Characterising Access Control Conflicts *

Joao Moura
CENTRIA - Centre for Artificial Intelligence
Universidade Nova de Lisboa, Portugal

Abstract

The emergence of technologies such as service-oriented
architectures and cloud computing has allowed us to
perform business services more efficiently and effec-
tively. Access control is an important mechanism for
achieving security requirements in such information
systems, which are described by means of access con-
trol policies (ACPs).

However, these security requirements cannot be guaran-
teed when conflicts occur in these ACPs. Furthermore,
the design and management of access control policies is
often error-prone due not only to the lack of a logical
and formal foundation but also to the lack of automated
conflict detection and resolution.

We use meta-model M? to describe ACPs as logic pro-
grams, identify their basic conflict types and charac-
terise them in terms of Default Logic and Strong Equiv-
alence of logic programs. This characterisation allows
for the automatic identification of such conflicts among
other reasoning tasks.

Introduction

We begin by clarifying the term policy in the context of ac-
cess control which is somewhat ambiguous in the literature.
Next we describe different aspects of access control policies
that are of general interest to us and serve as motivation for
our approach. Still in this Section we describe the state of the
art relevant for us in the area of logic based access control,
particularly meta-models for access control, keeping in mind
the way it reflects in answer set programming (Gelfond and
Lifschitz 1988) in particular. We also present an overview of
the relevant work in the context of Logic Programs as well
as, towards the logical characterisation of conflicts in access
control, an introduction to strong equivalence in the context
of logic programs due to (Lifschitz, Pearce, and Valverde
2000) and a relativised version of this notion due to (Eiter,
Fink, and Woltran 2007). Before we also introduce equilib-
rium logic and the logic of here and there because they are
necessary to the definition of strong equivalence.

*The work of Jodo Moura was supported by the grant
SFRH/BD/69006/2010 from Fundac@o para a Ciéncia e Tecnolo-
gia (FCT) from the Portuguese MEC - Ministério do Ensino e da
Ciéncia. He would also like to thank Carlos Damdsio for his im-
portant contribution as well as the anonymous reviewers.

In the following section we start by identifying and char-
acterising different access control conflicts. We then discuss
the interplay of exceptions in access control with default
negation in logic programming and open the path for intro-
ducing strong negation in future work.

After this, there is a section where we discuss conflict res-
olution methods and end with conclusions and future work.

Motivation The need for characterizing conflict factors is
not only due to the non-monotonic nature of access control
in ASP but also to the fact that some policies are distributed
and as such they can derive conflicting conclusions. The
characterizations we present have the potential to improve
the use of ASP in an access control mechanism by adding
another level of policy assurance.

We present next an example of an access control policy
where a user is represented by its credentials, each serving
different purposes and each with different attributes. The ex-
ample contains only one user and one credential for space
reasons. Each of the aforementioned attributes are to be
trusted for an entity. Subscriptions are available for differ-
ent resources. There are rules for deciding whether a user is
authenticated, whether a credential is valid or to check if the
policy derives access to a resource for a given purpose.

Example 1 presents a very simple access control policy
in the form of a positive logic program (apart from the
choice loop that could, in the context of this positive pro-
gram, be replaced by selectCred(X)VnselectCred(X) «
credential(X).).

Several limitations arise from directly implementing
ACPs as positive logic programs. One comes from the fact
that it is important to have a meta-model to describe and
possibly interchange this policy. Others from the facts that
more expressive power is needed and features such as de-
fault knowledge and exceptions are desirable and can be in-
cluded, thus making it non-monotonic. Negative authorisa-
tion is also described in the literature as being a necessary
feature. Other features such as separation-of-duty and the
existence of purposes are also desirable.

Example 1 The following is an example of an access con-
trol policy in ASP !:

"Example 1 was taken and then adapted from
http://asptut.gibbi.com/ (Eiter et al. June 2006)

allow (download, Resource) :-—
public (Resource) .

allow (download, Resource) :-—
authenticated (User),
hasSubscription (User, Subscription),

availableFor (Resource, Subscription) .

authenticated (User) :-
valid(Credential),
attr (Credential, name, User) .

valid(Credential) :-
selectCred (Credential),
attr (Credential, type,T),
attr (Credential, issuer,CA),
trustedFor (CA,T) .

hasSubscription ("Joao", law_basic) .
hasSubscription ("Joao", computer_basic).

availableFor ("nmrl2.pdf", computer_basic).

trustedFor ("New University",id).
trustedFor ("PT Government", ssn) .
% resources r(at_1, ..
credential (cr01) .
attr (cr0l, type, id).
attr (cr01l, name, "Joao") .

attr(cr0l, issuer, "New University").

.,at_n);

% Choice loop used to decide

% if a credential is used or not

selectCred(X) :—- credential (X),
not nselectCred (X) .

nselectCred (X) :- credential (X),
not selectCred (X).

This program has two answer sets, from which
we filter predicates selectCred, nselectCred, valid,
authenticated and allow, namely:

Answer Set 1:

{ selectCred(cr0l), wvalid(cr01l),
authenticated ("Joao"),
allow (download, "nmrl2.pdf") 1}

and Answer Set 2:
{ nselectCred(cr01l) }

Access Control Policies

For a long time now, logic programming and rule-based rea-
soning have been proposed as a strong basis for policy spec-
ification languages. However, the term policy has never been
given a unique meaning. In fact, it is used in the literature in
an ambiguous and broad sense that encompasses at least the
following types:

Access Control Policies are policies that pose constraints
on the behaviour of a system. They are typically used to

control permissions of users/groups while accessing re-
sources and services.

