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Abstract
Preferential models provide a semantics for non-monotonic
reasoning systems. Moreover, they enable the study of clo-
sure properties at the level of the semantics.
Argumentation frameworks are an abstraction of argumenta-
tion systems that enable the specification of justified argu-
ments through an argumentation semantics. Since an argu-
mentation framework abstracts from the premisses and the
conclusions of arguments, closure properties cannot be ad-
dressed.
This paper proposes a less abstract suppositional argumen-
tation framework that enables the study of closure proper-
ties. The closure properties Cumulativity and Loop are inves-
tigated using a preferential model semantics that is defined
for a suppositional argumentation framework.

Introduction
Argumentation systems are now a day often used as a proof
theory for non-monotonic logics, and are used in the study
of human argumentation, for instance in legal reasoning. An
argumentation framework offers an abstract representation
of an argumentation system (Dung 1995). An argumenta-
tion framework abstracts from the conclusion supported by
an argument and from the reasoning process that leads to
the conclusion. It only keeps track of attack relations be-
tween arguments. Several argumentation semantics (Dung
1995; Baroni, Giacomin, and Guida 2005; Caminada 2006;
Baroni and Giacomin 2007; Bench-Capon and Dunne 2007;
Dung, Mancarella, and Toni 2007) have been defined for ar-
gumentation frameworks, specifying sets of justified argu-
ments which support the conclusions we may accept to be-
lieve.

Argumentation with defeasible arguments is a special
case of non-monotonic reasoning. The preferential model
semantics is the standard semantics of the underlying non-
monotonic logics (Kraus, Lehmann, and Magidor 1990;
Makinson 1988; 1994). This suggests that there must be
a relation between the preferential model semantics and ar-
gumentation frameworks. The research on which this paper
reports, studies this relation.

The first results concerning the relation between the pref-
erential model semantics and argumentation frameworks
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were presented in (Roos 2010). The paper describes a
preferential model semantics for argumentation frameworks
and shows that well known argumentation semantics (Dung
1995) correspond to restrictions on the preference relation.

Closure properties The preferential model semantics can
be used to study the closure properties of a corresponding
reasoning process. Closure properties are desirable proper-
ties of the consequence operator C<. Given a set of facts Σ
and a preference relation generated by the available knowl-
edge, the preferential model semantics specifies a set of pre-
ferred conclusions C<(Σ).

Closure properties are related to rationality postulates de-
scribed in (Caminada and Amgoud 2007). The main dif-
ference is that closure properties focus on (non-)monotonic
reasoning systems in general while the rationality postulates
focus on argumentation systems.

An argumentation framework abstracts from the structure
of an argument and the way the argument is constructed. So,
we neither know the facts that have been used in the con-
struction of an argument, nor the conclusion supported by
the argument. Because the facts are hidden within the ar-
guments, we cannot investigate closure properties; i.e., the
relation between the conclusions supported by justified ar-
guments and a set of facts Σ used to construct a set of argu-
ments.

To overcome this limitation, we will introduce a less ab-
stract suppositional argumentation framework. The idea is
that we construct arguments for different sets of facts Σ. In
other words: construct arguments supposing that the facts
Σ hold in the world. This resembles the suppositional ar-
guments introduced by Pollock (1992). Hence the name
suppositional argumentation framework. Note that we still
abstract from the structure of an argument and the way the
argument is constructed.

In this paper we will focus on two closure properties: Cu-
mulativity and Loop. Cumulativity states that the confir-
mation of a believed conclusion should not change the set
of conclusions while Loop states that equivalent representa-
tions should result in the same set of conclusions. Other clo-
sure properties such as Supra Classicality, Absorption and
Distribution will not be addressed because of space limita-
tions.



The relevance of Cumulativity Although Cumulativity
states that the confirmation of a believed conclusion should
not change the set of conclusions, several researchers doubt
whether Cumulativity is desirable.1 They point out that an
argument based on a fact ϕ is stronger than an argument
based an a justified sub-argument supporting ϕ. As a result
the set of conclusions may change after adding the fact ϕ.
Moreover, some researcher point out that the absence of Cu-
mulativity in many systems has not been a reason to abandon
these systems.1

Another argument in favor of Cumulativity is the equiva-
lence of Cumulativity with Reciprocity

if Σ ⊆ C(Γ) and Γ ⊆ C(Σ), then C(Γ) = C(Γ).

in the presence of Inclusion (Σ ⊆ C(Σ)). Reciprocity says
that two equivalent representations should result in the same
set of conclusions. If one agrees that equivalent representa-
tions must lead to the same set of conclusions, Cumulativity
must hold. Note that Loop is a stronger version of Reci-
procity.

Below we will see that Cumulativity holds if certain types
of self-attacking arguments are disallowed. This suggests
that the absence of Cumulativity is a problem of knowledge
represented in a system. The system in which the knowledge
is represented is therefore not to blame.

Paper outline First, the definitions of argumentation se-
mantics and of preferential model semantics are given. Next
the suppositional argumentation frameworks are introduced
and a preferential model is defined. Subsequently, the clo-
sure properties Cumulativity and Loop are addressed. Fi-
nally, the relation with the argumentation semantics is de-
scribed and related work is discussed.

