (S).
Induction base. For `F (S) = 1, we have |SCCs(F )| = 1.
By definitionRDF (S) = ∅ and we have [[F−RDF (S)]] =
[[F ]] = F . Thus, the assertion states that S ∈ stage2 (F )
iff S ∈ stg(F ) which matches the original definition for
the stage2 semantics in case the AF has a single strongly
connected component.
Induction step. Let `F (S) = n and assume the assertion
holds for all AFs F ′ and sets S′ with `F ′(S′) < n. In par-
ticular, we have by definition that, for each C ∈ SCCs(F ),
`F |C−DF (S)(S ∩ C) < n. By the induction hypothesis and
Lemma 1, we thus obtain that, for each C ∈ SCCs(F ) the
following holds:

(S ∩ C) ∈ stage2 (F |C −DF (S )) iff
(S ∩ C) ∈ stg

(
[[F |C −RDF (S)]]

)
. (1)

We now prove the assertion. Let S ∈ stage2 (F ).
By definition, for each C ∈ SCCs(F ), (S ∩ C) ∈
stage2 (F |C −DF (S )). Using (1), we get that for each
C ∈ SCCs(F ), (S ∩ C) ∈ stg([[F |C − RDF (S)]]). By
the definition of components and the semantics of stage, the
following relation thus follows:⋃
C∈SCCs(F)

(S ∩C) ∈ stg
( ⋃
C∈SCCs(F)

[[F |C −RDF (S)]]
)
.

Since S =
⋃
C∈SCCs(F)(S ∩ C) and due to (Gaggl and

Woltran 2010),
⋃
C∈SCCs(F)[[F |C − RDF (S)]] = [[F −

RDF (S)]], we arrive at S ∈ stg([[F − RDF (S)]]) as de-
sired. The other direction is by essentially the same argu-
ments.



Proof of Proposition 2. The result holds by the following
observations. By Lemma 2, S ∈ stage2 (F ) iff S ∈
stg([[F−RDF (S)]]). Moreover, due to (Gaggl and Woltran
2010), for any S ∈ cf (F ), ∆F,S = RDF (S). Finally,
S ∈ stage2 (F ) implies S ∈ naive(F ).

We obtain for the framework F of Example 1,
stage2 (F ) = cf2 (F ) = {{a}}, and for the AF of Exam-
ple 4, stage2 (F ) = stg(F ) = {{a, c, e}, {b, d, f}}.

Comparison of stage2 with other Semantics
Here we compare semantics w.r.t. the ⊆-relations between
the sets of extensions.

First, in general stage and stage2 semantics are incompa-
rable w.r.t. set inclusion. For instance, consider the following
AF F .

Then, stage2 (F ) = {{a, d}, {b, d}}, but stg(F ) =
{{b, d}, {b, e}}.

Now, we consider the relation between cf2 and stage2
semantics. By Example 4 we know that there are AFs with
cf2 (F ) 6⊆ stage2 (F ).

Proposition 3. For any AF F = (A,R), stage2 (F ) ⊆
cf2 (F ).

Proof. Consider a set S ∈ stage2 (F ). By Proposition 2,
S ∈ naive(F )∩stg([[F−∆F,S ]]). Now using that for every
AF G, stg(G) ⊆ naive(G) we obtain S ∈ naive(F ) ∩
naive([[F −∆F,S ]]). By Proposition 1, S ∈ cf2 (F ).

Next, we study the relations between stable and stage2
semantics.

Proposition 4. For any AF F = (A,R), stable(F ) ⊆
stage2 (F ).

Proof. Consider E ∈ stable(F ), then we know that E ∈
naive(F ) and for each a ∈ A \ E there exists b ∈ E such
that (b, a) ∈ R. Hence, a ∈ E+

RF
. It remains to show that

E ∈ stg([[F − ∆F,E ]]). We show the stronger statement
E ∈ stable([[F −∆F,E ]]).