Trust Management these policy languages are used to col-
lect user properties in open environments, where the set of
potential users spans over the entire web and by definition
is a priori partially unknown.

Action Languages are used in the specification of reactive
policies to execute actions like event logging, notifica-
tions, etc. Authorisations that involve actions and side ef-
fects are sometimes called provisional.

Action languages typically are sorted into two classes: ac-
tion description languages and action query languages.
Examples of the former include STRIPS, PDDL, Lan-
guage A (a generalisation of STRIPS), Language B (an
extension of A) and Language C' (which adds indirect ef-
fects also, and does not assume that every fluent is au-
tomatically “inertial”). There are also the Action Query
Languages P, () and R. There are conversions of these to
ASP particularly, action language C'.

Business Rules are statements about how a business is
done. These are used to formalise and automate busi-
ness decisions as well as for efficiency reasons. They can
be formulated as reaction rules, derivation rules, and in-
tegrity constraints.

In the next sections, we present an overview of the exist-
ing approaches for Access Control Policies which is the only
type we consider in this paper. Henceforth, we will use the
term Policy as being an Access Control Policy.

In (Kolovski 2007; Bonatti et al. 2009), the reader can find
good introductory surveys to logic-based ACPs. (Kolovski
2007) is limited to the presentation of a DL-based formalism
to represent XACML policies, which is not formally charac-
terized, while (Bonatti et al. 2009) considers a more general
overview, including XACML.

Hierarchies, Inheritance and Exceptions For a long
time now, computer security models have supported some
forms of abstraction regarding the authorisation elements, to
formulate security policies concisely. For example, users can
be organised in groups. The authorisations granted to a user
group is applicable to all of its member users, and authorisa-
tions concerning a class of objects apply to all of its member
objects. This is typically modelled via an authorisation hier-
archy derived from the hierarchies of subjects, resources and
operations (basic hierarchies).

The authorisation hierarchy can be exploited to formu-
late policies in a incremental and top-down fashion. Starting
with an initial set of general authorisations that can be pro-
gressively refined with more specific authorisations that in
turn introduce exceptions to the general rules. A benefit that
come together with this is that policies may be expressed
concisely and allow easy management. Exceptions make in-
heritance a defeasible inference in the sense that inherited
authorisations can be retracted (or overridden) as exceptions
are introduced. As a consequence, the underlying logic must
be non-monotonic.

Exceptions require richer authorisations. It must be pos-
sible to say explicitly whether a given permission is granted

or denied. Then authorisations are typically extended with
some form of sign for granted permissions and some form
of negation for denials. It may easily happen that two con-
flicting authorisations are inherited from two incomparable
authorisations, therefore a policy specification language fea-
turing inheritance and exceptions must necessarily deal with
conflicts. A popular conflict resolution method — called de-
nial takes precedence — consists of overriding the positive
authorisation with the negative one (i.e. in case of conflicts,
authorisation is denied), but this is not the only possible ap-
proach. In (Al-Kahtani and Sandhu 2004) the analysis in-
cludes user authorisation, conflict among rules, conflict res-
olution polices, the impact of negative authorisation on role
hierarchies and an enforcement architecture.

Recent proposals have worked towards languages and
models that are able to express, in a single framework, dif-
ferent inheritance mechanisms and conflict resolution poli-
cies. Logic-based approaches, so far, are the most flexible
and expressive.

The M* model

Over the years, research in access control has proposed a
number of different models and languages in which terms
authorisation policies can be defined. Despite the variety of
proposed access control models described in the literature,
most of the existing access control models are based on a
small number of primitive notions.

In (Barker 2010) the authors describe the interpretation,
syntax and semantics that are adopted in their proposed ac-
cess control meta-model M ¥, which attempts to identify the
aforementioned small number of primitive notions and that
we will use throughout this paper.

In order to define M*, a prior version called meta-model
M (Barker 2009) is extended to accommodate data subjects,
data controllers, denials of access, the notion of purpose,
contextual accessibility criteria and the flexible specification
of permitted recipients of a data subject’s personal data. For
that, the following core (interpreted) relations of the M?”
model (defined with respect to their many-sorted language)
are used:

e PCA, a4-ary relation, K45 x Kg, x C' x P.

e ARCA, a S-ary relation, K43 x A X R x C' x P.
e ARCD, a 5-ary relation, K453 x A x R x C x P.
e PAR, a 3-ary relation, K4, x A X R.

e PRM, a 3-ary relation, K45 x R x M.

The semantics of the n-ary tuples in PCA, ARCA,
ARCD, PAR, and PRM are, respectively, defined thus:

o (kgs,kau,c,p) € PCA if-and-only-if a data user kq,, €
K, is assigned to the category ¢ € C for the purpose
p € P according to the data subject ks € Kys.

o (kgs,a,r,c,p) € ARCA if-and-only-if the permission
(a,r) is assigned to the category ¢ € C for the purpose
p € P according to the data subject kg5 € Kys.

o (kgs,a,r,c,p) € ARCD if-and-only-if the permission
(a,r) is denied to the category ¢ € C for the purpose
p € P according to the data subject kg5 € Kgs.

o (kgu,a,r) € PAR if-and-only-if a data user kg, € K,
is authorised to perform the action a € A on the resource
r € R.

o (kg4s,7,m) € PRM if-and-only-if the data subject kqs €
K4 controls access to the resource » € R and kg as-
serts that the meta-policy m € M applies to access on the
resource 7.