Preliminaries
This section reviews the definitions of the argumentation se-
mantics and the preferential model semantics.

Argumentation semantics We use Dung’s argumentation
framework as a starting point (Dung 1995).

Definition 1 An argumentation framework is a couple
AF = 〈A,−→〉 where A is a finite set of arguments and
−→⊆ A×A is an attack relation over the arguments.

For convenience, we extend the attack relation−→ to sets
of arguments.

Definition 2 Let A ∈ A be an argument and let S,P ⊆ A
be two sets of arguments. We define:

• S −→ A iff for some B ∈ S, B −→ A.
• A −→ S iff for some B ∈ S, A −→ B.
• S −→ P iff for some B ∈ S and C ∈ P , B −→ C.

We wish to select a coherent subset E of the set of argu-
ments A of the argumentation framework AF = 〈A,−→〉.
Such a set of arguments E is called an argument extension.

1These points were raised in discussion about the here reported
research.

The arguments of an argument extension support proposi-
tions that give a coherent description of what might hold
in the world. Clearly, a basic requirement of an argument
extension is being conflict-free; i.e., no argument in an ar-
gument extension attacks another argument is the argument
extension. Beside being conflict-free, we will use the notion
of an admissible set of arguments and the notion of an ar-
gument that is acceptable w.r.t. a set of arguments. Defense
against attacking arguments forms the basis of both notions.
An admissible set of arguments defends itself against all at-
tacking arguments. An argument is acceptable w.r.t. a set of
arguments if the argument is defended by that set against all
attacking arguments.

Definition 3 Let AF = 〈A,−→〉 be an argumentation
framework and let S ⊆ A be a set of arguments.

• S is conflict-free iff S 6−→ S.
• S is admissible iff S is conflict-free and for every argu-

ment A ∈ A: if A −→ S , then S −→ A.
• A ∈ A is acceptable w.r.t. S iff for every argument B ∈
A, if B −→ A, then S −→ B.

Not every conflict-free set of arguments is considered to
be an argument extension. Several additional requirements
have been formulated by Dung (1995), resulting in different
semantic definitions.

Definition 4 Let AF = 〈A,−→〉 be an argumentation
framework and let E ⊆ A.

• E is a stable extension iff E is conflict-free and for every
argument A ∈ (A \ E), E −→ A.

• E is a preferred extension iff E is maximal (w.r.t. ⊆) ad-
missible set of arguments.

• E is a complete extension iff (i) E is an admissible set of
arguments, and (ii) every argument A ∈ A that is accept-
able w.r.t. E belongs to E .

• E is a grounded extension iff E is the minimal (w.r.t. ⊆)
complete extension.

Since the publication of Dung’s paper a number of new
semantics have been proposed. Baroni et al. (2005) propose
a different way of handling odd loops. Dung et al. (2007)
have proposed the ideal semantics. Caminada studies argu-
mentation semantics in terms of labelings and describes the
semi-stable semantics (Caminada 2006), which was intro-
duced by Verheij (1996). For an overview of the new argu-
mentation semantics that have been proposed, see (Baroni
and Giacomin 2007; Bench-Capon and Dunne 2007).

Preferential model semantics Preferential model seman-
tics was introduced by Shoham (1987) as a generalization
of circumscription (McCarthy 1980), and has subsequently
been extended to a general semantic theory by Makinson
(1988) and Kraus et al. (1990). The definitions given be-
low are based on the formalization given by Makinson in
(1994).2

2The preferential model semantics should not be confused with
the handling of conflicting arguments using a preference rela-



We start with a propositional language L for which we
define the preferential model semantics. The preferen-
tial model semantics uses preferential models to define an
agent’s beliefs given its knowledge about the world.
Definition 5 A preferential model P = (S, |=, <) is a triple
where:
• S is a set of states,
• |= ⊆ (S × L) is an arbitrary relation between states and

propositions, called the entailment relation3,
• < ⊆ (S × S) is an arbitrary relation between states,

called the preference relation.
Note that a preferential model does not specify what the
states and the entailment relation exactly are. In general,
one can view a state as an interpretation or a set of interpre-
tations of propositional or first order logic. The entailment
relation can then be viewed as a specification of the seman-
tics of a proposition with respect to a state. For the moment,
however, we do not consider such a restricted view on what
the states and the entailment relation represent.
Note that the preference relation denotes that we prefer a
state s to a state s′ if s < s′.4

A preferential model P = (S, |=, <) can be used to spec-
ify that a state preferentially satisfies a proposition ϕ ∈
L. Preferential entailment focusses on the preferred states
among the states satisfying the proposition.
Definition 6 Let P = (S, |=, <) be a preferential model,
s ∈ S be a state and let ϕ ∈ L be a proposition.
s preferentially entails ϕ, denoted by s |=< ϕ, iff s |= ϕ

and for no s′ ∈ S: s′ < s and s′ |= ϕ.
We extend the notion of entailment of a proposition to a

set of propositions: s |= Σ iff for every σ ∈ Σ, s |= σ. This
immediately gives us the preferential entailment of a set of
propositions: s |=< Σ.5 The latter we need to define the
preferential consequences of a set of propositions Σ. Prefer-
ential consequences are those propositions that are entailed
(satisfied) by all states that preferentially entail the set of
propositions Σ. We will use the preferential entailment op-
erator C< to denote this set of consequences.