To this end, let F ′ = F −∆F,E and F ′′ = [[F −∆F,E ]],
we have either a ∈ ∆F,E or a ∈ AF ′ . For a ∈ AF ′ = AF ′′ ,
we need to show that a ∈ E+

RF ′′
. If a ∈ E clearly a ∈

E+
RF ′′

, hence we consider a ∈ AF ′ \E. As E is stable there
exists b ∈ E such that (b, a) ∈ RF ′ . Now as a 6∈ ∆F,E , by
Definition 9 we know that a⇒A\∆F,E

F b. In other words a, b
are in the same SCC of F ′ and thus (b, a) ∈ RF ′′ . Hence,
for every a ∈ AF ′′ \ E there is an argument b ∈ E such
that (b, a) ∈ RF ′′ , hence E ∈ stable(F ′′). As for any AF G
stable(G) ⊆ stg(G), it follows that E ∈ stg(F ′′). Thus, by
Proposition 2, E ∈ stage2 (F ).

Figure 1 gives an overview of the relations between naive-
based semantics. An arrow from semantics σ to semantics τ

Figure 1: Relations between naive-based semantics

encodes that each σ-extension is also a τ -extension. Further-
more, if there is no directed path from σ to τ , then one can
construct AFs with a σ-extension that is not a τ -extension.

If an AF possesses at least one stable extension, stage
coincides with stable semantics. Obviously, this does not
hold for stage2 semantics, for instance consider the AF
F = ({a, b, c}, {(a, b), (b, a), (b, c), (c, c)}).

We obtain stage2 (F ) = {{a}, {b}} and stable(F ) =
{{b}}. However, these semantics comply with each other in
coherent AFs, i.e. AFs where stable and preferred semantics
coincide.

Proposition 5. For any coherent AF F , stable(F ) =
stg(F ) = stage2 (F ).

Proof. By Proposition 4, stable(F ) ⊆ stage2 (F ) and thus
it only remains to show that also stable(F ) ⊇ stage2 (F )
holds.

Let us first consider the case where F consists of a single
SCC. Then, stage2 semantics coincides with stage seman-
tics and as F is coherent also with stable semantics.

Now, let this be our induction base, and let us assume the
claim holds for AFs of size < n. Let us consider an AF F
of size n with (Ci)1≤i≤m being the SCCs of F , such that
there is no attack from Ci to Cj for j < i. If m = 1 we are
in the base-case, hence let us assume that m ≥ 2. Consider
S ∈ stage2 (F ) and S1 = S ∩

⋃
1≤i<m Ci, S2 = S ∩ Cm.

By definition of stage2 we know that S1 ∈ stage2 (F−Cm)
and S2 ∈ stage2 (F |Cm − S+

1 ). Note, S1 ∩ S2 = ∅.
By assumption, F is coherent and it is easy to see that also

F − Cm is coherent. Hence, by the induction hypothesis,
stable(F − Cm) = prf (F − Cm) = stage2 (F − Cm).

Next, we show that also F |Cm
− S+

1 is coherent. By def-
inition, stable(F ) ⊆ prf (F ). Now, consider an extension
E2 ∈ prf (F |Cm

− S+
1 ). By the directionality of prf and



the fact that S1 ∈ stable(F − Cm), we obtain (S1 ∪ E2) ∈
prf (F ). Now, as F is coherent also (S1 ∪ E2) ∈ stable(F )
and thus, E2 ∈ stable(F |Cm

− S+
1 ). Hence, F |Cm

− S+
1 is

coherent and again we can use the induction hypothesis.
Finally, we obtain S1 ∈ stable(F − Cm) and S2 ∈

stable(F |Cm − S+
1 ), combining these results we get S ∈

stable(F ).

Notice, the last theorem implies that on coherent AFs
stage2 semantics coincides with preferred, stage and semi-
stable (Caminada, Carnielli, and Dunne 2011) semantics,
because on coherent AFs all these semantics coincide with
stable semantics.

Extension Evaluation Criteria
Several general criteria for the evaluation of argumenta-
tion semantics have been proposed in (Baroni and Giacomin
2007). In this subsection we analyze the criteria relevant for
naive-based semantics.

Definition 13. A semantics σ satisfies

• the I-maximality criterion if for each AF F = (A,R),
and for each S1, S2 ∈ σ(F ), if S1 ⊆ S2 then S1 = S2;

• the reinstatement criterion if for each AF F = (A,R),
and for each S ∈ σ(F ), a defended by S implies a ∈ S.

• the weak reinstatement criterion, if for each F = (A,R),
and for each S ∈ σ(F ), E ∈ grd(F ) : E ⊆ S;

• the CF-reinstatement criterion, if for each F = (A,R),
for each S ∈ σ(F ),∀b : (b, a) ∈ R,∃c ∈ S : (c, b) ∈ R
and S ∪ {a} ∈ cf (F )⇒ a ∈ S.