For representing hierarchies of categories, the following
definition is included as part of the axiomatization of M’
(where ’_’ denotes an anonymous variable):

contains(C,C) < dc(C, _),

contains(C,C) « dc(_, C),

contains(C',C") « de(C’,C"),

contains(C’,C") « de(C’, C""); contains(C"',C").

Authorisation may then be defined in M* terms as:

par(K gy, A, R) < prm(Kgys, R, ¢),
pca(de7 Kdua 0/7 P)7
contains(C,C"), arca(K4s, A, R, C, P).

In this instance, a closed policy is specified as being
enforced by all data subjects, and contains is a definition
of a partial ordering of categories that are elements in
the transitive-reflexive closure of a directly contains (dc)
relation on pairs of category identifiers dc(c;,c;), such
that: IT = dc(c;, ¢j) iff the category ¢; € C (¢; # ¢;)
is senior to the category ¢; € C in a category hierarchy
defined in II and there is no category ¢, € C such that
[de(eq, ex) A de(ek, ¢j)] holds where ¢, # ¢; and ¢ # ¢; .
Although the partial ordering of categories is often a feature
of access control models, it should be clear that other
relationships between categories may be easily defined
within the M* model.

We point out that this meta-model is formally well defined
and is essentially based on the use of just five key interpreted
relations (the pra, pca, arca, arcd and prm relations) and
two proper axioms that define par and contains.

For further details we refer the reader again to (Barker
2009; 2010).

Example 2 The following is the translation of Example 1 to

MPE:

arca (public,download,Resource,all, any) :—
prm(public, Resource,MetaPolicy).

arca (public,download, Resource,all,
SubscriptionType) :—
pca (ds,User,authenticated,_),
pca (ds,User, hasSubscription,
SubscriptionType),
par (SubsriptionType,availableFor,
Resource) .

pca (DS, User, authenticated,_) :-
pca (DS,DU,Credential,valid),
prm(ds,attr (cr0l, name,User),
metapolicyl) .

pca (DS,DU, Credential,valid) :-
par (DU, selectCred, Credential),
prm (DS, attr (CR,type,Type),MP),
prm (DS, attr (CR,issuer, Issuer),MP),
par (Type, trustedFor,Organization) .

par ("Joao",hasSubscription,
law_basic) .

par ("Joao",hasSubscription,
computer_basic).

par (computer_basic,availableFor,
"nmrl2.pdf").

par (id, trustedFor, "New University").
par (ssn,trustedFor, "PT Government") .

par (du, credential, cr01).

prm(ds,attr (cr0l, type,id), metapolicyl) .
prm(ds,attr (cr0l, name, "Joao"),
metapolicyl) .
prm(ds,attr (cr0l, issuer,
"New University"),metapolicyl).

%Credential selection

par (DU, selectCred, Credential) V

par (DU, notselectCred, Credential) : —
par (DU, credential,Credential) .

Equilibrium logic and the logic of here-and-there

We recall the basic concepts of equilibrium logic, an ap-
proach to non-monotonic reasoning developed by (Pearce
1997) as a generalisation of the answer-set semantics for
logic programs. We give only the most relevant aspects here.
For more details, the reader is referred to (Pearce 1997,
2006; Pearce, de Guzman, and Valverde 2000a; 2000b;
Lifschitz, Pearce, and Valverde 2000).

Equilibrium logic is based on the non-classical logic of
here-and-there, which is denoted by HT. The language of HT
is given by the class of propositional formulas as described
above, and the axioms and rules of inference of HT are those
of intuitionistic logic together with the axiom schema

(me DY) D (v D) DY) DY)

which characterises the three-valued here-and-there logic of
Heyting and Godel (for this reason, HT is sometimes also
known as Godel’s three-valued logic). The standard version
of equilibrium logic has two kinds of negation, intuitionistic
negation, —, and strong negation, ~. The authors also show
how strong negation can be added but for reasons that we
explain later as well as for simplicity, here we present a re-
stricted version containing only the first type of negation.
The model theory of HT is based on the usual Kripke se-
mantics for intuitionistic logic, which is given in terms of
Kripke frames of form (W, <), where WV is a set of points, or
worlds, and < is a partial-ordering on W, except that Kripke
frames for HT are restricted to those containing exactly two

worlds, say H (here) and T (there), with H < T. As in ordi-
nary Kripke semantics for intuitionistic logic, we can imag-
ine that in each world a set of atoms is verified and that, once
verified here, an atom remains verified there.