Definition 7 Let P = (S, |=, <) be a preferential model,
and let Σ ⊆ L be a set of propositions.

The preferential entailment operator C< is defined as:

C<(Σ) = {ϕ ∈ L | for all s ∈ S, if s |=< Σ, then s |= ϕ}

Closure properties One of the main advantages of the
preferential model semantics is the relations with closure
properties. The closure properties describe desirable prop-
erties of the preferential entailment operator C<(·), which

tion defined over the arguments; see for instance (Dimopoulos,
Moraitis, and Amgoud 2008). A preference relation over argu-
ments expresses in some way the strength of an argument while
a preference relation over states expresses that the world should
correspond to one of the preferred states.

3A state s is said to entail or satisfy a proposition ϕ iff s |= ϕ.
4For historical reasons, namely minimizing exceptions, prefer-

ence is associated with minimality.
5s |=< Σ iff s ∈ min<|Σ| where |Σ| = {s ∈ S | s |= Σ}.

can be related to restrictions on the entailment and the pref-
erence relation.

The above defined preferential entailment operator pos-
sesses two important properties, namely, Inclusion and Cut.
Inclusion says that an agent should be able to conclude its
initial beliefs:

Σ ⊆ C<(Σ)

Knowing that Inclusion holds, Cut says that an agent should
not be able to conclude more after adding some conclusions
to the initial set of beliefs:

if Σ ⊆ Γ ⊆ C<(Σ), then C<(Γ) ⊆ C<(Σ)

Beside that an agent should not be able to conclude more
it should also not be able to conclude less after adding some
conclusions to the initial set of beliefs. This property is
called Cautious Monotony:

if Σ ⊆ Γ ⊆ C<(Σ), then C<(Σ) ⊆ C<(Γ)

In order to guarantee that a preferential model possesses the
property Cautious Monotony, we have to place a restriction
on the preference relation. A sufficient condition for Cau-
tious Monotony is a preference relation that is smooth6.

A preferential model is called smooth iff for every set
of propositions Σ and for every state s ∈ S, if s |= Σ,
then there exists a state s′ ∈ S such that s′ ≤ s and
s′ |=< Σ. (≤ denotes: < or =)

Cautious Monotony together with Cut gives us the prop-
erty Cumulativity:

if Σ ⊆ Γ ⊆ C<(Σ), then C<(Σ) = C<(Γ)

Many forms of knowledge representation including argu-
mentation systems do not possess the property Cumulativity.
Although they possess the property Cut, they do not process
the property Cautious Monotony.

Different formulations of knowledge and beliefs that are
in some sense equivalent should not lead to different sets of
conclusions. The property Loop expresses this idea:

if Σ2 ⊆ C<(Σ1), . . . ,Σn ⊆ C<(Σn−1),Σ1 ⊆ C<(Σn),
then C<(Σ1) = C<(Σi) for all 1 ≤ i ≤ n

A smooth preferential model possesses the property Loop if
the preference relation is transitive.

Suppositional argumentation frameworks
An important aspect of the preferential model semantics is
its relation with closure properties of the preferential en-
tailment operator C<(·). We cannot investigate the closure
properties of an argumentation framework because the facts
on which arguments are based are integrated in the argu-
ments. Moreover, we also abstracted from the propositions
supported by the arguments.

To study the closure properties of argumentation frame-
works, we must be able to identify the arguments that can

6The term ‘smooth’ was introduced by Kraus et al. (Kraus,
Lehmann, and Magidor 1990). Makinson uses the term ‘stop-
pered’.



be constructed supposing that a set of facts Σ holds in the
world. We therefore propose a suppositional argumenta-
tion framework. In this argumentation framework, the set
of premises of an argument is made explicit. Since we
also need to know the conclusions supported by the argu-
ments, also the conclusion of an argument is made explicit.
A suppositional argumentation framework is therefore less
abstract than Dung’s argumentation framework. Note that
we still abstract from the structure of an argument and the
way the argument is constructed. So, we do not consider
any specific argumentation system.

The definition of a suppositional argumentation frame-
work extends the definition of Dung’s argumentation frame-
work with operators for specifying the premises and the con-
clusion of an argument. The language of propositions that is
used to describe the premises and the conclusion of an argu-
ment is denoted by LB .

Definition 8 A suppositional argumentation framework is a
tuple SAF = 〈A,−→,¯,ˆ〉 whereA is a finite set of suppo-
sitional arguments, −→ ⊆ A×A is an attack relation over
the arguments, Ā ⊆ LB denotes the set of premises of the
suppositional argument A ∈ A, and Â ∈ LB denotes the
conclusion supported by A.