• the directionality criterion if for each F = (A,R), and
for each set of unattacked arguments U ⊆ A (s. t. ∀a ∈
A \ U there is no b ∈ U with (a, b) ∈ R), it holds that
σ(F |U ) = {(S ∩ U) | S ∈ σ(F )}.

We start with some general properties of naive-based seman-
tics.

Proposition 6. I-maximality and CF-reinstatement are sat-
isfied by each semantics σ with σ(F ) ⊆ naive(F ).

Proof. Clearly naive semantics satisfies both I-maximality
and CF-reinstatement. A set E which is ⊆-maximal in
naive(F ) is also maximal in each subset of naive(F ) and
thus, σ satisfies I-maximality. CF-reinstatement is a prop-
erty defined on single extensions, and as each σ-extension is
also a naive extension, CF-reinstatement is satisfied .

Among the naive-based semantics, only stable semantics
satisfies the reinstatement property, which is due to the fact
that it is also an admissible-based semantics.

Proposition 7. The reinstatement property is not satisfied by
semantics which can select non-empty conflict-free subsets
out of odd-length cycles.

Proof. Consider an odd length cycle F = ({a1, . . . , an},
{(ai, ai+1 mod n) | 1 ≤ i ≤ n}) with n being an odd inte-
ger. We claim that no E ∈ cf (F ) and E 6= ∅ satisfies the
reinstatement property. Now, towards a contradiction let us
assume there exists a nonempty E ∈ cf (F ) satisfying the

reinstatement property. W.l.o.g. assume that a1 ∈ E. Then
a3 is defended and by assumption a3 ∈ E. But then also a5

is defended, and by induction it follows that ai ∈ E if i is
odd. Hence also an ∈ E, but {a1, an} ⊆ E contradicts that
E is conflict-free in F .

Hence, when considering naive-based semantics we are
usually interested in weaker forms of reinstatement, namely
the weak- or CF-reinstatement.

Proposition 8. The weak reinstatement and directionality
criterion are not satisfied by naive and stage semantics.

Proof. Consider the AF F from Example 1. We obtain
naive(F ) = stg(F ) = {{a}, {b}} and the grounded exten-
sion G = {a}. Then, the weak reinstatement criterion is not
satisfied because G 6⊆ {b}. Now let us consider directional-
ity and the sub-framework F |{a}. Then stg(F |{a}) = {{a}}
but {({a}∩S) | S ∈ stg(F )} = {∅, {a}}, contradicting the
directionality criterion.

Proposition 9. The weak reinstatement criterion is satisfied
by stage2 semantics.

Proof. Let F = (A,R) and E ∈ grd(F ). Due to (Ba-
roni, Giacomin, and Guida 2005), for any AF F and any
S ∈ cf2 (F ), E ⊆ S. From Proposition 3 we know that
for any AF G, stage2 (G) ⊆ cf2 (G). It follows that for any
extension S ∈ stage2 (F ), S ∈ cf2 (F ) and E ⊆ S.

We sum up the results for the novel stage2 semantics.

• Directionality is satisfied. Due to (Baroni and Giacomin
2007), any SCC-recursive semantics σ satisfies the direc-
tionality criterion. As the stage2 semantics has been di-
rectly defined in terms of the SCC-recursive schema, the
directionality criterion is indeed satisfied.

• I-maximality and CF-reinstatement are satisfied, see
Proposition 6.

• Reinstatement is not satisfied, see Proposition 7.

• Weak reinstatement is satisfied, see Proposition 9.

We summarize the evaluation criteria w.r.t. naive-based se-
mantics in Table 1.

Finally, we mention that directionality implies the proper-
ties crash-resistance and non-interference (cf. (Baroni, Cam-
inada, and Giacomin 2011)) which both are violated by sta-
ble semantics, but satisfied by stage2 .

naive stable stg cf2 stage2

I-max. Yes Yes Yes Yes Yes
Reinst. No Yes No No No
Weak reinst. No Yes No Yes Yes
CF-reinst. Yes Yes Yes Yes Yes
Direct. No No No Yes Yes

Table 1: Evaluation Criteria w.r.t. Naive-based Semantics.