In view of the restricted nature of Kripke frames for HT, it
is convenient to define the semantics of HT in terms of HT-
interpretations, which are ordered pairs of form (I, I7) ,
where Iy and It are sets of variables such that I C Ir.
For an HT-interpretation I = (Iy,Ir) , a world w €
{H,T}, and a formula ¢, the truth value, vy (w, ¢) € {0,1},
of in w under [is given as follows:

1. if o = T, then vy (w, p) = 1;

»

if o = L, then vy (w, p) = 0;

3. if ¢ = p, for some variable p, then v;(w, @) = 1 if
p € Iy, and v;(w,) = 0 otherwise;

4. if o = =, then v;(w,) = 1 if, for every world u such
that w < w, vr(u,v) = 0, and vy (w, ¢) = 0 otherwise;

5. if ¢ = (1 A 2), then
U](’LU, 90) = min({vl(wa ()01)7 U](w, 902)})’
6. if o = (1 V p2), then
vr(w,) = maz({vr(w, 1), vr(w, p2)}); and

7. if o = (1 D p2), then v;(w,) = 1if, for every world u
such that w < u, v (u, 1) < vr(u, ps2), and vy (w, @) =
0 otherwise.

We say that ¢ is true under [in w if v;(w,) = 1, oth-
erwise ¢ is false under I in w. An HT-interpretation I =
(Ig, IT) satisfies o, or I is an HT-model of ¢, if-and-only-
ifvr(H, p) = 1. If ¢ possesses some HT-interpretation sat-
isfying it, then ¢ is said to be HT-satisfiable, and if every
HT-interpretation satisfies ¢, then ¢ is HT-valid. An HT-
interpretation is an HT-model of a set T" of formulas if-and-
only-if it is an HT-model of all elements of 7. Finally, an
HT-interpretation (I, I7) is said to be total if Iy = It ,
and non-total otherwise (i.e., if Iy C I7). It is easily seen
that any HT-valid formula is valid in classical logic, but the
converse does not always hold. For instance, p V —p and
——p D p are valid in classical logic but not in the logic of
here-and-there, because I = ((), {p}) is not an HT-model for
either of these formulas.

We say that two theories are equivalent in the logic of
here-and-there, or HT equivalent, if-and-only-if they pos-
sess the same HT-models. Two formulas, ¢ and v, are HT
equivalent if-and-only-if the theories {¢} and {4} are HT-
equivalent.

Equilibrium logic is characterised in terms of a particu-
lar minimal-model construction in HT. Formally, an equilib-
rium model of a theory T is a total HT- interpretation (I, I)
such that

(i) (I,I)is an HT-model of T, and

(ii) forevery proper subset J of I, (J, I') is not an HT-model
of T. (I, I) is an equilibrium model of a formula ¢ if-and-
only-if (I, I) is an equilibrium model of {¢}.

A formula ¢ is a brave consequence of a theory 7', sym-
bolically T' b, ¢, if-and-only-if some equilibrium model of
T satisfies ¢. Dually, ¢ is a skeptical consequence of T,

symbolically T" i, ¢, if-and-only-if all equilibrium models
of T satisfy (. The basic reasoning tasks in the context of
equilibrium logic are the following decision problems:

e Decide whether a given theory T possesses some equilib-
rium model.

e Given a theory T and a formula ¢, decide whether T' kv, ¢
holds.

e Given a theory T and a formula ¢, decide whether T' b ¢
holds.

The first task is called the consistency problem; the second
and third tasks are respectively called brave reasoning and
sceptical reasoning. For the time being, we only need to fully
consider the first but we will use the other two notions fur-
ther ahead in the document.

The following two propositions are straightforward and
will also be useful later on:

Proposition 1 For any HT-interpretation I = (I, IT) and
any propositional formula o, the following relations hold:

1. vi(T, @) = 1 if-and-only-if v, (¢) = 1;

2. vi(H,p) = limplies vi(T,p) = 1; and

3. vi(H,) = 1 if-and-only-if v, (p) = 1, if v is an ex-
pression (i.e., a formula without D) that does not contain
negation.

Notice that the first part of this proposition states that ¢ is
true under I = (I, Ir) in the world T if-and-only-if ¢ is
true under I7 in classical logic. The second part is a direct
consequence of the notion of an HT-interpretation, namely,
in view of the condition I C I, which holds for each HT-
interpretation (Ip7, IT). The third part states that formulas
without negations and implications can be evaluated by pure
classical means, i.e., in both worlds separately.

Proposition 2 A rotal HT-interpretation (I,I) is an HT-
model of ¢ if-and-only-if 1 is a model of in classical logic.

Strong Equivalence of Logic Programs

Towards the logical characterisation of conflicts in access
control, we present first an introduction to the here-and-there
logic and then to strong equivalence in the context of logic
programs due to (Lifschitz, Pearce, and Valverde 2000).

Strong Equivalence Theorem A program 7 is unary if, in
every rule of 7, the head is an atom and the body is either
T or an atom. In the statement of the theorem, formulas and
rules are identified in the sense of nested logic programs(Lif-
schitz, Tang, and Turner 1999) without strong negation and
with propositional formulas. Accordingly, programs become
a special case of theories, and we can talk about the equiva-
lence of programs in the logic of here-and-there.

Theorem 1 For any programs w1 and s, the following con-
ditions are equivalent:

(a) for every program m, programs 7 LU w and wo U T have
the same answer sets,

(b) for every unary program 7, programs 71 LU and mo U
have the same answer sets,

(¢) m is equivalent to o in the logic of here-and-there.

The fact that (b) implies (a) shows that the strong equiv-
alence condition we are interested in (for every m, m U 7
is equivalent to 7o LJ 7) does not depend very much on
what kind of program 7 is assumed to be: it does not mat-
ter whether 7 is required to belong to the narrow class of
unary programs or is allowed to be an arbitrary program with
nested expressions. The fact that (a) is equivalent to (c) ex-
presses the correspondence between the strong equivalence
of logic programs and the equivalence of formulas in the
logic of here-and-there.