An argument A with a single premise σ and a conclusion
ϕ will sometimes be denoted by: Aϕσ .

The following example gives an illustration of a supposi-
tional argumentation framework.

Example 1 Suppose that we have three defeasible rules that
are used to construct suppositional arguments: p; q, q ;
r, and s ; ¬r. Let p ; q have the lowest preference and
let q ; r have the highest preference. Using these rules the
following arguments might be constructed: Aqp = [p ; q],
Brp = [p; q, q ; r], C¬rs = [s; ¬r], Dr

q = [q ; r] and
E¬qs = [s; ¬r, q ; r].7

Now suppose that the least preferred rule must be invalid
if a contradiction is derived. This gives us the attack rela-
tion: −→ = {(C,B), (D,C), (D,E), (E,A), (E,B)}.

We can now identify argument extensions for different sets
of facts that may hold in the world.

• Given the facts p and s, an argument extension will con-
tain the arguments: C¬rs and E¬qs .

• Given the facts q and s, an argument extension will con-
tain the argument: Dr

q .
• Finally, given the facts p, q and s, an argument extension

will contain the arguments: Aqp, Brp and Dr
q .

A preferential model for SAF
A state of a preferential model is often interpreted as giving
an abstract representation of the world or the agent’s beliefs
about the world. An agent’s beliefs about the world con-
sists of propositions supported by arguments the agent ac-
cepts. Therefore, a state should also specify the arguments
that are accepted. These arguments are entailed by the state.

7We use square brackets to emphasize that the rules between
the brackets are somehow used in the construction of argument.

The conclusions of the accepted / entailed arguments specify
propositions entailed by the state.

A state cannot cannot specify any set of arguments. First,
the set of arguments must be conflict-free w.r.t. the attack
relation −→. Second, a suppositional argument can only be
entailed by a state if the state also entails the premises of
the argument. Premises are either facts about the world or
propositions supported by arguments. To create a uniform
approach, we will represent facts about the world by a spe-
cial type of arguments, which we call hypotheses.
Definition 9 The set of arguments representing all possible
hypotheses is defined as:

H = {H | Ĥ = σ ∈ LB , H̄ = ∅}
A hypothesisH supporting a fact σ may be denoted by: Hσ .
Note that we distinguish between a hypothesis Hσ ∈ H and
an argument Aσ∅ ∈ A with an empty set of premisses.

The introduction of hypotheses makes it possible to spec-
ify a state using a subset of the argumentsH ∪A.
Definition 10 A state s is defined by a subset of H ∪ A,
which we denote by [s]. So, [s] ⊆ (H ∪A).

The entailment relation w.r.t. a state s is defined as:
• s |= A with A ∈ (H ∪A) iff A ∈ [s].
• s |= ϕ with ϕ ∈ LB iff ϕ = Â for some A ∈ [s].

Finally, a state s must satisfy the following two require-
ments:
• [s] 6−→ [s]

• For every A ∈ [s] and for every σ ∈ Ā, s |= σ.
The set of all states satisfying these requirements is de-

noted by S∗.
The choice for states represented by set of arguments is

similar to (Roos 2010). In the latter paper, states are rep-
resented by set of arguments because we do not know the
premises and the conclusion of an argument in Dung’s ar-
gumentation framework. Here states also represent sets of
arguments. Thereofore, the preference relation of the pref-
erential model can be defined in a similar way as is done in
(Roos 2010). The main difference is that we have to take the
applicability of arguments into account. The following def-
inition defines the applicable arguments of a state and other
useful functions.
Definition 11 Let S∗ be a set of states,A be a set of suppo-
sitional arguments andH be a set of hypotheses.
• Ap(s) = {A ∈ A | s |= Ā} denotes the applicable

arguments of s ∈ S∗.
• Ap(R) =

⋂
s∈RAp(s) denotes the applicable arguments

of a set of states R ⊆ S∗.
• A(s) = {A ∈ A | s |= A} denotes the arguments en-

tailed by s ∈ S∗
• H(s) = {H ∈ H | s |= H} denotes the hypotheses

entailed by s ∈ S∗

An attack relation B −→ A does not only express that
the two arguments A and B cannot be entailed by the same
state. The attack relation also expresses a preference be-
tween states. We prefer a state entailing the attacking argu-
ments to a state entailing the attacked arguments.



Requirement 1 A state s is preferred to a state s′ if every
argument entailed by the state s′ that is no longer entailed by
s but is applicable in s is attacked by an argument entailed
by s that is also applicable in s′.

Example 2 Consider two states, s and s′ where [s] =
{Hσ, Hµ, Aασ} and [s′] = {Hσ, Hµ, Bβµ}. Moreover, let
B −→ A. Since the arguments A and B are applicable
in both states, we should prefer the state s′ entailing the
attacking argument B to the state s entailing the attacked
argument A.

Now consider two additional states s′′ and s′′′ where
[s′′] = {Hσ, Hµ, Aασ , C

γ
α} and [s′] = {Hσ, Hµ, Bβµ , D

δ
β}.