Redundant Patterns w.r.t. stage2 Semantics
Recently, redundant patterns for AFs w.r.t. specific seman-
tics have been studied. In (Amgoud and Vesic 2011) the no-
tion of equivalence w.r.t. stable semantics has been studied
for logic-based argumentation systems. Whereas, Oikarinen
and Woltran (Oikarinen and Woltran 2011) identified kernels
which eliminate redundant attacks of AFs and introduced the
concept of strong equivalence as follows.
Definition 14. Two AFs F and G are strongly equivalent to
each other w.r.t. a semantics σ, in symbols F ≡σs G, iff for
each AF H , σ(F ∪H) = σ(G ∪H).

By definition, F ≡σs G implies σ(F ) = σ(G), but the
other direction is not true in general. In (Gaggl and Woltran
2011; 2012), it has been shown that for cf2 semantics, strong
equivalence coincides with syntactic equivalence. In other
words, there are no redundant patterns at all. In the follow-
ing, we show that the same holds for stage2 semantics as
well.
Theorem 1. For any AFs F andG, F ≡stage2

s G iff F = G.

Proof. Since for any AFs F = G obviously implies for
all AFs H , stage2 (F ∪ H) = stage2 (G ∪ H), we only
have to show that if F 6= G there exists an AF H such that
stage2 (F ∪H) 6= stage2 (G ∪H).
For any two AFs F and G, strong equivalence w.r.t. naive-
based semantics requires that the AFs coincide with the ar-
guments and the self-attacks (Gaggl and Woltran 2011). We
thus assume that A = AF = AG and (a, a) ∈ RF iff
(a, a) ∈ RG, for each a ∈ A. Let us thus suppose w.l.o.g.
an attack (a, b) ∈ RF \RG and consider the AF

H = (A ∪ {d, x, y, z, z1}, {(a, a), (b, b), (b, x), (x, a),

(a, y), (y, z), (z, a), (z, z1), (z1, z), (z1, z1),

(d, c) | c ∈ A \ {a, b}}),
see also Figures 2 and 3 for illustration.

Figure 2: F ∪H Figure 3: G ∪H
Then, there exists a set E = {d, x, z}, such that E ∈

stage2 (F ∪ H) but E 6∈ stage2 (G ∪ H). To show that
E ∈ stage2 (F ∪H), we first compute ∆F∪H,E = {c | c ∈
A\{a, b}}. Thus, in the instanceF ′ = [[(F∪H)−∆F∪H,E ]]
we have two SCCs left, namely C1 = {d} and C2 =
{a, b, x, y, z, z1} as illustrated in Figure 4. Furthermore, all
attacks between the arguments of C2 are preserved, and we
obtain that E ∈ stg(F ′), and as E is also a naive set of
(F ∪H), E ∈ stage2 (F ∪H) follows. On the other hand,
we obtain ∆G∪H,E = {a} ∪ {c | c ∈ A \ {a, b}}, and the
instance G′ = [[(G∪H)−∆G∪H,E ]] consists of five SCCs,
namely C1 = {d}, C2 = {b}, C3 = {x}, C4 = {y} and

C5 = {z, z1}, with b and z1 being self-attacking as illus-
trated in Figure 5.

Figure 4: F ′ Figure 5: G′

Thus, the set T = {d, x, y, z} ⊃ E is conflict-free in G′

and T+
RG′
⊃ E+

RG′
. Therefore, we obtain E 6∈ stg(G′), and

hence, E 6∈ stage2 (G ∪H). F 6≡stage2
s G follows.

No matter which AFs F 6= G are given, we can al-
ways construct a framework H such that stage2 (F ∪H) 6=
stage2 (G ∪H). In particular, we can always add new argu-
ments and attacks such that the missing attack in one of the
original frameworks leads to different SCCs in the modified
ones and therefore to different stage2 extensions, when suit-
ably augmenting the two AFs under comparison. Till now,
stage2 is the second semantics beside cf2 , where strong
equivalence coincides with syntactic equivalence.

To identify to which extent attacks contribute in terms of
a given semantics, the succinctness property has been intro-
duced in (Gaggl and Woltran 2012). In contrast to strong
equivalence which considers particular AFs, the succinct-
ness property denotes a general property for argumentation
semantics. Hence, it is independent of the specific instantia-
tion method.