Relativised Notions of Strong and Uniform Equiva-
lence In what follows, we revise the notions of relativised
strong equivalence (RSE) and relativised uniform equiva-
lence (RUE) due to (Eiter, Fink, and Woltran 2007).

Definition 1 Let P and Q) be programs and let A be a set of
atoms. Then,

(i) P and Q are strongly equivalent relative to A, denoted
P =4 Q, if-and-only-if PU R = QU R, for all programs
R over A;

(ii) P and Q are uniformly equivalent relative to A, denoted
P EZ‘ Q, if-and-only-if PU F = Q U F, for all (non-
disjunctive) facts ' C A.

Observe that the range of applicability of these notions cov-
ers ordinary equivalence (by setting A = {)) of two pro-
grams P,), and general strong (resp. uniform) equivalence
(whenever Atm(P U Q) C A). Also the following relation
holds: For any set A of atoms, let A’ = AN Atm(P U Q).
Then, P Eg‘ @ holds, if-and-only-if P =4 Q holds, for
e € {s,u}.

They show that RSE shares an important property with
general strong equivalence: In particular, they state that it ap-
pears that for strong equivalence, only the addition of unary
rules is crucial. That is, by constraining the rules in the set
in Definition 1 to unary rules does not lead to a different
concept.

Conflict types in Access Control and their
Characterisation

Prohibition is essential to achieve the security requirements
of modern information systems. However, defining prohibi-
tion in access control model will give rise to conflicts. A pol-
icy conflict occurs when the objectives of two or more poli-
cies cannot be simultaneously met. (Wang et al. 2010) have
summarised three types of policy conflicts in their model,
defined as modality, redundancy and potential conflicts.

Modality Conflict

Modality conflicts are inconsistencies in the policy speci-
fication which may arise when two or more policies with
opposite modalities refer to the same authorisation subjects,
actions and objects.

Simply put, a modality conflict occurs when there are both
allow and deny decisions with the same authorisation sub-
ject, action and objects.

Definition 2 Let 7 be an access control policy. We say that
there is a modality conflict if:

7 [=p Allow(X) A Deny(X)

In ASP and M?* terms this means having both arca and
arcd predicates in the same model. Due to the introduction of
an arcd predicate to represent — arca, it is possible to have an
equilibrium model (an answer set) containing both arca and
arcd predicates refering to the same authorisation subjects,
actions and objects.

Redundancy Conflict

It is known that assigning priorities to access control poli-
cies can solve modality conflicts. However, this method can
lead to the emergence of policies that never apply, which
can be called redundant policies. Even though a redundancy
conflict has no influence in the enforcement of the access
control policies, it should be identified and dealt with be-
cause a redundant policy often reflects a mistake that was
made while describing security requirements.

Definition 3 (Redundancy in M) Let © be an access
control policy and 11 a set of access control policies. As-
suming that the priority of 11 is higher than the priority of m
(i.e. II <), we have a redundancy conflict in M terms
when, for ™ and 11, arca literals are derived:

7 e arca(ds, a,r,¢,p) and Il =, arca(ds, a,r, ¢, p)
or arcd literals are derived:
7 e arcd(ds, a,r,c,p) and Il =, arcd(ds, a,r, ¢, p)

Thus, an access control policy 7 is a redundant policy if
a permission or a prohibition, having the same authorisation
subject, authorisation action, and authorisation object as 7,
is always (|=, denotes cautious consequence)’ derived from
the set of access control policies with higher priority than
the priority of 73.

Theorem 2 (Redundancy in terms of RSE) Let I1 be a set
of access control policies and m be a policy such that 11 < .
A redundancy conflict occurs when:

Ul ={, II

Thus, if m U 1L is strongly equivalent (over A) to 11, where A
is the language of MY .

The characterisation of redundancy in terms of strong
equivalence has been noted in the past e.g. in (Eiter et al.
2004).

Definition 4 (Partial Redundancy in M) Let © be an
access control policy and 11 a set of access control policies.
Assuming that the priority of 11 is higher than the priority
of w (i.e. Il <), we have a partial redundancy conflict in
MP terms when for m and 11, arca literals are derived:

7 | arca(ds, a,r,e,p) and II |, arca(ds, a,r, ¢, p)

2We consider here the well-known concepts of brave and cau-
tious (sceptical) consequence.

Note that the meta-model M does not allow directly the
specification of order between policies but this can be easily done
in ASP.

2. There are overlaps such as:

or arcd literals are derived:
7 b arcd(ds, a,r, ¢, p) and 11 = arcd(ds, a,r, ¢, p)

Thus, an access control policy 7 is a partially redundant
policy if a permission or a prohibition, having the same au-
thorisation subject, authorisation action, and authorisation
object as , can always be derived (=, denotes brave rea-
soning) from the set of access control policies with higher
priority than the priority of 7.

Theorem 3 (Partial Redundancy in terms of cautious RSE)
Let 11 be a set of access control policies and 7 be a policy
such that 11 < 7. A redundancy conflict occurs when:

_A

s

Thus, if m UL is strongly equivalent (over A) to 11, where A
is the language of M?.

Note that a partial redundancy occurs when there always
exist some answer sets (over a set A) that are the same for
7 U P and ITU P for any program P, but not all of them are
always the same i.e.