Moreover, let C −→ D. Since the arguments A and B are
still the only applicable arguments in both states, we should
prefer the state s′′′ to the state s′′. Moreover, we prefer s′′
to s, s′′′ to s′, s′ to s′′ and s′′′ to s.

The requirement enable us to define a weak preference re-
lation . over the states S of a preferential model that share
the same set of hypotheses. Preference between states can-
not change the set of facts that hold in the world. Therefore
the set of hypotheses may not change.
Definition 12 Let SAF = 〈A,−→, ¯ , ˆ 〉 be a supposi-
tional argumentation framework. Moreover, let S∗ be a set
of states and let |=⊂ (S∗×(A∪H∪LB)) be an entailment
relations over states, arguments and propositions.
The weak preference relation . ⊂ (S∗ × S∗) is defined as:
s . s′ iff
• for every B ∈ Ap({s, s′}) such that s′ |= B and s 6|= B

there is an A ∈ Ap({s, s′}) such that s |= A, A −→ B;
• H(s) = H(s′).

Note that the weak preference relation . is not strict.
Consider for example the well known Nixon diamond in
which we have an argument for Nixon being a pacifist and
an argument for Nixon being a non-pacifist. Clearly the two
arguments attack each other and without additional informa-
tion we have no reason to prefer either one of them. Hence,
the preferences generated by mutual attacks cannot be strict.

Definition 6 of preferential entailment assumes that the
preference relation is strict. If the preference relation < of a
preferential model is not strict, we cannot be sure that s′ is a
non-minimum state if s < s′. The states s and s′ could also
be equally preferred, implying s′ < s.

Since the preference relation . generated by the attack
relation −→ is not strict, we have to transform it into a strict
relation. We know that s . s′ does not indicate a strict
preference if there exists a set of states {s1, ..., sn} such that:

s . s′ . s1 . ... . sn . s

Therefore, we may define s < s′ as: s . s′ and s′ 6.+ s,
where .+ denotes the transitive closure of ..

In (Roos 2010), the above proposed preference relation <
is used to determine the preferred states of the preferential
model. In case of suppositional argumentation frameworks,
we need to extend this preference relation in order to prefer
the right states. To illustrate the need to extend the prefer-
ence relation, consider two suppositional arguments Aασ and
Bβµ , and the attack relationB −→ A. Figure 1.a shows some

of the states and the preference relation between these states
of the corresponding preferential model.
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Figure 1: Unwanted preferences.

Suppose that the set of facts Σ = {σ} is given. Then
we have to restrict the set of states in the preferential model
shown in Figure 1.a to those satisfying Σ, which are all the
states. Within this set of states, there are two preferred
states; the state entailing Hσ, Aασ and the state entailing
Hσ, Hµ, Bβµ . The preferred state entailing Hσ, Hµ, Bβµ is
clearly unwanted because the suppositional argument B is
not applicable if all we know is that Σ holds in the world.

The set of states in which the argument B is applicable
overlaps with the set of states entailing the set of facts Σ.
However, there is no support for the premises of the argu-
ment B given Σ. The states in which B is applicable as-
sume more information. We should therefore prefer a less
informative state entailing Σ whenever possible. The infor-
mation of a state s is measured by the set of propositions
LB(s) = {ϕ ∈ LB | s |= ϕ} entailed by s. A state s en-
tails strictly less information than s′, denoted by s ≺ s′, iff
LB(s) ⊂ LB(s′).

We also require that a preferred less informative state
consists of hypotheses only. This guarantees that preferred
states are grounded in facts. The dashed lines in Figure 1.b
show the preference that should be added.

Preferring less informative states may result in cycles.
In the preferential model shown in Figure 3, the state en-
tailing Hσ, Hβ is less informative than the state entailing
Hσ, Aασ , B

β
α. Since the less informative state assumes more

facts, we should not add a preference for this state.
Requirement 2 A state s is preferred to a state s′ if s is
strictly less informative than s′ and s does not entail more
(w.r.t. ⊆) hypotheses than s′.
This requirement does not avoid all cycles but the remaining
cycles are harmless.

There is one last issues that must be addressed before we
can define a preferential model for a suppositional argumen-
tation framework. The preferences between the states reflect
a part of the argumentation process. Consider for instance
the preferential model in Figure 2.a. The figure shows that
the argument A is attacked by the argument B resulting in
preferring s3 and s4 to s2. Now suppose that we consider
the facts Σ = {σ, µ, α}. Then s2 and s4 are preferred states
entailing Σ; i.e., {s2, s4} ⊆ min< |Σ|. Clearly, the prefer-
ence for s2 is undesirable since the argumentB is applicable
in s2, and since s4 is preferred to s2. To avoid this prob-
lem, the preferential model should only contain states that
defend themselves against attacking arguments. Figure 2.b
illustrates this restriction.
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Figure 2: Valid states of the preferential model.

Requirement 3 A state s is a valid state of the preferential
model if it defends itself against attacking arguments.