Before we give the definition of the succinctness property,
we define what we mean with redundant attacks; for AFs
F = (A,R) and F ′ = (A′, R′) we write F ⊆ F ′ to denote
that A ⊆ A′ and R ⊆ R′ jointly hold. Moreover, we use
F \(a, b) as a shorthand for the framework (A,R\{(a, b)}).

Definition 15. For an AF F = (A,R) and semantics σ we
call an attack (a, b) ∈ R redundant in F w.r.t. σ if for all F ′
with F ⊆ F ′, σ(F ′) = σ(F ′ \ (a, b)).

Definition 16. An argumentation semantics σ satisfies the
succinctness property or is maximal succinct iff no AF con-
tains a redundant attack w.r.t. σ.

The following proposition gives the link between the suc-
cinctness property and strong equivalence.

Proposition 10. (Gaggl and Woltran 2012) An argumen-
tation semantics σ satisfies the succinctness property iff for
any AFs F , G with AF = AG: (F ≡σs G⇔ F = G).

We point out that for all semantics considered so far,
strong equivalence for AFs implies that the AFs have the
same arguments. Thus, for the semantics under our consid-
eration, one can drop the condition AF = AG in the above
proposition.

From Theorem 1 and Proposition 10 we conclude that the
succinctness property is satisfied by stage2 semantics.



Computational Complexity
In this section, we turn to computational issues. We assume
the reader has knowledge about standard complexity classes,
i.e. P, NP and coNP. Nevertheless, we briefly recapitulate
the concept of oracle machines and some related complex-
ity classes. Let C notate some complexity class. By a C-
oracle machine we mean a (polynomial time) Turing ma-
chine which can access an oracle that decides a given (sub)-
problem in C within one step. We denote the class of deci-
sion problems, that can be solved by such machines, as PC

if the underlying Turing machine is deterministic and NPC

if the underlying Turing machine is non-deterministic. The
class ΣP

2 = NPNP denotes problems which can be decided
by a non-deterministic polynomial time algorithm that has
access to an NP-oracle. The class ΠP

2 = coNPNP is defined
as the complementary class of ΣP

2 , i.e. ΠP
2 = coΣP

2 . Finally,
we give an overview of the relations between the introduced
complexity classes.

P ⊆ NP
coNP

⊆ ΣP
2

ΠP
2

The typical reasoning problems in abstract argumentation
are the following (for a semantics σ):

• Credσ: Given AF F = (A,R) and a ∈ A. Is a contained
in some S ∈ σ(F )?

• Skeptσ: Given AF F = (A,R) and a ∈ A. Is a contained
in each S ∈ σ(F )?

• Verσ: Given AF F = (A,R) and S ⊆ A. Is S ∈ σ(F )?

The complexity of these problems for different seman-
tics is well studied in the literature (see e.g. (Dunne and
Wooldridge 2009)). Next, we provide a complexity analysis
for stage2 semantics, exploiting the corresponding results
for stage semantics (Dvořák and Woltran 2010).

Theorem 2. For stage2 semantics the following holds

• Cred stage2 is ΣP
2 -complete.

• Skeptstage2 is ΠP
2 -complete.

• Ver stage2 is coNP-complete.

Proof. We first consider the membership part starting with
Ver stage2 . Given an AF F = (A,R) a set E of arguments
by Proposition 2 we have to check whether E ∈ naive(F )
(which can be done in P), and whether E ∈ stg([[F −
∆F,S ]])}. As [[F − ∆F,S ]] can be constructed in polyno-
mial time and Ver stg ∈ coNP, the latter is in coNP and
thus also Ver stage2 ∈ coNP. The problems Cred stage2 and
Skeptstage2 can be solved by a standard guess and check al-
gorithm, i.e. guessing an extension containing the argument
(resp. not containing the argument) and using an NP-oracle
to verify the extension.

For the hardness part we give a reduction R map-
ping argumentation frameworks to argumentation frame-
works, such that for each AF F it holds that stg(F ) =
stage2 (R(F ))3. The hardness results then follow from the

3Such a R is called an exact translation for stg ⇒ stage2
in (Dvořák and Woltran 2011).

naive stable stg cf2 stage2

Credσ in P NP-c ΣP
2 -c NP-c ΣP

2 -c
Skeptσ in P coNP-c ΠP

2 -c coNP-c ΠP
2 -c

Verσ in P in P coNP-c in P coNP-c

Table 2: Computational Complexity of naive-based seman-
tics (C-c denotes completeness for class C).

corresponding hardness results for stage semantics (Dvořák
and Woltran 2010).