Jda € AS(mUP),be AS(TTIUP) s.t. (anb# D) A(a #b)

Potential Conflict

Notice that the above two types of conflict are inconsisten-
cies related to the authorisation subject, action and object.
There is another type of conflict between two policies having
overlaps in their condition expression. It is the case that there
is no modality conflict and redundancy conflict between the
two polices, but when their associated conditions are simul-
taneously satisfied, the two policies result in a modality con-
flict or redundant conflict.

According to the definition, when some policies have the
same condition literals, where a condition is a conjunctive
formula P, A P, A ... A P, and each P; represents a generic
well-formed formula. We can infer the existence of poten-
tial conflicts among these policies. Consequently, potential
conflicts are highly pervasive in access control systems.

Definition 5 A potential conflict occurs between two poli-

cies m; and 7; in M¥ terms if:

1. m; derives a permission (in the form of an arca literal)
and 7; derives a prohibition (in the form of an arcd lit-
eral) and,

condition(m;) N

condition(m;) # 0, and

3. There is no policy m, in the policy set such that:

condition(m;) A condition(m;) — condition(ny) and
my. derives a prohibition when

priority(m;) < priority(n;) < priority(my) or

my, derives a permission when

priority(m;) < priority(m;) < priority(my) .

Theorem 4 Let 7 be a policy, there is a potential conflict if:
7 U{L « allow(z) Ndeny(x)} =s {L + T}
and the policy is safe if:
7 U{L + allow(x) Ndeny(z)} =s 7

Potential conflicts have also been analysed in the exten-
sion of Lobo’s PDL with ordered disjunction by (Bertino
2005), where logic programming with ordered disjunction
was used as a way to prioritize action execution in case con-
flicting actions were triggered by the policy.

Default Negation as a Cause of Conflicts

Throughout this section we will present examples of pro-
grams which we start by formulating as sets of default rules
and then present their translation into ASP and their under-
lying characterisation. Knowledge is represented in default
logic (Reiter 1987) by a default theory (D, W) consisting of
a set of defaults D and a set of formulas W. Each default

rule like:
A Bl, ceey Bn
C

where A is a prerequisite, B ... B,, are justification and C
is a conclusion, is represented in LP as:

C < A not =By, ...,not ~B,.

There is work in the literature about intuitionistic inter-
pretations of default logic (Cabalar and Lorenzo 2004). In
(Woo and Lam 1992), default rules are used to provide se-
mantics to closed and open policy bases for the case where
a policy is represented as a 4-tuple A = (PT, P~, N* N7)
in which can be fitted explicit approvals and denials as well
as undetermined decisions.

Incoherences Some contradictions in a default theory
cause the non-existence of extension. We call such contra-
dictions incoherences. A default theory is incoherent if it has
no default extension, otherwise it is coherent.

Incoherences may be categorised into the different sorts
which are described in the following examples. We also
show the way they can be reflected as access control con-
flicts translated to incoherent ASP programs and the way
to capture them with the M? meta-model due to (Barker
2010):

Definition 6 (Default rule with exception.) 7' = (D, W),
where D = {8} and W = {A}. In T incoherences occur
between W and the consequents of applicable defaults.

Example 3 The following is an example of an ASP program
reflecting this conflict:

P1={allow_analysis(pedro, code).
candidate(pedro).
—allow_analysis(X, code) : —
not employee(X).}

Where the following is its translation to M*:

arca(ds, read, code, pedro, analysis).
pea(ds, pedro, candidate, analysis).
arcd(ds, read, code, pedro, analysis) «
not pca(ds, pedro, employee, analysis).

Considering the M? meta-model, Example 3
presents a contradiction because its only answer set
contains arca(ds, read, code, pedro,analysis) and
arcd(ds, read, code, pedro, analysis).Mp

Definition 7 (Omission of mandatory choice)
T = (D,W), where D = {8,322} and W = 0. In
T, incoherences occur in the consequents of applicable

defaults.

Example 4 The following is an example of an ASP program
reflecting this conflict:
P2 ={ allow_entrance(X,premises) : —
not —employee(X).
—allow_entrance(X, premises) : —
not —candidate(X).}

Where the following is its translation to M*:

arca(ds, enter, premises, X,) : —

not —pca(ds, X, employee,).
arcd(ds, enter, premises, X, _) : —

not —pca(ds, X, candidate,).

Considering the M? meta-model, Example 4 presents a
contradiction because its only answer set contains arca and
arcd predicates with the same arguments.

Definition 8 (Need for Action Rules) 7' = (D, W), where
D = {=B}and W = {A — B}. In T incoherences oc-
cur between the justifications of used defaults and the con-
sequences of (W and the consequents of used defaults).

Example 5 The following is an example of an ASP program
reflecting this conflict:
P3={ candidate(X) : —not employee(X).
employee(X) : —candidate(X).}
Where the following is its translation to MF :
pea(ds, X, candidate,) : —
not pca(ds, X, employee,).
pea(ds, X, employee, _) : —
pea(ds, X, candidate,).

Considering the M* meta-model, Example 5 presents an
incoherence because it has no answer sets. This is typically
solved with the introduction of action languages such as the
ones described in the introduction.