The preference relation can now be defined. Note that the
second item formalizes the defense against attacking argu-
ments.
Definition 13 Let s, s′ ∈ S∗ be two states.

The state s is preferred to s′, denoted by s < s′, iff one of
the two conditions holds:

1. s ≺ s′, A(s) = ∅ andH(s′) 6⊆ H(s),
2. s . s′, A(s′) ⊆ A(s), and

if s′′ . s, then either s .+ s′′ or A(s) ⊆ A(s′′).
Putting all requirements together leads to Definition 14.

Definition 14 Let SAF = 〈A,−→, ¯, ˆ〉 be a suppositional
argumentation framework, let L be a language and let S∗
be a set of states. Moreover, let < be the preference relation
defined in Definition 13.

The preferential model P = (S, |=, <) for the supposi-
tional argumentation framework SAF is defined by the re-
striction of the states S∗ to the states S meeting the follow-
ing conditions:
• s ∈ S if A(s) = ∅,
• s ∈ S if s < s′ and s′ ∈ S,
• nothing else belongs to S.

Closure properties An important advantage of preferen-
tial models is their relation with closure properties of the
consequence operator C< : 2L

B → 2L
B

:

C<(Σ) = {ϕ ∈ LB | for all s ∈ S, s |=< Σ implies s |= ϕ}
where |=< is the entailment relation defined in Definition
6. In the next section we will study the conditions under
which an argumentation system will possess the properties
Cumulativity and Loop.

Conditions for Cumulativity and Loop
To study the conditions under which a suppositional argu-
mentation framework is Cumulative, we will use the follow-
ing well known example showing the absence of Cumula-
tive.
Example 3 Let A = {Aασ , Bβα, C¬αβ } be the set of suppo-
sitional arguments. Moreover, let there be no preference
between the arguments Aασ and C¬αβ , resulting in a mutual
attack between the arguments: : A −→ C and C −→ A.

Figure 3 shows part of the preferential model generated
by the suppositional argumentation framework described in
the example. Suppose that the set of facts Σ = {σ} is given.
All states in Figure 3 entail this set of facts. The state en-
tailing Hσ, Aασ , B

β
α is the preferred state, which entails the

propositions σ, α and β.
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 AHH ,,

Figure 3: Unsound suppositional argumentation framework.

Next suppose that the set of facts Γ = {σ, β} is given.
All states in Figure 3 except for the states entailing Hσ and
Hσ, Aασ entail Γ. Now, there are three preferred states be-
cause the chain of preferences is broken without the state
entailing Hσ . As a result, we have two states entailing the
propositions σ, α and β, and one state entailing the proposi-
tions σ, ¬α and β. So, we do not have Cumulativity.

We can solve the above described problem by introducing
the attack relation A −→ C. Figure 4 shows a part of the re-
sulting preferential model. Given the set of facts Γ = {σ, β}
we have two preferred states, which both entail the proposi-
tions σ, α and β. So, in this example Cumulativity holds.
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Figure 4: Sound suppositional argumentation framework.

A question that we may ask is whether there is a general
reason for adding the attack relation A −→ C. In the exam-
ple, we have a chain of arguments where the conclusion of
one argument enables the next argument; i.e., is the premise
of the next argument. The first argument in the chain is Aασ
and the last is C¬αβ . Since A indirectly enables C, C should
not attack A.

Caminada (2004) calls arguments where A enables C and
C attack A, hang yourself arguments. In his view these ar-
guments are a form of reductio ad absurdum.

A suppositional argumentation framework without hang
yourself arguments will be called sound.

Definition 15 Let SAF = 〈A,−→,ˆ,¯〉 be a suppositional
argumentation framework.

The argumentation framework is called sound iff for ev-
ery pair of arguments A,C ∈ A and for every sequence of



arguments A = B1, B2, . . . , Bk = C such that B̂i ∈ B̄i+1,
C 6−→ A.

The soundness of a suppositional argumentation frame-
work turns out to be a sufficient condition for the closure
properties Cumulativity and Loop.

Theorem 1 Let SAF = 〈A,−→, ˆ, ¯〉 be a sound suppo-
sitional argumentation framework. Then SAF satisfies the
closure properties Cumulativity and Loop.

The relation with argumentation frameworks
Suppositional argumentation frameworks have been intro-
duced in order to study the closure properties and to refine
the relation with preferential models. Till now we did not
address the relation with Dung’s argumentation frameworks.

Given a set of facts Σ, a suppositional argumentation
framework specifies a set of applicable arguments; i.e., ar-
guments of which the premisses are included in Σ. So, using
the facts Σ we can transform a suppositional argument into
an abstract argument of Dung’s argumentation framework.

Definition 16 Let SAF = 〈A,−→, ¯, ˆ〉 be a suppositional
argumentation framework and let Σ be a set of facts.

Then the corresponding argumentation framework
AF = SAF [Σ] = 〈A′,−→′〉 is defined as:

• A′ = {A ∈ A | Ā ⊆ Σ} ∪ H
• −→′ = −→ ∩ (A′ ×A′)

The preferential model P ′ = (S′, |=′, <′) for Dung’s ar-
gumentation framework defined in (Roos 2010) can be de-
rived from the preferential model P = (S, |=, <) for SAF .
S′ must consist of the states that only contain arguments
from A′ and hypotheses supporting facts form Σ.