Given an AF F = (A,R) we define R(F ) = (A∗, R∗)
with A∗ = A ∪ {t} and R∗ = R ∪ {(t, t)} ∪ {(t, a), (a, t) |
a ∈ A}), where t is a fresh argument. Then, R(F ) has just
a single SCC and hence stg(R(F )) = stage2 (R(F )). It re-
mains to show that stg(F ) = stg(R(F )). First, as (t, t) ∈
R∗, the argument t can not be contained in a stage exten-
sions. Furthermore, the reductionR does not modify attacks
between argument in A we obtain cf (F ) = cf (R(F )).
By the construction of R(F ), for each non-empty E ⊆ A
E+
R ∪ {t} = E+

R∗ thus, stg(F ) = stg(R(F )). It is easy to
see that ∅ ∈ stg(F ) iff cf (F ) = {∅} iff ∅ ∈ stg(R(F )).

We summarize the complexity results for naive-based se-
mantics in Table 2. The results, for naive semantics are due
to (Coste-Marquis, Devred, and Marquis 2005), for stable
semantics follows from (Dimopoulos and Torres 1996), for
stage semantics have been shown in (Dvořák and Woltran
2010), and the results for cf2 semantics can be found
in (Gaggl and Woltran 2012).

Considering the plethora of argumentation semantics, be-
side stage2 , only for stage and semi-stable semantics the
complexity of both skeptical and credulous reasoning is lo-
cated on the second level of the polynomial hierarchy4. This
indicates that stage2 is among the computationally hardest
semantics but in the same breath also among the most ex-
pressive ones.

Conclusion
We discussed the drawbacks of the existing naive-based
semantics cf2 and stage and proposed the new semantics
stage2 which combines concepts of cf2 and stage to over-
come their shortcomings.

We provided a broad discussion of stage2 , its proper-
ties and relations to other semantics. First, beside the defi-
nition via the SCC-recursive schema we provided an alter-
native characterization which is similar to that of cf2 se-
mantics and thus allows to extend several results for cf2
also to stage2 . Further, we showed that stage2 fixes the
shortcomings of stage semantics w.r.t. the extension eval-
uation criteria proposed by (Baroni and Giacomin 2007).
We related stage2 semantics to the existing semantics show-
ing that stable(F ) ⊆ stage2 (F ) ⊆ cf2 (F ). Moreover, we

4For preferred semantics only skeptical acceptance is located
on the second level of the polynomial hierarchy while credulous
acceptance is NP-complete (Dunne and Bench-Capon 2002).



observed that on coherent AFs stage2 semantics coincides
with stable and preferred semantics.

Concerning redundant patterns, it turned out that stage2
semantics is the second semantics beside cf2 , where
strong equivalence coincides with syntactic equivalence.
This means that there no redundant patterns at all, and
stage2 semantics satisfies the succinctness property pro-
posed in (Gaggl and Woltran 2012).

Finally, we provided a complexity analysis showing
stage2 semantics is located at the second level of the poly-
nomial hierarchy and thus among the hardest argumenta-
tion semantics. These complexity results guide the way to
computationally adequate encodings in target formalism like
answer-set programming (Egly, Gaggl, and Woltran 2010) or
quantified boolean formulas (Egly and Woltran 2006).

Recently, Dov Gabbay dedicated an article to the equa-
tional approach of cf2 semantics (Gabbay 2012). Therein,
he introduced several new semantics to overcome the prob-
lems with cf2 . We leave a detailed comparison of those se-
mantics with stage2 for future work. Furthermore, we iden-
tify the following two directions for future work. The first
one being a more fine grained analysis of computational is-
sues and appropriate implementations of stage2 semantics.
The latter concerning the role of stage2 in the entire argu-
mentation process. For instance, in (Baroni, Caminada, and
Giacomin 2011) it has been shown that both, cf2 and stage
semantics fail the rationality postulates proposed in (Cam-
inada and Amgoud 2007) when one uses the instantiation
method proposed therein. Hence, one question for such in-
vestigation would be, under which circumstances stage2 se-
mantics satisfies the proposed rationality postulates.
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