Incoherence can also be defined (in the sense of (FEiter,
Fink, and Moura 2010)) in terms of odd negative loops such
as the well known:

Definition 9 (Depth 1 negative loop) 7' = (D, W), where
D = {2} and W = {}. In T incoherences occur because
there is a loop between the justifications of used defaults and
the consequents of used defaults).

Example 6 The following is an example of an incoherent
ASP program reflecting this conflict:
P4 ={ employee(pedro).
allow_entrance(X) : —employee(X),
not allow_entrance(X). }

Where the following is its MF description:
pea(ds, pedro, employee, _).
arca(ds, enter, premises, X,) : —
pea(ds, X, employee,),
not arca(ds, enter, premises, X, _).

Considering the M* meta-model, Example 6 presents an
incoherence because it has no answer sets.

Classical Strong Negation as a Cause of Modality Con-
flicts Though we have not yet discussed strong negation in
this paper, mostly because M* presents a way of dealing
with this through arcd predicates, for contextualisation and
motivation for future work, we still sketch what are some of
its implications in access control.

Introducing strong negation (—) may lead to modality
conflicts in the state of a single user with respect to a sin-
gle role. The conflict is due to simultaneous positive and
negative authorisations. The following are variations of the
conflict:

e Case 1: Conflict among unrelated rules: an atom is de-
rived by an applicable rule and its negation is derived by
another applicable rule.

e Case 2: Conflict among related rules: an atom a is derived
by an applicable rule r;. That rule 1 implies another rule
ro to be applicable, which in turn derives the negation of
the atom —a.

Conflict resolution methods

Access control policies are expressed by means of rules
which enforce derivation of not only authorisations, access
control and integrity constraint checking but also conflict
resolution. To resolve rule conflicts, there must be a method
for unambiguously choosing a decision. Most conflict reso-
lution methods in practice choose one of the rules in conflict
to take precedence over the others. (Other methods are possi-
ble, however, such as majority rules — choosing the decision
of the majority of the rules in conflict).

We list several possible conflict resolution methods be-
low. Note that it is sufficient to define them in terms of their
behaviour when exactly two rules are in conflict, because
the access control system can handle cases of more than two
rules in conflict by following a simple algorithm that does
paired matches of each Allow rule against each Deny rule.
This algorithm issues an Allow decision if any Allow rule
wins its matches against every Deny rule, and otherwise is-
sues a Deny decision. Some of the possible conflict resolu-
tion methods for choosing rules to take precedence are:

e Specificity precedence: A rule that applies to a more spe-
cific entity takes precedence over a rule that applies to a
more general entity.

e Deny precedence: Deny rules take precedence over Allow
rules.

e Order precedence: Rules are totally ordered, so it is pos-
sible to explicitly state which rules take precedence over
others.

e Recency precedence: Rules specified more recently in
time take precedence over others. Note that recency prece-
dence is equivalent to order precedence where order is de-
termined by the time at which each rule was set.

These conflict resolution methods may be used in com-
bination. It is possible to use different conflict resolution

methods depending on whether conflicting rules differ in the
principals they cover, the resources they cover, or both. For
example deny precedence if conflicting rules differ in prin-
cipals, but specificity precedence if conflicting rules differ in
resources or in both resources and principals. It may also be
necessary to resort to multiple conflict resolution methods
when one method fails to resolve a conflict. For example,
when conflicting rules cover groups, but those groups are
peers of each other, specificity precedence cannot resolve
the conflict.

It has been shown in the literature how to use prioritised
logic programming to solve authorisation conflicts e.g. (Bai
2007), where the authors assign each rule a name represent-
ing its preference ordering, using a fixed point semantics to
delete those less preferred rules, then using ASP to evaluate
the authorisation domain to get the preferred authorisations.

In (Ahn et al. 2010) different combining algorithms have
been identified: Permit-overrides, Deny-Overrides, First-
Applicable, and Only-One-Applicable. as well as the way
they can be implemented in ASP.

Two-dimensional conflicts Besides violations of direct
manipulation in the presence of rule conflicts there is
also the question of behaviour in the presence of a two-
dimensional conflict. For example, two dimensional conflict
occurs when two rules are in conflict and one rule is more
specific in the principal dimension (e.g. in the role hierarchy)
while the other is more specific in the resource dimension.

Conclusions and Future Work

We identified different types of basic conflicts that occur in
access control programs and characterise them in terms of
the notion of Relativised Strong Equivalence of logic pro-
grams. We also identify conflicts that occur when we intro-
duce default negation and characterise them in terms of de-
fault logic while using meta-model M”" as well as answer
set programming throughout that section give examples of
those conflicts.

These characterisations enables the detection of con-
flicts to be done automatically by using automatic theorem
provers such as (Zinn and Intelligenz) and most importantly
the ones identified in (Cabalar and Lorenzo 2004) where it is
stated that the relation they established between S4F and the
logic of Here-and-There, allows using modal S4F provers
for proving theorems in that intermediate logic. Because of
the characterisation of Strongly Equivalent programs as pro-
grams that are equivalent in the logic of HT, we can use
these theorem provers to perform reasoning and automati-
cally identify the conflicts we characterised before in terms
of Strong Equivalence and Relativised Strong Equivalence.

Overall, these characterizations are flexible enough to be
extended to several types of conflicts, and can be used to de-
tect which types of conflict are generated, as well as trace
them back to the source (potentially identifying leaks in
ACP).