• S′ = {s ∈ S | {σ | s |= Hσ} ⊆ Σ,A(s) ⊆ A′}
• s |=′ A iff A ∈ [s]

• >′=> ∩(S′ × S′)
We can use the preferential model P ′ to define a conse-

quence operator C ′<[Σ] using the conclusion operator ˆ of
SAF .

C ′<[Σ] = {Â | for all s ∈ S′, s ∈ min
<′

S′ implies s |=′ A}

The conclusions C<(Σ) supported by a suppositional ar-
gumentation framework SAF should be the same as the con-
clusions C ′<[Σ] supported by the corresponding argumen-
tation framework AF . It is not difficult to see that this is
not always the case. Given the facts Σ = {σ} the suppo-
sitional argumentation framework in Figure 4 supports the
set of conclusions {σ, α, β} while the corresponding argu-
mentation framework supports the set of conclusions {σ, α}.
The reason for the difference is that the conclusion of the ar-
gument A makes the argument B applicable while B is not
applicable given Σ. These differences should be avoided.

Requirement 4 A suppositional argumentA that is inappli-
cable given a set of facts Σ should have no influence on the
set of propositions from LB entailed by the preferred states.

Concatenation of arguments In order to satisfy Require-
ment 4, an argumentation system should generate arguments
that result in preferred states satisfying the same proposi-
tions from LB as a chain of suppositional arguments. The
arguments that should be generated are the concatenations
of suppositional arguments. We may concatenate two sup-
positional arguments to create a new suppositional argument
if the conclusion of one argument is one of the premises of
the other argument.

Definition 17 Let A,B ∈ A be two arguments and let
Â ∈ B̄. Then we can concatenate A and B to create a new
argumentC = A◦B where Ĉ = B̂ and C̄ = Ā∪(B̄−{Â}).

When we create new suppositional arguments through
concatenations of given arguments, we do not introduce
new information. Therefore, the new set of preferred states
should entail the same propositions from LB . Of course, the
set of arguments entailed by the preferred states may change
because we have created new arguments.

Requirement 5 Extending a set of arguments with argu-
ments that are created by concatenation of existing argu-
ments should not change the set of propositions from LB
entailed by the new set of preferred states of a preferential
model.

This requirement places restrictions on the attack rela-
tion in which a new argument is involved in. An argument
C = A ◦ B may not attack an argument D that is not at-
tacked by A or B, and the argument C may not be attacked
by an argument E that is not attackingA orB. These condi-
tions are necessary but not sufficient. To meet Requirement
5, some attack relations must be specified. There are four
situations that we must consider, namely, D is attacked by
A,D is attacked byB,A is attacked byE, andB is attacked
by E.
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Figure 5: Attacks by concatenated arguments.

If D is attacked by A, then this results in a preference for
the state entailing A to the state entailing D, as is illustrated
by Figure 5.a. Since the state entailing A and B is preferred
to the state entailing A, we have an indirect preference for
the state entailing A and B to the state entailing D. So,
since C = A ◦ B, the state entailing C should be preferred
to the state entailing D, and therefore C should attack D, as
is illustrated by Figure 5.c.

If D is attacked by B, then this results in a preference for
the state entailing B to the state entailing D, as is illustrated
by Figure 5.b. Also in this case, the state entailing C should



be preferred to the state entailing D, and therefore C should
attack D, as is illustrated by Figure 5.c.

If A is attacked by E, then this results in a preference
for the state entailing E to the state entailing A, as is illus-
trated by Figure 6.a. Similarly, if B is attacked by E, as is
illustrated by Figure 6.b. In both cases, the state entailing E
should be preferred to the state entailing C, and therefore E
should attack C, as is illustrated by Figure 6.c.
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Figure 6: Attacking concatenated arguments.

The following definition formalizes the above introduced
requirements with respect to the construction of supposi-
tional arguments from other suppositional arguments.
Definition 18 Let P = (S, |=, <) be a preferential model
for the argumentation framework SAF = 〈A,−→, ¯, ˆ〉.

The argumentation framework SAF is called closed un-
der the argument concatenation operator ◦ iff for every A ∈
A and for every B ∈ A such that C = A ◦ B the following
conditions hold:
• C ∈ A;
• for each argument D ∈ A, if A −→ D or B −→ D, then
C −→ D;

• for each argument E ∈ A, if E −→ A or E −→ B, then
E −→ C.

If a suppositional argumentation framework is closed un-
der the argument concatenation operator ◦, we will call it
a closed suppositional argumentation framework.

Theorem 2 Let C<(·) be the consequence operator of a
suppositional argumentation framework SAF = 〈A,−→
, ¯ , ˆ 〉. Moreover, let C ′<[Σ] be the consequence opera-
tor of the corresponding argumentation framework AF =
SAF [Σ].