Future Work Introducing strong negation (—) may lead to
modality conflicts, even if this matter has been thoroughly

studied and partially solved in the literature through the in-
troduction of paraconsistent semantics and by dealing with
it syntactically.

We still need to investigate the possibility of having a
characterisation in the logic of HT or in terms of (Rela-
tivised) Strong Equivalence for the conflict types that we
identified as occurring with the introduction of default nega-
tion.

Research must be done next on conflict resolution meth-
ods, formally defining rule combining algorithms in M?.
We also plan to study the implication of using paracoherent
semantics such as Semi-Equilibrium models which was pre-
sented in (Eiter, Fink, and Moura 2010). It is necessary also
to investigate the usage of Action Languages to solve prob-
lems that arise from the introduction of default negation.

References
Ahn, G.-J.; Hu, H.; Lee, J.; and Meng, Y. 2010. Repre-
senting and reasoning about web access control policies. In
Ahamed, S. I.; Bae, D.-H.; Cha, S. D.; Chang, C. K.; Sub-
ramanyan, R.; Wong, E.; and Yang, H.-1., eds., COMPSAC,
137-146. IEEE Computer Society.

Al-Kahtani, M. A., and Sandhu, R. 2004. Rule-based rbac
with negative authorization. In Proceedings of the 20th An-
nual Computer Security Applications Conference, ACSAC
’04, 405-415. Washington, DC, USA: IEEE Computer So-
ciety.

Bai, Y. 2007. Logic program for authorizations. World
Academy of Science, Engineering and Technology issue 33.

Barker, S. 2009. The next 700 access control models or a
unifying meta-model? In Proceedings of the 14th ACM sym-
posium on Access control models and technologies, SAC-
MAT ’09, 187-196. New York, NY, USA: ACM.

Barker, S. 2010. Personalizing access control by generaliz-
ing access control. In Proceedings of the 15th ACM sympo-
sium on Access control models and technologies, SACMAT
’10, 149-158. New York, NY, USA: ACM.

Bertino, E. 2005. Pdl with preferences. In Proc. of POLICY,
213-222.

Bonatti, P. A.; Coi, J. L. D.; Olmedilla, D.; and Sauro, L.
2009. Rule-based policy representations and reasoning. In
Bry, F., and Maluszynski, J., eds., REWERSE, volume 5500
of Lecture Notes in Computer Science. Springer. 201-232.

Cabalar, P, and Lorenzo, D. 2004. New insights on the
intuitionistic interpretation of default logic. In de Mantaras,
R. L., and Saitta, L., eds., ECAI, 798-802. 10S Press.

Eiter, T.; Fink, M.; Tompits, H.; and Woltran, S. 2004. Sim-
plifying logic programs under uniform and strong equiva-
lence. In In LPNMRO04, 87-99. Springer.

Eiter, T.; Ianni, G.; Polleres, A.; and Schidlauer, R. June
2006. Answer set programming for the semantic web.

Eiter, T.; Fink, M.; and Moura, J. 2010. Paracoherent answer
set programming. In Lin, F.; Sattler, U.; and Truszczynski,
M., eds., Principles of Knowledge Representation and Rea-
soning: Proceedings of the Twelfth International Confer-
ence, KR 2010, Toronto, Ontario, Canada, May 9-13, 2010.
AAAI Press.

Eiter, T.; Fink, M.; and Woltran, S. 2007. Semantical char-
acterizations and complexity of equivalences in answer set
programming. ACM Trans. Comput. Logic 8(3).

Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. 1070-1080. MIT Press.

Kolovski, V. 2007. Logic-based access control policy spec-
ification and management.

Lifschitz, V.; Pearce, D.; and Valverde, A. 2000. Strongly
equivalent logic programs. ACM Transactions on Computa-
tional Logic 2:2001.

Lifschitz, V.; Tang, L. R.; and Turner, H. 1999. Nested
expressions in logic programs. Annals of Mathematics and
Artificial Intelligence 25:369-389.

Pearce, D.; de Guzman, I. P.; and Valverde, A. 2000a. Com-
puting equilibrium models using signed formulas. In Pro-
ceedings of the First International Conference on Compu-
tational Logic, CL 00, 688-702. London, UK: Springer-
Verlag.

Pearce, D.; de Guzman, I. P.; and Valverde, A. 2000b. A
tableau calculus for equilibrium entailment. In In Auto-
mated Reasoning with Analytic Tableaux and Related Meth-
ods, TABLEAUX 2000, LNAI 1847, 352-367. Springer.

Pearce, D. 1997. A new logical characterisation of stable
models and answer sets. In In Proc. of NMELP 96, LNCS
1216, 57-70. Springer.

Pearce, D. 2006. Equilibrium logic. Ann. Math. Artif. Intell.
47(1-2):3-41.

Reiter, R. 1987. A logic for default reasoning. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc. 68-93.

Wang, Y.; Zhang, H.; Dai, X.; and Liu, J. 2010. Conflicts
analysis and resolution for access control policies. In In-
formation Theory and Information Security (ICITIS), 2010
IEEE International Conference on, 264 —267.

Woo, T. Y. C., and Lam, S. S. 1992. Authorization in dis-
tributed systems:a formal approach. Security and Privacy,
IEEE Symposium on 0:33.

Zinn, C., and Intelligenz, L. F. K. Colosseum - an automated
theorem prover for intuitionistic predicate logic based on di-
alogue games.