If SAF is a closed framework, then C<(Σ) = C ′<[Σ] for
every Σ ⊆ LB .

The relation with argumentation semantics Theorem 2
enables us to apply the results of (Roos 2010) to suppo-
sitional argumentation frameworks. Below the results are
listed for the preferential model P = (S, |=, <) of a closed
suppositional argumentation framework SAF = 〈A,−→
, ¯, ˆ〉.
A(s) is a stable extension iff s is a preferred state in S,
and for any state s′ ∈ S, if s′ . s, then s . s′.
In order to establish the relation with the preferred seman-

tics, we have to refine the weak preference relation ..

Definition 19 Let . be the weak preference relation.
The preference relation that is the result of attacking ar-

guments only is defined as:
�
∼ = {(s, s′) | s . s′,∀A ∈ (A(s)−A(s′)): A −→ A(s′)}

s ∈ S is an admissible state iff for every state s′ ∈ S such
that s′ �∼ s, s . s′.

A preferred state among the admissible states corresponds
to a preferred extension.

A(s) is a preferred extension iff s is a preferred
admissible-state in S.

The relation with a complete extension requires the notion
of an acceptable state.

Definition 20 A state s is acceptable with respect to a state
s′ iff A(s′) ⊆ A(s) ⊆ Ap(s′) and for every state s′′ ∈ S if
s′′ �∼ s, then s′ . s′′.

We can now establish the relation with the complete se-
mantics.

A(s) is a complete extension iff s is an admissible state
in S and s is the only state that is acceptable w.r.t. s.

The grounded semantics selects the unique subset mini-
mal complete extension.
A(s) is a grounded extension iff s is a least preferred
state among the states in S that are both admissible and
for which s is the only state acceptable w.r.t. s.
The above four results imply that the set of preferred con-

clusions C<(Σ) of the preferential model corresponds to the
set of conclusions supported by justified arguments.

Related work
A suppositional argumentation framework is closely related
to a dynamic argumentation framework (DAF) introduced
by Rotstein et al. (2010). A DAF aims at dealing with the
dynamics of argumentation systems by considering various
sets of evidence. A DAF is less abstract than a suppositional
argumentation framework. In a DAF, the complement of be-
lieved propositions are defined and are used to introduce the
notion of a conflict between two arguments. The attack rela-
tion is the result of resolving the conflicts using a preference
relation over sets of arguments. A supposition argumenta-
tion framework stays closer to Dung’s argumentation frame-
work by following Dung in taking the attack relation as a
starting point.

A suppositional argumentation framework may seem
related to a assumption-based argumentation framework
(ABA) (Dung, Kowalski, and Toni 2009). The assumptions
in ABA play partially a similar role as the hypotheses intro-
duced in this paper. Both play the role of making arguments
applicable. However, in an ABA the assumptions are part
of the argumentation framework and are subject to defeat.
Hypotheses do not belong to a suppositional argumentation
framework and are not subject to defeat. Hypotheses only
play a role in the construction of a preferential model.

The weak preference relation . introduced in this pa-
per is related to several preference relations proposed in the



literature. To the author’s knowledge, such a preference
relation was first used in the semantics of an instance of
assumption-based argumentation described in (Roos 1988;
1992).

Amgoud & Vesic (Amgoud and Vesic 2011) define a pref-
erence similar to the weak preference relation .. Their pref-
erence relation plays a completely different role. While .
is a preference relation of the preferential model semantics,
Amgoud & Vesic’s preference relation is a relation of the ar-
gumentation system. It is based on a preference relation over
arguments and is used to choose between argument exten-
sions. Preferences over arguments have also been used for
generating or modifying the attack relation over arguments.
See for instance (Dimopoulos, Moraitis, and Amgoud 2008;
Modgil 2009).

Caminada & Amgoud (2007) describe rationality postu-
lates for argumentation systems. These postulates differ
from closure properties in their focus on argumentation sys-
tems instead of (non-)monotonic reasoning systems. Goro-
giannis & Hunter (2011) describe rationally postulates for
the attack relation and the for the content of extensions in
logic-based argumentation.

Caminada (2004) addresses the use of hang yourself argu-
ments in an argumentation system defined in (Prakken and
Sartor 1997). He argues that a hang yourself argument A
should only be used as counter-argument for a sub-argument
B of A. Based on this view, he adapts the grounded se-
mantics and subsequently shows that this semantics implies
Cautious Monotony. This paper shows that the absence of
hang yourself arguments implies Cautious Monotony in any
argumentation system and in any argumentation semantics.

Conclusion
This paper introduced a suppositional argumentation frame-
work in order to study the closure properties of argumenta-
tion systems. A preferential model semantics has been de-
fined for the suppositional argumentation framework. The
preferential models semantics has subsequently been used
to prove that argumentation system satisfy the closure prop-
erties Cumulativity and Loop if self-attacking arguments of
the type hang yourself cannot be constructed given the avail-
able knowledge and information. Closure properties such
as Supra Classicality, Absorption and Distribution can eas-
ily be addressed using the here defined preferential model.
They will be discussed in a future paper.
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